JP2009299590A - Egr control device for internal combustion engine - Google Patents

Egr control device for internal combustion engine Download PDF

Info

Publication number
JP2009299590A
JP2009299590A JP2008155318A JP2008155318A JP2009299590A JP 2009299590 A JP2009299590 A JP 2009299590A JP 2008155318 A JP2008155318 A JP 2008155318A JP 2008155318 A JP2008155318 A JP 2008155318A JP 2009299590 A JP2009299590 A JP 2009299590A
Authority
JP
Japan
Prior art keywords
egr
combustion engine
internal combustion
passage
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008155318A
Other languages
Japanese (ja)
Inventor
Moriyoshi Shoji
守良 庄子
Masahiro Ishiga
雅浩 石賀
Shiro Takakura
史郎 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008155318A priority Critical patent/JP2009299590A/en
Publication of JP2009299590A publication Critical patent/JP2009299590A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately control a bypass valve provided in a bypass passage of a venturi device without having a special sensor in an EGR control device for an internal combustion engine. <P>SOLUTION: An intake air amount flowing through an intake passage 12 is detected by an intake air amount sensor Sc, a required EGR amount is calculated by a required EGR amount calculating means M2, and the bypass valve 25 disposed in the bypass passage 24 for bypassing the venturi device 19 is opened and a negative pressure of the venturi device 19 is increased when the intake air amount is equal to or less than the prescribed value and the required EGR amount is equal to or more than the prescribed value and it is difficult to secure an EGR amount by the venturi device 19, and thereby, the EGR amount circulated into the venturi device 19 from an exhaust passage 14 through an EGR passage 21 can be surely controlled regardless of an operation state of the internal combustion engine E. Parameters used for controlling the bypass valve 25 are only the intake air amount and the required EGR amount, and therefore, a sensor for detecting an exhaust pressure or a venturi pressure can be dispensed with, which contributes to reduction of the number of components and the cost reduction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の吸気通路に設けられたベンチュリ装置と、前記内燃機関の排気通路から前記ベンチュリにEGRガスを還流するEGR通路と、前記吸気通路のベンチュリ装置の上流側および下流側を接続するバイパス通路と、前記バイパス通路を開閉するバイパスバルブとを備えた内燃機関のEGR制御装置に関する。   The present invention connects a venturi device provided in an intake passage of an internal combustion engine, an EGR passage that recirculates EGR gas from the exhaust passage of the internal combustion engine to the venturi, and an upstream side and a downstream side of the venturi device of the intake passage. The present invention relates to an EGR control device for an internal combustion engine, which includes a bypass passage that opens and a bypass valve that opens and closes the bypass passage.

ターボチャージャを備えた内燃機関において、タービン11bの上流の排気回路16からコンプレッサ11aの下流の吸気回路12にEGRガスを還流させる排気再循環回路15を、吸気回路12に設けたベンチュリ12bに接続し、ベンチュリ12bの上流および下流を接続する吸気バイパス回路12cに吸気バイパス弁12dを設け、排気圧Pexとベンチュリ圧Pvrとの差圧(Pex−Pvr)が、(Pex−Pvr)>0となるように、つまりEGRガスが排気側から吸気側に還流する圧力差が発生するように前記吸気バイパス弁12dの開度を制御するものが、下記特許文献1により公知である。
特開2001−165000号公報
In an internal combustion engine equipped with a turbocharger, an exhaust gas recirculation circuit 15 that recirculates EGR gas from an exhaust circuit 16 upstream of the turbine 11b to an intake circuit 12 downstream of the compressor 11a is connected to a venturi 12b provided in the intake circuit 12. The intake bypass circuit 12c connecting the upstream and downstream of the venturi 12b is provided with an intake bypass valve 12d so that the differential pressure (Pex−Pvr) between the exhaust pressure Pex and the venturi pressure Pvr becomes (Pex−Pvr)> 0. In other words, it is known from Patent Document 1 below that the opening degree of the intake bypass valve 12d is controlled so as to generate a pressure difference in which EGR gas recirculates from the exhaust side to the intake side.
JP 2001-165000 A

ところで、上記従来のものは、吸気バイパス回路12cの吸気バイパス弁12dの開度を制御するために排気圧Pexとベンチュリ圧Pvrとを検出する必要があり、それらを検出するための特別のセンサを設ける分だけコストが増加する問題があった。   By the way, the above-mentioned conventional one needs to detect the exhaust pressure Pex and the venturi pressure Pvr in order to control the opening degree of the intake bypass valve 12d of the intake bypass circuit 12c, and a special sensor for detecting them is provided. There was a problem that the cost increased by the amount provided.

本発明は前述の事情に鑑みてなされたもので、内燃機関のEGR制御装置において、特別のセンサを設けることなく、ベンチュリ装置のバイパス通路に設けたバイパスバルブの制御を的確に行えるようにすることを目的とする。   The present invention has been made in view of the above circumstances, and in an EGR control device for an internal combustion engine, it is possible to accurately control a bypass valve provided in a bypass passage of a venturi device without providing a special sensor. With the goal.

上記目的を達成するために、請求項1に記載された発明によれば、内燃機関の吸気通路に設けられたベンチュリ装置と、前記内燃機関の排気通路から前記ベンチュリ装置にEGRガスを還流するEGR通路と、前記吸気通路の前記ベンチュリ装置の上流側および下流側を接続するバイパス通路と、前記バイパス通路を開閉するバイパスバルブと、前記吸気通路を流れる吸入空気量を検出する吸入空気量センサと、前記EGR通路から供給する要求EGR量を算出する要求EGR量算出手段と、前記吸入空気量が所定値以下で前記要求EGR量が所定値以上のときに、前記バイパスバルブを閉弁するバイパスバルブ制御手段とを備えることを特徴とする内燃機関のEGR制御装置が提案される。   To achieve the above object, according to the first aspect of the present invention, a venturi device provided in an intake passage of an internal combustion engine, and an EGR that recirculates EGR gas from the exhaust passage of the internal combustion engine to the venturi device. A passage, a bypass passage connecting the upstream and downstream sides of the venturi device of the intake passage, a bypass valve for opening and closing the bypass passage, an intake air amount sensor for detecting an intake air amount flowing through the intake passage, A required EGR amount calculating means for calculating a required EGR amount supplied from the EGR passage, and a bypass valve control for closing the bypass valve when the intake air amount is equal to or smaller than a predetermined value and the required EGR amount is equal to or larger than a predetermined value. An EGR control apparatus for an internal combustion engine is provided.

また請求項2に記載された発明によれば、内燃機関の吸気通路に設けられたベンチュリ装置と、前記内燃機関の排気通路から前記ベンチュリ装置にEGRガスを還流するEGR通路と、前記吸気通路のベンチュリ装置の上流側および下流側を接続するバイパス通路と、前記バイパス通路を開閉するバイパスバルブと、アクセル開度を検出するアクセル開度センサと、変速機の変速段を検出する変速段センサと、前記アクセル開度から要求トルクを算出する要求トルク算出手段と、前記要求トルクおよび前記変速段から推定内燃機関回転数を算出する推定内燃機関回転数算出手段と、前記要求トルクおよび前記推定内燃機関回転数から推定吸入空気量を算出する推定吸入空気量算出手段と、前記要求トルクおよび前記推定内燃機関回転数から推定EGR量を算出する推定EGR量算出手段と、前記推定吸入空気量が所定値以下で前記推定EGR量が所定値以上のときに、前記バイパスバルブを閉弁するバイパスバルブ制御手段とを備えることを特徴とする内燃機関のEGR制御装置が提案される。   According to the second aspect of the present invention, the venturi device provided in the intake passage of the internal combustion engine, the EGR passage for returning EGR gas from the exhaust passage of the internal combustion engine to the venturi device, and the intake passage A bypass passage connecting the upstream side and the downstream side of the venturi device, a bypass valve for opening and closing the bypass passage, an accelerator opening sensor for detecting an accelerator opening, a shift stage sensor for detecting a shift stage of the transmission, Requested torque calculating means for calculating a required torque from the accelerator opening, estimated internal combustion engine speed calculating means for calculating an estimated internal combustion engine speed from the required torque and the shift stage, the required torque and the estimated internal combustion engine speed An estimated intake air amount calculating means for calculating an estimated intake air amount from the number, an estimate from the required torque and the estimated internal combustion engine speed. An estimated EGR amount calculating means for calculating an EGR amount; and a bypass valve control means for closing the bypass valve when the estimated intake air amount is not more than a predetermined value and the estimated EGR amount is not less than a predetermined value. A characteristic EGR control device for an internal combustion engine is proposed.

請求項1の構成によれば、吸入空気量センサで吸気通路を流れる吸入空気量を検出し、要求EGR量算出手段で要求EGR量を算出し、吸入空気量が所定値以下で要求EGR量が所定値以上であって吸気通路に設けたベンチュリ装置によるEGR量の確保が難いときに、ベンチュリ装置をバイパスするバイパス通路に設けたバイパスバルブを閉弁して該ベンチュリ装置の負圧を増加させるので、排気通路からベンチュリ装置にEGR通路を介して還流するEGR量を内燃機関の運転状態に関わらずに的確に制御することができる。このバイパスバルブの制御に使用するパラメータは吸入空気量および要求EGR量だけなので、排気圧やベンチュリ圧を検出するセンサが不要になり、部品点数の削減およびコストダウンに寄与することができる。   According to the configuration of the first aspect, the intake air amount sensor detects the intake air amount flowing through the intake passage, the required EGR amount calculating means calculates the required EGR amount, and the required EGR amount is less than or equal to a predetermined value. When it is difficult to secure the EGR amount by the venturi device provided in the intake passage above the predetermined value, the bypass valve provided in the bypass passage bypassing the venturi device is closed to increase the negative pressure of the venturi device. The amount of EGR recirculated from the exhaust passage to the venturi device via the EGR passage can be accurately controlled regardless of the operating state of the internal combustion engine. Since the parameters used for the control of the bypass valve are only the intake air amount and the required EGR amount, a sensor for detecting the exhaust pressure or the venturi pressure becomes unnecessary, which can contribute to the reduction of the number of parts and the cost reduction.

また請求項2の構成によれば、アクセル開度と変速段とに基づいて、推定内燃機関回転数算出手段で推定内燃機関回転数を算出し、推定吸入空気量算出手段で推定吸入空気量を算出し、推定EGR量算出手段で推定EGR量を算出し、推定吸入空気量が所定値以下で推定EGR量が所定値以上であって吸気通路に設けたベンチュリ装置によるEGR量の確保が難いときに、ベンチュリ装置をバイパスするバイパス通路に設けたバイパスバルブを閉弁して該ベンチュリ装置の負圧を増加させるので、排気通路からベンチュリ装置にEGR通路を介して還流するEGR量を内燃機関の運転状態に関わらずに的確に制御することができる。このバイパスバルブの制御に使用するパラメータは推定吸入空気量および推定EGR量だけなので、排気圧やベンチュリ圧を検出するセンサが不要になり、部品点数の削減およびコストダウンに寄与することができる。   According to the second aspect of the present invention, the estimated internal combustion engine speed calculation means calculates the estimated internal combustion engine speed based on the accelerator opening and the gear position, and the estimated intake air quantity calculation means calculates the estimated intake air quantity. When the estimated EGR amount is calculated by the estimated EGR amount calculating means, the estimated intake air amount is not more than a predetermined value, the estimated EGR amount is not less than the predetermined value, and it is difficult to secure the EGR amount by the venturi device provided in the intake passage. In addition, the bypass valve provided in the bypass passage for bypassing the venturi device is closed to increase the negative pressure of the venturi device, so that the amount of EGR returned from the exhaust passage to the venturi device via the EGR passage is increased. It can be accurately controlled regardless of the state. Since the parameters used for the control of the bypass valve are only the estimated intake air amount and the estimated EGR amount, a sensor for detecting the exhaust pressure and the venturi pressure becomes unnecessary, which can contribute to the reduction of the number of parts and the cost reduction.

しかもアクセル開度と変速段とに基づいて推定内燃機関回転数および推定吸入空気量を算出するので、アクセル開度に対する内燃機関回転数および吸入空気量の応答遅れを補償し、ベンチュリ装置の負圧が不足するのを未然に回避してEGR量の制御を一層精度よく行うことができる。   In addition, since the estimated internal combustion engine speed and the estimated intake air amount are calculated based on the accelerator opening and the gear position, the response delay of the internal combustion engine speed and the intake air amount with respect to the accelerator opening is compensated, and the negative pressure of the venturi device is compensated. This makes it possible to control the EGR amount with higher accuracy by avoiding the shortage.

以下、本発明の実施の形態を添付の図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1〜図5は本発明の第1の実施の形態を示すもので、図1は内燃機関のEGR制御装置の全体構成図、図2は電子制御ユニットの回路構成を示すブロック図、図3は作用を説明するフローチャート、図4は要求トルクおよび内燃機関回転数から要求EGR量を検索するマップ、図5はバイパスバルブの開弁領域および閉弁領域を示す図である。   1 to 5 show a first embodiment of the present invention. FIG. 1 is an overall configuration diagram of an EGR control device for an internal combustion engine, FIG. 2 is a block diagram showing a circuit configuration of an electronic control unit, and FIG. FIG. 4 is a map for searching for the required EGR amount from the required torque and the internal combustion engine speed, and FIG. 5 is a diagram showing the valve opening region and the valve closing region of the bypass valve.

図1に示すように、水素を燃料とする内燃機関Eは吸気ポート11…に連なる吸気通路12と、排気ポート13…に連なる排気通路14とを備える。ターボチャージャ15は排気通路14に臨むタービン16と吸気通路12に臨むコンプレッサ17とを同軸に結合したものであり、排気通路14を流れる排気で駆動されるタービン16の回転をコンプレッサ17に伝達し、回転するコンプレッサ17で吸気を圧縮して過給を行うようになっている。   As shown in FIG. 1, the internal combustion engine E using hydrogen as a fuel includes an intake passage 12 connected to the intake ports 11, and an exhaust passage 14 connected to the exhaust ports 13. The turbocharger 15 is formed by coaxially connecting a turbine 16 facing the exhaust passage 14 and a compressor 17 facing the intake passage 12, and transmits the rotation of the turbine 16 driven by the exhaust gas flowing through the exhaust passage 14 to the compressor 17. The intake air is compressed by the rotating compressor 17 to perform supercharging.

ターボチャージャ15のコンプレッサ17と内燃機関Eの吸気ポート11…とを接続する吸気通路12には、コンプレッサ17で圧縮されて温度上昇した吸気を冷却するインタークーラ18が設けられる。コンプレッサ17の上流の吸気通路12にベンチュリ装置19が設けられており、またタービン16とその下流の排気ガス浄化触媒20との間の排気通路14が、EGR通路21を介してベンチュリ装置19に接続される。EGR通路21には、その上流側にEGRガスを冷却するEGRクーラ22が配置され、その下流側にEGRガスの流量を制御するEGR制御バルブ23が配置される。ベンチュリ装置19の上流側と下流側とがバイパス通路24で接続されており、そのバイパス通路24にバイパスバルブ25が設けられる。   An intercooler 18 is provided in the intake passage 12 that connects the compressor 17 of the turbocharger 15 and the intake ports 11 of the internal combustion engine E to cool intake air that has been compressed by the compressor 17 and has risen in temperature. A venturi device 19 is provided in the intake passage 12 upstream of the compressor 17, and the exhaust passage 14 between the turbine 16 and the exhaust gas purification catalyst 20 downstream thereof is connected to the venturi device 19 via the EGR passage 21. Is done. In the EGR passage 21, an EGR cooler 22 that cools the EGR gas is disposed on the upstream side, and an EGR control valve 23 that controls the flow rate of the EGR gas is disposed on the downstream side. An upstream side and a downstream side of the venturi device 19 are connected by a bypass passage 24, and a bypass valve 25 is provided in the bypass passage 24.

ベンチュリ装置19は、上流側の吸気通路12から供給される吸気を絞るべく先細に形成されたノズル26と、ノズル26の下流端から末広がりに形成されたディフューザ27とを備えており、ノズル26およびディフューザ27の隙間にEGR通路21の下流端が開口する。   The venturi device 19 includes a nozzle 26 that is tapered to throttle the intake air supplied from the upstream intake passage 12, and a diffuser 27 that extends from the downstream end of the nozzle 26. The downstream end of the EGR passage 21 opens in the gap of the diffuser 27.

内燃機関回転数センサSaで検出した内燃機関回転数NEと、アクセル開度センサSbで検出したアクセル開度APと、吸入空気量センサScで検出した吸入空気量GAIRとが入力された電子制御ユニットUは、EGR制御バルブ23およびバイパスバルブ25の開度を制御する。   An electronic control unit to which the internal combustion engine speed NE detected by the internal combustion engine speed sensor Sa, the accelerator opening AP detected by the accelerator opening sensor Sb, and the intake air amount GAIR detected by the intake air amount sensor Sc are input. U controls the opening degree of the EGR control valve 23 and the bypass valve 25.

図2に示すように、EGR量を制御する電子制御ユニットUは、要求トルク算出手段M1と、要求EGR量算出手段M2と、EGR量制御手段(バイパスバルブ制御手段)M3とを備える。   As shown in FIG. 2, the electronic control unit U that controls the EGR amount includes a required torque calculation unit M1, a required EGR amount calculation unit M2, and an EGR amount control unit (bypass valve control unit) M3.

要求トルク算出手段M1は、アクセル開度センサSbで検出したアクセル開度APに基づいて内燃機関Eの要求トルクBMEPを算出する。要求EGR量算出手段M2は、前記要求トルクBMEPと、内燃機関回転数センサSaで検出した内燃機関回転数NEとに基づいて要求EGR量GEGRを算出する。EGR量制御手段(バイパスバルブ制御手段)M3は、前記要求EGR量GEGRと、吸入空気量センサScで検出した吸入空気量GAIRとに基づいてEGR制御バルブ23およびバイパスバルブ25の開度を制御する。   The required torque calculation means M1 calculates the required torque BMEP of the internal combustion engine E based on the accelerator opening AP detected by the accelerator opening sensor Sb. The required EGR amount calculation means M2 calculates a required EGR amount GEGR based on the required torque BMEP and the internal combustion engine speed NE detected by the internal combustion engine speed sensor Sa. The EGR amount control means (bypass valve control means) M3 controls the opening degrees of the EGR control valve 23 and the bypass valve 25 based on the required EGR amount GEGR and the intake air amount GAIR detected by the intake air amount sensor Sc. .

次に、上記構成を備えた本発明の第1の実施の形態の作用を説明する。   Next, the operation of the first embodiment of the present invention having the above configuration will be described.

内燃機関Eはスロットルバルブを備えていないタイプであり、吸気系への燃料噴射量を制御することで出力の制御が行なわれる。   The internal combustion engine E is a type that does not include a throttle valve, and the output is controlled by controlling the fuel injection amount to the intake system.

内燃機関Eの排気ポート13…から排気通路14に排出された排気はターボチャージャ15のタービン16を駆動した後、排気ガス浄化触媒20を通過して浄化された状態で排出される。ターボチャージャ15のタービン16で駆動されるコンプレッサ17により圧縮された吸気は、インタークーラ18で冷却された後に吸気ポート11…から内燃機関Eに吸入されて燃料の燃焼に供される。   Exhaust gas discharged from the exhaust ports 13 of the internal combustion engine E to the exhaust passage 14 is driven in the exhaust gas purification catalyst 20 after being driven by the turbine 16 of the turbocharger 15 and discharged in a purified state. The intake air compressed by the compressor 17 driven by the turbine 16 of the turbocharger 15 is cooled by the intercooler 18 and then sucked into the internal combustion engine E from the intake ports 11 to be used for fuel combustion.

ターボチャージャ15のタービン16の下流の排気通路14から分岐するEGR通路21に導入されたEGRガスは、EGRクーラ22で冷却された後にEGR制御バルブ23で流量を制御され、ベンチュリ装置19に発生する負圧で吸気通路12に還流することで排気中のNOxの低減に寄与する。このとき、EGR制御バルブ23を全開にしてもEGR量が不足する場合には、バイパスバルブ25を閉弁制御することで、ベンチュリ装置19に発生する負圧を増加させ、必要な量のEGRガスを吸気通路12に還流させるようになっている。   The EGR gas introduced into the EGR passage 21 branched from the exhaust passage 14 downstream of the turbine 16 of the turbocharger 15 is cooled by the EGR cooler 22, then the flow rate is controlled by the EGR control valve 23, and is generated in the venturi device 19. By returning to the intake passage 12 with a negative pressure, it contributes to the reduction of NOx in the exhaust. At this time, if the EGR amount is insufficient even when the EGR control valve 23 is fully opened, the negative pressure generated in the venturi device 19 is increased by controlling the bypass valve 25 to close the EGR gas. Is recirculated to the intake passage 12.

上記作用を、図3のフローチャートに基づいて更に詳細に説明する。   The above operation will be described in more detail based on the flowchart of FIG.

先ずステップS1で内燃機関回転数センサSaで内燃機関回転数NEを検出し、アクセル開度センサSbでアクセル開度APを検出し、吸入空気量センサScで吸入空気量GAIRを検出する。続くステップS2でアクセル開度APから要求トルクBMEPを算出し、ステップS3で要求トルクBMEPと内燃機関回転数NEとから要求EGR量GEGRを算出する。   First, in step S1, the internal combustion engine rotational speed sensor Sa detects the internal combustion engine rotational speed NE, the accelerator opening sensor Sb detects the accelerator opening AP, and the intake air amount sensor Sc detects the intake air amount GAIR. In the following step S2, the required torque BMEP is calculated from the accelerator opening AP, and in step S3, the required EGR amount GEGR is calculated from the required torque BMEP and the internal combustion engine speed NE.

尚、実施の形態の内燃機関Eはスロットルバルブを備えていないため、要求トルクBMEPから内燃機関Eの燃料噴射量を算出することができる。   Since the internal combustion engine E of the embodiment does not include a throttle valve, the fuel injection amount of the internal combustion engine E can be calculated from the required torque BMEP.

ステップS4で吸入空気量GAIRが所定値A以下であり、かつステップS5で要求EGR量GEGRが所定値B以上であれば、ステップS6でバイパスバルブ25を閉弁し、前記ステップS5で吸入空気量GAIRが所定値A以下でないか、前記ステップS5で要求EGR量GEGRが所定値B以上でなければ、ステップS7でバイパスバルブ25を開弁するとともに、要求EGR量GEGRが得られるようにEGR制御バルブ23の開度を制御する。   If the intake air amount GAIR is less than or equal to the predetermined value A in step S4 and the required EGR amount GEGR is greater than or equal to the predetermined value B in step S5, the bypass valve 25 is closed in step S6, and the intake air amount in step S5. If GAIR is not less than the predetermined value A or the required EGR amount GEGR is not greater than the predetermined value B in step S5, the bypass valve 25 is opened in step S7 and the EGR control valve is obtained so that the required EGR amount GEGR is obtained. The opening degree of 23 is controlled.

図4は、前記ステップS3で要求トルクBMEPと内燃機関回転数NEとから要求EGR量GEGRを検索するためのマップを示している。要求トルクBMEPが低い領域では燃料噴射量が少なくなり、空燃比が低いリーン運転が行われるためにNOxが発生し難く、従ってEGR率は0%にすることができる。要求トルクBMEPの増加に伴って燃料噴射量が増加することでリーン運転が不能になると、NOxの排出を抑制するために、EGR率=50%(吸入空気量GAIR=要求EGR量GEGR)となり、そこから要求トルクBMEPの増加に伴って全負荷運転状態(ストイキ)に達する間に、EGR率は50%から0%に漸減する。   FIG. 4 shows a map for retrieving the required EGR amount GEGR from the required torque BMEP and the internal combustion engine speed NE in step S3. In a region where the required torque BMEP is low, the fuel injection amount is small, and lean operation with a low air-fuel ratio is performed, so that NOx is hardly generated, and therefore the EGR rate can be made 0%. When lean operation becomes impossible due to an increase in the fuel injection amount accompanying an increase in the required torque BMEP, an EGR rate = 50% (intake air amount GAIR = required EGR amount GEGR) to suppress NOx emission, From this point, the EGR rate gradually decreases from 50% to 0% while the full load operation state (stoichiometric) is reached as the required torque BMEP increases.

図5は、吸入空気量GAIRおよび要求EGR量GEGRをパラメータとしてバイパスバルブ25の開弁領域および閉弁領域を検索するためのマップを示している。図4で説明したように、要求EGR量GEGR>吸入空気量GAIRの領域(EGR率>50%の領域)では、リーン運転が可能であるためにEGRガスの導入は行われず、EGR制御バルブ23は閉弁状態に維持される。一方、要求EGR量GEGR≦吸入空気量GAIRの領域(EGR率≦50%の領域)ではEGRガスの導入が行われるが、要求EGR量GEGRを吸気通路12に還流できない場合には、バイパス通路24に設けたバイパスバルブ25を閉弁することでベンチュリ装置19における吸気の流量を増加させ、ベンチュリ装置19に発生する負圧を増加させることで要求EGR量GEGRを吸気通路12に還流させる。   FIG. 5 shows a map for searching the valve opening region and the valve closing region of the bypass valve 25 using the intake air amount GAIR and the required EGR amount GEGR as parameters. As described with reference to FIG. 4, in the region where the required EGR amount GEGR> the intake air amount GAIR (the region where the EGR rate> 50%), the lean operation is possible, so the EGR gas is not introduced, and the EGR control valve 23 Is kept closed. On the other hand, EGR gas is introduced in the region where the required EGR amount GEGR ≦ the intake air amount GAIR (the region where the EGR rate ≦ 50%), but when the required EGR amount GEGR cannot be recirculated to the intake passage 12, the bypass passage 24 By closing the bypass valve 25 provided in the above, the flow rate of the intake air in the venturi device 19 is increased, and the negative pressure generated in the venturi device 19 is increased to return the required EGR amount GEGR to the intake passage 12.

必要なEGR量を確保できない第1の場合は、内燃機関Eが低負荷領域にあって吸入空気量GAIRが所定値A以下であり(図3フローチャートのステップS4参照)、ベンチュリ装置19に充分な負圧が発生しない場合である。必要なEGR量を確保できない第2の場合は、要求EGR量GEGRが所定値B以上であり(図3のフローチャートのステップS5参照)、ベンチュリ装置19が発生する負圧では不足する場合である。   In the first case in which the required EGR amount cannot be secured, the internal combustion engine E is in the low load region and the intake air amount GAIR is not more than the predetermined value A (see step S4 in the flowchart of FIG. 3), which is sufficient for the venturi device 19. This is the case where no negative pressure is generated. The second case where the required EGR amount cannot be secured is when the required EGR amount GEGR is equal to or greater than the predetermined value B (see step S5 in the flowchart of FIG. 3), and the negative pressure generated by the venturi device 19 is insufficient.

上記二つの条件が重なった場合には、バイパス通路24に設けたバイパスバルブ25を閉弁して吸気の全量がベンチュリ装置19を通過するようにし、そこに充分な負圧を発生させて要求EGR量GEGRを吸気通路12に還流させ、適正なEGR率を確保することができる。それ以外の場合には、前記バイパス通路24に設けたバイパスバルブ25を開弁してベンチュリ装置19を通過する吸気の量を最小限に抑え、吸気抵抗を減少させて内燃機関Eの出力向上を図ることができる。   When the above two conditions overlap, the bypass valve 25 provided in the bypass passage 24 is closed so that the entire amount of intake air passes through the venturi device 19, and a sufficient negative pressure is generated there to generate the required EGR. The amount GEGR can be returned to the intake passage 12 to ensure an appropriate EGR rate. In other cases, the bypass valve 25 provided in the bypass passage 24 is opened to minimize the amount of intake air passing through the venturi device 19, and the intake resistance is reduced to improve the output of the internal combustion engine E. Can be planned.

このように、内燃機関Eが一般的に備えている内燃機関回転数センサSa、アクセル開度センサSbおよび吸入空気量センサScを用いてバイパスバルブ25の開閉制御を行うことができるので、上記特許文献1に記載された発明で必要としていた排気圧センサやベンチュリ圧センサが不要になり、部品点数の削減およびコストの削減に寄与することができる。   As described above, the opening / closing control of the bypass valve 25 can be performed using the internal combustion engine speed sensor Sa, the accelerator opening sensor Sb, and the intake air amount sensor Sc that are generally provided in the internal combustion engine E. The exhaust pressure sensor and the venturi pressure sensor required in the invention described in Document 1 are no longer necessary, which can contribute to a reduction in the number of parts and cost.

図6および図7は本発明の第2の実施の形態を示すもので、図6は電子制御ユニットの回路構成を示すブロック図、図7は作用を説明するフローチャートである。   6 and 7 show a second embodiment of the present invention. FIG. 6 is a block diagram showing the circuit configuration of the electronic control unit, and FIG. 7 is a flowchart for explaining the operation.

上述した第1の実施の形態では、吸入空気量GAIRを吸入空気量センサScで直接検出し、かつ要求EGR量GEGRを、要求トルク算出手段M1で算出した要求トルクBMEPと内燃機関回転数センサSaで直接検出した内燃機関回転数NEとから算出しているが、第2の実施の形態では、内燃機関回転数NEを推定し(推定内燃機関回転数NE* )、この推定内燃機関回転数NE* に基づいて吸入空気量GAIRを推定し(推定吸入空気量GAIR* )、この推定吸入空気量GAIR* に基づいて推定EGR量GEGR* を算出する。 In the first embodiment described above, the intake air amount GAIR is directly detected by the intake air amount sensor Sc, and the required EGR amount GEGR is calculated by the required torque calculation means M1 and the internal combustion engine speed sensor Sa. In the second embodiment, the internal combustion engine speed NE is estimated (estimated internal combustion engine speed NE * ), and this estimated internal combustion engine speed NE is calculated. The intake air amount GAIR is estimated based on * (estimated intake air amount GAIR * ), and the estimated EGR amount GEGR * is calculated based on the estimated intake air amount GAIR * .

図6に示すように、EGR量を制御する電子制御ユニットUは、要求トルク算出手段M1と、推定内燃機関回転数算出手段M4と、推定吸入空気量算出手段M5と、推定EGR量算出手段M6と、EGR量制御手段(バイパスバルブ制御手段)M3とを備える。   As shown in FIG. 6, the electronic control unit U that controls the EGR amount includes a required torque calculating means M1, an estimated internal combustion engine speed calculating means M4, an estimated intake air amount calculating means M5, and an estimated EGR amount calculating means M6. And an EGR amount control means (bypass valve control means) M3.

要求トルク算出手段M1は、アクセル開度センサSbで検出したアクセル開度APに基づいて内燃機関Eの要求トルクBMEPを算出する。推定内燃機関回転数算出手段M4は、前記要求トルクBMEPと、変速段センサSdで検出した変速機の変速段SPとに基づいて推定内燃機関回転数NE* を算出する。推定吸入空気量算出手段M5は、前記要求トルクBMEPと、前記推定内燃機関回転数NE* とに基づいて推定吸入空気量GAIR* を算出する。推定EGR量算出手段M6は、前記要求トルクBMEPと、前記推定内燃機関回転数NE* とに基づいて推定EGR量GEGR* を算出する。EGR量制御手段(バイパスバルブ制御手段)M3は、前記推定EGR量GEGR* と、前記推定吸入空気量GAIR* とに基づいてEGR制御バルブ23およびバイパスバルブ25の開度を制御する。 The required torque calculation means M1 calculates the required torque BMEP of the internal combustion engine E based on the accelerator opening AP detected by the accelerator opening sensor Sb. The estimated internal combustion engine speed calculation means M4 calculates the estimated internal combustion engine speed NE * based on the required torque BMEP and the transmission speed SP detected by the speed sensor Sd. The estimated intake air amount calculation means M5 calculates an estimated intake air amount GAIR * based on the required torque BMEP and the estimated internal combustion engine speed NE * . The estimated EGR amount calculating means M6 calculates an estimated EGR amount GEGR * based on the required torque BMEP and the estimated internal combustion engine speed NE * . The EGR amount control means (bypass valve control means) M3 controls the opening degrees of the EGR control valve 23 and the bypass valve 25 based on the estimated EGR amount GEGR * and the estimated intake air amount GAIR * .

上記作用を、図7のフローチャートに基づいて更に詳細に説明する。   The above operation will be described in more detail based on the flowchart of FIG.

先ずステップS11でアクセル開度センサSbでアクセル開度APを検出するとともに、変速段センサSdで変速機の変速段SPを検出する。続くステップS12でアクセル開度APから要求トルクBMEPを算出する。続くステップS13で要求トルクBMEPと変速段SPとから推定内燃機関回転数NE* を算出し、更にステップS14で要求トルクBMEPと推定内燃機関回転数NE* とから推定吸入空気量GAIR* を算出する。そしてステップS15で要求トルクBMEPと推定内燃機関回転数NE* とから推定EGR量GEGR* を算出する。 First, in step S11, the accelerator opening degree AP is detected by the accelerator opening degree sensor Sb, and the shift stage SP of the transmission is detected by the shift stage sensor Sd. In the subsequent step S12, the required torque BMEP is calculated from the accelerator opening AP. In the next step S13, the estimated internal combustion engine speed NE * is calculated from the required torque BMEP and the shift speed SP, and in step S14, the estimated intake air amount GAIR * is calculated from the required torque BMEP and the estimated internal combustion engine speed NE *. . In step S15, an estimated EGR amount GEGR * is calculated from the required torque BMEP and the estimated internal combustion engine speed NE * .

尚、ステップS15では第1の実施の形態のステップS3と同様に図4のマップを用いており、内燃機関回転数が推定内燃機関回転数NE* に到達した際に要求される要求EGR量を推定EGR量GEGR* として推定している。 In step S15, the map of FIG. 4 is used as in step S3 of the first embodiment, and the required EGR amount required when the internal combustion engine speed reaches the estimated internal combustion engine speed NE * is calculated. Estimated EGR amount is estimated as GEGR * .

本実施の形態の内燃機関Eはスロットルバルブを備えておらず、燃料噴射量で出力制御を行うものであるため、前記ステップS14で推定内燃機関回転数NE* が分かれば、そのときの推定吸入空気量GAIR* を算出することができる。 Since the internal combustion engine E of the present embodiment is not provided with a throttle valve and performs output control with the fuel injection amount, if the estimated internal combustion engine speed NE * is known in step S14, the estimated intake at that time is estimated. The air amount GAIR * can be calculated.

ステップS16で推定吸入空気量GAIR* が所定値A以下であり、かつステップS17で推定EGR量GEGR* が所定値B以上であれば、ステップS18でバイパスバルブ25を閉弁し、前記ステップS16で推定吸入空気量GAIR* が所定値A以下でないか、前記ステップS17で推定EGR量GEGR* が所定値B以上でなければ、前記ステップS19でバイパスバルブ25を開弁するとともに、推定EGR量GEGR* が得られるようにEGR制御バルブ23の開度を制御する。 If the estimated intake air amount GAIR * is less than or equal to the predetermined value A in step S16 and the estimated EGR amount GEGR * is greater than or equal to the predetermined value B in step S17, the bypass valve 25 is closed in step S18, and in step S16 If the estimated intake air amount GAIR * is not equal to or less than the predetermined value A or the estimated EGR amount GEGR * is not equal to or greater than the predetermined value B in step S17, the bypass valve 25 is opened in step S19 and the estimated EGR amount GEGR * Is controlled so that the opening degree of the EGR control valve 23 is obtained.

以上のように、第2の実施の形態によれば、アクセル開度APから算出された要求トルクBMEPから到達する推定内燃機関回転数NE* を算出し、その推定内燃機関回転数NE* から算出した推定吸入空気量GAIR* および推定EGR量GEGR* からベンチュリ装置19の負圧が不足することが予測される場合には、予めバイパスバルブ25を閉弁しておくことで、アクセルペダルの操作に対する内燃機関回転数NEおよび吸入空気量GAIRの応答遅れを補償し、ベンチュリ装置19の負圧が不足するのを未然の回避してEGR量の制御を一層精度よく行うことができる。 As described above, according to the second embodiment, the estimated internal combustion engine speed NE * that is reached from the required torque BMEP calculated from the accelerator opening AP is calculated, and is calculated from the estimated internal combustion engine speed NE *. When it is predicted that the negative pressure of the venturi device 19 is insufficient from the estimated intake air amount GAIR * and the estimated EGR amount GEGR * , the bypass valve 25 is closed in advance to prevent the accelerator pedal operation. The response delay of the internal combustion engine rotational speed NE and the intake air amount GAIR can be compensated, and the negative pressure of the venturi device 19 can be avoided and the EGR amount can be controlled with higher accuracy.

第2の実施の形態の上記以外の作用効果は、上述した第1の実施の形態の作用効果と同一である。   The operational effects of the second embodiment other than those described above are the same as the operational effects of the first embodiment described above.

以上、本発明の実施の形態を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   As mentioned above, although embodiment of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.

例えば、実施の形態では水素を燃料とする内燃機関Eを例示したが、本発明はガソリンや軽油を燃料とする内燃機関Eに対しても、またターボチャージャ15を持たない内燃機関Eに対しても、また燃料噴射がポート噴射あるいは直噴の何れであっても、スロットルバルブを持たない内燃機関Eであれば適用することができる。   For example, in the embodiment, the internal combustion engine E that uses hydrogen as fuel is illustrated, but the present invention applies to an internal combustion engine E that uses gasoline or light oil as fuel, and also to an internal combustion engine E that does not have the turbocharger 15. In addition, the internal combustion engine E having no throttle valve can be applied regardless of whether the fuel injection is port injection or direct injection.

また図7のフローチャートのステップS13で要求トルクBMEPおよび変速段SPから推定内燃機関回転数NE* を算出する際に、路面の傾斜や車両の積載量に応じて変化する車両負荷を考慮すれば、推定内燃機関回転数NE* をより高精度に算出することができる。 Further, when the estimated internal combustion engine speed NE * is calculated from the required torque BMEP and the gear stage SP in step S13 of the flowchart of FIG. 7, if the vehicle load that changes according to the road surface inclination and the vehicle load is taken into consideration, The estimated internal combustion engine speed NE * can be calculated with higher accuracy.

第1の実施の形態に係る内燃機関のEGR制御装置の全体構成図1 is an overall configuration diagram of an EGR control device for an internal combustion engine according to a first embodiment. 電子制御ユニットの回路構成を示すブロック図Block diagram showing circuit configuration of electronic control unit 作用を説明するフローチャートFlow chart explaining operation 要求トルクおよび内燃機関回転数から要求EGR量を検索するマップMap for retrieving requested EGR amount from requested torque and internal combustion engine speed バイパスバルブの開弁領域および閉弁領域を示す図であるIt is a figure which shows the valve opening area | region and valve closing area | region of a bypass valve. 第2の実施の形態に係る電子制御ユニットの回路構成を示すブロック図The block diagram which shows the circuit structure of the electronic control unit which concerns on 2nd Embodiment. 作用を説明するフローチャートFlow chart explaining operation

符号の説明Explanation of symbols

12 吸気通路
14 排気通路
19 ベンチュリ装置
21 EGR通路
24 バイパス通路
25 バイパスバルブ
AP アクセル開度
BMEP 要求トルク
E 内燃機関
GAIR 吸入空気量
GAIR* 推定吸入空気量
GEGR 要求EGR量
GEGR* 推定EGR量
M1 要求トルク算出手段
M2 要求EGR量算出手段
M3 バイパスバルブ制御手段
M4 推定内燃機関回転数算出手段
M5 推定吸入空気量算出手段
M6 推定EGR量算出手段
NE* 推定内燃機関回転数
SP 変速段
Sb アクセル開度センサ
Sc 吸入空気量センサ
Sd 変速段センサ
12 intake passage 14 exhaust passage 19 venturi device 21 EGR passage 24 bypass passage 25 bypass valve AP accelerator opening BMEP required torque E internal combustion engine GAIR intake air amount GAIR * estimated intake air amount GEGR required EGR amount GEGR * estimated EGR amount M1 required torque Calculation means M2 Required EGR amount calculation means M3 Bypass valve control means M4 Estimated internal combustion engine speed calculation means M5 Estimated intake air quantity calculation means M6 Estimated EGR amount calculation means NE * Estimated internal combustion engine speed SP Shift stage Sb Accelerator opening sensor Sc Intake air amount sensor Sd Shift speed sensor

Claims (2)

内燃機関(E)の吸気通路(12)に設けられたベンチュリ装置(19)と、
前記内燃機関(E)の排気通路(14)から前記ベンチュリ装置(19)にEGRガスを還流するEGR通路(21)と、
前記吸気通路(12)の前記ベンチュリ装置(19)の上流側および下流側を接続するバイパス通路(24)と、
前記バイパス通路(24)を開閉するバイパスバルブ(25)と、
前記吸気通路(12)を流れる吸入空気量(GAIR)を検出する吸入空気量センサ(Sc)と、
前記EGR通路(21)から供給する要求EGR量(GEGR)を算出する要求EGR量算出手段(M2)と、
前記吸入空気量(GAIR)が所定値以下で前記要求EGR量(GEGR)が所定値以上のときに、前記バイパスバルブ(25)を閉弁するバイパスバルブ制御手段(M3)と、
を備えることを特徴とする内燃機関のEGR制御装置。
A venturi device (19) provided in the intake passage (12) of the internal combustion engine (E);
An EGR passage (21) for recirculating EGR gas from the exhaust passage (14) of the internal combustion engine (E) to the venturi device (19);
A bypass passage (24) connecting the upstream side and the downstream side of the venturi device (19) of the intake passage (12);
A bypass valve (25) for opening and closing the bypass passage (24);
An intake air amount sensor (Sc) for detecting an intake air amount (GAIR) flowing through the intake passage (12);
Requested EGR amount calculating means (M2) for calculating a requested EGR amount (GEGR) supplied from the EGR passage (21);
Bypass valve control means (M3) for closing the bypass valve (25) when the intake air amount (GAIR) is less than a predetermined value and the required EGR amount (GEGR) is more than a predetermined value;
An EGR control device for an internal combustion engine, comprising:
内燃機関(E)の吸気通路(12)に設けられたベンチュリ装置(19)と、
前記内燃機関(E)の排気通路(14)から前記ベンチュリ装置(19)にEGRガスを還流するEGR通路(21)と、
前記吸気通路(12)のベンチュリ装置(19)の上流側および下流側を接続するバイパス通路(24)と、
前記バイパス通路(24)を開閉するバイパスバルブ(25)と、
アクセル開度(AP)を検出するアクセル開度センサ(Sb)と、
変速機の変速段(SP)を検出する変速段センサ(Sd)と、
前記アクセル開度(AP)から要求トルク(BMEP)を算出する要求トルク算出手段(M1)と、
前記要求トルク(BMEP)および前記変速段(SP)から推定内燃機関回転数(NE* )を算出する推定内燃機関回転数算出手段(M4)と、
前記要求トルク(BMEP)および前記推定内燃機関回転数(NE* )から推定吸入空気量(GAIR* )を算出する推定吸入空気量算出手段(M5)と、
前記要求トルク(BMEP)および前記推定内燃機関回転数(NE* )から推定EGR量(GEGR* )を算出する推定EGR量算出手段(M6)と、
前記推定吸入空気量(GAIR* )が所定値以下で前記推定EGR量(GEGR* )が所定値以上のときに、前記バイパスバルブ(25)を閉弁するバイパスバルブ制御手段(M3)と、
を備えることを特徴とする内燃機関のEGR制御装置。
A venturi device (19) provided in the intake passage (12) of the internal combustion engine (E);
An EGR passage (21) for recirculating EGR gas from the exhaust passage (14) of the internal combustion engine (E) to the venturi device (19);
A bypass passage (24) connecting the upstream side and the downstream side of the venturi device (19) of the intake passage (12);
A bypass valve (25) for opening and closing the bypass passage (24);
An accelerator opening sensor (Sb) for detecting an accelerator opening (AP);
A shift speed sensor (Sd) for detecting a shift speed (SP) of the transmission;
Requested torque calculating means (M1) for calculating required torque (BMEP) from the accelerator opening (AP);
Estimated internal combustion engine speed calculating means (M4) for calculating an estimated internal combustion engine speed (NE * ) from the required torque (BMEP) and the shift speed (SP);
Estimated intake air amount calculating means (M5) for calculating an estimated intake air amount (GAIR * ) from the required torque (BMEP) and the estimated internal combustion engine speed (NE * );
Estimated EGR amount calculating means (M6) for calculating an estimated EGR amount (GEGR * ) from the required torque (BMEP) and the estimated internal combustion engine speed (NE * );
A bypass valve control means (M3) for closing the bypass valve (25) when the estimated intake air amount (GAIR * ) is not more than a predetermined value and the estimated EGR amount (GEGR * ) is not less than a predetermined value;
An EGR control device for an internal combustion engine, comprising:
JP2008155318A 2008-06-13 2008-06-13 Egr control device for internal combustion engine Pending JP2009299590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008155318A JP2009299590A (en) 2008-06-13 2008-06-13 Egr control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155318A JP2009299590A (en) 2008-06-13 2008-06-13 Egr control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009299590A true JP2009299590A (en) 2009-12-24

Family

ID=41546729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155318A Pending JP2009299590A (en) 2008-06-13 2008-06-13 Egr control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009299590A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039803A2 (en) * 2011-09-13 2013-03-21 Caterpillar Inc. Egr flow measurement
JP2013113097A (en) * 2011-11-24 2013-06-10 Aisan Industry Co Ltd Exhaust gas recirculation device for engine with supercharger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039803A2 (en) * 2011-09-13 2013-03-21 Caterpillar Inc. Egr flow measurement
WO2013039803A3 (en) * 2011-09-13 2013-05-10 Caterpillar Inc. Egr flow measurement
CN103917768A (en) * 2011-09-13 2014-07-09 卡特彼勒公司 EGR flow measurement
US9068502B2 (en) 2011-09-13 2015-06-30 Caterpillar Inc. EGR flow measurement
JP2013113097A (en) * 2011-11-24 2013-06-10 Aisan Industry Co Ltd Exhaust gas recirculation device for engine with supercharger

Similar Documents

Publication Publication Date Title
US8453446B2 (en) Exhaust gas control system for internal combustion engine and method for controlling the same
EP1870584B1 (en) Exhaust gas recirculation device of internal combustion engine, and control method of the device
JP5673896B2 (en) Control device for internal combustion engine
JP5672417B2 (en) Control device and control method for internal combustion engine
EP1808591A2 (en) Exhaust gas recirculation control apparatus for internal combustion engine and control method of the same
JP2007211595A (en) Exhaust gas recirculating device of internal combustion engine
JP2010096049A (en) Control device of internal combustion engine
EP2495419B1 (en) Control system for internal combustion engine
WO2008059362A2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
US20070175452A1 (en) Model-based inlet air dynamics state characterization
JP5649343B2 (en) Intake throttle control method for internal combustion engine
WO2015016305A1 (en) Exhaust system state detection device
JP2008121617A (en) Exhaust recirculation device for internal combustion engine
JP2006257940A (en) Engine control device
JP2009209784A (en) Egr control device of engine with supercharger
JP6458480B2 (en) Exhaust gas recirculation control device
JP2009299590A (en) Egr control device for internal combustion engine
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JP4735519B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2005320937A (en) Supercharging pressure controller of internal combustion engine
JP2008150978A (en) Exhaust gas recirculating device of internal combustion engine
US20200200100A1 (en) Throttle Valve Controller Device for Internal Combustion Engine
JP4946904B2 (en) Internal combustion engine control system
JP2008075545A (en) Supercharging device for engine
JP2016113959A (en) Exhaust gas recirculation control device