JP2009299139A - Steel material to be joined to dissimilar material, joined body of dissimilar materials, and method for joining dissimilar materials - Google Patents

Steel material to be joined to dissimilar material, joined body of dissimilar materials, and method for joining dissimilar materials Download PDF

Info

Publication number
JP2009299139A
JP2009299139A JP2008155657A JP2008155657A JP2009299139A JP 2009299139 A JP2009299139 A JP 2009299139A JP 2008155657 A JP2008155657 A JP 2008155657A JP 2008155657 A JP2008155657 A JP 2008155657A JP 2009299139 A JP2009299139 A JP 2009299139A
Authority
JP
Japan
Prior art keywords
steel
aluminum alloy
dissimilar
steel material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008155657A
Other languages
Japanese (ja)
Other versions
JP4427590B2 (en
Inventor
Mikako Takeda
実佳子 武田
Mamoru Nagao
護 長尾
Masao Kinebuchi
雅男 杵渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008155657A priority Critical patent/JP4427590B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to US12/997,801 priority patent/US8221899B2/en
Priority to EP14002084.3A priority patent/EP2816134A1/en
Priority to EP09762334.2A priority patent/EP2298949B1/en
Priority to CN2009801222694A priority patent/CN102066597B/en
Priority to CN201210339308.XA priority patent/CN102888555B/en
Priority to EP14003553.6A priority patent/EP2857541B1/en
Priority to KR1020107027768A priority patent/KR101238087B1/en
Priority to PCT/JP2009/058160 priority patent/WO2009150904A1/en
Publication of JP2009299139A publication Critical patent/JP2009299139A/en
Application granted granted Critical
Publication of JP4427590B2 publication Critical patent/JP4427590B2/en
Priority to US13/358,705 priority patent/US8337998B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joined body of dissimilar materials, which is formed by joining a steel material to an aluminum alloy material and gives few restrictions to an application condition for spot welding or the like, is excellently versatile, and also can obtain a joint part having a high joining strength without hindering the reliability of a joint by producing a weak reactive layer (intermetallic compound layer) in the joint part, and to provide a method for joining the dissimilar materials. <P>SOLUTION: This joined body is a joined body of the dissimilar materials of the steel material and the aluminum alloy material. The steel material to be joined has a particular composition and has an outer oxide layer on the surface and an oxide in the inner part each having a particular composition. On the other hand, the aluminum alloy material to be joined is an Al-Mg-Si-based aluminum alloy having a particular composition. In a joined interface of the aluminum alloy material side of the joined body of the dissimilar materials, an Fe content is regulated. Then, the joined body of the dissimilar materials has a reactive layer of Fe and Al formed in the joined interface thereof, and acquires a high joining strength. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高い接合強度を得ることができる、アルミニウム合金材との異材接合用鋼材、鋼材とアルミニウム合金材とを接合した異材接合体および異材接合方法に関する。   The present invention relates to a steel for dissimilar material joining with an aluminum alloy material, a dissimilar material joined body obtained by joining a steel material and an aluminum alloy material, and a dissimilar material joining method, which can obtain high joint strength.

近年、排気ガス等による地球環境問題に対して、自動車などの輸送機の車体の軽量化による燃費の向上が追求されている。また、この軽量化をできるだけ阻害せずに、自動車の車体衝突時の安全性を高めることも追求されている。このため、特に、自動車の車体構造に対し、従来から使用されている鋼材に代わって、より軽量で、エネルギー吸収性にも優れたアルミニウム合金材の適用が増加しつつある。ここで言う、アルミニウム合金材とは、アルミニウム合金の圧延板材、押出材、鍛造材などの総称である。   In recent years, with respect to global environmental problems caused by exhaust gas and the like, improvement in fuel efficiency has been pursued by reducing the weight of the body of a transport aircraft such as an automobile. In addition, it has been pursued to improve safety at the time of automobile body collision without hindering the weight reduction as much as possible. For this reason, in particular, aluminum alloy materials that are lighter in weight and superior in energy absorption are being increasingly used in place of steel materials that have been used in the past for automobile body structures. Here, the aluminum alloy material is a general term for aluminum alloy rolled plate materials, extruded materials, forged materials, and the like.

例えば、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどのパネル構造体の、アウタパネル (外板) やインナパネル(内板) 等のパネルには、Al−Mg−Si系のAA乃至JIS6000系 (以下、単に6000系と言う) やAl−Mg系のAA乃至JIS5000系 (以下、単に5000系と言う) などのアルミニウム合金板の使用が検討されている。   For example, panels such as outer panels (outer plates) and inner panels (inner plates) of panel structures such as automobile hoods, fenders, doors, roofs, trunk lids, etc. are made of Al-Mg-Si AA to JIS6000 series. The use of aluminum alloy plates such as AA to JIS5000 (hereinafter simply referred to as 5000), such as Al-Mg based (hereinafter simply referred to as 6000), is being studied.

また、自動車の車体衝突の安全性を確保するための、バンパ補強材(バンパリインフォースメント、バンパアマチャアとも言う)やドア補強材(ドアガードバー、ドアビームとも言う)などのエネルギー吸収部材あるいは補強材としては、Al−Zn−Mg系のAA乃至JIS7000系 (以下、単に7000系と言う) や前記6000系合金などの、アルミニウム合金押出形材が使用されている。更に、サスペンションアームなどの自動車の足回り部品には、前記6000系合金のアルミニウム合金鍛造材が使用されている。   In addition, as energy absorbers or reinforcements such as bumper reinforcements (also called bumper reinforcements or bumper armatures) or door reinforcements (also called door guard bars or door beams) to ensure the safety of automobile body collisions Aluminum alloy extruded profiles such as Al-Zn-Mg AA to JIS 7000 (hereinafter simply referred to as 7000) and the 6000 alloy are used. Furthermore, the aluminum alloy forging material of the 6000 series alloy is used for automobile undercarriage parts such as suspension arms.

これらのアルミニウム合金材は、オールアルミニウムの自動車車体で無い限り、通常の自動車の車体では、必然的に、元々汎用されている鋼板や型鋼などの鋼材(鋼部材)と接合して用いられる。したがって、自動車の車体にアルミニウム合金材を使用する場合(鋼材とアルミニウム合金材とを組み合わせた部材)には、これも必然的に、Fe-Al の異材接合(鉄ーアルミの異種金属部材同士の接合)の必要性がある。   These aluminum alloy materials are inevitably used by being joined to steel materials (steel members) such as steel plates and mold steels that are generally used in ordinary automobile bodies unless they are all-aluminum automobile bodies. Therefore, when an aluminum alloy material is used for an automobile body (a member combining a steel material and an aluminum alloy material), this inevitably also involves dissimilar joining of Fe-Al (dissociation between dissimilar metal members of iron-aluminum). ) Is necessary.

しかし、このFe-Al 異材接合を溶接により行う際の問題点として、互いの接合界面における、高硬度で非常に脆いFeとAlとの金属間化合物層(以下、反応層とも言う)の生成がある。このため、見かけ上互いに接合されてはいても、本化合物層の生成が原因となって、溶接によるFe-Al 異材接合では、異材接合体に、十分な接合強度が得られないことが多い。   However, as a problem when welding this Fe-Al dissimilar material by welding, the formation of an intermetallic compound layer (hereinafter also referred to as a reaction layer) of high hardness and very brittle Fe and Al at the joint interface. is there. For this reason, even if they are apparently bonded to each other, due to the formation of the present compound layer, sufficient bonding strength cannot often be obtained for the dissimilar material joined body by Fe—Al dissimilar material welding by welding.

これを反映して、従来から、これら異材接合体(異種金属部材同士の接合体)の接合には、溶接だけでなく、ボルトやリベット等、あるいは接着剤を併用した接合がなされているが、接合作業の煩雑さや接合コスト上昇等の問題がある。   Reflecting this, conventionally, these dissimilar material joined bodies (joints of dissimilar metal members) are joined not only by welding, but also by using bolts, rivets, etc., or using an adhesive, There are problems such as complexity of the joining operation and an increase in joining cost.

そこで、従来より、Fe-Al 異材接合の溶接法につき、通常の自動車の車体の接合に汎用されている、効率的なスポット溶接による接合が検討されている。例えば、アルミニウム材と鋼材の間に、アルミニウム−鋼クラッド材をインサートする方法が提案されている。また、鋼材側に融点の低い金属をめっきしたり、インサートしたりする方法が提案されている。更に、アルミニウム材と鋼材の間に絶縁体粒子を挟む方法や、部材に予め凹凸を付ける方法なども提案されている。更に、アルミニウム材の不均一な酸化膜を除去した後、大気中で加熱して均一な酸化膜を形成し、アルミニウム表面の接触抵抗が高められた状態で、アルミニウム−鋼の2層の複層鋼板をインサート材に用いてスポット溶接する方法も提案されている。   In view of this, conventionally, welding by efficient spot welding, which is widely used for joining automobile bodies, has been studied as a welding method for joining different materials of Fe-Al. For example, a method of inserting an aluminum-steel clad material between an aluminum material and a steel material has been proposed. In addition, methods have been proposed in which a metal having a low melting point is plated or inserted on the steel material side. Furthermore, a method of sandwiching insulator particles between an aluminum material and a steel material, a method of providing unevenness in a member in advance, and the like have been proposed. Further, after removing the non-uniform oxide film of the aluminum material, it is heated in the atmosphere to form a uniform oxide film, and in a state where the contact resistance of the aluminum surface is increased, two layers of aluminum-steel are formed. A method of spot welding using a steel plate as an insert material has also been proposed.

一方、鋼材側でも、鋼板の高強度化のために、Si、Mn、Alなどの酸化物を形成しやすい元素を添加すると、母材表面には、これらSi、Mn、Alなどを含む酸化物が生成することが公知である。そして、これらSi、Mn、Alなどを含む酸化物が、亜鉛めっきなどの表面被覆と鋼板との密着性を阻害することも知られている。更に一方では、鋼板を酸洗などして、これらSi、Mn、Alなどを含む酸化物層の厚みを0.05〜1 μm の範囲とすれば、亜鉛めっきなどの表面被覆と鋼板との密着性および鋼板同士のスポット溶接性が向上されることも知られている(特許文献1参照)。   On the other hand, when elements that easily form oxides such as Si, Mn, and Al are added on the steel material side to increase the strength of the steel sheet, the surface of the base metal contains oxides containing these Si, Mn, and Al. Is known to form. It is also known that these oxides containing Si, Mn, Al, etc. inhibit the adhesion between the surface coating such as galvanization and the steel sheet. On the other hand, if the thickness of the oxide layer containing Si, Mn, Al, etc. is in the range of 0.05 to 1 μm by pickling the steel plate, the adhesion between the surface coating such as galvanization and the steel plate and It is also known that spot weldability between steel plates is improved (see Patent Document 1).

しかし、これらの従来技術では、通常の自動車の車体の接合に汎用されている、効率的なスポット溶接による接合条件では、溶接接合されたFe-Al の異材接合体に、十分な接合強度が得られない。言い換えると、接合強度を得るためのスポット溶接条件が煩雑にならざるを得ず、現実的では無い。   However, in these conventional technologies, sufficient joint strength is obtained for the dissimilar welded joint of Fe-Al under the efficient spot welding joining conditions that are commonly used for joining automobile bodies. I can't. In other words, the spot welding conditions for obtaining the joint strength must be complicated, which is not realistic.

これに対して、特に、自動車車体用として汎用される、6000系アルミニウム合金材などと、引張強度が450MPa以上の高強度鋼板(ハイテン材)との、異材接合体のスポット溶接を意図した技術も種々提案されている。   On the other hand, in particular, there is also a technique intended for spot welding of a dissimilar joint between a 6000 series aluminum alloy material and the like, which are widely used for automobile bodies, and a high-strength steel plate (high-tensile material) having a tensile strength of 450 MPa or more. Various proposals have been made.

例えば、特許文献2、3では、板厚を3mm以下に制限した鋼材とアルミニウム合金材とを、鋼材を2枚以上重ね合わせるか、鋼材をアルミニウム合金材間に挟み込んだ形でスポット溶接することが提案されている。特許文献4では、スポット溶接部におけるナゲット面積や界面反応層の厚さを規定して接合強度を向上させることが提案されている。また、特許文献5、6では、溶接界面における、鋼材側とアルミニウム合金材側の、各生成化合物の組成や厚み、面積などを各々細かく規定して、接合強度を向上させることが提案されている。   For example, in Patent Documents 2 and 3, spot welding is performed in such a manner that two or more steel materials are stacked or steel materials with a plate thickness limited to 3 mm or less or steel materials are sandwiched between aluminum alloy materials. Proposed. Patent Document 4 proposes to improve the joint strength by defining the nugget area and the thickness of the interface reaction layer in the spot weld. In Patent Documents 5 and 6, it is proposed that the composition, thickness, area, and the like of each generated compound on the steel material side and the aluminum alloy material side at the welding interface are each finely defined to improve the joint strength. .

更に、特許文献7では、特定組成の高強度鋼板において、鋼板表面上の既存の酸化物層を一旦除去した上で新たに生成させた外部酸化物層を、特定割合のMn、Si組成の酸化物とし、更に、この鋼材の鋼生地表面からの深さが10μm以下の鋼領域に存在する、Mn、Siを合計量で1at%以上含む内部酸化物の占める割合を規定して、適切なスポット溶接条件下において、異材接合体の高い接合強度を得ることが提案されている。この特許文献7では、新たに生成させたSi、Mnなどを含む外部酸化物層と、鋼生地表面直下の内部酸化物層とによって、スポット溶接時のFe、Alの拡散を抑えて、接合界面における、Al−Fe系の脆い金属間化合物層の過剰生成を抑制するものである。因みに、特許文献7では、溶接手法に限定はなく、実施例1としてスポット溶接、実施例2としてレーザ溶接、実施例3としてMIG溶接による異材接合を各々行い、異材接合体を製作している。
特開2002−294487号公報 特開2007−144473号公報 特開2007−283313号公報 特開2006−167801号公報 特開2006−289452号公報 特開2007−260777号公報 特開2006−336070号公報
Further, in Patent Document 7, in a high-strength steel sheet having a specific composition, an external oxide layer newly formed after once removing an existing oxide layer on the steel sheet surface is oxidized with specific ratios of Mn and Si compositions. In addition, the ratio of the internal oxide containing Mn and Si in a total amount of 1 at% or more in the steel region having a depth of 10 μm or less from the steel dough surface of this steel material is specified, and an appropriate spot It has been proposed to obtain a high joint strength of a dissimilar material joined body under welding conditions. In this patent document 7, diffusion of Fe and Al during spot welding is suppressed by a newly formed outer oxide layer containing Si, Mn, and the like, and an inner oxide layer immediately below the surface of the steel material, thereby joining the interface. This suppresses excessive formation of an Al—Fe-based brittle intermetallic compound layer. Incidentally, in Patent Document 7, the welding technique is not limited, and different material joining is performed by spot welding as Example 1, laser welding as Example 2, and MIG welding as Example 3.
JP 2002-294487 A JP 2007-144473 A JP 2007-283313 A JP 2006-167801 A JP 2006-289552 A JP 2007-260777 A JP 2006-336070 A

これら特許文献2〜7は、共通して、特に6000系アルミニウム合金材と高強度鋼板との異材接合体のスポット溶接を意図し、適用条件などの制約が少なく汎用性に優れ、接合部での脆弱な金属間化合物生成を抑制して、接合強度を向上させることを目的としている。   These Patent Documents 2 to 7 are commonly intended for spot welding of a dissimilar joint of a 6000 series aluminum alloy material and a high-strength steel sheet, have few restrictions such as application conditions, and have excellent versatility. The purpose is to improve the bonding strength by suppressing the formation of fragile intermetallic compounds.

しかし、これら特許文献2〜7でも、特に6000系アルミニウム合金材と高強度鋼板との異材接合体のスポット溶接に関しては、未だ接合強度などの向上の点で、改良の余地がある。特に特許文献7は、鋼材表面に新たに生成させたSi、Mnなどを含む外部酸化物層と、鋼材の生地表面直下の内部酸化物層とによって、スポット溶接時のFe、Alの拡散を抑えて、接合界面における、Al−Fe系の脆い金属間化合物層の過剰生成を抑制する点で有効である。しかし、この異材接合体の十字引張試験片により測定された剥離強度は高くても2kN未満であり、2kN以上の接合強度を得るためには未だ改良の余地がある。   However, even in these Patent Documents 2 to 7, there is still room for improvement in terms of improving the bonding strength and the like, particularly with respect to spot welding of a dissimilar joint of a 6000 series aluminum alloy material and a high-strength steel plate. In particular, Patent Document 7 suppresses diffusion of Fe and Al during spot welding by using an outer oxide layer containing Si, Mn and the like newly formed on the steel surface and an inner oxide layer immediately below the surface of the steel material. Thus, it is effective in that excessive formation of an Al—Fe brittle intermetallic compound layer at the bonding interface is suppressed. However, the peel strength measured by the cross tensile test piece of this dissimilar material joined body is at most less than 2 kN, and there is still room for improvement in order to obtain a joint strength of 2 kN or more.

本発明はかかる問題点に鑑みてなされたものであって、その目的は、スポット溶接の適用条件などの制約が少なく、汎用性に優れると共に、接合部に脆弱な金属間化合物などが生成して接合の信頼性を阻害することがなく、高い接合強度を有する接合部を得ることのできる、異材接合用鋼材、異材接合体および異材接合方法を提供することにある。   The present invention has been made in view of such problems, and its purpose is that there are few restrictions such as spot welding application conditions, excellent versatility, and a brittle intermetallic compound or the like is generated at the joint. An object of the present invention is to provide a steel for dissimilar material joining, a dissimilar material joined body, and a dissimilar material joining method capable of obtaining a joint having high joining strength without impeding the reliability of joining.

(異材接合用鋼材の要旨)
この目的を達成するための本発明異材接合用鋼材の要旨は、6000系アルミニウム合金材との異材接合用鋼材であって、この鋼材の組成を、質量%で、C:0.01〜0.30%、Si:0.1〜3.00%、Mn:0.1〜3.00%を各々含有するとともに、P:0.10%以下(0%を含む)、S:0.05%以下(0%を含む)、N:300ppm以下(0%を含む)に各々規制したものとし、この鋼材の鋼生地表面からの深さが20μmまでの鋼領域に存在する酸化物として、結晶粒界に存在する酸化物と、Mn、Siを合計量で1at%以上含む結晶粒内に存在する酸化物との占める割合が、この鋼領域に占める平均面積割合として、5%以上20%未満であり、この鋼材表面上に存在する、Mn、Siを合計量で1at%以上含む外部酸化物の占める割合が、鋼生地と外部酸化物層との界面の略水平方向の長さ1μmに対して占めるこの酸化物の合計長さの平均割合として、0.1%以上50%未満としたことである。
(Summary of steel for joining different materials)
The gist of the steel for joining different materials of the present invention for achieving this object is a steel material for joining different materials with a 6000 series aluminum alloy material, and the composition of this steel material is expressed by mass%, C: 0.01-0. 30%, Si: 0.1 to 3.00%, Mn: 0.1 to 3.00%, P: 0.10% or less (including 0%), S: 0.05% Below (including 0%), N: 300 ppm or less (including 0%), respectively, and the oxides present in the steel region up to 20 μm in depth from the steel dough surface are crystal grains. The ratio of the oxide present in the boundary and the oxide present in the crystal grains containing 1 at% or more in total amount of Mn and Si is 5% or more and less than 20% as an average area ratio in this steel region Yes, the total amount of Mn and Si present on the steel surface is 1 at% or less. The ratio of the outer oxide to be included is 0.1% or more and 50% as an average ratio of the total length of the oxide to the length of 1 μm in the substantially horizontal direction of the interface between the steel base and the outer oxide layer. Is less than.

(異材接合体の要旨)
また、上記目的を達成するための本発明異材接合体の要旨は、上記要旨の異材接合用鋼材とアルミニウム合金材との異材接合体であって、上記アルミニウム合金材が、質量%で、Mg:0.1〜3.0%、Si:0.1〜2.5%、Cu:0.001〜1.0%を各々含有する6000系アルミニウム合金からなり、異材接合体の前記アルミニウム合金材側の接合界面におけるFeの含有量が2.0質量%以下であるとともに、上記接合界面にFeとAlとの反応層が形成されていることである。
(Summary of dissimilar materials)
In addition, the gist of the present invention, the dissimilar material joined body for achieving the above object, is a dissimilar material joined body of the dissimilar material joining steel material and the aluminum alloy material of the above gist, wherein the aluminum alloy material is in mass%, Mg: Made of 6000 series aluminum alloy containing 0.1 to 3.0%, Si: 0.1 to 2.5%, and Cu: 0.001 to 1.0%, respectively, the aluminum alloy material side of the dissimilar material joined body The Fe content at the bonding interface is 2.0 mass% or less, and a reaction layer of Fe and Al is formed at the bonding interface.

(異材接合方法の要旨)
また、上記目的を達成するための本発明異材接合方法の要旨は、鋼材とアルミニウム合金材との異材接合方法であって、互いに溶接され鋼材とアルミニウム合金材との異材接合方法であって、上記要旨の異材接合用鋼材と、質量%で、Mg:0.1〜3.0%、Si:0.1〜2.5%、Cu:0.001〜1.0%を各々含有する6000系アルミニウム合金からなるアルミニウム合金材とをスポット溶接またはフリクションスポット接合(摩擦攪拌接合)することである。
(Summary of different material joining method)
Further, the gist of the dissimilar material joining method of the present invention for achieving the above object is a dissimilar material joining method between a steel material and an aluminum alloy material, and is a dissimilar material joining method between a steel material and an aluminum alloy material that are welded to each other. A steel material for joining different materials of the gist and 6000 series containing Mg: 0.1 to 3.0%, Si: 0.1 to 2.5%, and Cu: 0.001 to 1.0% in mass%. This is spot welding or friction spot joining (friction stir welding) with an aluminum alloy material made of an aluminum alloy.

(外部酸化物層の構成)
ここで、本発明における、上記外部酸化物層における、Mn、Siを合計量で1at%以上含む酸化物以外の残部は、Mn、Siの含有量が合計量で1at%未満である酸化物と空隙であり、本発明における外部酸化物層は、Mn、Siを合計量で1at%以上含む酸化物、Mn、Siの含有量が合計量で1at%未満である酸化物、空隙とから構成される。
(Configuration of external oxide layer)
Here, the balance other than the oxide containing 1 at% or more of Mn and Si in the total amount in the outer oxide layer in the present invention is an oxide whose content of Mn and Si is less than 1 at% in the total amount. The outer oxide layer in the present invention is composed of an oxide containing Mn and Si in a total amount of 1 at% or more, an oxide containing Mn and Si in a total amount of less than 1 at%, and a void. The

(本発明の好ましい態様)
前記異材接合体がスポット溶接されたものであり、スポット溶接箇所毎の条件として、前記鋼材とアルミニウム合金材との接合界面に形成された前記FeとAlとの金属間化合物層のナゲット深さ方向の平均厚みが0.1〜3μmの範囲であるとともに、前記FeとAlとの金属間化合物層の形成範囲が、スポット溶接接合面積の70%以上の面積であることが好ましい。また、前記異材接合体の十字引張試験片により測定された剥離強度が2kN以上であることが好ましい。また、前記異材接合体が自動車の車体構造用であることが好ましい。更に、前記鋼材とアルミニウム合金材との接合箇所毎の条件として、電極間加圧力2.0〜3.0kNにて、10〜35kAの電極間電流を、溶接されるアルミニウム合金材部分の厚みtmmとの関係で、200×tmsec以下の時間通電することにより、鋼材とアルミニウム合金材とをスポット溶接することが好ましい。
(Preferred embodiment of the present invention)
The dissimilar material joined body is spot-welded, and the nugget depth direction of the intermetallic compound layer of Fe and Al formed at the joint interface between the steel material and the aluminum alloy material as a condition for each spot welding location Is preferably in the range of 0.1 to 3 μm, and the formation range of the intermetallic compound layer of Fe and Al is preferably 70% or more of the spot welding joint area. Moreover, it is preferable that the peel strength measured by the cross tensile test piece of the dissimilar material joined body is 2 kN or more. Moreover, it is preferable that the said dissimilar material joining body is a body structure of a motor vehicle. Furthermore, as a condition for each joint portion between the steel material and the aluminum alloy material, an interelectrode current of 10 to 35 kA is applied at an applied pressure between electrodes of 2.0 to 3.0 kN, and the thickness tmm of the aluminum alloy material portion to be welded. Therefore, it is preferable that the steel material and the aluminum alloy material are spot-welded by energizing for a time of 200 × tmsec or less.

本発明は、鋼材の生地表面のMn、Siを含む外部酸化物層と、鋼材の生地表面直下のMn、Siを含む内部酸化物層との両者によって、スポット溶接時のFe、Alの拡散を抑えて、接合界面のAl−Fe系の脆い金属間化合物層の過剰生成を抑制する点では、前記特許文献7と同じである。ただ、前記特許文献7と大きく異なる点は、上記した要旨のように、前記外部酸化物層における、Mn、Siを含む外部酸化物(層)の占める割合を、前記特許文献7よりも少なくする。と同時に、前記Mn、Siを含む内部酸化物層を、鋼生地表面からより深く、より多く存在させる。 The present invention allows diffusion of Fe and Al during spot welding by both the outer oxide layer containing Mn and Si on the surface of the steel material and the inner oxide layer containing Mn and Si immediately below the surface of the steel material. This is the same as Patent Document 7 in that it suppresses excessive generation of an Al—Fe-based brittle intermetallic compound layer at the bonding interface. However, the main difference from Patent Document 7 is that the proportion of the external oxide (layer) containing Mn and Si in the external oxide layer is less than that of Patent Document 7 as described in the above gist. . At the same time, the inner oxide layer containing Mn and Si is made deeper and more present from the steel material surface.

特に6000系アルミニウム合金材と鋼材との異材接合体のスポット溶接では、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するような条件にて溶接する。このような場合には、外部酸化物層と内部酸化物層との量的な組成バランスによって、スポット溶接時のFe、Alの拡散が大きく左右されることを本発明では知見した。即ち、接合するアルミニウム合金材の合金組成(種類)によって、この外部酸化物層と内部酸化物層との適正な組成バランス条件は異なり、外部酸化物層と内部酸化物層とのバランスを適正化することによって初めて、スポット溶接時のFe、Alの拡散が効果的に抑制できる。そして、接合界面における、Al−Fe系の脆い反応層(金属間化合物層)の過剰生成を抑制する効果がより高くなる。   In particular, in spot welding of a dissimilar joined body of a 6000 series aluminum alloy material and a steel material, welding is performed under such a condition that only the aluminum alloy material side is melted without melting the steel material side. In this case, the present invention has found that the diffusion of Fe and Al during spot welding is greatly influenced by the quantitative composition balance between the outer oxide layer and the inner oxide layer. In other words, the appropriate composition balance condition between the outer oxide layer and the inner oxide layer differs depending on the alloy composition (type) of the aluminum alloy material to be joined, and the balance between the outer oxide layer and the inner oxide layer is optimized. For the first time, the diffusion of Fe and Al during spot welding can be effectively suppressed. And the effect which suppresses the excessive production | generation of the Al-Fe-type brittle reaction layer (intermetallic compound layer) in a joining interface becomes higher.

これに対して、前記特許文献7では、6000系アルミニウム合金材を実施例としているものの、溶接手法や、溶接されるアルミニウム合金材と鋼材との材料の組み合わせに限定がない。言い換えると、前記特許文献7は、溶接手法や、溶接されるアルミニウム合金材と鋼材との材料の組み合わせが異なっても、同じ外部酸化物層と内部酸化物層との条件[後述する図1(b)の条件]によって、接合しようとしている。この結果、特許文献7で規定する外部酸化物層と内部酸化物層との条件では、特に6000系アルミニウム合金材と鋼材とのスポット溶接での異材接合体の場合に、後述する通り、この外部酸化物層と内部酸化物層とのバランスが悪くなる。このために、特許文献7では、その実施例の通り、特に6000系アルミニウム合金材と鋼材とのスポット溶接での異材接合体の、十字引張試験片により測定された剥離強度が、高くても2kN未満と低くならざるを得ない。これに対しては、この外部酸化物層と内部酸化物層との量的な組成バランスを適正に[後述する図1(c)の条件に]制御すれば、特に6000系アルミニウム合金材と鋼材との異材接合体のスポット溶接に関しては、2kN以上の高い接合強度が得られる。   On the other hand, in the said patent document 7, although 6000 series aluminum alloy material is made into the Example, there is no limitation in the combination of the welding method and the material of the aluminum alloy material and steel material to be welded. In other words, the above-mentioned patent document 7 describes the same conditions for the outer oxide layer and the inner oxide layer [FIG. 1 (described later), even if the welding technique and the combination of materials of the aluminum alloy material and the steel material to be welded are different. It is going to join by the condition of b). As a result, under the conditions of the outer oxide layer and the inner oxide layer specified in Patent Document 7, in particular, in the case of a dissimilar material joint in spot welding of a 6000 series aluminum alloy material and a steel material, as described later, The balance between the oxide layer and the internal oxide layer is deteriorated. For this reason, as disclosed in Patent Document 7, in particular, the peel strength measured by a cross tensile test piece of a dissimilar material joint in spot welding of a 6000 series aluminum alloy material and a steel material is at most 2 kN. It must be lower and lower. On the other hand, if the quantitative composition balance between the outer oxide layer and the inner oxide layer is appropriately controlled [to the condition of FIG. 1 (c) described later], in particular, the 6000 series aluminum alloy material and the steel material. With regard to spot welding of the dissimilar material joined body, a high joint strength of 2 kN or more can be obtained.

なお、本発明でも、前記特許文献7と同様に、鋼材表面上の既存の酸化物層を、酸洗などにより一旦除去した上で、更に、酸素分圧を制御した雰囲気で焼鈍などして、新たに生成させた、鋼材の鋼生地表面上に存在する外部酸化物層を対象とする。   In the present invention, similar to Patent Document 7, the existing oxide layer on the steel surface is once removed by pickling or the like, and further annealed in an atmosphere in which the oxygen partial pressure is controlled. The newly formed outer oxide layer existing on the steel material surface of the steel material is a target.

この点で、鋼材表面上の酸化物層を、酸洗などにより一旦除去している前記特許文献1とも共通する。但し、前記特許文献1では、本発明のように、更に、酸素分圧を制御した雰囲気で焼鈍して、外部酸化層の形成割合や、内部酸化層深さを積極的に制御してはいない。このため、前記特許文献1の外部酸化物層では、本発明で規定する、Mn、Siを合計量で1at%以上含む酸化物の占める割合が、鋼生地と外部酸化物層との界面の略水平方向の長さ1μm に対して占める、この酸化物の合計長さの平均割合として、80%を簡単に超えてしまう。この結果、前記特許文献1は、特に6000系アルミニウム合金材と鋼材との異材接合体のスポット溶接に、反応層(FeとAlとの金属間化合物層)が十分に形成されず、却って、異材接合体における冶金的接合が出来なくなる。   In this respect, it is also common with Patent Document 1 in which the oxide layer on the steel material surface is once removed by pickling or the like. However, in Patent Document 1, as in the present invention, annealing is performed in an atmosphere in which the oxygen partial pressure is controlled, and the formation ratio of the outer oxide layer and the inner oxide layer depth are not actively controlled. . For this reason, in the outer oxide layer of Patent Document 1, the proportion of the oxide containing 1 at% or more of the total amount of Mn and Si as defined in the present invention is approximately the interface between the steel base and the outer oxide layer. As an average ratio of the total length of the oxide to the horizontal length of 1 μm, it easily exceeds 80%. As a result, in Patent Document 1, a reaction layer (intermetallic compound layer of Fe and Al) is not sufficiently formed particularly in spot welding of a dissimilar joint of a 6000 series aluminum alloy material and a steel material. Metallurgical joining in the joined body is not possible.

鋼材同士のスポット溶接とは異なり、特に6000系アルミニウム合金材と鋼材とをスポット溶接する異材接合の場合には、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解する条件で溶接する。このような条件での溶接では、前記した通り、接合界面に形成される高硬度で非常に脆いFeとAlとの金属間化合物層が形成される。このため、前記特許文献1で課題とする鋼材同士のスポット溶接性などとは溶接メカニズムが全く異なり、異種金属同士の溶接接合が著しく困難となる。   Unlike spot welding between steel materials, in particular, in the case of dissimilar material joining in which 6000 series aluminum alloy material and steel material are spot welded, welding is performed under the condition that only the aluminum alloy material side is melted without melting the steel material side. In welding under such conditions, as described above, a highly hard and very brittle intermetallic compound layer of Fe and Al is formed at the joint interface. For this reason, the welding mechanism is completely different from the spot weldability between steel materials, which is the subject of Patent Document 1, and welding of dissimilar metals becomes extremely difficult.

より具体的には、鋼材とアルミニウム材との異材を接合する場合、鋼材はアルミニウム材と比較して、融点、電気抵抗が高く、熱伝導率が小さいため、鋼側の発熱が大きくなり、まず低融点のアルミニウムが溶融する。アルミニウム合金材と鋼材とのスポット溶接のような、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するような条件での溶接においては、鋼材側は溶解せず、この鋼材側からFeが拡散して、界面にて、Al−Fe系の脆い反応層が形成する。   More specifically, when joining dissimilar materials of steel and aluminum, the steel has a higher melting point, higher electrical resistance and lower thermal conductivity than the aluminum, so the heat generation on the steel side is increased. Low melting point aluminum melts. In welding under the condition that only the aluminum alloy material side does not melt, such as spot welding of aluminum alloy material and steel material, only the aluminum alloy material side melts, the steel material side does not melt, and Fe from this steel material side does not melt. When diffused, an Al-Fe-based brittle reaction layer is formed at the interface.

このため、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するような条件での溶接において、高い接合強度を得るためには、Al−Fe系の反応層は必要最小限に抑える必要がある。しかし、鋼材側の外部酸化物層が破壊されずに、鋼材側からのFeの拡散やAl−Fe系の反応層生成を抑制しすぎて、接合部の全面積に対する反応層の形成面積が小さすぎても、冶金的接合が出来ないために高い接合強度は得られない。したがって、高い接合強度を実現するためには、冶金的接合に必要かつ最小限の厚みのAl−Fe反応層を、接合部に出来るだけ広範囲に形成させる必要がある。   For this reason, in order to obtain high joint strength in welding under conditions where only the aluminum alloy material side is melted without melting the steel material side, the Al-Fe-based reaction layer needs to be minimized. is there. However, the outer oxide layer on the steel material side is not destroyed, and the diffusion of Fe from the steel material side and the generation of the Al—Fe-based reaction layer are suppressed too much, and the formation area of the reaction layer with respect to the total area of the joint is small. Even if it is too high, metallurgical bonding cannot be performed, so that high bonding strength cannot be obtained. Therefore, in order to realize a high bonding strength, it is necessary to form an Al—Fe reaction layer having a minimum thickness necessary for metallurgical bonding in a wide range as much as possible.

このように、特に6000系アルミニウム合金材と鋼材とをスポット溶接する異材接合の場合には、鋼材同士のスポット溶接とは溶接メカニズムが全く異なり、異種金属同士の高い接合強度を実現することが著しく困難となる。   In this way, particularly in the case of dissimilar material joining in which spot welding is performed between a 6000 series aluminum alloy material and a steel material, the welding mechanism is completely different from spot welding between steel materials, and it is remarkable that high joint strength between dissimilar metals is realized. It becomes difficult.

これに対して、本発明のように、前記新たに生成させたMn、Siなどを含む外部酸化物層と内部酸化物層とを、上記要旨のように、互いの組成バランスを図った上で、互いに一定割合で存在させると、特に6000系アルミニウム合金材と鋼材とをスポット溶接する異材接合の場合に、上記反応層の過剰生成を抑制し、冶金的接合に必要かつ最小限の厚みのAl−Fe反応層を、接合部に広範囲に形成させる効果を発揮する。この結果、6000系アルミニウム合金材と鋼材とをスポット溶接するような、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するような条件での溶接異材接合の場合に、2kN以上の高い接合強度を実現できる。   On the other hand, the outer oxide layer and the inner oxide layer containing the newly generated Mn, Si, etc., as in the present invention, are balanced with each other as described above. In the case of dissimilar materials joining spot welding 6000 series aluminum alloy materials and steel materials, the excessive generation of the reaction layer is suppressed, and Al having the minimum thickness necessary for metallurgical joining is present. The effect of forming the -Fe reaction layer over a wide range at the joint is exhibited. As a result, in the case of welding dissimilar material joining under the condition that only the aluminum alloy material side is melted without melting the steel material side, such as spot welding of a 6000 series aluminum alloy material and steel material, a high joint of 2 kN or more Strength can be realized.

(鋼材の酸化物構成)
以下に、本発明で特徴的な外部酸化物層と内部酸化物層との具体的な量的組成バランスについて説明する。
(Oxide composition of steel)
Hereinafter, a specific quantitative composition balance between the outer oxide layer and the inner oxide layer, which is characteristic of the present invention, will be described.

一旦酸洗された後に、異なる酸素分圧に制御した雰囲気で焼鈍された、Mn、Siを含む鋼材表面の酸化物(鋼材断面構造)を図1(a)〜図1(c)に各々模式的に示す。図1(a)は低酸素分圧 (低露点) 雰囲気にて焼鈍した場合を示す。図1(b)は中酸素分圧 (比較的高露点) 雰囲気にて焼鈍した場合を示す。図1(c)は高酸素分圧 (高露点) 雰囲気にて焼鈍した場合を示す。この内、図1(c)が、本発明で特徴的な外部酸化物層と内部酸化物層との具体的な量的組成バランスを示す。   FIGS. 1A to 1C schematically show oxides (steel cross-sectional structures) on steel surfaces containing Mn and Si, which are once pickled and then annealed in atmospheres controlled to different oxygen partial pressures. Indicate. FIG. 1A shows the case where annealing is performed in a low oxygen partial pressure (low dew point) atmosphere. FIG. 1 (b) shows the case where annealing is performed in an atmosphere of medium oxygen partial pressure (relatively high dew point). FIG. 1 (c) shows the case of annealing in a high oxygen partial pressure (high dew point) atmosphere. Among these, FIG.1 (c) shows the specific quantitative composition balance of the external oxide layer and internal oxide layer which are the characteristics of this invention.

図1(a):
図1(a)の低酸素分圧雰囲気焼鈍の場合、一旦酸洗されて既存の外部酸化物層が除去された、Mn、Siを含む鋼材は、鋼材の鋼生地表面が50nm程度の薄い外部酸化物層によって被覆されている。しかし、酸素分圧が低いために、鋼材内部にまで酸素は侵入(拡散)せず、鋼生地表面から下の鋼材内部には、粒界酸化物を含む内部酸化物は形成されない。
FIG. 1 (a):
In the case of the low oxygen partial pressure atmosphere annealing shown in FIG. 1 (a), the steel material containing Mn and Si, which has been once pickled and the existing outer oxide layer is removed, has a thin outer surface with a steel material surface of about 50 nm. Covered by an oxide layer. However, since the oxygen partial pressure is low, oxygen does not enter (diffuse) into the steel material, and internal oxides including grain boundary oxides are not formed in the steel material below from the steel material surface.

この外部酸化物層は、後述する図1(b)、図1(c)を含めて、共通して、既存の酸化物層が除去された後で、上記焼鈍によって新たに生成された酸化物層であり、Mn、Siが濃化して、Mn、Siを合計量で1at%以上含む酸化物、Mn、Siの含有量が合計量で1at%未満であるFe酸化物からなる酸化物、および空隙とから構成される。Mn、Siを合計量で1at%以上含む酸化物とは、例えば、代表的にはMn2SiO4 、SiO2などからなる酸化物から構成される。また、Mn、Siの含有量が合計量で1at%未満である酸化物とは、例えば、代表的にはFe3O4 などからなる酸化物から構成される。   This external oxide layer is the same as that shown in FIG. 1B and FIG. 1C described later, and is an oxide newly generated by the annealing after the existing oxide layer is removed. A layer, Mn and Si are concentrated, an oxide comprising Mn and Si in a total amount of 1 at% or more, an oxide made of Fe oxide having a total amount of Mn and Si of less than 1 at%, and It is composed of voids. The oxide containing 1 at% or more of Mn and Si is typically composed of an oxide made of Mn2SiO4, SiO2, or the like. The oxide having a total content of Mn and Si of less than 1 at% is typically composed of an oxide made of Fe3O4, for example.

このような図1(a)の場合、鋼材の鋼生地表面を外部酸化物が全体的に被覆するゆえに、外部酸化物層における、Mn、Siを合計量で1at%以上含む酸化物の占める割合は、鋼生地と外部酸化物層との界面の略水平方向の長さ1μmに対して占めるこの酸化物の合計長さの平均割合として80〜100%と高くなる。したがって、このような外部酸化物層は、後述する図1(b)、図1(c)の外部酸化物層よりも、Mn、Siを合計量で1at%以上含む酸化物の占める割合が大きく、より破壊されにくい。なお、このような図1(a)の外部酸化物層とした場合には、内部酸化物は必然的に少なくなる。したがって、例えば、鋼生地表面からの深さが20μmまでの鋼領域に存在する内部酸化物は、結晶粒界に存在する酸化物およびMn、Siを合計量で1at%以上含む粒内酸化物の占める平均面積割合で0%か、存在しても5%未満となる。   In the case of FIG. 1 (a), since the outer oxide covers the entire surface of the steel material of the steel material, the ratio of the oxide containing 1 at% or more of Mn and Si in the total amount in the outer oxide layer Is as high as 80 to 100% as an average ratio of the total length of the oxide to the length of 1 μm in the substantially horizontal direction of the interface between the steel material and the outer oxide layer. Therefore, such an external oxide layer has a larger proportion of oxide containing 1 at% or more of Mn and Si in total than the external oxide layers of FIGS. 1B and 1C described later. More difficult to destroy. In the case of the outer oxide layer shown in FIG. 1A, the inner oxide is inevitably reduced. Therefore, for example, the internal oxide existing in the steel region having a depth of up to 20 μm from the surface of the steel dough is an intragranular oxide containing 1 at% or more in total of oxide existing at the grain boundary and Mn and Si. The average area ratio is 0% or even less than 5%.

図1(b):
これに対して、図1(b)の、酸素分圧が図1(a)よりも比較的高い、中酸素分圧の雰囲気焼鈍の場合、鋼材内部にまで酸素が侵入(拡散)する。このため、一旦酸洗されて既存の外部酸化物層が除去された、Mn、Siを含む鋼材には、上記した外部酸化物層とともに、鋼生地表面から下の鋼材内部の比較的浅い、例えば、鋼材の鋼生地表面からの深さが10μm以下の鋼領域に内部酸化物が形成される。前記特許文献7で、溶接手法や、溶接されるアルミニウム合金材と鋼材との材料の組み合わせが異なっても、同じ外部酸化物層と内部酸化物層との条件としているのは、この図1(b)の条件である。
FIG. 1 (b):
On the other hand, in the case of atmospheric annealing in FIG. 1 (b) where the oxygen partial pressure is relatively higher than that in FIG. 1 (a) and has an intermediate oxygen partial pressure, oxygen penetrates (diffuses) into the steel material. For this reason, the steel material containing Mn and Si once pickled to remove the existing outer oxide layer is relatively shallow inside the steel material from the surface of the steel material, together with the outer oxide layer described above, for example, An internal oxide is formed in a steel region having a depth of 10 μm or less from the surface of the steel material. Even if the welding method and the combination of materials of the aluminum alloy material and the steel material to be welded are different in Patent Document 7, the conditions for the same outer oxide layer and inner oxide layer are as shown in FIG. It is the condition of b).

この内部酸化物のうち、粒内に生成する酸化物は、後述する図1(c)を含めて、共通して、Mn、Siを合計量で1at%以上含む酸化物、SiO2やMn2SiO4 からなる球状乃至粒状の酸化物と、Mn、Siとが合計量で1at%未満であるFe3O4 などの酸化物である。また、この際、後述する図1(c)を含めて、共通して、鋼の粒界上に粒界酸化物も形成されるが、これら粒界酸化物は概ねMn、Siを合計量で1at%以上含む粒状の酸化物である。   Among these internal oxides, the oxides generated in the grains are commonly composed of oxides containing 1 at% or more of Mn and Si, including SiO 2 and Mn 2 SiO 4, including FIG. It is an oxide such as Fe3O4 in which the total amount of spherical or granular oxide, Mn and Si is less than 1 at%. At this time, including FIG. 1C described later, in common, grain boundary oxides are also formed on the grain boundaries of the steel. These grain boundary oxides generally include Mn and Si in a total amount. It is a granular oxide containing 1 at% or more.

雰囲気焼鈍の酸素分圧が高くなるにつれて、より鋼材内部にまで酸素が侵入(拡散)する、あるいはより多く酸素が侵入(拡散)するようになり、これら内部酸化物が存在する領域が拡大するか、これら内部酸化物量が多くなる。   As the oxygen partial pressure of atmospheric annealing increases, does oxygen penetrate (diffusion) into the steel material more, or more oxygen penetrates (diffusion), and the region where these internal oxides exist will expand? The amount of these internal oxides increases.

一方、これら内部酸化物とは逆に、雰囲気焼鈍の酸素分圧が高くなるにつれて、外部酸化物層におけるMn、Siを含む酸化物の占める割合は減るようになる。即ち、図1(b)における外部酸化物層では、Mn、Siを合計量で1at%以上含む酸化物の占める割合は、鋼生地と外部酸化物層との界面の略水平方向の長さ1μmに対して占めるこの酸化物の合計長さの平均割合として50〜80%となり、前記図1(a)の場合よりは低くなる。   On the other hand, in contrast to these internal oxides, as the oxygen partial pressure of atmospheric annealing increases, the proportion of oxides containing Mn and Si in the external oxide layer decreases. That is, in the outer oxide layer in FIG. 1B, the ratio of the oxide containing 1 at% or more of Mn and Si in a total amount is 1 μm in the length in the substantially horizontal direction of the interface between the steel material and the outer oxide layer. It becomes 50 to 80% as an average ratio of the total length of this oxide to occupy, and becomes lower than the case of FIG.

図1(c):
この図1(c)は、酸素分圧が図1(b)よりも更に高い、高酸素分圧の雰囲気焼鈍の場合を示し、本発明で特徴的な外部酸化物層と内部酸化物層との具体的な量的組成バランスを示す。この図1(c)の場合には、図1(b)よりも更に、鋼材内部にまで酸素が侵入(拡散)する。このため、一旦酸洗されて既存の外部酸化物層が除去された、Mn、Siを含む鋼材には、前記外部酸化物層とともに、上記した内部酸化物が、鋼生地表面から下の鋼材内部の比較的深い領域、より鋼材内部に深く形成される。これらの内部酸化物は、主としてこの鋼材の鋼生地表面から20μmの深さまでの鋼領域に形成される。
FIG. 1 (c):
FIG. 1C shows the case of atmospheric annealing with a high oxygen partial pressure, in which the oxygen partial pressure is higher than that in FIG. 1B. The characteristic features of the outer oxide layer and the inner oxide layer according to the present invention are shown in FIG. The specific quantitative composition balance of is shown. In the case of FIG. 1C, oxygen penetrates (diffuses) into the steel material further than in FIG. 1B. For this reason, in steel materials containing Mn and Si that have been pickled once and the existing outer oxide layer has been removed, the inner oxide described above, together with the outer oxide layer, is located inside the steel material below from the steel fabric surface. The relatively deep region of the steel material is formed deeper inside. These internal oxides are mainly formed in a steel region from the surface of the steel material to a depth of 20 μm.

これに対して、外部酸化物層におけるMn、Siを含む酸化物の占める割合は、この図1(c)の場合は、前記図1(b)の場合よりも更に減る。即ち、図1(c)の場合、外部酸化物層における、Mn、Siを合計量で1at%以上含む酸化物の占める割合は、鋼生地と外部酸化物層との界面の略水平方向の長さ1μmに対して占めるこの酸化物の合計長さの平均割合として0.1%以上、50%未満と、最も低くなる。このような外部酸化物層は、前記した図1(a)、図1(c)の外部酸化物層よりも、Mn、Siを合計量で1at%以上含む酸化物の占める割合が最も小さく、より破壊されやすい。   On the other hand, the ratio of the oxide containing Mn and Si in the outer oxide layer is further reduced in the case of FIG. 1C than in the case of FIG. That is, in the case of FIG. 1C, the ratio of the oxide containing 1 at% or more of Mn and Si in the total amount in the outer oxide layer is the length of the substantially horizontal direction of the interface between the steel material and the outer oxide layer. The average ratio of the total length of the oxide to 1 μm is the lowest, 0.1% or more and less than 50%. Such an external oxide layer has the smallest proportion of oxide containing Mn and Si in a total amount of 1 at% or more than the external oxide layers of FIGS. 1 (a) and 1 (c). More easily destroyed.

ここで、通常の軟鋼材などの鋼材の表面上の外部酸化層は、通常、αFeOOH 、γFeOOH 、無定形オキシ水酸化物、Fe3O4 などの酸化物から構成される。これに対して、本発明のようなMn、Siを含むハイテンであって、一旦酸洗された後に、上記したように酸素分圧を制御した雰囲気で焼鈍された、鋼材の表面上の外部酸化層は、Mn、Siを合計量で1at%以上含む上記酸化物と、残部は、Mn、Siとが合計量で1at%未満であるFe3O4 などの酸化物、および空隙とから構成される。   Here, the outer oxide layer on the surface of a steel material such as a normal mild steel material is usually composed of oxides such as αFeOOH, γFeOOH, amorphous oxyhydroxide, and Fe3O4. On the other hand, high oxidation containing Mn and Si as in the present invention, once pickled, and then annealed in an atmosphere with controlled oxygen partial pressure as described above, external oxidation on the surface of the steel material The layer is composed of the above oxide containing Mn and Si in a total amount of 1 at% or more, and the balance is composed of an oxide such as Fe3O4 in which the total amount of Mn and Si is less than 1 at%, and voids.

(外部酸化層の作用)
図1の鋼材とアルミニウム合金材との溶接接合時には、鋼材表面上の上記外部酸化層を破って、鋼材とアルミニウム合金材との接合面に、Al−Fe反応層が形成される。この点で、鋼材表面上の上記外部酸化層には、接合時のFeとAlの拡散を抑えて、Al−Fe系の脆い金属間化合物層 (反応層) 生成を抑制する効果がある。
(Operation of external oxide layer)
When welding the steel material and the aluminum alloy material in FIG. 1, the outer oxide layer on the steel material surface is broken, and an Al—Fe reaction layer is formed on the joint surface between the steel material and the aluminum alloy material. In this respect, the outer oxide layer on the steel material surface has an effect of suppressing the diffusion of Fe and Al during bonding and suppressing the formation of an Al—Fe-based brittle intermetallic compound layer (reaction layer).

しかし、特に6000系アルミニウム合金材と鋼材とをスポット溶接するような異材接合の場合、このような効果は、鋼材表面上に上記組成の外部酸化層があれば発揮されるのではなく、一定割合のMn、Siを含む酸化物相が一定量以下の比較的少量だけ存在する場合に限定される。即ち、図1(c)の場合のように、外部酸化物層における、Mn、Siを合計量で1at%以上含む酸化物の占める割合が、鋼生地と外部酸化物層との界面の略水平方向の長さ1μmに対して占めるこの酸化物の合計長さの平均割合として50%以下の場合にしか、このような効果は発揮されない。   However, particularly in the case of dissimilar material joining such as spot welding of a 6000 series aluminum alloy material and a steel material, such an effect is not exhibited if there is an external oxide layer of the above composition on the steel material surface, but a certain percentage. The oxide phase containing Mn and Si is limited to a relatively small amount of a certain amount or less. That is, as in the case of FIG. 1 (c), the proportion of the oxide containing 1 at% or more of Mn and Si in the total amount in the outer oxide layer is substantially horizontal at the interface between the steel fabric and the outer oxide layer. Such an effect is exhibited only when the average ratio of the total length of the oxide to the direction length of 1 μm is 50% or less.

この理由は、通常の6000系アルミニウム合金材には、鋼材表面上の上記外部酸化層を還元によって破れるだけの強力な還元剤となる合金元素を含んでおらず、鋼材との界面に、これらの合金元素を存在させられないからである。このため、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するようなスポット溶接の場合に、例え、アルミニウム合金側が溶解しても、鋼材との界面では、鋼材表面上の外部酸化層を還元により破壊して、鋼材側からのFeの拡散を促すことが困難となる。この結果、冶金的接合に必要かつ最小限の厚みのAl−Fe反応層を、接合部に出来るだけ広範囲に形成させることが困難となる。   The reason for this is that a normal 6000 series aluminum alloy material does not contain an alloy element that is a strong reducing agent that can break the outer oxide layer on the steel surface by reduction. This is because alloy elements cannot be present. For this reason, in spot welding where only the aluminum alloy material side melts without melting the steel material side, for example, even if the aluminum alloy side melts, an external oxide layer on the steel material surface is formed at the interface with the steel material. It becomes difficult to break down by reduction and promote the diffusion of Fe from the steel material side. As a result, it becomes difficult to form an Al—Fe reaction layer having a minimum thickness necessary for metallurgical bonding as widely as possible in the bonding portion.

前記特許文献7の、6000系アルミニウム合金材と鋼材との異材接合体のスポット溶接例における接合強度が、高くても2kN未満であり、2kN以上の接合強度を得られなかった大きな理由の一つは、このためである。前記特許文献7では、高強度鋼板表面上に新たに生成させた外部酸化物層を、本発明と同じ、特定割合のMn、Si組成の酸化物としている。しかし、その割合は、前記図1(b)における外部酸化物層と同じであり、前記平均割合が50%以上(50〜80%)と多すぎる。この結果、強力な還元剤となる合金元素を含まない6000系アルミニウム合金材に対して、前記外部酸化物層は、容易には破壊されない障壁として働きすぎ、溶接時に、鋼材側からのFeの拡散を促すことが困難となる。   One of the main reasons why the joint strength in the spot welding example of the dissimilar joint of the 6000 series aluminum alloy material and the steel material of Patent Document 7 is less than 2 kN even if it is high and a joint strength of 2 kN or more cannot be obtained. Is for this. In Patent Document 7, an external oxide layer newly formed on the surface of a high-strength steel plate is an oxide having a specific ratio of Mn and Si as in the present invention. However, the ratio is the same as that of the outer oxide layer in FIG. 1B, and the average ratio is too large, 50% or more (50-80%). As a result, for the 6000 series aluminum alloy material that does not contain an alloying element that becomes a strong reducing agent, the outer oxide layer works too much as a barrier that is not easily destroyed, and diffusion of Fe from the steel material side during welding It becomes difficult to encourage.

したがって、6000系アルミニウム合金材と鋼材とをスポット溶接するような異材接合であって、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するようなスポット溶接では、外部酸化物層における、Mn、Siを合計量で1at%以上含む酸化物の占める割合を、鋼生地と外部酸化物層との界面の略水平方向の長さ1μmに対して占めるこの酸化物の合計長さの平均割合として50%未満とする。   Therefore, in spot welding in which the 6000 series aluminum alloy material and the steel material are dissimilarly joined by spot welding and only the aluminum alloy material side is melted without melting the steel material side, Mn in the outer oxide layer is reduced. The ratio of the oxide containing 1 at% or more of the total amount of Si is the average ratio of the total length of the oxide to the length of 1 μm in the substantially horizontal direction of the interface between the steel base and the outer oxide layer. Less than 50%.

一方で、外部酸化物層における、Mn、Siを合計量で1at%以上含む酸化物の占める前記平均割合が少なすぎると、前記した、通常の軟鋼材などの鋼材の表面上の外部酸化層と大差なくなる。このため、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するようなスポット溶接の場合にでも、また、強力な還元剤となる合金元素を含まない6000系アルミニウム合金材のような場合でも、容易に外部酸化物層が破壊される。この結果、溶解したアルミニウム合金側への、鋼材側からのFeの拡散が過剰に促進され、接合界面における、Al−Fe系の脆い反応層の過剰生成を抑制することができずに、異材接合体の接合強度が著しく低下する。   On the other hand, if the average ratio of the oxide containing 1 at% or more of Mn and Si in the total amount in the outer oxide layer is too small, the outer oxide layer on the surface of the steel material such as a normal mild steel material described above, There will be no big difference. For this reason, even in the case of spot welding in which only the aluminum alloy material side is melted without melting the steel material side, or in the case of a 6000 series aluminum alloy material that does not contain an alloy element that becomes a strong reducing agent. The outer oxide layer is easily destroyed. As a result, the diffusion of Fe from the steel material side to the molten aluminum alloy side is excessively promoted, and it is impossible to suppress the excessive formation of an Al—Fe-based brittle reaction layer at the bonding interface. Body joint strength is significantly reduced.

したがって、先ず、本発明では、鋼材の鋼生地表面上に存在する外部酸化物層において、Mn、Siを合計量で1at%以上含む酸化物の占める割合は、鋼生地と外部酸化物層との界面の略水平方向の長さ1μmに対して占めるこの酸化物の合計長さの平均割合として、0.1%以上、50%未満、好ましくは0.1%以上、30%未満、より好ましくは0.1%以上、5%未満とする。   Therefore, first, in the present invention, in the outer oxide layer existing on the surface of the steel material of the steel material, the ratio of the oxide containing Mn and Si in a total amount of 1 at% or more is the ratio between the steel material and the outer oxide layer. The average ratio of the total length of the oxide to the length of 1 μm in the substantially horizontal direction of the interface is 0.1% or more and less than 50%, preferably 0.1% or more and less than 30%, more preferably 0.1% or more and less than 5%.

このような外部酸化物層を得るために、図1(c)の場合のように、雰囲気焼鈍の酸素分圧をより高くして、前記内部酸化物をより鋼材内部にまでより深く形成される一方で、外部酸化物層におけるMn、Siを含む酸化物の占める割合を大きく減らした高酸素分圧の雰囲気焼鈍の場合とする。   In order to obtain such an outer oxide layer, as in the case of FIG. 1 (c), the oxygen partial pressure of atmosphere annealing is increased, and the inner oxide is formed deeper into the steel material. On the other hand, the case of atmospheric annealing with a high oxygen partial pressure in which the proportion of oxides containing Mn and Si in the outer oxide layer is greatly reduced is assumed.

これによって、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するようなスポット溶接の場合に、接合時のFeとAlの拡散を抑えて、Al−Fe系の脆い金属間化合物層 (反応層) 生成を抑制する効果がより大きくなる。これによって、スポット溶接接合界面における反応層の平均厚みは、後述する通り、0.1〜10μmの最適範囲に制御される。この結果、特に6000系アルミニウム合金材と鋼材とのスポット溶接された異材接合体について、前記2kN以上の高い接合強度が得られる。   As a result, in the case of spot welding in which only the aluminum alloy material side is melted without melting the steel material side, the diffusion of Fe and Al during bonding is suppressed, and an Al-Fe based brittle intermetallic compound layer (reaction Layer) The effect of suppressing generation becomes larger. As a result, the average thickness of the reaction layer at the spot weld joint interface is controlled within the optimum range of 0.1 to 10 μm, as will be described later. As a result, a high joint strength of 2 kN or more can be obtained particularly for a dissimilar material joint obtained by spot welding of a 6000 series aluminum alloy material and a steel material.

(内部酸化物の作用)
鋼生地表面直下の内部酸化物層には、鋼材表面上の上記外部酸化層と同様に、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するようなスポット溶接の場合に、接合時のFeの拡散を抑えて、Al−Fe系の脆い金属間化合物層 (反応層) 生成を抑制する効果がある。
(Internal oxide action)
In the case of spot welding in which only the aluminum alloy material side is melted without melting the steel material side, the inner oxide layer just below the surface of the steel material is the same as the outer oxide layer on the steel material surface. There is an effect of suppressing diffusion of Fe and suppressing formation of an Al—Fe-based brittle intermetallic compound layer (reaction layer).

即ち、鋼材とアルミニウム合金材との溶接接合時には、鋼材の内部酸化物は、鋼材表面上の前記外部酸化物層を破って形成されたAl−Fe反応層中に固溶し、Fe、Alの拡散を抑制して、反応層が過剰に生成するのを抑制する。これらの機能を有する内部酸化物は、SiO2やMn2SiO4などの球状酸化物からなり、Mn、Siを合計量で1at%以上含むものである。
That is, at the time of welding joining between a steel material and an aluminum alloy material, the inner oxide of the steel material dissolves in the Al-Fe reaction layer formed by breaking the outer oxide layer on the steel material surface, and Fe, Al Suppression of diffusion and generation of an excessive reaction layer are suppressed. The internal oxide having these functions is made of a spherical oxide such as SiO2 or Mn2SiO4, and contains Mn and Si in a total amount of 1 at% or more.

しかし、特に6000系アルミニウム合金材と鋼材とをスポット溶接するような異材接合の場合、このような効果は、鋼生地表面直下に内部酸化物層があれば発揮されるのではなく、一定割合のMn、Siを含む酸化物相が一定量以上で、かつ、鋼生地表面直下の一定以上の深さに存在する場合に限定される。即ち、図1(c)の場合のように、これらの内部酸化物を所定の割合で含む内部酸化物層が、この鋼材の鋼生地表面から深さ方向に20μm以上形成される場合にしか、このような効果は発揮されない。   However, particularly in the case of dissimilar material joining such as spot welding of a 6000 series aluminum alloy material and a steel material, such an effect is not exhibited if there is an internal oxide layer directly under the surface of the steel material, but a certain percentage. This is limited to the case where the oxide phase containing Mn and Si is present in a certain amount or more and at a certain depth or more directly below the steel material surface. That is, as in the case of FIG. 1C, only when the internal oxide layer containing these internal oxides in a predetermined ratio is formed in a depth direction of 20 μm or more from the steel material surface of the steel material, Such an effect is not exhibited.

この理由は、前記した通り、通常の6000系アルミニウム合金材には、鋼材表面上の上記外部酸化層を還元によって破れるだけの強力な還元剤となる合金元素を含んでおらず、鋼材との界面に、これらの合金元素を存在させられないからである。このため、本発明では、前記した通り、強力な還元剤となる合金元素を含まない6000系アルミニウム合金材に対して、前記外部酸化物層を比較的容易に破壊される障壁としている。ただ、このように、前記外部酸化物層を比較的容易に破壊されるようにした場合には、前記外部酸化物層のFe、Alの拡散に対する障壁効果が比較的低下するために、Fe、Alの拡散を効果的に抑制するためには、前記内部酸化物の働きがより重要となる。   The reason for this is that, as described above, a normal 6000 series aluminum alloy material does not contain an alloy element that becomes a strong reducing agent that can break the outer oxide layer on the steel surface by reduction, and the interface with the steel material. In addition, these alloy elements cannot be present. For this reason, in the present invention, as described above, the outer oxide layer is a barrier that can be relatively easily broken against a 6000 series aluminum alloy material that does not contain an alloying element that is a strong reducing agent. However, in this way, when the outer oxide layer is relatively easily destroyed, the barrier effect on the diffusion of Fe and Al in the outer oxide layer is relatively lowered. In order to effectively suppress the diffusion of Al, the function of the internal oxide becomes more important.

即ち、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するようなスポット溶接の場合には、内部酸化物が、鋼材表面上の前記外部酸化物層を破って次々と形成されるAl−Fe反応層中に、溶接時を通じて持続的に、より多く固溶して、Fe、Alの拡散を抑制し、反応層が過剰に生成するのを抑制する必要がある。このためには、図1(c)の場合のように、この内部酸化物量を確保するために、内部酸化物の密度の確保とともに、この内部酸化物を所定の割合で含む内部酸化物層を、鋼材の鋼生地表面から少なくとも20μm以上形成する必要がある。   That is, in the case of spot welding in which only the aluminum alloy material side is melted without melting the steel material side, the inner oxide is formed one after another by breaking the outer oxide layer on the steel material surface. In the Fe reaction layer, it is necessary to continuously dissolve more throughout the welding process to suppress the diffusion of Fe and Al, and to prevent the reaction layer from being excessively formed. For this purpose, as in the case of FIG. 1C, in order to secure the amount of internal oxide, an internal oxide layer containing the internal oxide at a predetermined ratio is secured together with securing the density of the internal oxide. It is necessary to form at least 20 μm or more from the steel material surface of the steel material.

前記特許文献7の、6000系アルミニウム合金材と鋼材との異材接合体のスポット溶接例における接合強度が、高くても2kN未満であり、2kN以上の接合強度を得られなかった大きな理由の一つは、このためである。前記特許文献7では、内部酸化物層を、本発明と同じ、特定割合のMn、Si組成の酸化物として存在させている。しかし、その内部酸化物層の存在領域は、前記図1(b)における内部酸化物層と同じであり、鋼材の鋼生地表面から10μm以下の、比較的浅い鋼領域にしか形成していない。このため、内部酸化物が、鋼材表面上の前記外部酸化物層を破って次々と形成されるAl−Fe反応層中に固溶する点は同じであるが、溶接時を通じた、持続的でより多くの固溶はできない。言い換えると、Fe、Alの拡散を抑制し、反応層が過剰に生成するのを抑制する効果が、形成されるAl−Fe反応層に対して少なくなる。この結果、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するようなスポット溶接の場合には、特に、冶金的接合に必要かつ最小限の厚みのAl−Fe反応層を、接合部に出来るだけ広範囲に形成させることが困難となる。   One of the main reasons why the joint strength in the spot welding example of the dissimilar joint of the 6000 series aluminum alloy material and the steel material of Patent Document 7 is less than 2 kN even if it is high and a joint strength of 2 kN or more cannot be obtained. Is for this. In Patent Document 7, the internal oxide layer is present as an oxide having a specific ratio of Mn and Si as in the present invention. However, the region where the internal oxide layer is present is the same as the internal oxide layer in FIG. 1B, and is formed only in a relatively shallow steel region of 10 μm or less from the steel material surface of the steel material. For this reason, the point that the internal oxide dissolves in the Al-Fe reaction layer formed one after another by breaking the outer oxide layer on the steel surface is the same, but it is continuous throughout the welding. More solid solution is not possible. In other words, the effect of suppressing the diffusion of Fe and Al and suppressing the excessive generation of the reaction layer is less with respect to the formed Al—Fe reaction layer. As a result, in the case of spot welding in which only the aluminum alloy material side is melted without melting the steel material side, an Al—Fe reaction layer having a minimum thickness necessary for metallurgical joining is formed at the joint. It becomes difficult to form as wide a range as possible.

ただ、このような表面組織を有する鋼材では、Mn、Siを合計量で1at%以上含む酸化物が、鋼材内部深くまで多く存在すると、溶接条件によって、却って、接合時のFeとAlの拡散が抑制されすぎて、反応層の厚みを十分に確保できなかったり、均一に反応層を生成させるのが困難となり、高い接合強度が得られなくなる可能性もある。したがって、この内部酸化物層を必要以上に深く設ける必要はない。   However, in a steel material having such a surface structure, if a large amount of oxide containing 1 at% or more of Mn and Si is present deep inside the steel material, depending on the welding conditions, diffusion of Fe and Al at the time of joining is rather reversed. It is suppressed too much, so that the thickness of the reaction layer cannot be sufficiently secured, or it becomes difficult to uniformly generate the reaction layer, and high bonding strength may not be obtained. Therefore, it is not necessary to provide this inner oxide layer deeper than necessary.

よって、6000系アルミニウム合金材と鋼材とをスポット溶接するような異材接合であって、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するようなスポット溶接では、Mn、Siを合計量で1at%以上含む内部酸化物を所定の割合で含む内部酸化物層を、この鋼材の鋼生地表面から少なくとも20μmまでの深さの鋼領域に存在させる。このことをより具体的に定義すると、鋼材の鋼生地表面からの深さが20μmまでの鋼領域に存在する、粒界酸化物とMn、Siを合計量で1at%以上含む粒内酸化物の占める割合を、この鋼領域の視野面積10μm2 内において占める平均面積割合として、5%以上で20%未満とする。なお、内部酸化物のうち、粒内に生成する酸化物は、前述した通り、Mn、Siを合計量で1at%以上含む球状乃至粒状の酸化物と、Mn、Siが合計量で1at%未満であるFe3O4 などの酸化物があり、一方、鋼の粒界上に形成される酸化物は概ねMn、Siを合計量で1at%以上含む粒状の酸化物である。そこで、本件発明においては、内部酸化物の規定において、粒界に存在する酸化物およびMn、Siを合計量で1at%以上含む結晶粒内に存在する酸化物の占める割合を5%以上で20%未満とする。
Therefore, in spot welding where 6000 series aluminum alloy material and steel material are spot-welded, and the steel material side does not melt, but only the aluminum alloy material side melts, the total amount of Mn and Si is An internal oxide layer containing an internal oxide containing 1 at% or more in a predetermined ratio is present in a steel region having a depth of at least 20 μm from the steel material surface of the steel material. To define this more specifically, it is an intragranular oxide containing a grain boundary oxide, Mn, and Si in a total amount of 1 at% or more present in a steel region having a depth from the steel dough surface of up to 20 μm. The occupying ratio is 5% or more and less than 20% as the average area ratio occupying within the visual field area 10 μm 2 of this steel region. Among the internal oxides, the oxides generated in the grains are, as described above, spherical or granular oxides containing Mn and Si in a total amount of 1 at% or more, and Mn and Si in a total amount of less than 1 at%. On the other hand, the oxide formed on the grain boundary of steel is generally a granular oxide containing Mn and Si in a total amount of 1 at% or more. Therefore, in the present invention, in the definition of the internal oxide, the proportion of the oxide existing in the grain boundary and the oxide existing in the crystal grains containing Mn and Si in a total amount of 1 at% or more is 5% or more and 20%. %.

これによって、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するようなスポット溶接の場合に、接合時のFeとAlの拡散を抑えて、Al−Fe系の脆い金属間化合物層 (反応層) 生成を抑制する効果がより大きくなる。これによって、スポット溶接接合界面における反応層の平均厚みは、後述する通り、0.1〜10μmの最適範囲に制御される。この結果、特に6000系アルミニウム合金材と鋼材とのスポット溶接された異材接合体について、前記2kN以上の高い接合強度が得られる。   As a result, in the case of spot welding in which only the aluminum alloy material side is melted without melting the steel material side, the diffusion of Fe and Al during bonding is suppressed, and an Al-Fe based brittle intermetallic compound layer (reaction Layer) The effect of suppressing generation becomes larger. As a result, the average thickness of the reaction layer at the spot weld joint interface is controlled within the optimum range of 0.1 to 10 μm, as will be described later. As a result, a high joint strength of 2 kN or more can be obtained particularly for a dissimilar material joint obtained by spot welding of a 6000 series aluminum alloy material and a steel material.

Mn、Siを合計量で1at%以上含む内部酸化物の密度が前記平均面積割合として5%未満では、この内部酸化物が存在する鋼材の深さ領域を満足したとしても、内部酸化物の密度が少なすぎて、前記効果発揮のための内部酸化物の量が不足する。一方、Mn、Siを合計量で1at%以上含む内部酸化物の密度が前記平均面積割合として20%以上となった場合は、却って、鋼材とアルミニウム材との接合界面における反応層が局所的に成長して、均一に成長せず、適切な溶接条件としても、冶金的接合が不可能となる可能性が高い。   If the density of the internal oxide containing 1 at% or more of Mn and Si is less than 5% as the average area ratio, even if the depth region of the steel material in which the internal oxide exists is satisfied, the density of the internal oxide Is too small, and the amount of internal oxide for exhibiting the effect is insufficient. On the other hand, when the density of the internal oxide containing 1 at% or more of Mn and Si is 20% or more as the average area ratio, the reaction layer at the joining interface between the steel material and the aluminum material is locally There is a high possibility that metallurgical joining is impossible even if the welding conditions are appropriate and the welding conditions are appropriate.

(鋼材内部組織)
前記した通り、鋼材では、この内部酸化物層を、20μmを大きく超えて深く設ける必要はない。したがって、鋼材の鋼生地表面からの深さが20μmを超えて30μm以下の鋼領域に存在する、粒界酸化物とMn、Siを合計量で1at%以上含む粒内酸化物との占める割合を、この鋼領域の視野面積10μm2 内において占める平均面積割合として、10%以下とすることが好ましい。
(Internal structure of steel)
As described above, in the steel material, it is not necessary to provide the inner oxide layer deeply exceeding 20 μm. Accordingly, the ratio of the grain boundary oxide and the intragranular oxide containing 1 at% or more of the total amount of grain boundary oxide and Mn, Si existing in the steel region where the depth from the steel dough surface exceeds 20 μm and is 30 μm or less. The average area ratio of the steel region in the visual field area of 10 μm 2 is preferably 10% or less.

(酸化物の測定方法)
本発明における酸化物の測定は、EDX(エネルギー分散型X線分光法)を併用した1万〜3万倍の倍率のTEM(透過型電子顕微鏡)にて行なう。即ち、外部酸化物は、EDXにより、鋼材の厚み方向断面における、鋼生地と外部酸化物層との界面を略水平方向に分析することによって、界面近傍の外部酸化物層中のMn、Siの合計量を求め、Mn、Siを合計量で1at%以上含む界面近傍の酸化物の相 (複数の酸化物) を、それ以外の相と区別して特定する。次いで、TEMにより、このEDX分析と同じ界面領域における、このMn、Siを合計量で1at%以上含む酸化物相の、上記界面における略水平方向の長さを求める。そして、界面の略水平方向の長さ1μmに対して占める、この酸化物相の合計長さの割合を求める。これを複数箇所にて行い、平均化する。
(Measurement method of oxide)
The oxide in the present invention is measured with a TEM (transmission electron microscope) at a magnification of 10,000 to 30,000 times in combination with EDX (energy dispersive X-ray spectroscopy). That is, the external oxide is analyzed by EDX by analyzing the interface between the steel material and the external oxide layer in a substantially horizontal direction in the cross section in the thickness direction of the steel material, so that Mn and Si in the external oxide layer near the interface are analyzed. The total amount is obtained, and the oxide phase (plurality of oxides) in the vicinity of the interface containing 1 at% or more of Mn and Si is identified and distinguished from the other phases. Next, the length in the substantially horizontal direction at the interface of the oxide phase containing 1 at% or more of the total amount of Mn and Si in the same interface region as in the EDX analysis is determined by TEM. And the ratio of the total length of this oxide phase which occupies with respect to 1 micrometer of the length of the substantially horizontal direction of an interface is calculated | required. This is performed at a plurality of locations and averaged.

内部酸化物は、前記した、鋼材の鋼生地表面からの深さが20μmまでの所定の鋼領域の複数箇所における、Mn、Siを合計量で1at%以上含む酸化物を、前記したEDXにより、それ以外の相と区別して特定する。そして、TEMにより、このEDXと同じ界面領域における、このMn、Siを合計量で1at%以上含む酸化物相の、視野面積10μm2 内において占める面積割合を各々求める。ここで、この鋼領域における粒界酸化物の占める面積も、前述の通り、この鋼領域におけるMn、Siを合計量で1at%以上含む内部酸化物として、内部酸化物の占める面積割合に加える。これを複数箇所にて行い平均化する。なお、鋼材の鋼生地表面からの深さが20μmを超えて、30μm以下の鋼領域に存在する、粒界酸化物と、Mn、Siを合計量で1at%以上含む粒内酸化物との占める割合も同様の方法で測定する。 The internal oxide is an oxide containing Mn and Si in a total amount of 1 at% or more at a plurality of locations in a predetermined steel region up to 20 μm in depth from the steel material surface of the steel material, according to the EDX described above. It is specified separately from the other phases. Then, each area ratio of the oxide phase containing 1 M% or more of Mn and Si in the total amount in the same interface region as that of EDX in the visual field area of 10 μm 2 is determined by TEM. Here, the area occupied by the grain boundary oxide in the steel region is also added to the area ratio occupied by the internal oxide as an internal oxide containing 1 at% or more of Mn and Si in the total amount as described above. This is performed at a plurality of locations and averaged. In addition, the depth from the steel dough surface of steel materials exceeds 20 micrometers, and the grain boundary oxide which exists in the steel area | region of 30 micrometers or less, and the intragranular oxide which contains 1 at% or more of Mn and Si in total amount occupy The ratio is measured by the same method.

(酸化物層制御)
これら鋼材の外部酸化物および内部酸化物の制御は、前記した通り、鋼材の焼鈍条件(酸素分圧)を制御することにより行なうことができる。より具体的には、鋼材の焼鈍雰囲気中の酸素分圧(露点)を変えて制御できる。いずれの鋼種においても、酸素分圧(露点)が高い場合は、鋼材表面上の外部酸化物層中のMn、Siが濃化した酸化物量が少なくなる。また、鋼内部まで酸化し、内部酸化、粒界酸化が進んで、鋼内にSiO2、Mn2SiO4 などが形成され、鋼内に占めるMn、Siを含む酸化物の面積割合が高まる。
(Oxide layer control)
Control of the external oxide and internal oxide of these steel materials can be performed by controlling the annealing conditions (oxygen partial pressure) of the steel materials as described above. More specifically, the oxygen partial pressure (dew point) in the annealing atmosphere of the steel material can be changed and controlled. In any steel type, when the oxygen partial pressure (dew point) is high, the amount of oxide enriched in Mn and Si in the outer oxide layer on the steel material surface decreases. In addition, the steel is oxidized to the inside, and internal oxidation and grain boundary oxidation progress. As a result, SiO2, Mn2SiO4, etc. are formed in the steel, and the area ratio of oxides containing Mn and Si in the steel increases.

一方、いずれの高強度鋼の鋼種においても、酸素分圧(露点)が低い場合は、鋼材表面上の外部酸化物層中の、Mn2SiO4 、SiO2などのMn、Siが濃化した酸化物は形成されるが、その量乃至面積割合は多くなる。その一方で、鋼内部の酸化は進みにくくなり、鋼内のSiO2、Mn2SiO4 などの形成量は少なくなり、鋼内に占めるMn、Siを含む酸化物の面積割合は少なくなる。   On the other hand, in any steel type of high strength steel, when the oxygen partial pressure (dew point) is low, oxides enriched in Mn and Si such as Mn2SiO4 and SiO2 in the outer oxide layer on the steel surface are formed. However, the amount or area ratio increases. On the other hand, the oxidation inside the steel is difficult to proceed, the amount of SiO2 and Mn2SiO4 in the steel is reduced, and the area ratio of the oxide containing Mn and Si in the steel is reduced.

(異材接合体の接合界面における反応層)
上記のように表面の酸化物層を制御した鋼材とアルミニウム材とを溶接にて接合した異材接合体においては、適切な溶接条件とすることによって、高い接合強度が得られる。但し、溶接素材側の条件を整えても、溶接施工条件 (溶接条件) によっては、高い接合強度を実現できない場合がある。
(Reaction layer at the bonding interface of dissimilar materials)
In the dissimilar material joined body in which the steel material with the controlled oxide layer on the surface and the aluminum material are joined by welding as described above, high joining strength can be obtained by setting appropriate welding conditions. However, even if the conditions on the welding material side are adjusted, depending on the welding conditions (welding conditions), high joint strength may not be realized.

このため、異材接合体側から見て、高い接合強度を得るための条件を規定して、溶接条件も、この異材接合体側条件に合うように制御して最適化する必要がある。したがって、本発明では、好ましくは、異材接合体として高い接合強度を得るための、スポット溶接条件を規定する。   For this reason, it is necessary to define conditions for obtaining a high joint strength when viewed from the dissimilar material joint side, and to control and optimize the welding conditions so as to meet the dissimilar material joint side conditions. Therefore, in the present invention, preferably, spot welding conditions for obtaining high joint strength as a dissimilar material joined body are defined.

前記した通り、異材接合体側から見ると、冶金的接合に必要かつ最小限の厚みのFeとAlの反応層を、接合部に出来るだけ広範囲に形成させる必要がある。即ち、先ず、冶金的接合に必要かつ最小限の厚みとして、アルミニウム材との接合界面における反応層のナゲット深さ方向 (鋼材の板厚方向) の平均厚みを0.1〜10μmの範囲に制御することが必要である。   As described above, when viewed from the dissimilar material joined body side, it is necessary to form a reaction layer of Fe and Al having a minimum thickness necessary for metallurgical joining as widely as possible in the joint. That is, first, as the necessary and minimum thickness for metallurgical joining, the average thickness in the nugget depth direction (steel thickness direction) of the reaction layer at the joining interface with the aluminum material is controlled within the range of 0.1 to 10 μm. It is necessary to.

鋼材とアルミニウム材との溶接接合界面では、反応層として、鋼材側には層状のAl5Fe2系化合物層、アルミニウム材側には粒状または針状のAl3Fe 系化合物とAl19Fe4Si2Mn系化合物とが混在した層、を各々有する。   At the weld joint interface between steel and aluminum, the reaction layer is a layered Al5Fe2 compound layer on the steel side, and a layer of granular or acicular Al3Fe compound and Al19Fe4Si2Mn compound on the aluminum side. Have each.

これらの脆い反応層のナゲット深さ方向の厚みが10μmを超えると、接合強度は著しく低下する。一方、反応層のナゲット深さ方向の厚みが0.1μmより薄い場合は、冶金的接合が不充分となり、十分な接合強度が得られない。したがって、上記表面の酸化物層を制御した鋼材とアルミニウム材との接合界面における反応層の平均厚みは0.1〜10μmの範囲とする。   When the thickness of these fragile reaction layers in the nugget depth direction exceeds 10 μm, the bonding strength is significantly reduced. On the other hand, when the thickness of the reaction layer in the nugget depth direction is less than 0.1 μm, metallurgical bonding becomes insufficient, and sufficient bonding strength cannot be obtained. Therefore, the average thickness of the reaction layer at the bonding interface between the steel material and the aluminum material, in which the oxide layer on the surface is controlled, is in the range of 0.1 to 10 μm.

(反応層の形成範囲)
次ぎに、異材接合体における上記FeとAlの反応層を、接合部に出来るだけ広範囲に形成させる必要がある。即ち、接合後の前記反応層の形成範囲が、スポット溶接やFSW(摩擦攪拌接合)などの点溶接では、接合面積 (鋼材の略水平方向、ナゲット深さ方向に直角の方向) の70%以上の面積であることが好ましい。
(Reaction layer formation range)
Next, it is necessary to form the reaction layer of Fe and Al in the dissimilar material joined body in as wide a range as possible. In other words, the formation range of the reaction layer after joining is 70% or more of the joining area (substantially horizontal direction of the steel material, direction perpendicular to the nugget depth direction) in spot welding such as spot welding and FSW (friction stir welding). It is preferable that it is an area.

反応層は上記適正な厚み範囲の上で、この適正な厚み範囲が、出来るだけ広範囲に均一に形成されないと、確実に冶金的接合が達成できない可能性がある。これに対して、上記適正な厚み範囲の反応層が、上記70%以上形成されれば十分な接合強度が確実に得られる。   If the appropriate thickness range is not formed as uniformly as possible over the above appropriate thickness range, the reaction layer may not be able to reliably achieve metallurgical bonding. On the other hand, if the reaction layer having the appropriate thickness range is formed to be 70% or more, sufficient bonding strength can be obtained with certainty.

(異材接合体の接合界面における反応層の測定)
上記本発明における反応層の測定は、後述する実施例の通り、鋼材−アルミ材との接合部を切断して、断面より接合界面をSEM(走査型電子顕微鏡)にて観察し、反応層の上記測定を行なう。
(Measurement of reaction layer at joint interface of dissimilar materials)
The measurement of the reaction layer in the present invention is performed by cutting the steel-aluminum joint as in the examples described later and observing the joint interface from the cross section with an SEM (scanning electron microscope). Perform the above measurements.

(鋼材の化学成分組成)
先ず、本発明が対象とする鋼材の成分組成について以下に説明する。本発明では、Si、Mnなどを含む引張強度が450MPa以上の高強度鋼材(ハイテン)を主たる対象とする。更には、表面上の既存の酸化物層を酸洗などにより一旦除去した上で、更に、酸素分圧を制御した雰囲気で焼鈍などした場合に、Si、Mnなどを所定量含む外部酸化物層を新たに生成させ得る鋼材を対象とする。
(Chemical composition of steel)
First, the component composition of the steel material targeted by the present invention will be described below. In the present invention, a high strength steel material (high tensile) having a tensile strength of 450 MPa or more including Si, Mn and the like is mainly targeted. Furthermore, when the existing oxide layer on the surface is once removed by pickling or the like and then annealed in an atmosphere in which the oxygen partial pressure is controlled, an external oxide layer containing a predetermined amount of Si, Mn, etc. The target is steel materials that can be newly generated.

このため、鋼材の成分組成については、Si、Mnなどを所定量含むことを前提に、質量%で、C:0.01〜0.30%、Si:0.1〜3.00%、Mn:0.1〜3.00%を各々含有し、好ましくは残部がFeおよび不可避的不純物からなる組成とする。また、これに加えて、更に、Al:0.002〜0.1%を含有し、残部がFeおよび不可避的不純物からなる組成としても良い。また、更に、このAlに加えて、あるいはAlの代わりに、Nb:0.005〜0.10%、Ti:0.005〜0.10%、Zr:0.005〜0.10%、Cr:0.05〜3.00%、Mo:0.01〜3.00%、Cu:0.01〜3.00%、Ni:0.01〜3.00%、の1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる組成としても良い。   For this reason, about the component composition of steel materials, C: 0.01-0.30%, Si: 0.1-3.00%, Mn in mass% on the assumption that Si, Mn, etc. contain predetermined amount. : 0.1 to 3.00% each, preferably with the balance being Fe and inevitable impurities. In addition to this, a composition containing Al: 0.002 to 0.1%, with the balance being Fe and inevitable impurities may be used. Further, in addition to or instead of Al, Nb: 0.005 to 0.10%, Ti: 0.005 to 0.10%, Zr: 0.005 to 0.10%, Cr : 0.05 to 3.00%, Mo: 0.01 to 3.00%, Cu: 0.01 to 3.00%, Ni: 0.01 to 3.00%, one or more The balance may be composed of Fe and inevitable impurities.

ここで、鋼材の不純物としてのP、S、Nなどは、鋼材の靱性や延性、あるいは接合強度などの諸特性を低下させるので、P:0.10%以下(0%を含む)、S:0.05%以下(0%を含む)、N:300ppm以下(0%を含む)に、各々規制する。なお、本発明における化学成分の単位(各元素の含有量)は、アルミニウム合金を含めて、すべて質量%である。   Here, P, S, N, and the like as impurities of the steel material deteriorate various properties such as toughness, ductility, and bonding strength of the steel material, so P: 0.10% or less (including 0%), S: It regulates to 0.05% or less (including 0%) and N: 300 ppm or less (including 0%), respectively. In addition, the unit (content of each element) of the chemical component in this invention is mass% altogether including an aluminum alloy.

鋼材の各成分元素の限定理由は以下の通りである。
C:
Cは強度上昇に必要な元素であるが、含有量が0.01%未満では鋼材の強度確保ができず、また0.30%を超えると冷間加工性が低下する。したがって、C含有量は0.01〜0.30%の範囲とする。
The reasons for limiting the constituent elements of the steel are as follows.
C:
C is an element necessary for increasing the strength, but if the content is less than 0.01%, the strength of the steel cannot be secured, and if it exceeds 0.30%, the cold workability decreases. Therefore, the C content is in the range of 0.01 to 0.30%.

Si、Mn:
Si、Mnは、鋼材の表面にSiまたはMnを所定量含む、前記外部酸化物層を形成する。この外部酸化物層は、FeとAlの異材接合の場合に、互いの母材側からのFeとAlの拡散を妨害し、脆い金属間化合物の形成を最小限に抑えることができる。また、金属間化合物の脆性の改善にも役立っている。
Si, Mn:
Si and Mn form the outer oxide layer containing a predetermined amount of Si or Mn on the surface of the steel material. In the case of dissimilar joining of Fe and Al, this external oxide layer can prevent the diffusion of Fe and Al from the base material side of each other, and can minimize the formation of brittle intermetallic compounds. It also helps to improve the brittleness of intermetallic compounds.

更に、Si、Mnは、鋼材の内部にSiまたはMnを所定量含む、前記内部酸化物層を形成する。この内部酸化物層は、鋼材表面上の外部酸化物層を破って形成されたAl−Fe反応層中に固溶し、互いの母材側からのFe、Alの拡散を防いで、反応層が過剰に生成するのを抑制する。   Further, Si and Mn form the internal oxide layer containing a predetermined amount of Si or Mn inside the steel material. This inner oxide layer is dissolved in the Al-Fe reaction layer formed by breaking the outer oxide layer on the steel surface, preventing the diffusion of Fe and Al from the base material side of each other, and the reaction layer Is suppressed from being excessively generated.

したがって、鋼材におけるSi、Mnの含有量が少な過ぎると、上記外部酸化物層や内部酸化物層が不足して、後述する通り、異材接合体の接合強度を向上できない。一方、鋼材におけるSi、Mnの含有量が多過ぎると、後述する通り、却って、異材接合体の接合強度を低下させる。このため、適切な上記外部酸化物層や内部酸化物層を形成するためには、鋼材におけるSi、Mnは、本発明で規定する含有量の範囲内であることが必要である。   Therefore, if there is too little content of Si and Mn in the steel material, the outer oxide layer and the inner oxide layer are insufficient, and as described later, the bonding strength of the dissimilar material joined body cannot be improved. On the other hand, when there is too much content of Si and Mn in steel materials, the joining strength of a dissimilar material joined body will be reduced on the contrary as it mentions later. For this reason, in order to form the said suitable outer oxide layer and internal oxide layer, it is necessary for Si and Mn in steel materials to be within the range of the contents defined in the present invention.

Si:
Siは、鋼材の延性を劣化させずに、必要な強度確保が可能な元素としても重要であり、そのためには0.1%以上の含有量が必要である。一方、3.00%を超えて含有すると延性が劣化してくる。したがって、Si含有量は、この理由からも0.1〜3.00%の範囲とする。
Si:
Si is important as an element that can ensure the necessary strength without degrading the ductility of the steel material, and for that purpose, a content of 0.1% or more is necessary. On the other hand, when it contains exceeding 3.00%, ductility will deteriorate. Therefore, the Si content is in the range of 0.1 to 3.00% for this reason.

Mn:
Mnも、鋼材の強度と靱性を確保するための元素としても必要不可欠で、含有量が0.1%未満ではその効果は得られない。一方、含有量が3.00%を超えると著しく強度が上昇し冷間加工が困難となる。したがって、Mn含有量は、この理由からも0.1〜3.00%の範囲とする。
Mn:
Mn is also indispensable as an element for ensuring the strength and toughness of the steel material. If the content is less than 0.1%, the effect cannot be obtained. On the other hand, when the content exceeds 3.00%, the strength is remarkably increased and cold working becomes difficult. Therefore, the Mn content is in the range of 0.1 to 3.00% for this reason.

Al:
Alは、溶鋼の脱酸元素として、固溶酸素を捕捉するとともに、ブローホールの発生を防止して、鋼の靭性向上の為にも有効な元素である。Al含有量が0.002%未満ではこれらの十分な効果が得られず、一方で、0.1%を超えると、逆に溶接性を劣化させたり、アルミナ系介在物の増加により鋼の靭性を劣化させる。したがって、Al含有量は0.002〜0.1%の範囲とする。
Al:
Al is an element effective for improving the toughness of steel by capturing solid solution oxygen as a deoxidizing element of molten steel and preventing the occurrence of blowholes. When the Al content is less than 0.002%, these sufficient effects cannot be obtained. On the other hand, when the Al content exceeds 0.1%, the weldability is adversely affected, or the toughness of the steel increases due to an increase in alumina inclusions. Deteriorate. Therefore, the Al content is in the range of 0.002 to 0.1%.

Nb、Ti、Zr、Cr、Mo、Cu、Niの1種または2種以上:
Nb、Ti、Zr、Cr、Mo、Cu、Niの1種または2種以上の含有は、共通して、鋼の高強度化や高靭性化に寄与する。
One or more of Nb, Ti, Zr, Cr, Mo, Cu, Ni:
Inclusion of one or more of Nb, Ti, Zr, Cr, Mo, Cu, and Ni contributes to increasing the strength and toughness of the steel in common.

この内、Ti、Nb、Zrは、鋼中に炭窒化物として析出して強度を高め、鋼のミクロ組織を微細化して強度、靭性等を向上させる。但し、多量に含有させると、靭性を大幅に劣化させる。したがって、含有させる場合は、Nb:0.005〜0.10%、Ti:0.005〜0.10%、Zr:0.005〜0.10%の各範囲とする。   Among these, Ti, Nb, and Zr are precipitated as carbonitrides in the steel to increase the strength, and the microstructure of the steel is refined to improve the strength, toughness and the like. However, when it is contained in a large amount, the toughness is greatly deteriorated. Therefore, when it contains, it is set as each range of Nb: 0.005-0.10%, Ti: 0.005-0.10%, Zr: 0.005-0.10%.

また、この内、Cr、Mo、Cu、Niは鋼の焼き入れ性を向上させて、強度を向上させる。但し、多量に含有させると、鋼の靭性を大幅に劣化させる。したがって、含有させる場合は、Cr:0.05〜3.00%、Mo:0.01〜3.00%、Cu:0.01〜3.00%、Ni:0.01〜3.00%の範囲とする。   Of these, Cr, Mo, Cu, and Ni improve the hardenability of the steel and improve the strength. However, if contained in a large amount, the toughness of the steel is greatly deteriorated. Therefore, when contained, Cr: 0.05 to 3.00%, Mo: 0.01 to 3.00%, Cu: 0.01 to 3.00%, Ni: 0.01 to 3.00% The range.

(鋼材の強度)
本発明においては、自動車部材などの用途から、引張強度が450MPa以上の高強度鋼材(ハイテン)を主たる対象とする。これより低強度鋼では、一般に低合金鋼が多く、酸化皮膜がほぼ鉄酸化物であるため、FeとAlの拡散が容易となり、脆い反応層が形成しやすい。また、Si、Mn量が少ないために、鋼材の表面および内部に、本発明における母材のFeとAlの拡散抑制に必要な前記Si、Mnを含む酸化物が形成されにくく、Si、Mnを含む、外部と内部との酸化物(層)の組成や厚みの制御ができず、溶接時の反応層の制御が困難となる。更には、鋼材の強度が不足するために、スポット溶接時の電極チップによる加圧によって、鋼材の変形が大きくなり、酸化皮膜が容易に破壊されるため、アルミニウムとの反応が異常に促進され、脆い金属間化合物が形成しやすくなる。
(Strength of steel)
In the present invention, a high strength steel material (high tensile) having a tensile strength of 450 MPa or more is mainly used for applications such as automobile members. Low-strength steels are generally low-alloy steels, and the oxide film is almost iron oxide. Therefore, diffusion of Fe and Al is facilitated, and a brittle reaction layer is easily formed. In addition, since the amount of Si and Mn is small, the oxide containing Si and Mn necessary for suppressing diffusion of Fe and Al of the base material in the present invention is hard to be formed on the surface and inside of the steel material. It is difficult to control the composition and thickness of the oxides (layers) including and outside, and it becomes difficult to control the reaction layer during welding. Furthermore, since the strength of the steel material is insufficient, the pressure of the electrode tip during spot welding increases the deformation of the steel material, and the oxide film is easily destroyed, so the reaction with aluminum is promoted abnormally, Brittle intermetallic compounds are easily formed.

(アルミニウム合金材)
本発明で用いるアルミニウム合金材は、質量%で、Mg:0.1〜3.0%、Si:0.1〜2.5%、Cu:0.001〜1.0%を各々含有するAl−Mg−Si系の、AA乃至JIS規格における6000系アルミニウム合金とする。この合金材は、自動車車体の各部用途に応じて、形状を特に限定するものではなく、前記した、汎用されている板材、形材、鍛造材、鋳造材などが適宜選択される。ただ、アルミニウム材の強度についても、上記鋼材の場合と同様に、スポット溶接時の加圧による変形を抑えるために高い方が望ましい。
(Aluminum alloy material)
The aluminum alloy material used in the present invention is, by mass, Al containing Mg: 0.1 to 3.0%, Si: 0.1 to 2.5%, and Cu: 0.001 to 1.0%. -It is set as 6000 series aluminum alloy of AA thru | or JIS specification of Mg-Si type. The shape of the alloy material is not particularly limited depending on the use of each part of the automobile body, and the above-described widely used plate material, shape material, forging material, casting material, and the like are appropriately selected. However, the strength of the aluminum material is desirably higher in order to suppress deformation due to pressurization during spot welding, as in the case of the steel material.

前記自動車車体パネル用などとしては、優れたプレス成形性やBH性(ベークハード性)、強度、溶接性、耐食性などの諸特性が要求される。このような要求を満足するために、6000系アルミニウム合金板としての組成は、質量%で、Mg:0.1〜1.0%、Si:0.1〜1.5%、Mn:0.01〜1.0%、Cu:0.001〜1.0%を含み、残部がAlおよび不可避的不純物からなるAl−Mg−Si系アルミニウム合金とすることが好ましい。また、BH性をより優れさせるためには、SiとMgとの質量比Si/ Mgが1 以上であるような過剰Si型の6000系アルミニウム合金板とされることが好ましい。   For automobile body panels and the like, various properties such as excellent press formability, BH property (bake hard property), strength, weldability, and corrosion resistance are required. In order to satisfy such requirements, the composition of the 6000 series aluminum alloy plate is, by mass, Mg: 0.1 to 1.0%, Si: 0.1 to 1.5%, Mn: 0.00. An Al—Mg—Si-based aluminum alloy containing 01 to 1.0%, Cu: 0.001 to 1.0%, the balance being Al and inevitable impurities is preferable. In order to further improve the BH property, it is preferable that the Si-Mg mass ratio Si / Mg is an excess Si type 6000 series aluminum alloy plate having a mass ratio of 1 or more.

また、前記自動車車体補強材用の押出材などとしては、優れた曲げ圧壊性や耐食性などの諸特性が要求される。このような要求を満足するために、6000系アルミニウム合金押出材の組成は、質量%で、Mg:0.30〜1.0%、Si:0.30〜1.0%、Fe:0.01〜0.40%、Mn:0.001〜0.30%、Cu:0.001〜0.65%を各々含み、残部がAlおよび不可避的不純物からなるAl−Mg−Si系アルミニウム合金とすることが好ましい。更に、前記した各好ましい組成に加えて、Cr:0.001〜0.2%、Zr:0.001〜0.2%の一種または二種を合計量で0.30%以下、あるいはZn:0.001〜0.25%、Ti:0.001〜0.10%の一種または二種を選択的に含ませても良い。   Further, as the extruded material for the automobile body reinforcing material, various properties such as excellent bending crushability and corrosion resistance are required. In order to satisfy such a requirement, the composition of the extruded material of 6000 series aluminum alloy is, by mass, Mg: 0.30 to 1.0%, Si: 0.30 to 1.0%, Fe: 0.00. Al-Mg-Si-based aluminum alloy containing 01 to 0.40%, Mn: 0.001 to 0.30%, Cu: 0.001 to 0.65%, and the balance consisting of Al and inevitable impurities It is preferable to do. Furthermore, in addition to each of the preferred compositions described above, one or two of Cr: 0.001 to 0.2% and Zr: 0.001 to 0.2% in total amount of 0.30% or less, or Zn: One or two of 0.001 to 0.25% and Ti: 0.001 to 0.10% may be selectively included.

これ以外のその他の元素は、基本的には不純物であり、AA乃至JIS規格などに沿った各不純物レベルの含有量 (許容量) とする。しかし、リサイクルの観点から、溶解材として、高純度Al地金だけではなく、6000系合金やその他のアルミニウム合金スクラップ材、低純度Al地金などを溶解原料として多量に使用した場合には、不純物元素が混入される可能性が高い。そして、これら不純物元素を例えば検出限界以下に低減すること自体コストアップとなり、ある程度の含有の許容が必要となる。したがって、その他の元素は、各々AA乃至JIS規格などに沿った許容量の範囲での含有を許容する。   Other elements other than these are basically impurities, and the content (allowable amount) of each impurity level is in accordance with AA to JIS standards. However, from the viewpoint of recycling, not only high-purity Al bullion but also 6000 series alloys and other aluminum alloy scrap materials, low-purity Al bullion, etc. are used as melting materials. There is a high possibility that elements will be mixed. Then, reducing these impurity elements to, for example, below the detection limit itself increases the cost, and a certain amount of allowance is required. Accordingly, the other elements are allowed to be contained within a permissible range in accordance with AA to JIS standards.

上記6000系アルミニウム合金における、各元素の含有意義は以下の通りである。
Si:SiはMgとともに、固溶強化と、塗装焼き付け処理などの前記低温での人工時効処理時に、強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、例えば180MPa以上の必要強度(耐力)を得るための必須の元素である。含有量が不足するとこのような効果が得られず、含有量が多すぎるとプレス成形性や曲げ加工性等の成形性が著しく低下し、更に溶接性も大きく阻害される。
The significance of each element in the 6000 series aluminum alloy is as follows.
Si: Si, together with Mg, forms an aging precipitate that contributes to strength improvement at the time of artificial aging treatment at low temperatures such as solid solution strengthening and paint baking treatment, and exhibits age hardening ability, for example, 180 MPa or more It is an essential element for obtaining the required strength (proof strength). If the content is insufficient, such an effect cannot be obtained. If the content is too large, the formability such as press formability and bending workability is remarkably deteriorated, and the weldability is greatly hindered.

Mg:Mgも、固溶強化と、塗装焼き付け処理などの前記人工時効処理時に、Siとともに強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、パネルとして、前記必要耐力を得るための必須の元素である。含有量が不足するとこのような効果が得られず、含有量が多すぎるとプレス成形性や曲げ加工性等の成形性が著しく低下する。 Mg: Mg also forms an aging precipitate that contributes to strength improvement together with Si during the above-mentioned artificial aging treatment such as solid solution strengthening and paint baking treatment, exhibits age hardening ability, and as a panel, the required proof stress It is an essential element for obtaining. If the content is insufficient, such an effect cannot be obtained. If the content is too large, moldability such as press formability and bending workability is remarkably lowered.

Cu:Cuは、比較的低温短時間の人工時効処理の条件で、アルミニウム合金材組織の結晶粒内への強度向上に寄与する時効析出物の形成を促進させる効果がある。また、固溶したCuは成形性を向上させる効果もある。含有量が不足するとこのような効果が得られず、含有量が多すぎると耐食性や溶接性を著しく劣化させる。 Cu: Cu has the effect of promoting the formation of aging precipitates that contribute to improving the strength of the aluminum alloy material structure in the crystal grains under conditions of artificial aging treatment at a relatively low temperature for a short time. Moreover, solid solution Cu also has the effect of improving moldability. If the content is insufficient, such an effect cannot be obtained, and if the content is too large, the corrosion resistance and weldability are remarkably deteriorated.

Mn:Mnは、均質化熱処理時に分散粒子 (分散相) を生成し、これらの分散粒子には再結晶後の粒界移動を妨げる効果があるため、微細な結晶粒を得ることができる効果がある。プレス成形性やヘム加工性はアルミニウム合金組織の結晶粒が微細なほど向上する。含有量が不足するとこのような効果が得られず、含有量が多すぎると機械的性質を低下させる。また曲げ加工性などの成形性が低下する。 Mn: Mn produces dispersed particles (dispersed phase) during the homogenization heat treatment, and these dispersed particles have the effect of hindering the grain boundary movement after recrystallization, so that it is possible to obtain fine crystal grains. is there. The press formability and hemmability are improved as the crystal grains of the aluminum alloy structure are finer. If the content is insufficient, such an effect cannot be obtained, and if the content is too large, the mechanical properties are lowered. In addition, formability such as bending workability is lowered.

Fe:Feは、Mn、Cr、Zrなどと同じ働きをして、分散粒子 (分散相) を生成し、再結晶後の粒界移動を妨げ、結晶粒の粗大化を防止するとともに、結晶粒を微細化させる効果がある。含有量が不足するとこのような効果が得られず、含有量が多すぎると粗大な晶出物を生成しやすくなり、破壊靱性および疲労特性などを劣化させる。 Fe: Fe has the same function as Mn, Cr, Zr, etc., generates dispersed particles (dispersed phase), prevents grain boundary movement after recrystallization, prevents crystal grains from becoming coarse, Has the effect of miniaturizing. If the content is insufficient, such an effect cannot be obtained. If the content is too large, coarse crystallized products are likely to be generated, and the fracture toughness and fatigue characteristics are deteriorated.

Zn:Znは固溶強化にて強度の向上に寄与する他、時効処理に際して、最終製品の時効硬化を著しく促進する効果も有する。含有量が不足するとこのような効果が得られず、含有量が多すぎると、応力腐食割れや粒界腐食の感受性を著しく高め、耐食性や耐久性を低下させる。 Zn: Zn contributes to improvement of strength by solid solution strengthening, and also has an effect of remarkably accelerating age hardening of the final product during aging treatment. If the content is insufficient, such an effect cannot be obtained. If the content is too large, the sensitivity to stress corrosion cracking and intergranular corrosion is remarkably increased, and the corrosion resistance and durability are lowered.

Ti:Tiは、鋳塊の結晶粒を微細化し、押出材組織を微細な結晶粒とする効果がある。含有量が不足するとこのような効果が得られず、含有量が多すぎると、粗大な晶析出物を形成し、補強材としての前記曲げ圧壊性や耐食性などの要求特性や、押出材の曲げ加工性などを低下させる原因となる。 Ti: Ti has the effect of refining the crystal grains of the ingot to make the extruded material structure fine crystal grains. If the content is insufficient, such an effect cannot be obtained, and if the content is too large, coarse crystal precipitates are formed, and the required properties such as the bending crushability and corrosion resistance as a reinforcing material, and the bending of the extruded material This may cause deterioration of workability.

Cr、Zr:Cr、Zrの遷移元素は、Mnと同じく、Al−Cr系、Al−Zr系などの金属間化合物からなる分散粒子 (分散相) を生成して、結晶粒の粗大化を防止するために有効である。含有量が不足するとこのような効果が得られず、含有量が多すぎると、粗大な晶析出物を形成し、含有量が多すぎると、補強材としての前記曲げ圧壊性や耐食性などの要求特性や、機械的性質を低下させる。また曲げ加工性などの成形性が低下する。 Cr, Zr: Transition elements of Cr and Zr, like Mn, generate dispersed particles (dispersed phase) composed of intermetallic compounds such as Al-Cr and Al-Zr to prevent coarsening of crystal grains It is effective to do. If the content is insufficient, such an effect cannot be obtained, and if the content is too large, coarse crystal precipitates are formed, and if the content is too large, the above-described bending crushability and corrosion resistance as a reinforcing material are required. Degrading properties and mechanical properties. In addition, formability such as bending workability is lowered.

(鋼材やアルミニウム合金材の厚み)
また、鋼材やアルミニウム合金材の溶接される部分の厚み(板厚など)は、特に限定されず、自動車部材などの適用部材の必要強度や剛性などの設計条件から適宜選択乃至決定される。
(Thickness of steel and aluminum alloy materials)
Moreover, the thickness (plate thickness etc.) of the welded portion of the steel material or aluminum alloy material is not particularly limited, and is appropriately selected or determined from design conditions such as required strength and rigidity of an applicable member such as an automobile member.

但し、自動車部材などを想定すると、実用的には鋼材の(溶接される部分の)厚みtは0.3〜3.0mmから選択される。鋼材の厚みが薄すぎる場合、自動車部材としての必要な強度や剛性を確保できず不適正である。また、それに加えて、例えば、スポット溶接による場合には、その電極チップによる加圧によって、鋼材の変形が大きく、酸化皮膜が容易に破壊されるため、アルミニウムとの反応が促進される。その結果、金属間化合物が形成しやすくなる。一方、鋼材の厚みが厚すぎる場合、スポット溶接接合自体が難しくなる。   However, assuming an automobile member or the like, the thickness t (of the welded portion) of the steel material is practically selected from 0.3 to 3.0 mm. If the thickness of the steel material is too thin, the necessary strength and rigidity as an automobile member cannot be ensured, which is inappropriate. In addition, in the case of spot welding, for example, due to the pressurization by the electrode tip, the steel material is greatly deformed and the oxide film is easily destroyed, and thus the reaction with aluminum is promoted. As a result, an intermetallic compound is easily formed. On the other hand, when the thickness of the steel material is too thick, spot welding joining itself becomes difficult.

また、アルミニウム合金材の(溶接される部分の)厚みtは、同様に自動車部材などを想定すると、0.3〜5.0mmの範囲から選択される。アルミニウム合金材の厚みが薄すぎる場合、自動車部材としての強度が不足して不適切であるのに加え、ナゲット径が得られず、アルミニウム材料表面まで溶融が達しやすくチリができやすいため、高い接合強度が得られない可能性がある。一方、アルミニウム合金材の厚みが厚すぎる場合、前記した鋼材の板厚の場合と同様に、溶接接合自体が難しくなる。   Further, the thickness t (of the portion to be welded) of the aluminum alloy material is selected from the range of 0.3 to 5.0 mm when similarly assuming an automobile member or the like. If the thickness of the aluminum alloy material is too thin, the strength as an automobile component is insufficient and inappropriate. In addition, the nugget diameter is not obtained, and the surface of the aluminum material is easily melted, so that it is easy to cause dust and high bonding. There is a possibility that strength cannot be obtained. On the other hand, when the thickness of the aluminum alloy material is too thick, the welding joint itself becomes difficult as in the case of the steel plate thickness described above.

(接合方法)
なお、本発明において、溶接方法は、前提として、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するような溶接を選択する。この点で、接合方法は、スポット溶接、またはフリクションスポット接合(摩擦攪拌接合、FSW、スポットFSWとも言う)に限定される。即ち、鋼材側もアルミニウム合金材側も両方が溶解するようなMIG溶接、レーザー溶接は対象外であり、両方とも溶解しない超音波接合、拡散接合、摩擦圧接、ろう付けなどの溶接手法も対象外である。なお、生産性や適切な条件の採用のし易さなどから、フリクションスポット接合よりもスポット溶接による接合の方がより好ましい。
(Joining method)
In the present invention, as a precondition, the welding method is selected so that only the aluminum alloy material side is melted without melting the steel material side. In this respect, the joining method is limited to spot welding or friction spot joining (also referred to as friction stir welding, FSW, spot FSW). In other words, MIG welding and laser welding in which both the steel material side and the aluminum alloy material side melt are excluded, and welding methods such as ultrasonic welding, diffusion welding, friction welding, brazing and the like that do not melt both are also excluded. It is. In addition, joining by spot welding is more preferable than friction spot joining because of productivity and ease of adopting appropriate conditions.

また、鋼材側が溶解せずに、アルミニウム合金材側のみが溶解するようにするための、スポット溶接の接合箇所毎の好ましい条件としては、電極間加圧力2.0〜3.0kNにて、10〜35kAの電極間電流を、接合されるアルミニウム合金材部分の厚みtmmとの関係で、200×tmsec以下の時間通電することである。これらを外れた、後述する表4に示すa〜dのような不適切なスポット溶接条件では、異材接合体の高い接合強度が得られない。   In addition, as a preferable condition for each spot welding joint location so that only the aluminum alloy material side is melted without melting the steel material side, an electrode pressure of 2.0 to 3.0 kN is 10 A current between .about.35 kA is energized for a time of 200.times.tmsec or less in relation to the thickness tmm of the aluminum alloy material part to be joined. Under these inappropriate spot welding conditions such as a to d shown in Table 4 to be described later, a high joint strength of the dissimilar material joined body cannot be obtained.

以下、実施例としてスポット溶接による異材接合を各々行い、異材接合体を製作した。そして、これら各異材接合体の接合強度を測定、評価した。   Hereinafter, as an example, different materials were joined by spot welding to produce different materials joined bodies. And the joint strength of each dissimilar material joined body was measured and evaluated.

具体的には、表1に示す各成分組成にて溶製して1.2mm厚まで圧延した鋼板を、一旦酸洗して既存の表面酸化層を除去した後、表3に示すA、B、C、D、E、F、Gの各条件で焼鈍雰囲気中の酸素分圧(露点)を種々変え、但し、焼鈍温度は880℃、焼鈍時間は200secと共通して一定にして、表面および表面層の酸化構造の異なる鋼板を作製した。ここで、表1 に示す各成分組成の鋼板は全て本発明が対象とする高強度鋼板であり、各鋼板の引張強度は、全て450MPa以上の780〜1280MPaの範囲である。   Specifically, after steel plates melted and rolled to 1.2 mm thickness with each component composition shown in Table 1 are pickled once to remove the existing surface oxide layer, A and B shown in Table 3 , C, D, E, F, and G, the oxygen partial pressure (dew point) in the annealing atmosphere is variously changed, except that the annealing temperature is 880 ° C. and the annealing time is 200 sec. Steel plates having different surface layer oxidation structures were prepared. Here, the steel sheets having the respective component compositions shown in Table 1 are all high-strength steel sheets targeted by the present invention, and the tensile strengths of the respective steel sheets are all in the range of 780 to 1280 MPa of 450 MPa or more.

これら焼鈍後の各鋼板の外部酸化物層組成、内部酸化物層組成などの各酸化構造も表3に各々示す。表3に示す焼鈍条件の内、順次酸素分圧(露点)が高くなるD、E、F、Gは酸素分圧(露点)が好適な焼鈍条件である。このため、表3に示すように、焼鈍条件D、E、F、Gは、焼鈍後の鋼板の外部酸化物層と内部酸化物とが本発明条件を満足する。即ち、外部酸化物層におけるMn、Siを合計量で1at%以上含む酸化物の占める割合が、鋼生地と外部酸化物層との界面の略水平方向の長さ1μmに対して占める、この酸化物の合計長さの平均割合が0.1%以上、50%未満の範囲内である。   Table 3 also shows oxidation structures such as the outer oxide layer composition and the inner oxide layer composition of each steel plate after annealing. Among the annealing conditions shown in Table 3, D, E, F, and G, in which the oxygen partial pressure (dew point) increases sequentially, are the annealing conditions in which the oxygen partial pressure (dew point) is suitable. For this reason, as shown in Table 3, the annealing conditions D, E, F, and G satisfy the conditions of the present invention for the outer oxide layer and the inner oxide of the steel sheet after annealing. That is, the ratio of the oxide containing 1 at% or more of Mn and Si in the total amount in the outer oxide layer occupies the length of 1 μm in the substantially horizontal direction of the interface between the steel base and the outer oxide layer. The average ratio of the total length of objects is in the range of 0.1% or more and less than 50%.

また、焼鈍条件D、E、F、Gは、内部酸化物1(鋼板の鋼生地表面からの深さが20μmまでの鋼領域に存在する、粒界酸化物とMn、Siを合計量で1at%以上含む粒内酸化物)の占める割合が、この鋼領域の視野面積10μm2 内において占める平均面積割合として、5%以上で20%未満の範囲内である。更に、内部酸化物2(鋼板の鋼生地表面からの深さが20μmを超えて30μm以下の鋼領域に存在する、粒界酸化物とMn、Siを合計量で1at%以上含む粒内酸化物)の占める割合が、この鋼領域の視野面積10μm2 内において占める平均面積割合として10%以下である。 Moreover, annealing conditions D, E, F, and G are internal oxide 1 (the total amount of grain boundary oxide, Mn, and Si existing in the steel region where the depth from the steel dough surface of the steel sheet is 20 μm). % Of the intragranular oxide) is in the range of 5% or more and less than 20% as an average area ratio in the visual field area 10 μm 2 of this steel region. Furthermore, internal oxide 2 (intragranular oxide containing a grain boundary oxide, Mn, and Si in a total amount of 1 at% or more present in a steel region having a depth from the steel dough surface of the steel sheet exceeding 20 μm to 30 μm or less. ) Is 10% or less as an average area ratio in the visual field area 10 μm 2 of the steel region.

ただ、これらの焼鈍条件の内、Gは酸素分圧(露点)が限界程度に高い例である。このため、焼鈍後の鋼板の外部酸化物層における上記酸化物の合計長さの平均割合が、範囲内ではあるが下限に近く、0.5%程度と著しく少なくなる。その一方で、内部酸化物1、2の占める割合が、範囲内ではあるが上限に近く、著しく高くなっている。   However, among these annealing conditions, G is an example in which the oxygen partial pressure (dew point) is as high as the limit. For this reason, the average ratio of the total length of the oxides in the outer oxide layer of the steel sheet after annealing is within the range, but is close to the lower limit, and is significantly reduced to about 0.5%. On the other hand, the ratio of the internal oxides 1 and 2 is within the range but is close to the upper limit and is significantly high.

これに対して、表3に示す焼鈍条件の内、A、B、Cは、前記焼鈍条件D、E、F、Gに比して、酸素分圧(露点)が低過ぎる比較例である。このため、表3に示すように、焼鈍後の鋼板の外部酸化物層における上記酸化物の合計長さの平均割合が50%を超えてしまう。したがって、表3に示す焼鈍条件の内、これらA、B、Cの焼鈍条件は、各鋼板の外部酸化物層組成、内部酸化物層組成などの各酸化構造が最適条件から外れ、異材接合体の接合強度が低下することが明確である。このため、これらA、B、Cの焼鈍条件で焼鈍した各鋼板は、スポット溶接による異材接合体は製作しなかった。   On the other hand, among the annealing conditions shown in Table 3, A, B, and C are comparative examples in which the oxygen partial pressure (dew point) is too low as compared with the annealing conditions D, E, F, and G. For this reason, as shown in Table 3, the average ratio of the total length of the oxide in the outer oxide layer of the steel plate after annealing exceeds 50%. Therefore, among the annealing conditions shown in Table 3, the annealing conditions for A, B, and C are such that the respective oxide structures such as the outer oxide layer composition and the inner oxide layer composition of each steel sheet deviate from the optimum conditions, and the dissimilar material joined body. It is clear that the bonding strength of the material decreases. For this reason, the dissimilar-material joined body by spot welding was not manufactured for each steel plate annealed on these A, B, and C annealing conditions.

なお、各鋼板の接合相当部における各酸化構造は、各々下記測定方法により測定した。
(外部酸化物形成範囲)
外部酸化物は、断面試料を集束イオンビーム加工装置 (FIB:Focused Ion Beam Process、日立製作所製:FB-2000A)により製作し、前記EDX(型式:NORAN-VANTAGE) により、鋼板の厚み方向断面における、鋼生地と外部酸化物層との界面を略水平方向に分析することによって、界面近傍の外部酸化物層中のMn、Siの合計量を求め、Mn、Siを合計量で1at%以上含む界面近傍の酸化物の相 (複数の酸化物) を、それ以外の相と区別して特定した。次いで、10万倍の倍率のTEM(JEOL製電界放射型透過電子顕微鏡:JEM-2010F、加速電圧200kv ) により断面観察し、前記EDX と同じ界面領域における、このMn、Siを合計量で1at%以上含む酸化物相の、上記界面における略水平方向の長さを求める。そして、界面の略水平方向の長さ1 μm に対して占める、この酸化物相の合計長さの割合を求めた。これを各々3 視野にて行い、それらの平均値を求めた。
In addition, each oxidation structure in the joining equivalent part of each steel plate was measured with the following measuring method, respectively.
(External oxide formation range)
The external oxide is manufactured by a focused ion beam processing device (FIB: Focused Ion Beam Process, manufactured by Hitachi, Ltd .: FB-2000A), and the external oxide in the cross section in the thickness direction of the steel sheet by the EDX (model: NORAN-VANTAGE). The total amount of Mn and Si in the outer oxide layer near the interface is obtained by analyzing the interface between the steel fabric and the outer oxide layer in a substantially horizontal direction, and the total amount of Mn and Si is 1 at% or more. The oxide phase (plurality of oxides) in the vicinity of the interface was identified separately from the other phases. Next, cross-sectional observation was performed with a TEM (JEOL field emission transmission electron microscope: JEM-2010F, acceleration voltage 200 kv) at a magnification of 100,000 times, and the total amount of Mn and Si in the same interface region as the EDX was 1 at%. The length of the oxide phase including the above in the substantially horizontal direction at the interface is obtained. Then, the ratio of the total length of the oxide phase to the length of 1 μm in the substantially horizontal direction of the interface was determined. This was performed for each of three fields of view, and the average value was obtained.

(内部酸化物占有面積率)
内部酸化物は、鋼板の鋼生地表面からの深さが、図1(c)の場合のように、この鋼材の鋼生地表面から20μmまでの深さの鋼領域における内部酸化物を内部酸化物1、および鋼板の鋼生地表面からの深さが20μmを超えて30μm以下の鋼領域における内部酸化物を内部酸化物2として、これらの組成を分析した。組成分析は、これら各鋼領域におけるMn、Siを合計量で1at%以上含む酸化物の平均面積割合にて行う。先ず、これら各鋼領域におけるMn、Siを合計量で1at%以上含む酸化物を、前記EDX により、それ以外の相と区別して特定する。そして、3 万倍の倍率のTEM(JEOL製電界放射型透過電子顕微鏡:JEM-2010F、加速電圧200kV ) により断面観察し、前記EDX と同じ界面領域における、このMn、Siを合計量で1at%以上含む酸化物相の、10μm2当たりの視野面積 (地鉄面積) 内において占める面積割合を各々求めた。ここで、粒界酸化物の占める面積も、Mn、Siを合計量で1at%以上含む酸化物に加える。これを各々3 視野にて行い、それらの平均値を求めた。
(Internal oxide occupation area ratio)
As shown in FIG. 1 (c), the internal oxide is an internal oxide in the steel region having a depth of 20 μm from the steel dough surface. 1 and the internal oxide in the steel area | region where the depth from the steel dough surface of a steel plate exceeds 20 micrometers and is 30 micrometers or less was made into the internal oxide 2, and these compositions were analyzed. The compositional analysis is performed with the average area ratio of oxides containing 1 at% or more of Mn and Si in the total amount in each steel region. First, an oxide containing Mn and Si in a total amount of 1 at% or more in each steel region is identified and distinguished from the other phases by the EDX. Then, a cross-section was observed with a TEM (JEOL field emission transmission electron microscope: JEM-2010F, acceleration voltage 200 kV) at a magnification of 30,000 times, and the total amount of Mn and Si in the same interface region as the EDX was 1 at%. The ratio of the area of the oxide phase contained above in the visual field area (base metal area) per 10 μm 2 was determined. Here, the area occupied by the grain boundary oxide is also added to the oxide containing 1 at% or more of Mn and Si in total. This was performed for each of three fields of view, and the average value was obtained.

これら酸化構造の異なる各鋼板と、各例とも共通して表2に示す組成で、板厚1〜1.6mmの6000系アルミニウム合金板とを、JIS A 3137記載の十字引張試験片形状に加工して重ね合わせ、表4に示すa、b、c、d、e、fの各条件でスポット溶接を行い、異材接合した。ここで、後述する表5に示す剥離強度から評価される通り、表4に示すa〜dは不適切なスポット溶接条件、e、fは適切なスポット溶接各条件である。   Each of these steel plates having different oxidation structures and a 6000 series aluminum alloy plate having a thickness of 1 to 1.6 mm having the composition shown in Table 2 in common with each example are processed into the shape of a cross tensile test piece described in JIS A 3137. Then, spot welding was performed under the conditions a, b, c, d, e, and f shown in Table 4 to join different materials. Here, as evaluated from peel strength shown in Table 5 described later, a to d shown in Table 4 are inappropriate spot welding conditions, and e and f are appropriate spot welding conditions.

なお、表4に示すスポット溶接は、共通して、直流抵抗溶接試験機を用い、表4に示す加圧力、溶接電流、溶接時間にて、1点当たりのスポット溶接を行った。また、共通して、Cu−Cr合金からなるドーム型の電極を用い、正極をアルミニウム材、負極を鋼材とした。   In addition, the spot welding shown in Table 4 commonly performed spot welding per point with the applied pressure, welding current, and welding time shown in Table 4 using a DC resistance welding tester. In common, a dome-shaped electrode made of a Cu—Cr alloy was used, and the positive electrode was made of an aluminum material and the negative electrode was made of a steel material.

(界面反応層の厚さと形成範囲)
このようにして製作した各異材接合体の、界面反応層の厚さと形成範囲とを測定した。これらの結果を表5に示す。界面反応層の厚さ測定は、各スポット溶接部の中央にて切断し、樹脂に埋め込んで研磨をし、接合部全体に渡り0.5mm間隔でSEM観察を行った。反応層の厚さが1μm以上の場合は2000倍の視野にて、1μm未満の場合は10000倍の視野にて測定し、各スポット溶接部ごとに平均値を求め、30点のスポット溶接部の平均値を界面反応層の平均厚みとした。また、界面反応層の形成範囲は、各スポット溶接部において、スポット全面積に対する反応層形成面積の割合を求め、30点のスポット溶接部の平均値を求めた。
(Interfacial reaction layer thickness and formation range)
The thickness and formation range of the interface reaction layer of each of the dissimilar material assemblies manufactured as described above were measured. These results are shown in Table 5. The thickness of the interface reaction layer was measured by cutting at the center of each spot weld, embedding in resin, polishing, and performing SEM observation at 0.5 mm intervals over the entire joint. When the thickness of the reaction layer is 1 μm or more, it is measured with a field of view of 2000 times, and when it is less than 1 μm, it is measured with a field of view of 10,000 times, and an average value is obtained for each spot weld. The average value was defined as the average thickness of the interface reaction layer. Moreover, the formation range of the interface reaction layer was determined by determining the ratio of the reaction layer formation area to the total spot area in each spot welded portion, and obtaining the average value of 30 spot welded portions.

(アルミニウム合金材側の接合界面における元素量)
同じく、製作した各異材接合体の、アルミニウム合金材側の接合界面における、Feの含有量(質量%:表5では界面でのAl中Fe濃度と表示)を測定した。これらの結果を表5に示す。
(Amount of elements at the bonding interface on the aluminum alloy material side)
Similarly, the Fe content (mass%: indicated as Fe concentration in Al at the interface in Table 5) at the bonding interface on the aluminum alloy material side of each manufactured dissimilar material joined body was measured. These results are shown in Table 5.

分析には、EPMA:日本電子製X線マイクロアナライザー(JXA−8800RL)を使用し、加速電圧15kV、照射電流0.3μAと一定にして測定した。分析対象は、前記各スポット溶接部の中央にて切断した断面とし、アルミニウム合金材と鋼材との接合界面を中心に、アルミニウム合金材側と鋼材側とに各0.5mm入った内部まで分析した。そして、アルミニウム合金材内部側のアルミニウム合金材が元々含有しているFeの含有量を差し引き、アルミニウム合金材側の接合界面における、Feの含有量(質量%:表5では界面でのAl中Fe濃度と表示)とを測定した。   For the analysis, EPMA: X-ray microanalyzer (JXA-8800RL) manufactured by JEOL Ltd. was used, and measurement was carried out with a constant acceleration voltage of 15 kV and an irradiation current of 0.3 μA. The object of analysis was a cross section cut at the center of each spot welded portion, and the analysis was performed up to the inside of 0.5 mm each on the aluminum alloy material side and the steel material side, centering on the joint interface between the aluminum alloy material and the steel material. . Then, the Fe content originally contained in the aluminum alloy material inside the aluminum alloy material is subtracted, and the Fe content (mass%: in Table 5, Fe in Al at the interface in the aluminum alloy material side joining interface) Concentration and display).

これら製作した各異材接合体の十字引張試験を行い、剥離強度を求めた。これらの結果も表5に示す。剥離強度は、A6022アルミニウム材同士のスポット溶接接合強度=1.0kNを参考にして、2.0kN以上であれば○、2.0kN未満であれば×とした。   A cross tension test was performed on each of the manufactured dissimilar material joints to determine the peel strength. These results are also shown in Table 5. With reference to the spot weld joint strength between A6022 aluminum materials = 1.0 kN, the peel strength was evaluated as ◯ if it was 2.0 kN or more, and x if it was less than 2.0 kN.

表5から明らかな通り、表1、2に示す適正成分組成の鋼板と6000系アルミニウム合金板とを用い、表3に示す酸素分圧(露点)が好適な焼鈍条件D、E、F、Gで処理した各発明例1〜23は、焼鈍後の鋼板の外部酸化物層と内部酸化物とが本発明条件を満足する。特に、焼鈍条件Fは外部酸化物層のMn、Siを合計量で1at%以上含む酸化物の占める前記割合として、好ましい範囲である0.1%以上、30%未満、焼鈍条件Gはより好ましい範囲である0.1%以上、5%未満を満足する。また、これら酸化物条件を満足する鋼板を用い、溶接条件をe、fの適切なスポット溶接条件とした各発明例は、異材接合体接合界面のアルミニウム合金材側の接合界面における、Feの含有量が2.0質量%以下である。そして、更に、鋼材とアルミニウム合金材との接合界面に形成された前記FeとAlとの反応層の形成面積(形成割合)がスポット溶接接合面積の70%以上であり、この反応層の厚さも適切である。この結果、表5から明らかな通り、各発明例は異種接合体の接合強度(剥離強度)が2kN以上に高くなっていることが分かる。   As is apparent from Table 5, annealing conditions D, E, F, and G with suitable oxygen partial pressures (dew points) shown in Table 3 using steel plates and 6000 series aluminum alloy plates having the proper component compositions shown in Tables 1 and 2 were used. In each of Inventive Examples 1 to 23 processed in Step 1, the outer oxide layer and the inner oxide of the steel plate after annealing satisfy the conditions of the present invention. In particular, the annealing condition F is a preferable range of 0.1% or more and less than 30%, and the annealing condition G is more preferable as the ratio of the oxide containing Mn and Si in the total amount of 1 at% or more in the total amount. The range of 0.1% or more and less than 5% is satisfied. Further, each invention example using a steel plate that satisfies these oxide conditions and having an appropriate spot welding condition of e and f as the welding conditions includes Fe at the bonding interface on the aluminum alloy material side of the dissimilar material bonded interface. The amount is 2.0% by mass or less. Further, the formation area (formation ratio) of the reaction layer of Fe and Al formed at the joining interface between the steel material and the aluminum alloy material is 70% or more of the spot welding joining area, and the thickness of this reaction layer is also Is appropriate. As a result, as is apparent from Table 5, it can be seen that in each invention example, the bonding strength (peeling strength) of the dissimilar bonded body is higher than 2 kN.

一方、表5から明らかな通り、表1、2に示す適正成分組成の鋼板と6000系アルミニウム合金板とを用い、表3に示す酸素分圧(露点)が好適なD、E、F、Gの焼鈍条件で処理した各比較例24〜31は、当然ながら、焼鈍後の鋼板の外部酸化物層と内部酸化物が本発明条件内である。しかし、表4におけるa〜dの不適切なスポット溶接条件とした、これら各比較例24〜31は、アルミニウム合金材側の接合界面におけるFeの含有量や、鋼材とアルミニウム合金材との接合界面に形成された前記FeとAlとの反応層の形成面積(形成割合)、あるいは、この反応層の厚さなども不適切である。この結果、表5から明らかな通り、異材接合体の界面反応層の厚さと形成範囲が本発明条件を満足せず、異種接合体の接合強度が著しく低くなっていることが分かる。   On the other hand, as is apparent from Table 5, D, E, F, and G having suitable oxygen partial pressures (dew points) shown in Table 3 using steel plates having the proper composition shown in Tables 1 and 2 and 6000 series aluminum alloy plates. Of course, in each of Comparative Examples 24-31 treated under the annealing conditions, the outer oxide layer and the inner oxide of the steel plate after annealing are within the conditions of the present invention. However, the comparative examples 24-31, which are inappropriate spot welding conditions a to d in Table 4, are the Fe content in the joining interface on the aluminum alloy material side, and the joining interface between the steel material and the aluminum alloy material. The formation area (formation ratio) of the reaction layer of Fe and Al formed in 1) or the thickness of this reaction layer is also inappropriate. As a result, as is clear from Table 5, it can be seen that the thickness and the formation range of the interface reaction layer of the dissimilar material joined body do not satisfy the conditions of the present invention, and the joining strength of the dissimilar joined body is remarkably lowered.

また、比較例32〜38は、成分組成が適正な6000系アルミニウム合金板を用い、表3に示す酸素分圧(露点)が好適なEの焼鈍条件で処理し、溶接条件をe、fの適切なスポット溶接条件として、焼鈍後の鋼板の外部酸化物層と内部酸化物が概ね本発明条件内である。また、アルミニウム合金材側の接合界面におけるFeの含有量も概ね本発明条件内である。しかし、表1に示す鋼板成分組成19〜25が本発明範囲から外れて不適正なため、表5から明らかな通り、異種接合体の接合強度が著しく低くなっている。   In Comparative Examples 32-38, a 6000 series aluminum alloy plate having an appropriate component composition is used, and the oxygen partial pressure (dew point) shown in Table 3 is processed under the annealing conditions of E, and the welding conditions are e and f. As suitable spot welding conditions, the outer oxide layer and the inner oxide of the steel sheet after annealing are generally within the conditions of the present invention. Further, the Fe content at the joining interface on the aluminum alloy material side is also generally within the conditions of the present invention. However, since the steel plate component compositions 19 to 25 shown in Table 1 are out of the scope of the present invention and are inappropriate, as is apparent from Table 5, the bonding strength of the dissimilar joints is remarkably low.

比較例32はCが高すぎ、スポット溶接部に過冷組織が発生し、割れが発生していた。比較例33はSiが高すぎ、接合界面に最適なFeとAlとの反応層を形成できなかった。比較例34はMnが高すぎ、スポット溶接部に過冷組織が発生し、割れが発生していた。比較例35はAlが高すぎ、鋼材の延性が低下し、十字引張試験において脆性的に破断し、剥離強度が低かった。比較例36はNが高すぎ、鋼材の延性が低下し、十字引張試験において脆性的に破断し、剥離強度が低かった。比較例37はCrが高すぎ、スポット溶接部に過冷組織が発生し、十字引張試験において脆性的に破断し、剥離強度が低かった。比較例38はNbが高すぎ、鋼材の延性が低下し、十字引張試験において脆性的に破断し、剥離強度が低かった。   In Comparative Example 32, C was too high, a supercooled structure was generated in the spot welded portion, and cracks were generated. In Comparative Example 33, Si was too high, and an optimum reaction layer of Fe and Al could not be formed at the bonding interface. In Comparative Example 34, Mn was too high, a supercooled structure was generated in the spot weld, and cracks were generated. In Comparative Example 35, Al was too high, the ductility of the steel material was lowered, it was brittlely broken in the cross tension test, and the peel strength was low. In Comparative Example 36, N was too high, the ductility of the steel material was lowered, the brittle fracture occurred in the cross tension test, and the peel strength was low. In Comparative Example 37, Cr was too high, a supercooled structure was generated in the spot welded portion, fractured brittlely in the cross tension test, and the peel strength was low. In Comparative Example 38, Nb was too high, the ductility of the steel material was lowered, it was brittlely broken in the cross tension test, and the peel strength was low.

したがって、これらの事実から、本発明の鋼材側の成分組成や酸化物条件の臨界的な意義が裏付けられる。また、異材接合体の界面反応層の厚さと形成範囲の本発明条件の意義が分かる。また、異材接合体の界面反応層の厚さと形成範囲とが本発明条件を満足し、異材接合体の接合強度を高めるためには、酸化物条件を満足する鋼板を用いるだけではなく、溶接条件を適切とする必要があることが分かる。   Therefore, these facts support the critical significance of the component composition and oxide conditions on the steel material side of the present invention. Moreover, the significance of the conditions of the present invention regarding the thickness and formation range of the interface reaction layer of the dissimilar material joined body is understood. In addition, the thickness and range of the interface reaction layer of the dissimilar material joined body satisfy the conditions of the present invention, and in order to increase the joining strength of the dissimilar material joined body, not only a steel plate that satisfies the oxide condition is used, but also welding conditions It is understood that it is necessary to make it appropriate.

Figure 2009299139
Figure 2009299139

Figure 2009299139
Figure 2009299139

Figure 2009299139
Figure 2009299139

Figure 2009299139
Figure 2009299139

Figure 2009299139
Figure 2009299139

本発明によれば、スポット溶接の適用条件などの制約が少なく、汎用性に優れると共に、接合部に脆弱な反応層(金属間化合物層)などが生成して接合の信頼性を阻害することがなく、高い接合強度を有する接合部を得ることのできる、鋼材とアルミニウム合金材とを溶接接合した異材接合体および異材接合方法を提供できる。このような異材接合体および異材接合方法は、自動車、鉄道車両などの輸送分野、機械部品、建築構造物等における各種構造部材およびその溶接方法として有用に適用できる。   According to the present invention, there are few restrictions such as spot welding application conditions, excellent versatility, and a brittle reaction layer (intermetallic compound layer) or the like is generated at the joint, thereby impairing the reliability of the joint. Therefore, it is possible to provide a dissimilar material joined body and a dissimilar material joining method in which a steel material and an aluminum alloy material are welded and joined, which can obtain a joint having high joint strength. Such a dissimilar material joined body and a dissimilar material joining method can be usefully applied as various structural members and their welding methods in the transportation field such as automobiles and railway vehicles, machine parts, building structures, and the like.

本発明の異材接合用の鋼板断面を示す模式図である。It is a schematic diagram which shows the steel plate cross section for different material joining of this invention.

Claims (7)

6000系アルミニウム合金材との異材接合用鋼材であって、この鋼材の組成を、質量%で、C:0.01〜0.30%、Si:0.1〜3.00%、Mn:0.1〜3.00%を各々含有するとともに、P:0.10%以下(0%を含む)、S:0.05%以下(0%を含む)、N:300ppm以下(0%を含む)に各々規制したものとし、この鋼材の鋼生地表面からの深さが20μmまでの鋼領域に存在する酸化物として、結晶粒界に存在する酸化物と、Mn、Siを合計量で1at%以上含む結晶粒内に存在する酸化物との占める割合が、この鋼領域に占める平均面積割合として、5%以上20%未満であり、この鋼材表面上に存在する、Mn、Siを合計量で1at%以上含む外部酸化物の占める割合が、鋼生地と外部酸化物層との界面の略水平方向の長さ1μmに対して占めるこの酸化物の合計長さの平均割合として、0.1%以上50%未満であることを特徴とする異材接合用鋼材。   It is a steel material for joining different materials to a 6000 series aluminum alloy material, and the composition of this steel material is, in mass%, C: 0.01 to 0.30%, Si: 0.1 to 3.00%, Mn: 0 0.1 to 3.00%, P: 0.10% or less (including 0%), S: 0.05% or less (including 0%), N: 300 ppm or less (including 0%) In the steel region where the depth of the steel material from the steel dough surface is up to 20 μm, the total amount of oxide existing at the grain boundary, Mn, and Si is 1 at%. The ratio of the oxides present in the crystal grains to be contained is 5% or more and less than 20% as an average area ratio in the steel region, and Mn and Si existing on the surface of the steel material are in total amounts. The proportion of the outer oxide containing 1at% or more is steel material and outer oxide layer. The total length of the average ratio of approximately this oxide occupying the horizontal direction length 1μm of the interface, dissimilar materials bonded steel material, which is a 0.1% to less than 50%. 請求項1に記載の鋼材とアルミニウム合金材との異材接合体であって、上記アルミニウム合金材が、質量%で、Mg:0.1〜3.0%、Si:0.1〜2.5%、Cu:0.001〜1.0%を各々含有する6000系アルミニウム合金からなり、異材接合体の前記アルミニウム合金材側の接合界面におけるFeの含有量が2.0質量%以下であるとともに、上記接合界面にFeとAlとの反応層が形成されていることを特徴とする異材接合体。   It is a dissimilar material joined body of the steel material and aluminum alloy material of Claim 1, Comprising: The said aluminum alloy material is the mass%, Mg: 0.1-3.0%, Si: 0.1-2.5 %, Cu: 0.001 to 1.0%, each containing 6000 series aluminum alloy, and the content of Fe at the joining interface on the aluminum alloy material side of the dissimilar material joined body is 2.0 mass% or less A dissimilar material joined body, wherein a reaction layer of Fe and Al is formed at the joining interface. 前記異材接合体がスポット溶接されたものであり、スポット溶接箇所毎の条件として、前記鋼材とアルミニウム合金材との接合界面に形成された前記FeとAlとの反応層のナゲット深さ方向の平均厚みが0.1〜3μmの範囲であるとともに、前記FeとAlとの反応層の形成範囲が、スポット溶接面積の70%以上の面積である請求項2に記載の異材接合体。   The dissimilar material joined body is spot-welded, and as a condition for each spot welding location, the average nugget depth direction of the reaction layer of Fe and Al formed at the joining interface between the steel material and the aluminum alloy material 3. The dissimilar material joined body according to claim 2, wherein the thickness is in the range of 0.1 to 3 μm, and the formation range of the reaction layer of Fe and Al is 70% or more of the spot welding area. 前記異材接合体の十字引張試験片により測定された剥離強度が2kN以上である請求項2または3に記載の異材接合体。   The dissimilar material joined body according to claim 2 or 3, wherein a peel strength measured by a cross tensile test piece of the dissimilar material joined body is 2 kN or more. 前記異材接合体が自動車の車体構造用である請求項2乃至4のいずれか1項に記載の異材接合体。   The dissimilar material joined body according to any one of claims 2 to 4, wherein the dissimilar material joined body is for a vehicle body structure of an automobile. 鋼材とアルミニウム合金材との異材接合方法であって、請求項1に記載の鋼材と、質量%で、Mg:0.1〜3.0%、Si:0.1〜2.5%、Cu:0.001〜1.0%を各々含有する6000系アルミニウム合金からなるアルミニウム合金材とをスポット溶接またはフリクションスポット接合(摩擦攪拌接合)することを特徴とする異材接合方法。   It is a dissimilar-material joining method of steel materials and aluminum alloy materials, Comprising: The steel materials of Claim 1, and mass: Mg: 0.1-3.0%, Si: 0.1-2.5%, Cu : A dissimilar material joining method characterized by spot welding or friction spot joining (friction stir welding) with an aluminum alloy material made of a 6000 series aluminum alloy each containing 0.001 to 1.0%. 前記鋼材とアルミニウム合金材との接合箇所毎の条件として、電極間加圧力2.0〜3.0kNにて、10〜35kAの電極間電流を、溶接されるアルミニウム合金材部分の厚みtmmとの関係で、200×tmsec以下の時間通電することにより、鋼材とアルミニウム合金材とをスポット溶接することを特徴とする請求項6に記載の異材接合方法。
As a condition for each joint portion between the steel material and the aluminum alloy material, an interelectrode current of 10 to 35 kA is applied at a thickness tmm of the aluminum alloy material portion to be welded at an interelectrode pressure of 2.0 to 3.0 kN. 7. The dissimilar material joining method according to claim 6, wherein the steel material and the aluminum alloy material are spot-welded by energizing for a time of 200 × tmsec or less.
JP2008155657A 2008-06-13 2008-06-13 Steel for dissimilar material joining, dissimilar material joined body, and dissimilar material joining method Expired - Fee Related JP4427590B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2008155657A JP4427590B2 (en) 2008-06-13 2008-06-13 Steel for dissimilar material joining, dissimilar material joined body, and dissimilar material joining method
PCT/JP2009/058160 WO2009150904A1 (en) 2008-06-13 2009-04-24 Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials
EP09762334.2A EP2298949B1 (en) 2008-06-13 2009-04-24 Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials
CN2009801222694A CN102066597B (en) 2008-06-13 2009-04-24 Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials
CN201210339308.XA CN102888555B (en) 2008-06-13 2009-04-24 Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials
EP14003553.6A EP2857541B1 (en) 2008-06-13 2009-04-24 Process for joining Dissimilar Metal Materials
US12/997,801 US8221899B2 (en) 2008-06-13 2009-04-24 Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials
EP14002084.3A EP2816134A1 (en) 2008-06-13 2009-04-24 Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials
KR1020107027768A KR101238087B1 (en) 2008-06-13 2009-04-24 Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials
US13/358,705 US8337998B2 (en) 2008-06-13 2012-01-26 Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155657A JP4427590B2 (en) 2008-06-13 2008-06-13 Steel for dissimilar material joining, dissimilar material joined body, and dissimilar material joining method

Publications (2)

Publication Number Publication Date
JP2009299139A true JP2009299139A (en) 2009-12-24
JP4427590B2 JP4427590B2 (en) 2010-03-10

Family

ID=41546330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155657A Expired - Fee Related JP4427590B2 (en) 2008-06-13 2008-06-13 Steel for dissimilar material joining, dissimilar material joined body, and dissimilar material joining method

Country Status (1)

Country Link
JP (1) JP4427590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036070A1 (en) 2010-09-13 2012-03-22 株式会社神戸製鋼所 Method for joining differing materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036070A1 (en) 2010-09-13 2012-03-22 株式会社神戸製鋼所 Method for joining differing materials

Also Published As

Publication number Publication date
JP4427590B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
WO2009150904A1 (en) Steel material for dissimilar metal joining, joined body of dissimilar metals and process for joining dissimilar metal materials
JP4555160B2 (en) Steel plate for dissimilar welding with aluminum material and dissimilar material joint
JP5513962B2 (en) Dissimilar material joining method
US9926619B2 (en) Aluminum alloy
JP5572046B2 (en) Dissimilar material joining method
JP5297099B2 (en) Dissimilar material joined body and dissimilar material joining method
JP4427591B2 (en) Steel for dissimilar material joining, dissimilar material joined body, and dissimilar material joining method
JP5215986B2 (en) Dissimilar material joint and dissimilar material joining method
JP4427590B2 (en) Steel for dissimilar material joining, dissimilar material joined body, and dissimilar material joining method
EP2592165B2 (en) Aluminium alloy
JP5508926B2 (en) Dissimilar material joining method
WO2023132241A1 (en) Welded joint

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090924

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Ref document number: 4427590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees