JP2009298665A - Apparatus for manufacturing sheet glass and method of manufacturing sheet glass - Google Patents

Apparatus for manufacturing sheet glass and method of manufacturing sheet glass Download PDF

Info

Publication number
JP2009298665A
JP2009298665A JP2008156556A JP2008156556A JP2009298665A JP 2009298665 A JP2009298665 A JP 2009298665A JP 2008156556 A JP2008156556 A JP 2008156556A JP 2008156556 A JP2008156556 A JP 2008156556A JP 2009298665 A JP2009298665 A JP 2009298665A
Authority
JP
Japan
Prior art keywords
glass
transfer pipe
molten glass
plate glass
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008156556A
Other languages
Japanese (ja)
Other versions
JP4990229B2 (en
Inventor
Tetsuro Kimishima
哲郎 君嶋
Katsuhiko Morisada
勝彦 森定
Hiroyuki Kariya
浩幸 苅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avanstrate Inc
Original Assignee
Avanstrate Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avanstrate Inc filed Critical Avanstrate Inc
Priority to JP2008156556A priority Critical patent/JP4990229B2/en
Publication of JP2009298665A publication Critical patent/JP2009298665A/en
Application granted granted Critical
Publication of JP4990229B2 publication Critical patent/JP4990229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing sheet glass by which a manufacturing yield can be enhanced. <P>SOLUTION: The apparatus for manufacturing sheet glass includes: a forming device 5 which overflows fused glass to both sides from a groove 51, allows the fused glass to flow down along a wall surface 52 and fuses the glass into one; a clarifying tank 3 for clarifying the fused glass; and a transfer pipe 4 which guides the fused glass clarified in the clarifying tank 3 to the forming device 5 while adjusting the temperature. The transfer pipe 4 is curved to a lateral side while falling from one end 4a of the clarifying tank 3 side toward the other end 4b of the forming device 5 side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、板ガラス製造装置および板ガラス製造方法に関する。   The present invention relates to a plate glass manufacturing apparatus and a plate glass manufacturing method.

液晶ディスプレイやプラズマディスプレイなどのフラットパネルディスプレイ(以下、「FPD」という。)のガラス基板に用いられる板ガラスでは、ガラス表面に高い平坦度が要求される。近年では、ガラス表面の平坦度に対する要求品質がますます高まってきている。   In flat glass used for a glass substrate of a flat panel display (hereinafter referred to as “FPD”) such as a liquid crystal display or a plasma display, high flatness is required on the glass surface. In recent years, the required quality for the flatness of the glass surface has been increasing.

このようなFPDガラス基用板ガラスは、オーバーフローダウンドロー法によって製造されることが多い。オーバーフローダウンドロー法では、溶融ガラスを成形装置に供給することで帯状のガラスリボンが連続的に成形される。その際、ガラスリボンが下方へ引き下げられ、その引き下げ速度によって厚みの調整が行われる。その後、ガラスリボンが所定長さで切断されて、板ガラスが製造される。   Such FPD glass substrate glass is often manufactured by the overflow down draw method. In the overflow down draw method, a glass ribbon is continuously formed by supplying molten glass to a forming apparatus. At that time, the glass ribbon is pulled downward, and the thickness is adjusted by the pulling speed. Then, a glass ribbon is cut | disconnected by predetermined length, and plate glass is manufactured.

ところで、例えばTFT液晶ディスプレイ用の板ガラスには高い熱的安定性が求められるため、この板ガラスの製造にはそれを実現するように調製されたガラス原料が用いられる。このようなガラス原料は通常は難溶性であるために、溶融ガラス中に脈理(周りの部分と成分が異なった部分)が発生しやすくなる。そして、溶融ガラス中に脈理が存在すると、成形装置で成形されるガラスリボンを引き下げる際に周りの部分と脈理との粘性の違いによってそれらの引き伸ばされ方が異なるために、ガラス表面の平坦度が悪化することになる。   By the way, since the plate glass for TFT liquid crystal displays, for example, requires high thermal stability, a glass raw material prepared so as to realize the plate glass is used. Since such glass raw materials are usually poorly soluble, striae (parts having different components from the surrounding parts) are likely to occur in the molten glass. And when striae exist in the molten glass, when the glass ribbon formed by the molding apparatus is pulled down, the stretched state differs depending on the difference in viscosity between the surrounding portion and the striae. The degree will get worse.

このような脈理の問題に対し、例えば特許文献1には、平均粒径が30〜60μmのシリカ原料を使用することで、脈理の発生を抑える技術が開示されている。
特開2004−67408号公報
For example, Patent Literature 1 discloses a technique for suppressing the occurrence of striae by using a silica raw material having an average particle diameter of 30 to 60 μm.
JP 2004-67408 A

しかしながら、特許文献1に開示された技術を用いても脈理を完全にゼロにすることはできず、製造した板ガラスがガラス表面の平坦度に対する要求品質を満たさずに製品として使用できないことがある。そこで、板ガラスを製造する際の歩留まりを改善することが望まれる。   However, even if the technique disclosed in Patent Document 1 is used, the striae cannot be completely eliminated, and the manufactured plate glass may not be used as a product without satisfying the required quality for the flatness of the glass surface. . Therefore, it is desired to improve the yield when manufacturing plate glass.

本発明は、このような事情に鑑み、歩留まりを向上させることができる板ガラス製造装置および板ガラス製造方法を提供することを目的とする。   An object of this invention is to provide the plate glass manufacturing apparatus and plate glass manufacturing method which can improve a yield in view of such a situation.

前記目的を達成するために、本発明の発明者は、ガラス表面の平坦度に対する要求品質が板ガラスの一方面と他方面とで異なることに着目した。例えば液晶ディスプレイ用の板ガラスでは、電極および配向膜などが積層される主面(使用面)には高い平坦度が要求されるが、その反対側の背面(非使用面)にはそれほど高い平坦度は要求されない。そこで、発明者は、脈理を背面側に集中させることができれば、満足する品質の板ガラスを高い歩留まりで製造できるのではないかと考えた。なお、ピーク高さとは、ある基準長さ中におけるうねり曲線の平均線から山の頂または谷の底までの距離のうちで最大のものをいう。   In order to achieve the above object, the inventors of the present invention have focused on the fact that the required quality with respect to the flatness of the glass surface differs between the one side and the other side of the plate glass. For example, in flat glass for liquid crystal displays, high flatness is required on the main surface (use surface) on which electrodes and alignment films are stacked, but on the opposite back surface (non-use surface), the flatness is so high. Is not required. Therefore, the inventor considered that if the striae can be concentrated on the back side, a plate glass of satisfactory quality can be manufactured with a high yield. The peak height refers to the maximum of the distances from the average line of the undulation curve to the peak of the mountain or the bottom of the valley in a certain reference length.

本発明は、このような観点からなされたものであり、溝から両側にオーバーフローさせた溶融ガラスを壁面に沿って流下させて融合させる成形装置と、溶融ガラスを清澄するための清澄槽と、前記清澄槽で清澄された溶融ガラスを前記成形装置に導く移送管と、を備え、前記移送管は、前記清澄槽側の一端から前記成形装置側の他端に向かって下りながら側方に曲がっている、板ガラス製造装置を提供する。   The present invention has been made from such a viewpoint, a molding apparatus for flowing and fusing the molten glass overflowed from the groove on both sides along the wall surface, a clarification tank for refining the molten glass, A transfer pipe for guiding the molten glass clarified in a clarification tank to the molding apparatus, and the transfer pipe is bent sideways while descending from one end on the clarification tank side toward the other end on the molding apparatus side. A flat glass manufacturing apparatus is provided.

また、本発明は、溶融ガラスを成形装置の溝から両側にオーバーフローさせてガラスリボンを成形する工程を含む板ガラスの製造方法であって、一端から他端に向かって下りながら側方に曲がる移送管に溶融ガラスを流すことにより、当該溶融ガラスを回転させながら前記成形装置に供給する、板ガラス製造方法を提供する。   The present invention also relates to a method for producing a sheet glass comprising a step of forming a glass ribbon by overflowing molten glass from both sides of a groove of a molding apparatus, and a transfer pipe that bends sideward while descending from one end to the other end. A method for producing a sheet glass is provided in which molten glass is supplied to the molding apparatus while rotating the molten glass.

本発明によれば、脈理を板ガラスの一方の面側に相対的に多く流出させることができる。そして、この面を背面として使用すれば、主面のピーク高さが小さく抑えられ、主面と背面のどちらにおいても平坦度に対する要求品質が満たされるようになる。すなわち、本発明によれば、製品として使用できる板ガラスの割合を増やして、歩留まりを向上させることができる。   According to the present invention, striae can flow out relatively more to one side of the plate glass. If this surface is used as the back surface, the peak height of the main surface can be kept small, and the required quality for flatness can be satisfied on both the main surface and the back surface. That is, according to this invention, the ratio of the plate glass which can be used as a product can be increased, and a yield can be improved.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. The following description relates to an example of the present invention, and the present invention is not limited to these.

図1〜図3に示すように、本発明の一実施形態に係る板ガラス製造装置は、溶融ガラスを生成するための熔解槽1と、溶融ガラスを清澄するための清澄槽3と、溶融ガラスから帯状のガラスリボンを成形する成形装置5とを備えている。なお、図1〜図3中には、水平面上の直交する2方向をX方向およびY方向、鉛直方向をZ方向で示している。   As shown in FIGS. 1-3, the plate glass manufacturing apparatus which concerns on one Embodiment of this invention is from the melting tank 1 for producing | generating a molten glass, the clarification tank 3 for clarifying a molten glass, and a molten glass. And a molding device 5 for molding a belt-shaped glass ribbon. 1 to 3, two orthogonal directions on the horizontal plane are shown as an X direction and a Y direction, and a vertical direction is shown as a Z direction.

本実施形態では、溶解槽1と清澄槽3がX方向に並んでおり、成形装置5が溶解槽1から−Y方向に向かって斜め下に配置されている。そして、熔解槽1と清澄槽3とがX方向に延びる直線状の第1移送管2で接続され、清澄槽3と成形装置5とが平面視でY方向からX方向に曲がる第2移送管4で接続されている。   In this embodiment, the dissolution tank 1 and the clarification tank 3 are arranged in the X direction, and the molding device 5 is disposed obliquely downward from the dissolution tank 1 in the −Y direction. And the melting tank 1 and the clarification tank 3 are connected by the linear 1st transfer pipe 2 extended in a X direction, and the clarification tank 3 and the shaping | molding apparatus 5 are the 2nd transfer pipes which curve in a X direction from a Y direction by planar view. 4 are connected.

熔解槽1では、当該溶解槽1に投入されたガラス原料が溶解されて溶融ガラスが生成される。熔解槽1に投入されるガラス原料は、例えばTFT用の板ガラスを製造する場合は、モル%で表示して、SiO2:50〜70%、B23:5〜15%、Al23:5〜15%、MgO:0〜3%、CaO:3〜10%、SrO:1〜3%、BaO:0〜5%、Na2O:0〜1%、K2O:0〜1%、As23:0〜1%を含むように調製される。また、ガラス原料は、上記の成分以外に、Sb23、Fe23、SnO2、ZrO2、Clなどを好ましくは2モル%以下の範囲で含んでいてもよい。 In the melting tank 1, the glass raw material thrown into the said melting tank 1 is melt | dissolved, and a molten glass is produced | generated. For example, when manufacturing a glass plate for TFT, the glass raw material charged into the melting tank 1 is expressed in mol%, SiO 2 : 50 to 70%, B 2 O 3 : 5 to 15%, Al 2 O. 3: 5~15%, MgO: 0~3 %, CaO: 3~10%, SrO: 1~3%, BaO: 0~5%, Na 2 O: 0~1%, K 2 O: 0~ 1%, as 2 O 3: is prepared containing 0 to 1%. In addition to the above components, the glass raw material may contain Sb 2 O 3 , Fe 2 O 3 , SnO 2 , ZrO 2 , Cl, etc., preferably in a range of 2 mol% or less.

溶解槽1で生成された溶融ガラスは、第1移送管2を通じて清澄槽3に送り込まれる。清澄槽3では、溶融ガラスが一定時間、所定温度(上記の組成のガラスの場合は例えば1500℃以上)に保たれて、清澄(溶融ガラス中からの気泡の除去など)が行われる。   The molten glass generated in the melting tank 1 is sent to the clarification tank 3 through the first transfer pipe 2. In the clarification tank 3, the molten glass is maintained at a predetermined temperature (for example, 1500 ° C. or more in the case of glass having the above composition) for a certain period of time, and clarification (removal of bubbles from the molten glass, etc.) is performed.

第2移送管4は、清澄槽3で清澄された溶融ガラスを成形に適した温度(上記の組成のガラスの場合は例えば1200℃程度)となるように温度調整(冷却)しながら成形装置5に導くものである。なお、第2移送管4の詳細については、後述にて説明する。   The second transfer pipe 4 is a molding apparatus 5 while adjusting (cooling) the temperature so that the molten glass clarified in the clarification tank 3 has a temperature suitable for molding (for example, about 1200 ° C. in the case of glass having the above composition). It leads to. Details of the second transfer pipe 4 will be described later.

成形装置5は、下向きに尖る五角形楔状(幅狭のホームベース状)の断面形状でX方向に延びており、その上面には、−X方向に向かって段々と深さが浅くなる溝51が形成されている。そして、溝51内には、第2移送管4から−X方向に向かって溶融ガラスが供給されるようになっている。溝51内に溶融ガラスが供給されると、図4に示すように、溶融ガラス6が溝51から+Y方向側と−Y方向側の両側にオーバーフローする。オーバーフローした溶融ガラス6は、壁面52に沿って流下することで、壁面52の下端部同士が交わる稜線の下方で融合する。これにより、帯状のガラスリボン60が連続的に成形される。なお、図示は省略するが、成形装置5には、壁面52に沿って流下する溶融ガラス6の幅を規制するガイドが設けられている。また、成形装置5で成形されるガラスリボン60は、図略の引き下げ装置によって下方に引き下げられる。   The forming device 5 has a pentagonal wedge shape (narrow home base shape) that is pointed downward and extends in the X direction. A groove 51 that gradually decreases in depth toward the −X direction is formed on the upper surface thereof. Is formed. In the groove 51, molten glass is supplied from the second transfer pipe 4 toward the −X direction. When molten glass is supplied into the groove 51, as shown in FIG. 4, the molten glass 6 overflows from the groove 51 to both sides on the + Y direction side and the −Y direction side. The overflowing molten glass 6 flows down along the wall surface 52, thereby fusing below the ridgeline where the lower end portions of the wall surface 52 intersect. Thereby, the strip-shaped glass ribbon 60 is continuously formed. In addition, although illustration is abbreviate | omitted, in the shaping | molding apparatus 5, the guide which regulates the width | variety of the molten glass 6 which flows down along the wall surface 52 is provided. Further, the glass ribbon 60 formed by the forming device 5 is pulled down by a pulling device (not shown).

次に、第2移送管4について詳細に説明する。第2移送管4は、円形断面を有しており、一端4aが清澄槽3の−Y方向側の側面に接続され、他端4bが成形装置5の+X方向側の端面に接続されている。そして、第2移送管4は、一端4aから他端4bに向かって下りながら成形装置方向に略90°曲がっている。   Next, the second transfer pipe 4 will be described in detail. The second transfer pipe 4 has a circular cross section, one end 4 a is connected to the −Y direction side surface of the clarification tank 3, and the other end 4 b is connected to the + X direction side end surface of the molding device 5. . The second transfer pipe 4 is bent by approximately 90 ° in the direction of the molding apparatus while descending from the one end 4a toward the other end 4b.

より詳しくは、第2移送管4は、清澄槽3の側面から−Y方向に向かって真っ直ぐに下る上流側直線部41と、成形装置5の+X方向側の端面へ−X方向に向かって真っ直ぐに下る下流側直線部43とを有するとともに、これら41,43をつなぐ四半円弧状の屈曲部42とを有している。   More specifically, the second transfer pipe 4 is straight from the side surface of the clarification tank 3 to the upstream linear portion 41 that goes straight down in the −Y direction, and straight to the end surface on the + X direction side of the molding device 5 in the −X direction. And a bent portion 42 having a semicircular arc shape that connects these 41 and 43.

なお、図1〜図3では、簡略化のために第2移送管4を1本の管で描いているが、実際の第2移送管4は、軸方向に所定長さで複数ブロックに分割されている。各ブロックは、白金または白金合金で構成された肉厚が0.7〜0.8mm程度の短管であり、その両端には電極が接続されたフランジが設けられている。そして、各ブロックは、短管に通電によるジュール熱を発生させることで溶融ガラスを適当な温度に保つ。また、各ブロックは、外側を耐火煉瓦で取り囲まれている。   1 to 3, the second transfer pipe 4 is drawn as a single pipe for simplification, but the actual second transfer pipe 4 is divided into a plurality of blocks with a predetermined length in the axial direction. Has been. Each block is a short tube made of platinum or a platinum alloy and having a wall thickness of about 0.7 to 0.8 mm, and flanges to which electrodes are connected are provided at both ends thereof. Each block keeps the molten glass at an appropriate temperature by generating Joule heat by energizing the short tube. Each block is surrounded by fire bricks on the outside.

第2移送管4の勾配は、全長に亘って一定(例えば9°)であってもよい。この場合、屈曲部42の中心線は、X軸およびY軸と9°で交わる、すなわち+X方向を−Y方向に45°振った方向に傾斜する傾斜面上に位置することになる。   The gradient of the second transfer pipe 4 may be constant (for example, 9 °) over the entire length. In this case, the center line of the bent portion 42 is located on an inclined surface that intersects with the X axis and the Y axis at 9 °, that is, inclined in a direction in which the + X direction is swung by 45 ° in the −Y direction.

本実施形態では、屈曲部42は、平面視で真円と重なる円弧状をなしている。すなわち、屈曲部42は、前記の傾斜面上では、楕円と重なるようになっている。この屈曲部42の中心線を水平面上に投影したときの半径は、例えば2.5mである。ただし、屈曲部42は、前記の傾斜面上で真円と重なるような円弧状となっていてもよい。あるいは、屈曲部42は、略円弧状に曲がるものであればよく、例えば直線状の前記のブロックが角度を付けながらつなげられることにより、中心線が複数本の直線で構成されるようになっていてもよい。   In the present embodiment, the bent portion 42 has an arc shape that overlaps with a perfect circle in plan view. That is, the bent part 42 overlaps the ellipse on the inclined surface. The radius when the center line of the bent portion 42 is projected on the horizontal plane is, for example, 2.5 m. However, the bent portion 42 may have an arc shape that overlaps with a perfect circle on the inclined surface. Alternatively, the bent portion 42 only needs to be bent in a substantially arc shape, and the center line is configured by a plurality of straight lines, for example, by connecting the linear blocks with an angle. May be.

第2移送管4は、全長に亘って一定径であってもよいが、例えば、上流側直線部41の全体または一部分を下流に向かって拡径するテーパー状にするとともに、下流側直線部43の全体または一部分を下流に向かって縮径するテーパー状にしてもよい。具体的な例としては、屈曲部42の直径をφ210mmとし、上流側直線部41の途中にφ130mmからφ210mmに拡径するテーパー部を設け、下流側直線部43の途中にφ210からφ145mmに縮径するテーパー部を設ける。   The second transfer pipe 4 may have a constant diameter over the entire length. For example, the second transfer pipe 4 has a tapered shape in which the whole or a part of the upstream linear portion 41 is increased in diameter toward the downstream side, and the downstream linear portion 43. You may make the whole or one part into the taper shape which diameter-reduces toward downstream. As a specific example, the diameter of the bent portion 42 is set to φ210 mm, a tapered portion that is expanded from φ130 mm to φ210 mm is provided in the middle of the upstream linear portion 41, and the diameter is reduced from φ210 to φ145 mm in the middle of the downstream linear portion 43. A tapered portion is provided.

次に、以上説明した板ガラス成形装置の作用を説明する。   Next, the operation of the plate glass forming apparatus described above will be described.

溶解槽1から清澄槽3でメルティングセグリゲーションにより発生したSiO2成分を多く含む異質ガラスが発生すると、脈理の原因となる。このSiO2を多く含む異質ガラスは周りの溶融ガラスより僅かに比重が軽いため、成形装置5に導く第2移送管4内の上部に多く流れ込む。また、溶解槽1から清澄槽3ではB23などが揮発することで、表面(上部)層の溶融ガラスはSiO2濃度が高くなり、これがそのまま第2移送管4内に流れ込むと脈理になってしまう。このため、清澄槽3から第2移送管4内に流れ込んだ直後の溶融ガラス6では、図5(a)に示すように、上側の90°の第1角度領域Aには脈理が相対的に多く存在し、下側の90°の第3角度領域Cには脈理があまり存在しない。その間の第2角度領域Bおよび第4角度領域Dでは、第1角度領域Aにおける析出量と第3角度領域Cにおける析出量の中間程度の量の脈理が存在する。 If heterogeneous glass containing a large amount of SiO 2 component generated by melting segregation in the clarification tank 3 from the dissolution tank 1 is generated, it causes striae. Since this heterogeneous glass containing a large amount of SiO 2 has a slightly lower specific gravity than the surrounding molten glass, it flows more into the upper part of the second transfer pipe 4 that leads to the molding device 5. Moreover, in the clarification tank 3 from the dissolution tank 1, B 2 O 3 and the like are volatilized, so that the molten glass of the surface (upper) layer has a high SiO 2 concentration, and it flows into the second transfer pipe 4 as it is. Become. For this reason, in the molten glass 6 immediately after flowing into the 2nd transfer pipe 4 from the clarification tank 3, as shown to Fig.5 (a), striae is relative to the 90 degree 1st angle area A of upper side. And there is not much striae in the lower third angle region C of 90 °. In the second angle region B and the fourth angle region D in the meantime, there is a striae of an intermediate amount between the precipitation amount in the first angle region A and the precipitation amount in the third angle region C.

そして、本実施形態の第2移送管4は、下りながら右側に折れ曲がっているので、第2移送管4を流れる溶融ガラス6は、その粘性および自重によって第2移送管4から受ける抵抗力と、屈曲部42における内側と外側との経路長の違いとにより、第2移送管4から受ける抵抗力の小さな上側の溶融ガラスが外側に押し流されるようにして屈曲部42を通過するようになる。すなわち、溶融ガラス6は、左に捩られるようにして第2移送管4を流れ、これにより第2移送管4の他端4bでは、図5(b)に示すように、溶融ガラス6が時計回りに回転し、脈理の量が多い第1角度領域Aが−Y方向に偏り、脈理の量が少ない第3角度領域Cが+Y方向に偏る。換言すれば、溶融ガラス6は、第2移送管4を流れることにより、進行方向から見て(図1中のVA,VB矢指方向視で)時計回りに回転させられながら成形装置5に供給される。   And since the 2nd transfer pipe 4 of this embodiment is bent rightward while going down, the molten glass 6 which flows through the 2nd transfer pipe 4 has the resistance which receives from the 2nd transfer pipe 4 by the viscosity and dead weight, Due to the difference in the path length between the inner side and the outer side in the bent portion 42, the upper molten glass having a small resistance force received from the second transfer pipe 4 passes through the bent portion 42 so as to be pushed outward. That is, the molten glass 6 flows through the second transfer pipe 4 so as to be twisted to the left, and as a result, at the other end 4b of the second transfer pipe 4, as shown in FIG. The first angle region A that rotates around and has a large amount of striae is biased in the −Y direction, and the third angle region C that has a small amount of striae is biased in the + Y direction. In other words, the molten glass 6 is supplied to the molding apparatus 5 while being rotated clockwise as viewed from the traveling direction (as viewed in the direction of arrows VA and VB in FIG. 1) by flowing through the second transfer pipe 4. The

従って、図4に示すように、成形装置5の溝51から第2移送管4の曲がる方向側にオーバーフローする側(+Y方向側)の溶融ガラス6A中に脈理が少なくなり、成形装置5の溝51から第2移送管4の曲がる方向と反対側にオーバーフローする側(−Y方向側)の溶融ガラス6B中に脈理が多くなる。すなわち、本実施形態の板ガラス製造装置を使用して板ガラスを製造すれば、脈理を板ガラスの一方の面側に相対的に多く流出させることができる。そして、この面をそれほど高い平坦度が要求されない背面として使用すれば、高い平坦度が要求される主面のピーク高さが小さく抑えられ、主面と背面のどちらにおいても平坦度に対する要求品質が満たされるようになる。このように、本実施形態の板ガラス製造装置によれば、製品として使用できる板ガラスの割合を増やして、歩留まりを向上させることができる。   Therefore, as shown in FIG. 4, striae is reduced in the molten glass 6A on the side (+ Y direction side) that overflows from the groove 51 of the forming device 5 to the bending direction side of the second transfer pipe 4. Striae increases in the molten glass 6B on the side (−Y direction side) that overflows from the groove 51 to the side opposite to the direction in which the second transfer pipe 4 is bent. That is, if plate glass is manufactured using the plate glass manufacturing apparatus of this embodiment, striae can flow out relatively more to one surface side of the plate glass. And if this surface is used as a back surface where high flatness is not required, the peak height of the main surface where high flatness is required can be kept small, and the required quality for flatness can be achieved on both the main surface and the back surface. To be satisfied. Thus, according to the plate glass manufacturing apparatus of this embodiment, the ratio of the plate glass which can be used as a product can be increased, and a yield can be improved.

次に、前述したように、第2移送管4を流れる溶融ガラス6が回転することを確認するために行ったシミュレーションについて説明する。   Next, a simulation performed to confirm that the molten glass 6 flowing through the second transfer pipe 4 rotates as described above will be described.

シミュレーションで作成した第2移送管4のモデルでは、前記実施形態で例示した寸法を採用し、上流側直線部41および下流側直線部43の長さをそれぞれ約2mとした。また、第2移送管4を流れる溶融ガラスの流量を28.9cm3/s、その温度を一定の1490℃(粘度67.6Pa・s)とした。 In the model of the second transfer pipe 4 created by the simulation, the dimensions exemplified in the above embodiment are adopted, and the lengths of the upstream linear portion 41 and the downstream linear portion 43 are each about 2 m. The flow rate of the molten glass flowing through the second transfer pipe 4 was 28.9 cm 3 / s, and the temperature was a constant 1490 ° C. (viscosity 67.6 Pa · s).

シミュレーションによる解析結果では、第2移送管4を流れることで溶融ガラス6が約18°時計回りに回転した。   As a result of the simulation, the molten glass 6 was rotated about 18 ° clockwise by flowing through the second transfer pipe 4.

以下、実施例を挙げて本発明を詳細に説明するが、本発明は、これら実施例に何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not restrict | limited to these Examples at all.

実施例では、前記実施形態の板ガラス製造装置を用いて板ガラスの製造を行った。製造する板ガラスは、横(X方向の幅)1300mm、縦(Y方向の長さ)1100、厚さ0.7mmとした。   In the Example, plate glass was manufactured using the plate glass manufacturing apparatus of the said embodiment. The plate glass to be manufactured was 1300 mm in width (width in the X direction), 1100 in length (length in the Y direction), and 0.7 mm in thickness.

溶解槽1に投入するガラス原料は、モル%で表示して、SiO2:64.7%、B23:10.9%、Al23:11.4%、MgO:2.7%、CaO:5.7%、SrO:1.9%、BaO:2.3%、As23:0.4%を含むように調製されたものを用いた。 Glass raw material to be introduced into the dissolution tank 1 is displayed in mol%, SiO 2: 64.7%, B 2 O 3: 10.9%, Al 2 O 3: 11.4%, MgO: 2.7 %, CaO: 5.7%, SrO: 1.9%, BaO: 2.3%, As 2 O 3 : 0.4% were used.

板ガラス製造装置における諸条件としては、前記シミュレーションと同じにした。   Various conditions in the plate glass manufacturing apparatus were the same as those in the simulation.

板ガラスは、合計で336枚製造した。これらを光学的に脈理検査した結果、14枚が脈理不良と判定された。   A total of 336 plate glasses were produced. As a result of optically inspecting these, 14 sheets were determined to be unsatisfactory.

脈理不良と判定された14枚の板ガラスについて、光学検査では主面と背面の区別が付かないため、板ガラスの両表面のピーク高さを測定した。この測定には、東京精密社製の表面粗さ測定機(サーフコム1400−D)を用いた。   About 14 plate glass determined to be unsatisfactory, since the optical surface cannot distinguish between the main surface and the back surface, the peak heights of both surfaces of the plate glass were measured. For this measurement, a surface roughness measuring machine (Surfcom 1400-D) manufactured by Tokyo Seimitsu Co., Ltd. was used.

測定したピーク高さを相対的に小さい側の面(主面)および相対的に大きい側の面(背面)のそれぞれについてある基準高さと比較すると、主面では、その比較値が平均0.8、最大1.1、最小0.7となり、背面では、その比較値が平均1.2、最大1.6、最小1.1となった。   When the measured peak height is compared with a certain reference height for each of a relatively small surface (main surface) and a relatively large surface (rear surface), the average value is 0.8 on the main surface. The maximum value was 1.1 and the minimum value was 0.7. On the rear surface, the comparison values were 1.2 on average, 1.6 on the maximum, and 1.1 on the minimum.

この結果から、脈理を背面側に相対的に多く流出させることができ、主面の平坦度を向上させることができることが分かる。   From this result, it can be seen that a relatively large amount of striae can flow out to the back side, and the flatness of the main surface can be improved.

(変形例)
前記実施形態では、第2移送管4が曲がる角度が略90°であったが、第2移送管4が曲がる角度はこれに限らず種々選定可能であり、例えば180°であってもよい。この場合には、第2移送管4内を流れる溶融ガラス6の回転量をさらに大きくすることができる。ただし、第2移送管4が曲がる角度が略90°であれば、第2移送管4の長さを抑えつつ、第2移送管4内を流れる溶融ガラス6を適切な量だけ回転させることができる。
(Modification)
In the embodiment, the angle at which the second transfer pipe 4 is bent is approximately 90 °, but the angle at which the second transfer pipe 4 is bent is not limited to this, and may be variously selected, for example, 180 °. In this case, the amount of rotation of the molten glass 6 flowing through the second transfer pipe 4 can be further increased. However, if the angle at which the second transfer pipe 4 is bent is approximately 90 °, the molten glass 6 flowing in the second transfer pipe 4 can be rotated by an appropriate amount while suppressing the length of the second transfer pipe 4. it can.

また、屈曲部42の曲がる方向は、側方であればよく、右向きであっても左向きであってもよい。   In addition, the bending direction of the bent portion 42 may be lateral, and may be rightward or leftward.

さらに、第2移送管4の一端4aは、清澄槽3の−Y方向側の側面に接続されている必要はなく、例えば+X方向側の側面に接続されていてもよい。   Furthermore, the one end 4a of the second transfer pipe 4 is not necessarily connected to the side surface on the −Y direction side of the clarification tank 3, and may be connected to the side surface on the + X direction side, for example.

また、上流側直線部41および下流側直線部43を省略して、第2移送管4を全長に亘って曲げることも可能である。   Further, it is possible to bend the second transfer pipe 4 over the entire length by omitting the upstream linear portion 41 and the downstream linear portion 43.

本発明は、FPDガラス基板用の板ガラスを製造する製造装置および製造方法に特に好適である。   The present invention is particularly suitable for a manufacturing apparatus and a manufacturing method for manufacturing a plate glass for an FPD glass substrate.

本発明の一実施形態に係る板ガラス製造装置を概略的に示す斜視図である。It is a perspective view which shows roughly the plate glass manufacturing apparatus which concerns on one Embodiment of this invention. 図1に示した板ガラス製造装置の正面図である。It is a front view of the plate glass manufacturing apparatus shown in FIG. 図1に示した板ガラス製造装置の側面図である。It is a side view of the plate glass manufacturing apparatus shown in FIG. 図1のIV−IV線に対応する、成形装置の断面図である。It is sectional drawing of the shaping | molding apparatus corresponding to the IV-IV line of FIG. (a)は図1のVA−VA線に対応する、移送管の一端の断面図、(b)は図1のVB−VB線に対応する、移送管の他端の断面図である。(A) is sectional drawing of the end of the transfer pipe corresponding to the VA-VA line of FIG. 1, (b) is sectional drawing of the other end of the transfer pipe corresponding to the VB-VB line of FIG.

符号の説明Explanation of symbols

1 溶解槽
2 第1移送管
3 清澄槽
4 第2移送管
4a 一端
4b 他端
42 屈曲部
5 成形装置
DESCRIPTION OF SYMBOLS 1 Dissolution tank 2 1st transfer pipe 3 Clarification tank 4 2nd transfer pipe 4a One end 4b The other end 42 Bending part 5 Molding apparatus

Claims (4)

溝から両側にオーバーフローさせた溶融ガラスを壁面に沿って流下させて融合させる成形装置と、
溶融ガラスを清澄するための清澄槽と、
前記清澄槽で清澄された溶融ガラスを前記成形装置に導く移送管と、を備え、
前記移送管は、前記清澄槽側の一端から前記成形装置側の他端に向かって下りながら側方に曲がっている、板ガラス製造装置。
A molding device that melts and melts molten glass that has overflowed to both sides from the groove along the wall surface;
A refining tank for refining molten glass;
A transfer pipe for guiding the molten glass clarified in the clarification tank to the molding apparatus,
The said transfer pipe | tube is a plate glass manufacturing apparatus bent to the side, descending toward the other end by the side of the said shaping | molding apparatus from the one end by the side of the said clarification tank.
前記移送管は、前記溶融ガラスを温度調整しながら導くものである、請求項1に記載の板ガラス製造装置。   The plate glass manufacturing apparatus according to claim 1, wherein the transfer pipe guides the molten glass while adjusting a temperature. 前記移送管が曲がる角度は、略90°である、請求項1または2に記載の板ガラス製造装置。   The plate glass manufacturing apparatus according to claim 1, wherein an angle at which the transfer pipe is bent is approximately 90 °. 溶融ガラスを成形装置の溝から両側にオーバーフローさせてガラスリボンを成形する工程を含む板ガラスの製造方法であって、
一端から他端に向かって下りながら側方に曲がる移送管に溶融ガラスを流すことにより、当該溶融ガラスを回転させながら前記成形装置に供給する、板ガラス製造方法。
A method for producing a sheet glass comprising a step of forming a glass ribbon by overflowing molten glass from both sides of a groove of a molding apparatus,
A plate glass manufacturing method in which molten glass is supplied to the forming apparatus while rotating the molten glass by flowing the molten glass through a transfer tube that bends from one end to the other while bending downward.
JP2008156556A 2008-06-16 2008-06-16 Sheet glass manufacturing apparatus and sheet glass manufacturing method Active JP4990229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156556A JP4990229B2 (en) 2008-06-16 2008-06-16 Sheet glass manufacturing apparatus and sheet glass manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156556A JP4990229B2 (en) 2008-06-16 2008-06-16 Sheet glass manufacturing apparatus and sheet glass manufacturing method

Publications (2)

Publication Number Publication Date
JP2009298665A true JP2009298665A (en) 2009-12-24
JP4990229B2 JP4990229B2 (en) 2012-08-01

Family

ID=41545968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156556A Active JP4990229B2 (en) 2008-06-16 2008-06-16 Sheet glass manufacturing apparatus and sheet glass manufacturing method

Country Status (1)

Country Link
JP (1) JP4990229B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100118085A (en) * 2009-04-27 2010-11-04 코닝 인코포레이티드 Glass flow management by thermal conditioning
KR101185680B1 (en) 2010-06-29 2012-09-24 아반스트레이트 가부시키가이샤 Apparatus for producing glass sheet, and method for producing glass sheet using the same
WO2012133830A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Glass plate production method
CN112368243A (en) * 2018-07-03 2021-02-12 日本电气硝子株式会社 Method and apparatus for manufacturing glass article
CN112368244A (en) * 2018-07-03 2021-02-12 日本电气硝子株式会社 Method and apparatus for manufacturing glass article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139445A (en) * 1996-11-01 1998-05-26 Canon Inc Glass fusion and apparatus therefor
JPH11314923A (en) * 1998-05-06 1999-11-16 Canon Inc Melt outflow device for glass raw material
JP2007284347A (en) * 2007-08-09 2007-11-01 Nippon Electric Glass Co Ltd Molten glass supplying device
WO2008018987A1 (en) * 2006-08-08 2008-02-14 Corning Incorporated Reduced size bowl for display glass melting and delivery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139445A (en) * 1996-11-01 1998-05-26 Canon Inc Glass fusion and apparatus therefor
JPH11314923A (en) * 1998-05-06 1999-11-16 Canon Inc Melt outflow device for glass raw material
WO2008018987A1 (en) * 2006-08-08 2008-02-14 Corning Incorporated Reduced size bowl for display glass melting and delivery
JP2007284347A (en) * 2007-08-09 2007-11-01 Nippon Electric Glass Co Ltd Molten glass supplying device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100118085A (en) * 2009-04-27 2010-11-04 코닝 인코포레이티드 Glass flow management by thermal conditioning
JP2010254569A (en) * 2009-04-27 2010-11-11 Corning Inc Glass flow management by thermal conditioning
KR101660046B1 (en) 2009-04-27 2016-09-26 코닝 인코포레이티드 Glass flow management by thermal conditioning
KR101185680B1 (en) 2010-06-29 2012-09-24 아반스트레이트 가부시키가이샤 Apparatus for producing glass sheet, and method for producing glass sheet using the same
WO2012133830A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Glass plate production method
CN102822103A (en) * 2011-03-31 2012-12-12 安瀚视特控股株式会社 Glass plate production method
JP5232332B2 (en) * 2011-03-31 2013-07-10 AvanStrate株式会社 Manufacturing method of glass plate
KR101432413B1 (en) * 2011-03-31 2014-08-20 아반스트레이트 가부시키가이샤 Glass plate production method
TWI454435B (en) * 2011-03-31 2014-10-01 Avanstrate Inc Glass plate manufacturing method
CN112368243A (en) * 2018-07-03 2021-02-12 日本电气硝子株式会社 Method and apparatus for manufacturing glass article
CN112368244A (en) * 2018-07-03 2021-02-12 日本电气硝子株式会社 Method and apparatus for manufacturing glass article
CN112368244B (en) * 2018-07-03 2023-01-03 日本电气硝子株式会社 Method and apparatus for manufacturing glass article

Also Published As

Publication number Publication date
JP4990229B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP6929873B2 (en) Methods and equipment for processing glass
JP4990229B2 (en) Sheet glass manufacturing apparatus and sheet glass manufacturing method
KR101372609B1 (en) Method for making glass sheet
TWI764952B (en) Apparatus and method for forming a glass article
JP2012096987A (en) Overflow down-draw with improved glass melt velocity and thickness distribution
TW201111299A (en) In line glass patterning during fusion draw process
JP2016513066A (en) Apparatus and method for forming glass sheet from core glass and clad glass
US20060081009A1 (en) Glass manufacturing system and method for using a cooling bayonet to reduce stress in a glass sheet
TWI796897B (en) Apparatus and methods for forming a glass article
JP4955717B2 (en) Glass forming equipment
TWI820179B (en) Apparatus and methods for fabricating a glass ribbon
JP6489783B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2016050148A (en) Method and apparatus for manufacturing glass plate
TW202009224A (en) Methods and apparatus for forming laminated glass sheets
JP2009096684A (en) Flow passage for flowing-out molten glass
US10377654B2 (en) Apparatus and method of manufacturing composite glass articles
JP7022304B2 (en) Glass article manufacturing equipment and manufacturing method
JP5232332B2 (en) Manufacturing method of glass plate
JP2015048278A (en) Sheet glass molding, production method of sheet glass molding, production device of sheet glass, and production method of sheet glass
KR101426545B1 (en) Apparatus for homogenizing molten glass
JP6352755B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2020007169A (en) Method and device for manufacturing glass article
JP2013086991A (en) Supply pipe for molten glass and apparatus for forming glass
JP2019069879A (en) Tube glass manufacturing apparatus and tube glass manufacturing method
TW202404913A (en) Apparatus and methods for fabricating a glass ribbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4990229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250