JP2009296921A - Continuous culture device and method for producing chemical - Google Patents

Continuous culture device and method for producing chemical Download PDF

Info

Publication number
JP2009296921A
JP2009296921A JP2008153846A JP2008153846A JP2009296921A JP 2009296921 A JP2009296921 A JP 2009296921A JP 2008153846 A JP2008153846 A JP 2008153846A JP 2008153846 A JP2008153846 A JP 2008153846A JP 2009296921 A JP2009296921 A JP 2009296921A
Authority
JP
Japan
Prior art keywords
culture
membrane
reaction tank
tank
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008153846A
Other languages
Japanese (ja)
Inventor
Hideki Sawai
秀樹 澤井
Takashi Mimizuka
孝 耳塚
Masanari Yamada
勝成 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008153846A priority Critical patent/JP2009296921A/en
Publication of JP2009296921A publication Critical patent/JP2009296921A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/16Hollow fibers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact continuous culture device for producing chemicals by a culture method, stably maintaining the high productivity over a long time. <P>SOLUTION: The continuous culture device includes a culture reaction vessel for culturing microorganisms or culture cells, a membrane separation vessel in which a separation membrane for filtering a culture liquid continuously fed from the culture reaction vessel is arranged, and a culture liquid-circulating means for feeding the culture liquid from the culture reaction vessel to the membrane separation vessel, and returning the unfiltered culture liquid which is not filtered to the culture liquid at the upstream side of the membrane separation vessel. The membrane separation vessel and the culture reaction vessel have volumes regulated so that the culture liquid volume ratio of the culture liquid in the culture reaction vessel to the culture liquid in the membrane separation vessel may be ≥5 and ≤100. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微生物または培養細胞の培養に用いられる培養装置に関するものである。さらに詳しくは、本発明は、培養を行いながら、培養によって生産された物質を含む液を微生物または培養細胞の培養液から分離膜を通して効率よく濾過・回収する、高い生産性で化学品等を製造することが可能な連続培養装置に関するものである。   The present invention relates to a culture apparatus used for culturing microorganisms or cultured cells. More specifically, the present invention manufactures chemicals and the like with high productivity by efficiently filtering and recovering a liquid containing substances produced by culturing from a culture liquid of microorganisms or cultured cells through a separation membrane while culturing. The present invention relates to a continuous culture apparatus that can be used.

微生物や培養細胞の培養を伴う物質生産方法では、大きく(1)回分培養法(Batch培養法)および流加培養法(Fed−Batch培養法)と、(2)連続培養法に分類することができる。   Substance production methods involving cultivation of microorganisms and cultured cells can be broadly classified into (1) batch culture methods (Batch culture methods) and fed-batch culture methods (Fed-Batch culture methods), and (2) continuous culture methods. it can.

上記(1)の回分培養法と流加培養法は、設備的には簡素であり短時間で培養が終了し、雑菌汚染による被害が少ないという利点があり、従来より、微生物や培養細胞を用いた物質生産方法として用いられてきた。しかしながら、これらの方法は時間の経過とともに培養液中の生産物濃度が高くなり、浸透圧あるいは生産物阻害等の影響により生産性および収率が低下してくる。そのためこれらの培養法は、長時間にわたり安定して高収率かつ高生産性を維持することが困難である。   The batch culture method and fed-batch culture method described in (1) above are simple in terms of equipment, have the advantage that the culture is completed in a short time, and there is little damage caused by contamination with bacteria. Conventionally, microorganisms and cultured cells have been used. Has been used as a material production method. However, these methods increase the concentration of the product in the culture solution over time, and the productivity and yield decrease due to the influence of osmotic pressure or product inhibition. Therefore, it is difficult for these culture methods to stably maintain a high yield and high productivity over a long period of time.

一方、上記(2)の連続培養法は、培養反応槽内で生産物が高濃度に蓄積することを回避することによって、長時間にわたって高収率かつ高生産性を維持できるという特徴がある。   On the other hand, the continuous culture method (2) is characterized in that high yield and high productivity can be maintained over a long period of time by avoiding the accumulation of the product at a high concentration in the culture reaction tank.

例えば、L−グルタミン酸(特許文献1参照)やL−リジン(非特許文献1参照)の発酵について連続培養法が開示されている。しかしながら、これらの例では、培養液へ栄養素等原料の連続的な供給を行うものの、微生物や培養細胞を含んだ培養液を抜き出すために培養液中の微生物や培養細胞が希釈されることから、生産効率の向上は限定されたものであった。   For example, a continuous culture method is disclosed for fermentation of L-glutamic acid (see Patent Document 1) and L-lysine (see Non-Patent Document 1). However, in these examples, although raw materials such as nutrients are continuously supplied to the culture solution, the microorganisms and culture cells in the culture solution are diluted to extract the culture solution containing microorganisms and culture cells. The improvement in production efficiency was limited.

このことから、連続培養法において、微生物や培養細胞を分離膜で濾過し、濾液から生産物を回収すると同時に濾過された微生物や培養細胞を培養液に保持または還流させることにより、培養液中の微生物や細胞濃度を高く維持する方法が提案されている。   Therefore, in a continuous culture method, microorganisms and cultured cells are filtered through a separation membrane, and the product is recovered from the filtrate, and at the same time, the filtered microorganisms and cultured cells are retained or refluxed in the culture solution, A method of maintaining a high microorganism or cell concentration has been proposed.

例えば、分離膜を用いた連続培養装置により、連続培養する技術が提案されている(特許文献2参照)。本提案では、微生物や培養細胞を培養するための槽と培養液から目的生産物と微生物や培養細胞の膜分離を行うための槽を有した連続培養装置をもちいることで様々な化学品を回分培養法と流加培養法と比較して高い生産速度で生産している。しかしながらこの例では、培養する槽に対し膜分離を行う槽の容積が大きいことから、培養槽と膜分離槽間の培養液循環に必要な動力費が高い上に、連続培養装置全体としての化学品の生産速度が低い。また、培養槽で化学品の生産に適した培養条件に調節するが、膜分離槽の容積が大きいと膜分離槽内での培養液の滞留時間が長くなり、膜分離槽では培養条件の調節ができないことから化学品に適した培養条件から逸脱して更に生産性の低下が懸念される。このように、従来の連続培養装置では運転動力の浪費、低生産速度、ならびに装置運転管理の煩雑さ等の不具合を内包しており、依然として連続培養技術の向上が望まれていた。
特開平10−150996号公報 国際公開第07/097260号パンフレット Toshihiko Hirao et. al.(ヒラオ・トシヒコ ら)、 Appl. Microbiol. Biotechnol.(アプライド マイクロバイアル アンド マイクロバイオロジー),32,269−273(1989)
For example, a technique for continuous culture using a continuous culture apparatus using a separation membrane has been proposed (see Patent Document 2). In this proposal, various chemical products can be obtained by using a continuous culture device with a tank for culturing microorganisms and cultured cells and a tank for performing membrane separation of the target product and microorganisms and cultured cells from the culture solution. Compared to batch culture and fed-batch culture, it produces at a higher production rate. However, in this example, the volume of the tank for membrane separation is large compared to the tank for culturing, so the power cost required for the culture medium circulation between the culture tank and the membrane separation tank is high and the chemistry of the continuous culture apparatus as a whole is high. Product production rate is low. In addition, the culture conditions are adjusted to suit the production of chemicals in the culture tank. However, if the volume of the membrane separation tank is large, the residence time of the culture solution in the membrane separation tank becomes longer. Therefore, there is a concern that the productivity may be further lowered by deviating from the culture conditions suitable for chemical products. As described above, the conventional continuous culture apparatus contains problems such as waste of driving power, low production speed, and complicated operation management of the apparatus, and improvement of continuous culture technology has been desired.
JP-A-10-150996 International Publication No. 07/097260 Pamphlet Toshihiko Hirao et. Al., Appl. Microbiol. Biotechnol., Applied Microvials and Microbiology, 32, 269-273 (1989)

そこで本発明の目的は、運転動力の浪費、低生産速度、ならびに装置運転管理の煩雑さ等の不具合を解決できるコンパクトな連続培養装置を提供することにある。   Therefore, an object of the present invention is to provide a compact continuous culture apparatus that can solve problems such as waste of driving power, low production speed, and complexity of apparatus operation management.

本願発明者らは、分離膜を利用した連続培養装置において、装置規模の縮小を目的として鋭意研究した結果、以下の(1)〜(3)のいずれかの構成により、装置のコンパクト化が実現するすると同時に化学品の生産効率が向上ことを見いだし、本発明を完成した。
(1)微生物もしくは培養細胞を培養するための培養反応槽と、該培養反応槽から連続的に供給される培養液を濾過する分離膜が配置される膜分離槽と、前記培養液を前記培養反応槽から前記膜分離槽へ供給するとともに濾過されなかった未濾過培養液を前記膜分離槽よりも上流側の前記培養液へ還流する培養液循環手段とを具備し、前記膜分離槽および前記培養反応槽は、前記膜分離槽における培養液に対する前記培養反応槽における培養液の培養液容積比が5以上100以下となる容積を有するものであることを特徴とする連続培養装置。
(2)前記膜分離槽および前記培養反応槽は、前記培養液容積比が15以上100以下となる容積を有するものである、前記(1)記載の連続培養装置。
(3)培養反応槽において微生物もしくは培養細胞を培養し、連続的に培養液を前記培養反応槽から膜分離槽へ供給して分離膜で濾過し生産物を回収するとともに、濾過されなかった未濾過培養液を前記膜分離槽よりも上流側の前記培養液へ還流するにあたり、前記膜分離槽における培養液に対する前記培養反応槽における培養液の培養液容積比を5以上100以下とすることを特徴とする化学品の製造方法。
The inventors of the present invention have conducted extensive research for the purpose of reducing the scale of a continuous culture apparatus using a separation membrane, and as a result, the apparatus can be made compact by any of the following configurations (1) to (3). At the same time, it was found that the production efficiency of chemicals was improved, and the present invention was completed.
(1) A culture reaction tank for culturing microorganisms or cultured cells, a membrane separation tank in which a separation membrane for filtering the culture solution continuously supplied from the culture reaction tank is disposed, and the culture solution is cultured in the culture medium A culture medium circulating means for supplying an unfiltered culture solution supplied from the reaction tank to the membrane separation tank and refluxed to the culture medium upstream of the membrane separation tank; and the membrane separation tank and the The continuous culture apparatus, wherein the culture reaction tank has a volume in which the culture liquid volume ratio of the culture liquid in the culture reaction tank to the culture liquid in the membrane separation tank is 5 or more and 100 or less.
(2) The continuous culture apparatus according to (1), wherein the membrane separation tank and the culture reaction tank have a volume in which the culture liquid volume ratio is 15 or more and 100 or less.
(3) Incubating microorganisms or cultured cells in a culture reaction tank, continuously supplying the culture solution from the culture reaction tank to the membrane separation tank, and filtering through the separation membrane to recover the product. In refluxing the filtered culture solution to the culture solution upstream of the membrane separation tank, the culture solution volume ratio of the culture solution in the culture reaction tank to the culture solution in the membrane separation tank is set to 5 or more and 100 or less. A method for producing a characteristic chemical product.

本発明の連続培養装置によれば、連続培養装置規模のコンパクト化が実現されるとともに、簡便な操作条件で、長時間にわたり安定して所望の生産物の高生産性を維持する連続培養が実現し、生産物である各種化学品を低コストで安定に生産することが可能となる   According to the continuous culture apparatus of the present invention, downsizing of the continuous culture apparatus is realized, and continuous culture that maintains high productivity of a desired product stably over a long period of time is realized under simple operation conditions. In addition, it is possible to stably produce various chemical products as products at low cost.

本発明の連続培養装置は、連続培養によって化学品等を製造するための装置であって、基本構造として、微生物もしくは培養細胞の培養液を分離膜で濾過し、濾液から生産物を回収するとともに未濾過液を前記の培養液に保持または還流する手段を有する。具体的には、微生物もしくは培養細胞を培養させるための培養反応槽と、該培養反応槽から連続的に供給される培養液を濾過する分離膜が配置される膜分離槽と、前記培養液を前記培養反応槽から前記膜分離槽へ供給するとともに濾過されなかった未濾過培養液を前記膜分離槽よりも上流側の前記培養液へ還流する培養液循環手段を具備する。そして、本発明において、膜分離槽および培養反応槽は、膜分離槽における培養液に対する培養反応槽における培養液の培養液容積比が5以上100以下となる容積を有する。該培養液容積比を5以上100以下とすることで装置のコンパクト化が実現するとともに、培養液の培養反応槽滞留時間を長くなり適切な培養条件への調節が実現し、動力費の低減、化学品の生産速度の向上、ならびに容易な装置運転管理が可能となる。   The continuous culture apparatus of the present invention is an apparatus for producing chemicals and the like by continuous culture. As a basic structure, the culture solution of microorganisms or cultured cells is filtered through a separation membrane, and the product is recovered from the filtrate. Means for holding or refluxing the unfiltered liquid in the culture medium. Specifically, a culture reaction tank for culturing microorganisms or cultured cells, a membrane separation tank in which a separation membrane for filtering the culture solution continuously supplied from the culture reaction tank is disposed, and the culture solution A culture medium circulation means is provided for supplying an unfiltered culture solution that has been supplied from the culture reaction tank to the membrane separation tank and that has not been filtered, to the culture medium on the upstream side of the membrane separation tank. In the present invention, the membrane separation tank and the culture reaction tank have a volume in which the culture liquid volume ratio of the culture liquid in the culture reaction tank to the culture liquid in the membrane separation tank is 5 or more and 100 or less. By reducing the volume ratio of the culture solution to 5 or more and 100 or less, the apparatus can be made compact, and the culture reaction tank retention time of the culture solution can be lengthened and adjustment to appropriate culture conditions can be realized. It is possible to improve the production rate of chemical products and to easily manage the operation of the equipment.

以下、本発明の連続培養装置の基本構成と特徴について具体的に図示して説明する。図1に、本発明の一実施形態を示す連続培養装置の概略側面図を示す。図1に示す連続培養装置は、微生物もしくは培養細胞の連続培養を行う培養反応槽1と、該培養反応槽1に培養液循環手段(配管および培養液循環ポンプ5)を介して接続され内部に培養液を濾過するための分離膜3を備えた膜分離槽12で構成される。   Hereinafter, the basic configuration and characteristics of the continuous culture apparatus of the present invention will be specifically illustrated and described. In FIG. 1, the schematic side view of the continuous culture apparatus which shows one Embodiment of this invention is shown. The continuous culture apparatus shown in FIG. 1 is connected to a culture reaction tank 1 for continuously culturing microorganisms or cultured cells, and connected to the culture reaction tank 1 via a culture medium circulation means (pipe and culture medium circulation pump 5). It is comprised with the membrane separation tank 12 provided with the separation membrane 3 for filtering a culture solution.

培養反応槽1は微生物もしくは培養細胞を連続的に培養できる機能を有し、培養液循環手段を接続できればよく、従来、化学品の生産に用いられてきたジャーファーメンターを用いることができる。膜分離槽12は、内部に分離膜3を設置することができ、培養反応槽1同様、培養液循環手段を接続できれば、その形状等は問わない。また、本発明で用いる分離膜の素材としては、無機、有機の素材を問わず用いることが可能であるが、好ましい分離膜について後に詳述する。   The culture reaction tank 1 has a function of continuously culturing microorganisms or cultured cells, and may be connected to a culture medium circulation means. A jar fermenter that has been conventionally used for production of chemicals can be used. The shape of the membrane separation tank 12 is not limited as long as the separation membrane 3 can be installed inside and the culture medium circulating means can be connected like the culture reaction tank 1. In addition, as a material for the separation membrane used in the present invention, any inorganic or organic material can be used. A preferable separation membrane will be described in detail later.

そして、本発明において、かかる培養反応槽1と膜分離槽12とは、膜分離槽における培養液に対する培養反応槽における培養液の培養液容積比が5以上100以下となる容積を有する。なお、本発明においてかかる培養液容積比とは、培養運転時に膜分離槽ならびに培養反応槽に満たされるそれぞれの培養液量の比として定義し、各々の槽中の培養液で満たされないヘッドスペース等の容積は考慮に入れない。   In the present invention, the culture reaction tank 1 and the membrane separation tank 12 have a volume in which the culture liquid volume ratio of the culture liquid in the culture reaction tank to the culture liquid in the membrane separation tank is 5 or more and 100 or less. In the present invention, the culture medium volume ratio is defined as the ratio of the amount of each culture solution that is filled in the membrane separation tank and the culture reaction tank during the culture operation, such as a head space that is not filled with the culture solution in each tank. The volume of is not taken into account.

また、図1に示す装置において、培養反応槽1は、培地供給ポンプ8に接続されるとともに、攪拌機2を備えており、培地供給ポンプ8によって培地を培養反応槽1に投入し、必要に応じて、攪拌機2で培養反応槽1内の培養液を攪拌することができるように構成されている。さらに、気体供給装置11も接続されており、必要に応じて、当該気体供給装置11によって必要とする気体が供給される。このとき、供給した気体を回収・リサイクルして再び気体供給装置11によって供給することができるように、例えば、培養反応槽1のヘッドスペースと気体供給装置11の間に配管を接続し、ヘッドスペース、配管、気体供給装置11の順で供給気体を流すことで回収・リサイクルすることも好ましい。   In the apparatus shown in FIG. 1, the culture reaction tank 1 is connected to a medium supply pump 8 and is equipped with a stirrer 2. The medium is supplied to the culture reaction tank 1 by the medium supply pump 8, and if necessary. Thus, the stirrer 2 is configured to stir the culture solution in the culture reaction tank 1. Further, a gas supply device 11 is also connected, and necessary gas is supplied by the gas supply device 11 as necessary. At this time, for example, a pipe is connected between the head space of the culture reaction tank 1 and the gas supply device 11 so that the supplied gas can be recovered and recycled and supplied again by the gas supply device 11. It is also preferable to collect and recycle by supplying the supply gas in the order of the pipe and the gas supply device 11.

また、培養反応槽1には、必要に応じて、培養液のpHを調整することができるように、pHセンサ・制御装置10およびpH調整溶液供給ポンプ9が設けられている。さらに、必要に応じて、培養液の温度を調節して生産性の高い化学品の生産を行うことができるように、温度調節器7も設けられている。ここでは、計装・制御装置による培養液の物理化学的条件の調節に、pHおよび温度の調節を例示したが、必要に応じて、溶存酸素やORPの制御を行うことができ、更にはオンラインケミカルセンサーなどの分析装置により培養液中の微生物の濃度を測定し、それを指標とした物理化学的条件の制御を行うことができる。また、培地の連続的もしくは断続的投入の形態に関しては、特に限定されるものではないが、上記の計装・制御装置による培養液の物理化学的環境の測定値を指標として、培地投入量および速度を適宜調節することができる。   The culture reaction tank 1 is provided with a pH sensor / control device 10 and a pH adjusting solution supply pump 9 so that the pH of the culture solution can be adjusted as necessary. Furthermore, a temperature controller 7 is also provided so that a chemical product with high productivity can be produced by adjusting the temperature of the culture solution as required. Here, the adjustment of the pH and temperature was exemplified for the adjustment of the physicochemical conditions of the culture solution by the instrumentation / control device, but the dissolved oxygen and ORP can be controlled as necessary, and further online The concentration of microorganisms in the culture solution can be measured by an analyzer such as a chemical sensor, and the physicochemical conditions can be controlled using the measured concentration as an index. Further, the form of continuous or intermittent addition of the medium is not particularly limited, but the measured amount of the culture medium by the instrumentation / control apparatus as described above is used as an index, and the amount of medium input and The speed can be adjusted accordingly.

そして、図1に示す装置においては、分離膜3における濾過速度および培養反応槽内の培養液量を調節するために、レベルセンサ6が培養反応槽1に設けられているとともに、水頭差圧制御装置4も設けられている。   In the apparatus shown in FIG. 1, a level sensor 6 is provided in the culture reaction tank 1 in order to adjust the filtration speed in the separation membrane 3 and the amount of the culture solution in the culture reaction tank, and the water head differential pressure control. A device 4 is also provided.

以上のような構成の連続培養装置において、培養は例えば次のように行われる。すなわち、培養反応槽1において微生物もしくは培養細胞を培養し、連続的に培養液を培養反応槽1から膜分離槽12へ供給して分離膜3で濾過し乳酸等の生産物を回収するとともに、濾過されなかった未濾過培養液を膜分離槽12よりも上流側の培養液へ還流するにあたり、膜分離槽12における培養液に対する培養反応槽における培養液の培養液容積比を5以上100以下とする。   In the continuous culture apparatus configured as described above, the culture is performed, for example, as follows. That is, culturing microorganisms or cultured cells in the culture reaction tank 1, continuously supplying the culture solution from the culture reaction tank 1 to the membrane separation tank 12, and filtering through the separation membrane 3 to collect products such as lactic acid, In refluxing the unfiltered culture solution that has not been filtered to the culture solution upstream of the membrane separation tank 12, the culture solution volume ratio of the culture solution in the culture reaction tank to the culture solution in the membrane separation tank 12 is 5 or more and 100 or less. To do.

より具体的に説明すると、まず、微生物と培養原料(培地)を培養反応槽1に貯留し、適宜中和剤を添加することによってかかる培養反応槽1の内部をpH4〜8の範囲内に維持するとともに温度20〜50℃の範囲に維持する。これによって、微生物の培養が行われ、その際にアルコール、有機酸、アミノ酸および核酸など、所望する物質(化学品等の生産物)が生産される。   More specifically, first, microorganisms and a culture raw material (medium) are stored in the culture reaction tank 1, and the inside of the culture reaction tank 1 is maintained within a pH range of 4 to 8 by appropriately adding a neutralizing agent. And the temperature is maintained in the range of 20 to 50 ° C. In this way, microorganisms are cultured, and desired substances (products such as chemicals) such as alcohol, organic acid, amino acid and nucleic acid are produced.

この間、連続的に培養が行われ所望する生産物が得られるように、培養に使用される栄養素を含む培地を、培地供給ポンプ8を介して培養反応槽1に連続的または間欠的に供給する。また、培養反応槽1内の培養液を、培養液循環ポンプ5によって、連続的に培養反応槽1と膜分離槽12との間を循環させ、膜分離槽12において、生産物を含む培養液を、分離膜によって微生物と生産物を含む濾液とに濾過・分離する。その結果、生産物を含む濾液は装置系から取り出され、一方濾過・分離された微生物および培養細胞は、培養反応槽1内に留まることから、微生物濃度を高く維持することができ、化学品の生産性が高い培養を可能としている。   During this time, a medium containing nutrients used for the culture is continuously or intermittently supplied to the culture reaction tank 1 via the medium supply pump 8 so that the desired product can be obtained by continuous culture. . In addition, the culture solution in the culture reaction tank 1 is continuously circulated between the culture reaction tank 1 and the membrane separation tank 12 by the culture solution circulation pump 5, and the culture solution containing the product in the membrane separation tank 12. Is separated and separated into a filtrate containing microorganisms and products by a separation membrane. As a result, the filtrate containing the product is removed from the apparatus system, while the filtered and separated microorganisms and cultured cells remain in the culture reaction tank 1, so that the microorganism concentration can be maintained high, Highly productive culture is possible.

培養液中の微生物または培養細胞の濃度は、微生物または培養細胞の増殖が不適切となって死滅する比率が高くならない範囲で、高い状態で維持することが効率よい生産性を得るのに好ましい。一例として、濃度を乾燥重量として5g/L以上に維持することにより良好な生産効率が得られる。   The concentration of the microorganisms or cultured cells in the culture solution is preferably maintained at a high level within a range where the growth rate of the microorganisms or cultured cells is inappropriate and does not increase, so that efficient productivity can be obtained. As an example, good production efficiency can be obtained by maintaining the concentration at 5 g / L or more as the dry weight.

培養液をかかる適切な濃度に維持するためには、必要に応じて培養反応槽内から微生物または培養細胞を引き抜くことも好ましい。そして、培養反応槽内の微生物または培養細胞濃度が高くなりすぎると、分離膜の閉塞が発生しやすくなる場合もあるが、引き抜いて適当な濃度に維持することにより、分離膜の閉塞を回避することもできる。また、培養反応槽内の微生物または培養細胞濃度によって化学品の生産性能が変化することがあるが、生産性能を指標として微生物または培養細胞を引き抜くことで生産性能を維持させることも可能である。   In order to maintain the culture solution at such an appropriate concentration, it is also preferable to pull out microorganisms or cultured cells from the culture reaction tank as necessary. If the concentration of microorganisms or cultured cells in the culture reaction tank becomes too high, clogging of the separation membrane may occur easily. However, the clogging of the separation membrane is avoided by pulling out and maintaining the concentration. You can also. In addition, the production performance of chemicals may change depending on the concentration of microorganisms or cultured cells in the culture reaction tank, but it is also possible to maintain the production performance by extracting microorganisms or cultured cells using the production performance as an index.

また、本発明では、培養初期にBatch培養またはFed−Batch培養を行って微生物または培養細胞の濃度を高くした後に連続培養を開始しても良いし、高濃度の菌体をシードし、培養開始とともに連続培養を行っても良い。   Further, in the present invention, continuous culture may be started after batch culture or fed-batch culture is performed at an early stage of culture to increase the concentration of microorganisms or cultured cells. In addition, continuous culture may be performed.

そして、培養原料の供給および培養液の引き抜きは、適当な時期から行えばよい。すなわち、培養原料の供給と培養液の引き抜きの開始時期は必ずしも同じである必要はない。また、培養原料の供給と培養液の引き抜きは連続的であってもよいし、間欠的であってもよい。分離膜による培養液の濾過・分離は、膜分離槽12の培養液液面と濾液との水頭差圧によって行うことができ、特別な動力は必要ないが、必要に応じて、ポンプによる吸引濾過あるいは気体・液体等で装置系内を加圧することにより濾過・分離することもできる。すなわち、膜間差圧を制御するための手段として、培養液と濾液の液位差を制御する水頭差圧制御装置4や、加圧ポンプまたは/および吸引ポンプを用いることができ、また、気体または液体の圧力によって膜間差圧を制御することができる。これらの手段を適宜併用することにより、長期間安定して培養することが可能となる。   The supply of the culture raw material and the extraction of the culture solution may be performed from an appropriate time. That is, the start timing of supplying the culture raw material and drawing out the culture solution are not necessarily the same. Further, the supply of the culture raw material and the extraction of the culture solution may be continuous or intermittent. Filtration / separation of the culture solution using the separation membrane can be performed by the water head differential pressure between the culture solution liquid surface of the membrane separation tank 12 and the filtrate, and no special power is required. Alternatively, filtration and separation can be performed by pressurizing the inside of the apparatus system with gas, liquid, or the like. That is, as a means for controlling the transmembrane pressure difference, the head differential pressure control device 4 for controlling the liquid level difference between the culture solution and the filtrate, a pressurization pump and / or a suction pump can be used. Alternatively, the transmembrane pressure can be controlled by the liquid pressure. By appropriately using these means together, it becomes possible to culture stably for a long time.

また、必要に応じて、レベルセンサ6および水頭差圧制御装置4によって、分離膜3の濾過速度および培養反応槽内の培養液量を適当に調節することも好ましい。培養反応槽内の培養液量の調節には、培養反応槽内の培養液液位ではなく培養液重量を測定し調節することも可能である。   Moreover, it is also preferable to appropriately adjust the filtration rate of the separation membrane 3 and the amount of the culture solution in the culture reaction tank by the level sensor 6 and the head differential pressure control device 4 as necessary. For adjusting the amount of the culture solution in the culture reaction tank, it is also possible to measure and adjust the weight of the culture solution instead of the culture solution level in the culture reaction vessel.

ここで、微生物もしくは培養細胞の培養液を分離膜で濾過する際の膜間差圧、濾過速度について説明する。膜間差圧と濾過速度は相関関係があり、濾過速度を高くすると膜間差圧も上昇する。すなわち連続培養運転中の膜間差圧を制御することで濾過速度も制御することが可能であるとともに、膜間差圧が重要な運転パラメータである。連続培養運転に於いては、高い膜間差圧、濾過速度条件で運転すれば、目的とする化学品の生産速度向上が可能となる一方で、分離膜の細孔への微生物もしくは培養細胞および培地成分の目詰まりが発生しやすくなり、連続培養運転に不具合が生じる。従って、膜間差圧は、濾過速度が微生物もしくは培養細胞および培地成分が容易に目詰まりしない条件であることが好ましい。具体的には、膜間差圧を0.1kPa以上20kPa以下の範囲にして濾過処理することが好ましく、さらに好ましくは0.1kPa以上10kPa以下の範囲である。上記膜間差圧の範囲を外れた場合、微生物もしくは培養細胞および培地成分の目詰まりが急速に発生し、透過液量の低下を招き、連続培養運転に不具合を生じることがある。   Here, the transmembrane pressure difference and filtration rate when the culture solution of microorganisms or cultured cells is filtered through a separation membrane will be described. There is a correlation between the transmembrane pressure difference and the filtration rate, and the higher the filtration rate, the higher the transmembrane pressure difference. That is, by controlling the transmembrane pressure during continuous culture operation, the filtration rate can be controlled, and the transmembrane pressure is an important operating parameter. In continuous culture operation, if it is operated under high transmembrane pressure and filtration rate conditions, the production rate of the target chemical product can be improved, while microorganisms or cultured cells into the pores of the separation membrane and Clogging of medium components is likely to occur, resulting in problems in continuous culture operation. Therefore, the transmembrane pressure difference is preferably such that the filtration rate is such that microorganisms or cultured cells and medium components are not easily clogged. Specifically, it is preferable to perform filtration treatment with a transmembrane pressure difference in the range of 0.1 kPa to 20 kPa, and more preferably in the range of 0.1 kPa to 10 kPa. When the range of the transmembrane pressure is out of the range, clogging of microorganisms or cultured cells and medium components may occur rapidly, resulting in a decrease in the permeate amount and a problem in continuous culture operation.

なお、本発明において、培養液とは、培養原料に微生物または培養細胞が増殖した結果得られる液のことを言い、培養原料とは、培養する微生物または培養細胞の生育を促し、目的とする生産物である化学品等を良好に生産させ得るものをいう。培養原料の組成は、目的とする化学品の生産性が高くなるように、培養開始時の培養原料組成から適宜変更しても良い。   In the present invention, the culture liquid refers to a liquid obtained as a result of the growth of microorganisms or cultured cells on the culture raw material, and the culture raw material refers to the target production that promotes the growth of the microorganisms or cultured cells to be cultured. It can be used to produce good chemicals. The composition of the culture raw material may be appropriately changed from the culture raw material composition at the start of the culture so that the productivity of the target chemical product is increased.

本発明で使用される微生物や培養細胞としては、例えば、工業的によく使用されるパン酵母などの酵母、大腸菌、コリネ型細菌などのバクテリア、糸状菌、放線菌、動物細胞および昆虫細胞などが挙げられる。使用する微生物や細胞は、自然環境から単離されたものでもよく、また、突然変異や遺伝子組換えによって一部性質が改変されたものであってもよい。これらの微生物や培養細胞のうち、目的とする化学品の生産能力が高いものを選択して用いることが好ましい。なお、本発明においては微生物の培養を「発酵」または「発酵培養」と称することがある。   Examples of microorganisms and cultured cells used in the present invention include yeasts such as baker's yeast, which are often used industrially, bacteria such as Escherichia coli and coryneform bacteria, filamentous fungi, actinomycetes, animal cells and insect cells. Can be mentioned. The microorganisms and cells used may be those isolated from the natural environment, or may be those whose properties have been partially modified by mutation or genetic recombination. Among these microorganisms and cultured cells, it is preferable to select and use those having a high production capacity of the target chemical product. In the present invention, the culture of microorganisms is sometimes referred to as “fermentation” or “fermentation culture”.

培養原料としては、前述の目的を達成し得るものであればよいが、炭素源、窒素源、無機塩類、および必要に応じてアミノ酸、ビタミンなどの有機微量栄養素を適宜含有する通常の液体培地が好ましく用いられる。   The culture raw material may be any material as long as it can achieve the above-mentioned purpose, but a normal liquid medium appropriately containing a carbon source, a nitrogen source, inorganic salts, and if necessary, organic micronutrients such as amino acids and vitamins. Preferably used.

炭素源としては、グルコース、シュークロース、フラクトース、ガラクトースおよびラクトース等の糖類、これら糖類を含有する澱粉糖化液、甘藷糖蜜、甜菜糖蜜、ハイテストモラセス、更には酢酸等の有機酸、エタノールなどのアルコール類、およびグリセリンなども使用される。   Carbon sources include sugars such as glucose, sucrose, fructose, galactose and lactose, starch saccharified liquid containing these sugars, sweet potato molasses, sugar beet molasses, high test molasses, and organic acids such as acetic acid, alcohols such as ethanol And glycerin are also used.

窒素源としては、アンモニアガス、アンモニア水、アンモニウム塩類、尿素、硝酸塩類、その他補助的に使用される有機窒素源、例えば油粕類、大豆加水分解液、カゼイン分解物、その他のアミノ酸、ビタミン類、コーンスティープリカー、酵母または酵母エキス、肉エキス、ペプトン等のペプチド類、各種培養菌体およびその加水分解物などが使用される。   Nitrogen sources include ammonia gas, aqueous ammonia, ammonium salts, urea, nitrates, and other supplementary organic nitrogen sources such as oil cakes, soybean hydrolysates, casein degradation products, other amino acids, vitamins, Corn steep liquor, yeast or yeast extract, meat extract, peptides such as peptone, various cultured cells and hydrolysates thereof are used.

無機塩類としては、リン酸塩、マグネシウム塩、カルシウム塩、鉄塩およびマンガン塩等を適宜添加することができる。微生物が生育のために特定の栄養素を必要とする場合には、その栄養物を標品もしくはそれを含有する天然物として添加することができる。また、消泡剤も必要に応じて使用することができる。   As inorganic salts, phosphates, magnesium salts, calcium salts, iron salts, manganese salts, and the like can be appropriately added. When microorganisms require specific nutrients for growth, the nutrients can be added as preparations or natural products containing them. Moreover, an antifoamer can also be used as needed.

また、培養液は、糖類濃度が5g/l以下に保持されることが好ましい。その理由は、培養液の引き抜きによる糖類の流失を最小限にするためである。微生物または培養細胞の培養は、通常pH4〜8、温度20〜50℃の範囲で行われることが多い。培養液のpHは、無機の酸あるいは有機の酸、アルカリ性物質、さらには尿素、炭酸カルシウムおよびアンモニアガスなどによって、上記範囲内のあらかじめ定められた値に調節することができる。酸素の供給速度を上げる必要があれば、空気に酸素を加えて酸素濃度を21%以上に保つ、あるいは培養を加圧する、攪拌速度を上げる、通気量を上げるなどの手段を用いることができる。   The culture solution is preferably maintained at a saccharide concentration of 5 g / l or less. The reason is to minimize the loss of saccharide due to withdrawal of the culture solution. Culture of microorganisms or cultured cells is usually performed at a pH of 4 to 8 and a temperature of 20 to 50 ° C. The pH of the culture solution can be adjusted to a predetermined value within the above range with an inorganic acid or an organic acid, an alkaline substance, urea, calcium carbonate, ammonia gas, or the like. If it is necessary to increase the oxygen supply rate, means such as adding oxygen to the air to keep the oxygen concentration at 21% or higher, pressurizing the culture, increasing the stirring rate, or increasing the aeration rate can be used.

そして、連続培養操作は、通常、培養管理上単一の培養反応槽で行うことが好ましい。しかしながら、微生物、培養細胞を培養して生産物を生成する連続培養法であれば、培養反応槽の数は問わない。培養反応槽の容量が小さい等の理由から、複数の培養反応槽を用いることも好ましい。この場合、複数の培養反応槽を配管で並列または直列に接続して連続培養を行っても生産物の高生産性は得られる。   And it is preferable to perform a continuous culture operation normally with a single culture reaction tank on culture management. However, the number of culture reaction tanks is not limited as long as it is a continuous culture method in which microorganisms and cultured cells are cultured to produce a product. It is also preferable to use a plurality of culture reaction tanks because the capacity of the culture reaction tank is small. In this case, high productivity of the product can be obtained even if continuous culture is performed by connecting a plurality of culture reaction tanks in parallel or in series by piping.

また本発明では、予め別の培養槽で微生物もしくは培養細胞を培養し、培養されたフレッシュな微生物もしくは培養細胞を含む培養液を培養反応槽に供給し、連続培養することも好ましい。すなわち、別途用意された培養能力が高い状態の微生物もしくは培養細胞を含む培養液を培養反応槽に供給することにより、常に高い化学品の生産性能を維持させることができる。     In the present invention, it is also preferable to culture microorganisms or cultured cells in a separate culture tank in advance, supply a culture solution containing the cultured fresh microorganisms or cultured cells to the culture reaction tank, and continuously culture. That is, by supplying a culture solution containing microorganisms or cultured cells with a high culture capacity prepared separately to the culture reaction tank, it is possible to always maintain high production performance of chemical products.

次に、本発明で用いることができる分離膜について説明する。   Next, the separation membrane that can be used in the present invention will be described.

分離膜としては、被処理液の性状や用途に応じた分離性能と透過性能を有する多孔性膜であることが好ましい。多孔性膜としては、セラミクスなどの無機材料、樹脂などの有機材料を素材とした多孔性膜を用いることが可能であるが、好ましくは多孔質樹脂層を含む多孔性の分離膜であることが好ましい。このような多孔性膜は、多孔質基材の表面に、分離機能層として作用とする多孔質樹脂層を有している。多孔質基材は、多孔質樹脂層を支持して分離膜に強度を与えるものである。   The separation membrane is preferably a porous membrane having separation performance and permeation performance according to the properties of the liquid to be treated and the application. As the porous membrane, a porous membrane made of an inorganic material such as ceramics or an organic material such as resin can be used, but preferably a porous separation membrane including a porous resin layer. preferable. Such a porous membrane has a porous resin layer that acts as a separation functional layer on the surface of the porous substrate. The porous substrate supports the porous resin layer and gives strength to the separation membrane.

多孔質基材の材質は、有機材料および/または無機材料等からなり、中でも有機繊維が望ましく用いられる。好ましい多孔質基材は、セルロース繊維、セルローストリアセテート繊維、ポリエステル繊維、ポリプロピレン繊維およびポリエチレン繊維などの有機繊維を用いてなる織布や不織布等である。中でも、密度の制御が比較的容易であり製造も容易で安価な不織布が好ましく用いられる。   The material of the porous substrate is made of an organic material and / or an inorganic material, and organic fiber is preferably used among them. Preferred porous substrates are woven fabrics and nonwoven fabrics made of organic fibers such as cellulose fibers, cellulose triacetate fibers, polyester fibers, polypropylene fibers and polyethylene fibers. Among them, a nonwoven fabric that is relatively easy to control the density, easy to manufacture, and inexpensive is preferably used.

多孔質樹脂層は、上述したように分離機能層として作用するものであり、有機高分子膜を好適に使用することができる。有機高分子膜の材質としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリ塩化ビニル系樹脂、ポリフッ化ビニリデン系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリアクリロニトリル系樹脂、ポリオレフィン系樹脂、セルロース系樹脂およびセルローストリアセテート系樹脂等が挙げられる。有機高分子膜は、これらの樹脂を主成分とする樹脂の混合物からなるものであってもよい。ここで主成分とは、その成分が50重量%以上、好ましくは60重量%以上含有することをいう。中でも、多孔質樹脂層を構成する膜素材としては、溶液による製膜が容易で物理的耐久性や耐薬品性にも優れているポリ塩化ビニル系樹脂、ポリフッ化ビニリデン系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリアクリロニトリル系樹脂またはポリオレフィン系樹脂が好ましく、ポリフッ化ビニリデン系樹脂またはポリオレフィン系樹脂がより好ましく、ポリフッ化ビニリデン系樹脂またはそれを主成分とする樹脂が最も好ましく用いられる。   As described above, the porous resin layer functions as a separation functional layer, and an organic polymer membrane can be preferably used. Examples of the material of the organic polymer film include polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinylidene fluoride resin, polysulfone resin, polyethersulfone resin, polyacrylonitrile resin, polyolefin resin, Cellulosic resins and cellulose triacetate resins are exemplified. The organic polymer film may be made of a mixture of resins mainly composed of these resins. Here, the main component means that the component is contained in an amount of 50% by weight or more, preferably 60% by weight or more. Among them, as a membrane material constituting the porous resin layer, a polyvinyl chloride resin, a polyvinylidene fluoride resin, a polysulfone resin, which is easy to form a film with a solution and excellent in physical durability and chemical resistance, A polyethersulfone resin, a polyacrylonitrile resin or a polyolefin resin is preferable, a polyvinylidene fluoride resin or a polyolefin resin is more preferable, and a polyvinylidene fluoride resin or a resin containing the same as the main component is most preferably used.

ここで、ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体が好ましいが、フッ化ビニリデンと共重合可能なビニル系単量体との共重合体も好ましく用いられる。フッ化ビニリデンと共重合可能なビニル系単量体としては、テトラフルオロエチレン、ヘキサフルオロプロピレンおよび三塩化フッ化エチレンなどが例示される。また、ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、塩素化ポリエチレンまたは塩素化ポリプロピレンが挙げられるが、塩素化ポリエチレンが好ましく用いられる。   Here, as the polyvinylidene fluoride resin, a homopolymer of vinylidene fluoride is preferable, but a copolymer of a vinyl monomer copolymerizable with vinylidene fluoride is also preferably used. Examples of vinyl monomers copolymerizable with vinylidene fluoride include tetrafluoroethylene, hexafluoropropylene, and ethylene trichloride fluoride. Examples of the polyolefin resin include polyethylene, polypropylene, chlorinated polyethylene, and chlorinated polypropylene, and chlorinated polyethylene is preferably used.

本発明で用いられる多孔性膜の作成法の概要を説明する。まず、前記の多孔質基材の表面に、前記の樹脂と溶媒を含む製膜原液の被膜を形成するとともに、その製膜原液を多孔質基材に含浸させる。その後、被膜を有する多孔質基材の被膜側表面のみを、非溶媒を含む凝固浴と接触させて樹脂を凝固させると共に多孔質基材の表面に多孔質樹脂層を形成する。製膜原液の温度は、製膜性の観点から、通常、15〜120℃の温度の範囲内で選定することが好ましい。   An outline of a method for producing a porous membrane used in the present invention will be described. First, a film of a film-forming stock solution containing the resin and solvent is formed on the surface of the porous base material, and the film-forming stock solution is impregnated into the porous base material. Thereafter, only the coating-side surface of the porous substrate having a coating is brought into contact with a coagulation bath containing a non-solvent to solidify the resin and form a porous resin layer on the surface of the porous substrate. The temperature of the film-forming stock solution is usually preferably selected within a temperature range of 15 to 120 ° C. from the viewpoint of film-forming properties.

ここで、製膜原液には、開孔剤を添加することもできる。開孔剤は、凝固浴に浸漬された際に抽出されて、樹脂層を多孔質にする作用を持つものである。開孔剤を添加することにより、多孔性樹脂層の細孔の平均細孔径の大きさの制御することができる。開孔剤は、凝固浴に浸漬された際に抽出されて、樹脂層を多孔質にする作用を持つものである。開孔剤は、凝固浴への溶解性の高いものであることが好ましい。開孔剤としては、例えば、塩化カルシウムや炭酸カルシウムなどの無機塩を用いることができる。また、開孔剤として、ポリエチレングリコールやポリプロピレングリコールなどのポリオキシアルキレン類や、ポリビニルアルコール、ポリビニルブチラールおよびポリアクリル酸などの水溶性高分子化合物や、グリセリンを用いることができる。   Here, a pore-opening agent may be added to the film-forming stock solution. The pore-opening agent is extracted when immersed in the coagulation bath, and has a function of making the resin layer porous. By adding a pore opening agent, the size of the average pore diameter of the pores of the porous resin layer can be controlled. The pore-opening agent is extracted when immersed in the coagulation bath, and has a function of making the resin layer porous. The pore-opening agent is preferably one having high solubility in the coagulation bath. As the pore opening agent, for example, an inorganic salt such as calcium chloride or calcium carbonate can be used. As the pore opening agent, polyoxyalkylenes such as polyethylene glycol and polypropylene glycol, water-soluble polymer compounds such as polyvinyl alcohol, polyvinyl butyral and polyacrylic acid, and glycerin can be used.

また、溶媒は、樹脂を溶解するものである。溶媒は、樹脂および開孔剤に作用してそれらが多孔質樹脂層を形成するのを促す。このような溶媒としては、N−メチルピロリジノン(NMP)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、アセトンおよびメチルエチルケトンなどを用いることができる。中でも、樹脂の溶解性の高いNMP、DMAc、DMFおよびDMSOが好ましく用いられる。   The solvent dissolves the resin. The solvent acts on the resin and the pore-opening agent to encourage them to form a porous resin layer. As such a solvent, N-methylpyrrolidinone (NMP), N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, methyl ethyl ketone, and the like can be used. . Among these, NMP, DMAc, DMF and DMSO, which have high resin solubility, are preferably used.

さらに、製膜原液には、非溶媒を添加することもできる。非溶媒は、樹脂を溶解しない液体である。非溶媒は、樹脂の凝固の速度を制御して細孔の大きさを制御するように作用する。非溶媒としては、水やメタノールおよびエタノールなどのアルコール類を用いることができる。中でも、価格の点から水やメタノールが好ましい。非溶媒は、これらの混合物であってもよい。   Furthermore, a non-solvent can also be added to the film forming stock solution. The non-solvent is a liquid that does not dissolve the resin. The non-solvent acts to control the pore size by controlling the rate of solidification of the resin. As the non-solvent, water, alcohols such as methanol and ethanol can be used. Among these, water and methanol are preferable from the viewpoint of price. The non-solvent may be a mixture thereof.

本発明で用いられる多孔性膜は、平膜であっても中空糸膜であっても良い。平膜の場合、多孔質樹脂層の平均厚みは用途に応じて選択されるが、好ましくは20μm以上5000μm以下であり、より好ましくは50μm以上2000μm以下の範囲で選択される。   The porous membrane used in the present invention may be a flat membrane or a hollow fiber membrane. In the case of a flat membrane, the average thickness of the porous resin layer is selected according to the use, but is preferably 20 μm or more and 5000 μm or less, more preferably 50 μm or more and 2000 μm or less.

上述のように、本発明で用いられる多孔性膜は、多孔質基材と多孔質樹脂層とから形成されている多孔性膜であることが望ましい。その際、多孔質基材に多孔質樹脂層が浸透していても、多孔質基材に多孔質樹脂層が浸透していなくてもどちらでも良く、用途に応じて選択される。多孔質基材の平均厚みは、好ましくは50μm以上3000μm以下の範囲で選択される。   As described above, the porous film used in the present invention is desirably a porous film formed of a porous substrate and a porous resin layer. At that time, either the porous resin layer permeates the porous base material or the porous resin layer does not permeate the porous base material, and it is selected according to the application. The average thickness of the porous substrate is preferably selected in the range of 50 μm to 3000 μm.

また、多孔性膜が中空糸膜の場合、中空糸の内径は好ましくは200μm以上5000μm以下の範囲で選択され、そのうち多孔質樹脂層の膜厚は好ましくは20μm以上2000μm以下の範囲で選択される。また、有機繊維または無機繊維を筒状にした織物や編物を中空糸の内部に含んでいても良い。   When the porous membrane is a hollow fiber membrane, the inner diameter of the hollow fiber is preferably selected in the range of 200 μm to 5000 μm, and the thickness of the porous resin layer is preferably selected in the range of 20 μm to 2000 μm. . Further, a woven fabric or a knitted fabric in which organic fibers or inorganic fibers are formed in a cylindrical shape may be included in the hollow fiber.

分離膜は平均細孔径が0.01μm以上2μm以下の範囲内にあると、微生物触媒がリークしにくい高い排除率と、高い透過性を両立させることができ、さらに目詰まりをしにくく、透過性を長時間保持することが、より高い精度と再現性を持って実施することができる。微生物として細菌類を用いた場合、分離膜の平均細孔径は、好ましくは0.4μm以下であり、0.2μm未満であればなお好適に実施することが可能である。平均細孔径は、小さすぎると透過液量が低下することがあるので、本発明では、0.01μm以上であり、好ましくは0.02μm以上であり、さらに好ましくは0.04μm以上である。   If the separation membrane has an average pore diameter in the range of 0.01 μm or more and 2 μm or less, it is possible to achieve both a high exclusion rate that prevents the microbial catalyst from leaking and a high permeability, and further, it is difficult to clog and the permeability. Can be carried out with higher accuracy and reproducibility. When bacteria are used as the microorganism, the average pore diameter of the separation membrane is preferably 0.4 μm or less, and can be suitably implemented as long as it is less than 0.2 μm. If the average pore diameter is too small, the amount of permeate may decrease. Therefore, in the present invention, it is 0.01 μm or more, preferably 0.02 μm or more, and more preferably 0.04 μm or more.

ここで、平均細孔径は、倍率10,000倍の走査型電子顕微鏡観察における、9.2μm×10.4μmの範囲内で観察できる細孔すべての直径を測定し、平均することにより求めることができる。   Here, the average pore diameter can be obtained by measuring and averaging the diameters of all pores that can be observed within a range of 9.2 μm × 10.4 μm in a scanning electron microscope observation at a magnification of 10,000 times. it can.

本発明で用いることができる分離膜は、細孔径の標準偏差σが小さいほど、すなわち細孔径の大きさの分布が狭い方が良い。細孔径の大きさの分布を狭くし、標準偏差を0.1μm以下とすることが好ましい。細孔径の標準偏差が小さい、すなわち細孔径の大きさが揃っている方が、均一な特性の透過液を得ることができるとともに、装置の運転管理が容易になる。   The separation membrane that can be used in the present invention is preferably as the standard deviation σ of the pore diameter is smaller, that is, the distribution of the pore diameter is narrower. It is preferable that the pore size distribution is narrowed and the standard deviation is 0.1 μm or less. When the standard deviation of the pore diameter is small, that is, the pore diameters are uniform, a permeate having uniform characteristics can be obtained, and the operation management of the apparatus is facilitated.

細孔径の標準偏差σは、上述の9.2μm×10.4μmの範囲内で観察できる細孔数をNとして、測定した各々の直径をXkとし、細孔直径の平均をX(ave)とした下記の(式1)により算出される。   The standard deviation σ of the pore diameter is the number of pores that can be observed in the above-mentioned range of 9.2 μm × 10.4 μm, N, each measured diameter is Xk, and the average pore diameter is X (ave) The following (Equation 1) is calculated.

Figure 2009296921
Figure 2009296921

本発明で用いられる分離膜においては、化学品を含む反応液の透過性が重要点の一つであり、透過性の指標として、使用前の分離膜の純水透過係数を用いることができる。本発明において、分離膜の純水透過係数は、逆浸透膜による25℃の温度の精製水を用い、ヘッド高さ1mで透水量を測定し算出したとき、1×10−10/m/s/pa以上であることが好ましい。純水透過係数が2×10−9/m/s/pa以上6×10−7/m/s/pa以下であれば、実用的に十分な透過液量が得られる。より好ましい純水透過係数は、2×10−9/m/s/pa以上2×10−7/m/s/pa以下である。 In the separation membrane used in the present invention, the permeability of the reaction solution containing the chemical is one of the important points, and the pure water permeability coefficient of the separation membrane before use can be used as the permeability index. In the present invention, the pure water permeability coefficient of the separation membrane is 1 × 10 −10 m 3 / m when calculated by measuring the water permeability at a head height of 1 m using purified water at a temperature of 25 ° C. by a reverse osmosis membrane. It is preferable that it is 2 / s / pa or more. If the pure water permeability coefficient is 2 × 10 −9 m 3 / m 2 / s / pa or more and 6 × 10 −7 m 3 / m 2 / s / pa or less, a practically sufficient amount of permeate can be obtained. . A more preferable pure water permeability coefficient is 2 × 10 −9 m 3 / m 2 / s / pa or more and 2 × 10 −7 m 3 / m 2 / s / pa or less.

本発明で用いられる分離膜の膜表面粗さは、分離膜の目詰まりに影響を与える因子である。分離膜の膜表面粗さが好ましくは0.1μm以下のときに、分離膜の剥離係数や膜抵抗を好適に低下させることができ、より低い膜間差圧で化学品等の製造が実施可能である。従って、目詰まりを抑えることにより、安定した化学品等の製造が可能になることから、表面粗さは小さければ小さいほど好ましい。   The membrane surface roughness of the separation membrane used in the present invention is a factor that affects the clogging of the separation membrane. When the membrane surface roughness of the separation membrane is preferably 0.1 μm or less, the separation coefficient and membrane resistance of the separation membrane can be suitably reduced, and the production of chemicals and the like can be performed with a lower transmembrane pressure difference. It is. Therefore, by suppressing clogging, it becomes possible to produce a stable chemical product or the like, so that the smaller the surface roughness is, the better.

また、分離膜の膜表面粗さを低くすることにより、微生物触媒の濾過において、膜表面で発生する剪断力を低下させることが期待でき、微生物の破壊が抑制され、分離膜の目詰まりも抑制されることにより、長期間安定な濾過が可能になると考えられる。   In addition, by reducing the membrane surface roughness of the separation membrane, it can be expected that the shearing force generated on the membrane surface will be reduced in the filtration of the microbial catalyst, the destruction of microorganisms is suppressed, and the clogging of the separation membrane is also suppressed. By doing so, it is considered that stable filtration is possible for a long period of time.

ここで、膜表面粗さは、下記の原子間力顕微鏡装置(AFM)を使用して、下記の装置と条件で測定することができる。
・装置:原子間力顕微鏡装置(Digital Instruments(株)製Nanoscope IIIa)
・条件:探針 SiNカンチレバー(Digital Instruments(株)製)
:走査モード コンタクトモード(気中測定)
水中タッピングモード(水中測定)
:走査範囲 10μm、25μm 四方(気中測定)
5μm、10μm 四方(水中測定)
:走査解像度 512×512
・試料調製:測定に際し膜サンプルは、常温でエタノールに15分浸漬後、RO水中に24時間浸漬し洗浄した後、風乾し用いた。RO水とは、ろ過膜の一種である逆浸透膜(RO膜)を用いてろ過し、イオンや塩類などの不純物を排除した水を指す。RO膜の孔の大きさは、概ね2nm以下である。
Here, film | membrane surface roughness can be measured on the following apparatus and conditions using the following atomic force microscope apparatus (AFM).
・ Device: Atomic force microscope device (Nanoscope IIIa manufactured by Digital Instruments)
・ Conditions: Probe SiN cantilever (manufactured by Digital Instruments)
: Scanning mode Contact mode (in-air measurement)
Underwater tapping mode (underwater measurement)
: Scanning range 10μm, 25μm square (measurement in air)
5μm, 10μm square (underwater measurement)
: Scanning resolution 512 × 512
Sample preparation: Membrane samples were immersed in ethanol at room temperature for 15 minutes, then immersed in RO water for 24 hours, washed, and then air-dried. The RO water refers to water that has been filtered using a reverse osmosis membrane (RO membrane), which is a type of filtration membrane, and impurities such as ions and salts are excluded. The pore size of the RO membrane is approximately 2 nm or less.

膜表面粗さdroughは、上記AFMにより各ポイントのZ軸方向の高さから、下記の(式2)により算出する。 Membrane surface roughness d rough from the Z-axis direction of the height of each point by the AFM, is calculated by the following equation (2).

Figure 2009296921
Figure 2009296921

上述のような分離膜は、膜分離槽の形状に合わせて形状を適宜加工して用いることができる。例えば、平膜形態の分離膜を別に用意された支持体と組み合わせることによって分離膜エレメントとすることができる。支持板の少なくとも片面に(膜面積を大きくすることが困難であったり透過性を高めるためには支持板の両面に)、分離膜を配したこの分離膜エレメントは、本発明における分離膜の好適な使用形態の一つであり、このような分離膜エレメントが膜分離槽に設置される。以下、図面を用いてその概略を説明する。   The separation membrane as described above can be used by appropriately processing the shape according to the shape of the membrane separation tank. For example, a separation membrane element can be obtained by combining a separation membrane in the form of a flat membrane with a support prepared separately. This separation membrane element in which a separation membrane is disposed on at least one side of the support plate (on both sides of the support plate in order to increase the membrane area is difficult or to increase permeability) is suitable for the separation membrane in the present invention. Such a separation membrane element is installed in a membrane separation tank. Hereinafter, the outline will be described with reference to the drawings.

図2は、本発明で用いられる分離膜エレメントの一つの実施の形態を説明するための概略斜視図である。分離膜エレメントは、図2に示すように、剛性を有する支持板13の両面に、流路材14と分離膜15とをこの順序で配し構成されている。支持板13は、両面に凹部16を有している。分離膜15は培養液を濾過する。流路材14は、分離膜15で濾過された透過液を効率よく支持板13に流すためのものである。支持板13に流れた生産物を含む透過液は、支持板13の凹部16を通り、排出手段である集液パイプ17を経て連続培養装置外部に取り出される。ここで、水頭差圧をはじめとして、ポンプ、液体や気体等による吸引濾過、あるいは装置系内を加圧するなどの方法を、透過液を取り出すための動力として用いることができる。
また、分離膜が中空糸膜の場合、図3に示すような、別の形態の分離膜エレメントに加工される。図3は、分離膜エレメントの概略斜視図であって、主に支持板13と、中空糸形態の分離膜15と、上部樹脂封止層18および下部樹脂封止層19とによって構成される。分離膜15は、上部樹脂封止層18および下部樹脂封止層19よって束状にかつ支持板13に接着・固定化されている。下部樹脂封止層19による接着・固定化は、中空糸形態の分離膜15の中空部を封止しており、培養液の漏出を防ぐ構造になっている。一方、上部樹脂封止層18は、中空糸形態分離膜15の中空部を封止しておらず、中空部と集液パイプ17とが連通している。この分離膜エレメントは、支持板13を介して連続培養装置内に設置することが可能である。分離膜15によって濾過された透過液は、中空糸膜の中空部を通り、集液パイプ17を介して連続培養装置外部に取り出される。透過液を取り出すための動力としては、水頭差圧、ポンプ、液体や気体等による吸引濾過、あるいは装置系内を加圧するなどの方法を用いることができる。
FIG. 2 is a schematic perspective view for explaining one embodiment of a separation membrane element used in the present invention. As shown in FIG. 2, the separation membrane element is configured by arranging a flow path material 14 and a separation membrane 15 in this order on both surfaces of a rigid support plate 13. The support plate 13 has recesses 16 on both sides. The separation membrane 15 filters the culture solution. The flow path member 14 is for efficiently flowing the permeate filtered through the separation membrane 15 to the support plate 13. The permeate containing the product that has flowed to the support plate 13 passes through the recess 16 of the support plate 13 and is taken out of the continuous culture apparatus via the liquid collection pipe 17 that is a discharge means. Here, a method such as pumping, suction filtration with a liquid or gas, or pressurizing the inside of the system can be used as power for extracting the permeated liquid, including the differential pressure of the head.
When the separation membrane is a hollow fiber membrane, it is processed into a separation membrane element of another form as shown in FIG. FIG. 3 is a schematic perspective view of the separation membrane element, which is mainly composed of a support plate 13, a hollow fiber-shaped separation membrane 15, an upper resin sealing layer 18 and a lower resin sealing layer 19. The separation membrane 15 is bonded and fixed to the support plate 13 in a bundle by an upper resin sealing layer 18 and a lower resin sealing layer 19. Adhesion / fixation by the lower resin sealing layer 19 has a structure in which the hollow portion of the separation membrane 15 in the form of a hollow fiber is sealed to prevent leakage of the culture solution. On the other hand, the upper resin sealing layer 18 does not seal the hollow portion of the hollow fiber form separation membrane 15, and the hollow portion and the liquid collection pipe 17 communicate with each other. This separation membrane element can be installed in the continuous culture apparatus via the support plate 13. The permeate filtered by the separation membrane 15 passes through the hollow portion of the hollow fiber membrane and is taken out to the outside of the continuous culture apparatus via the liquid collection pipe 17. As the power for taking out the permeated liquid, a method such as a water head differential pressure, a pump, suction filtration with a liquid or gas, or pressurization in the apparatus system can be used.

分離膜を備えた膜分離槽12は、高圧蒸気滅菌可能なことが望ましく、このようにすることにより雑菌からの汚染回避を可能となる。本発明の高圧蒸気滅菌とは、蒸気によって膜分離槽を加熱・加圧することによって槽内に存在する微生物もしくは培養細胞を滅菌させることである。加熱・加圧条件としては例えば121.1℃、蒸気圧1気圧の条件で20分以上加圧・加温することが好ましい。従って、本発明の連続培養装置の膜分離槽12、および該膜分離槽12に配設される分離膜、エレメント構成部材には、かかる条件での高圧蒸気滅菌操作に耐性のある部材を用いることが好ましい。これにより分離膜エレメントを含む培養反応槽内を滅菌可能とすることができる。培養反応槽内が滅菌可能であれば、連続培養時に好ましくない微生物による汚染の危険を回避でき、安定した連続培養が可能となる。   The membrane separation tank 12 provided with the separation membrane is desirably capable of high-pressure steam sterilization, and in this way, contamination from various germs can be avoided. The high-pressure steam sterilization of the present invention is to sterilize microorganisms or cultured cells present in the tank by heating and pressurizing the membrane separation tank with steam. As heating and pressurizing conditions, for example, it is preferable to pressurize and warm for 20 minutes or more under conditions of 121.1 ° C. and a vapor pressure of 1 atm. Therefore, the membrane separation tank 12 of the continuous culture apparatus of the present invention, the separation membrane disposed in the membrane separation tank 12, and the element constituent members should be members resistant to high-pressure steam sterilization operation under such conditions. Is preferred. Thereby, the inside of the culture reaction tank containing the separation membrane element can be sterilized. If the inside of the culture reaction vessel can be sterilized, it is possible to avoid the risk of contamination by undesirable microorganisms during continuous culture, and stable continuous culture is possible.

分離膜エレメントを構成する分離膜ならびに支持板等の部材は、高圧蒸気滅菌操作の条件である例えば121.1℃、蒸気圧1気圧の条件で20分以上という条件に耐性であれば、分離膜ならびにエレメント構成部材の種類は特に限定されない。かかる耐性を有する分離膜の素材としては上述の多孔性膜の素材を用いることが可能である。また、支持板等のエレメント構成部材としては、例えば、ステンレスやアルミニウムなどの金属、あるいはポリアミド系樹脂、フッ素系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂、ポリブチレンテレフタレート系樹脂、PVDF、変性ポリフェニレンエーテル系樹脂およびポリサルホン系樹脂等を好ましく選定することができる。   If the separation membrane element and the support plate constituting the separation membrane element are resistant to the conditions of high-pressure steam sterilization operation, such as 121.1 ° C. and a vapor pressure of 1 atm for 20 minutes or more, the separation membrane In addition, the type of element constituent member is not particularly limited. As the material of the separation membrane having such resistance, the above-mentioned porous membrane material can be used. In addition, as an element constituent member such as a support plate, for example, a metal such as stainless steel or aluminum, or polyamide resin, fluorine resin, polycarbonate resin, polyacetal resin, polybutylene terephthalate resin, PVDF, modified polyphenylene ether Resins and polysulfone resins can be preferably selected.

本発明の連続培養装置で製造される化学品は、上記の微生物や培養細胞が培養液中に生産する物質であれば特に制限はないが、例えば、アルコール、有機酸、アミノ酸および核酸など工業的に大量生産されている物質を挙げることができる。アルコールとしては、例えば、エタノール、1,3−プロパンジオール、1,4−ブタンジオールおよびグリセロールなどが挙げられる。また有機酸としては、例えば、酢酸、乳酸、ピルビン酸、コハク酸、リンゴ酸、イタコン酸、クエン酸が挙げられ、核酸としては、イノシンやグアノシンなどのヌクレオシド、イノシン酸、グアニル酸などのヌクレオチドが挙げられる。また、化学品のその他の例としては、カダベリンなどのジアミン化合物、抗生物質、酵素、組換えタンパク質が挙げられる。本発明の連続培養装置を用いることにより、上記化学品の高い生産性を得ることができる。   The chemical product produced by the continuous culture apparatus of the present invention is not particularly limited as long as it is a substance produced by the microorganism or cultured cell in the culture solution. For example, industrial products such as alcohol, organic acid, amino acid, and nucleic acid are used. Can be mentioned in mass production. Examples of the alcohol include ethanol, 1,3-propanediol, 1,4-butanediol, and glycerol. Examples of organic acids include acetic acid, lactic acid, pyruvic acid, succinic acid, malic acid, itaconic acid, and citric acid, and examples of nucleic acids include nucleosides such as inosine and guanosine, and nucleotides such as inosinic acid and guanylic acid. Can be mentioned. Other examples of chemicals include diamine compounds such as cadaverine, antibiotics, enzymes, and recombinant proteins. By using the continuous culture apparatus of the present invention, high productivity of the chemical product can be obtained.

ここで、連続培養における生産速度は、次の式(3)で計算される。   Here, the production rate in continuous culture is calculated by the following equation (3).

Figure 2009296921
Figure 2009296921

また、バッチ培養での化学品の生産速度は、原料炭素源をすべて消費した時点の生産物量(g)を、炭素源の消費に要した時間(h)とその時点の培養液量(L)で除して求められる。   In addition, the production rate of chemicals in batch culture is determined by determining the amount of product (g) at the time of consumption of the raw carbon source, the time (h) required for consumption of the carbon source, and the amount of culture solution (L) at that time. It is obtained by dividing by.

以下、本発明の連続培養装置を、実施例を挙げて詳細に説明する。具体的には、化学品としてL−乳酸、微生物もしくは培養細胞にL―乳酸生産能力を持つ酵母(参考例1)、分離膜に多孔性膜(参考例2:平膜、参考例3:中空糸膜)を選定し、図1に示す連続培養装置を用い、連続培養装置の膜分離槽に対する培養反応槽の培養液容積比を5から100の範囲で変化させた連続的な化学品の製造について、実施例を挙げて説明する。   Hereinafter, the continuous culture apparatus of the present invention will be described in detail with reference to examples. Specifically, L-lactic acid as a chemical, yeast having a L-lactic acid production ability in microorganisms or cultured cells (Reference Example 1), and a porous membrane as a separation membrane (Reference Example 2: flat membrane, Reference Example 3: hollow) 1 is selected, and the continuous culture apparatus shown in FIG. 1 is used to produce a continuous chemical product in which the culture liquid volume ratio of the culture reaction tank to the membrane separation tank of the continuous culture apparatus is changed in the range of 5 to 100 Will be described with reference to examples.

(参考例1)乳酸生産能力を持つ酵母株(SW−1株)の作製
乳酸生産能力を持つ酵母株を、下記のように造成した。具体的には、ヒト由来LDH遺伝子を酵母ゲノム上のPDC1プロモーターの下流に連結することにより、L−乳酸生産能力を持つ酵母株を造成する。ポリメラーゼ・チェーン・リアクション(PCR)には、La−Taq(宝酒造社製)あるいはKOD-Plus-polymerase(東洋紡社製)を用い、付属の取扱説明に従って行った。
(Reference Example 1) Production of Yeast Strain with Lactic Acid Production Capacity (SW-1 Strain) A yeast strain with lactic acid production capacity was constructed as follows. Specifically, a yeast strain capable of producing L-lactic acid is constructed by linking a human-derived LDH gene downstream of the PDC1 promoter on the yeast genome. For polymerase chain reaction (PCR), La-Taq (manufactured by Takara Shuzo) or KOD-Plus-polymerase (manufactured by Toyobo) was used according to the attached instruction manual.

ヒト乳ガン株化細胞(MCF−7)を培養回収後、TRIZOL Reagent(Invitrogen)を用いてtotal RNAを抽出し、得られたtotal RNAを鋳型としてSuperScript Choice System(Invitrogen)を用いた逆転写反応によりcDNAの合成を行った。これらの操作の詳細は、それぞれ付属のプロトコールに従った。得られたcDNAを、続くPCRの増幅鋳型とした。   After culturing and recovering human breast cancer cell lines (MCF-7), total RNA was extracted using TRIZOL Reagent (Invitrogen), and reverse transcription using SuperScript Choice System (Invitrogen) was performed using the obtained total RNA as a template. cDNA synthesis was performed. Details of these operations followed the attached protocol. The obtained cDNA was used as an amplification template for subsequent PCR.

上記の操作で得られたcDNAを増幅鋳型とし、配列番号1および配列番号2で表されるオリゴヌクレオチドをプライマーセットとしたKOD-Plus-polymeraseによるPCRによりL−ldh遺伝子のクローニングを行った。各PCR増幅断片を精製し末端をT4 Polynucleotide Kinase(TAKARA社製)によりリン酸化後、pUC118ベクター(制限酵素HincIIで切断し、切断面を脱リン酸化処理したもの)にライゲーションした。ライゲーションは、DNA Ligation Kit Ver.2(TAKARA社製)を用いて行った。ライゲーションプラスミド産物で大腸菌DH5αを形質転換し、プラスミドDNAを回収することにより、各種L−ldh遺伝子(配列番号3)がサブクローニングされたプラスミドを得た。得られたL−ldh遺伝子が挿入されたpUC118プラスミドを制限酵素XhoIおよびNotIで消化し、得られたDNA断片を酵母発現用ベクターpTRS11(図4)のXhoI/NotI切断部位に挿入した。このようにして、ヒト由来L−ldh遺伝子発現プラスミドpL−ldh5を得た。ヒト由来のL−ldh遺伝子発現ベクターである上記pL−ldh5は、プラスミド単独で独立行政法人産業技術総合研究所 特許生物寄託センター(茨城県つくば市東1−1−1中央第6)にFERM AP−20421として寄託した(寄託日:平成17年2月21日)。   The L-ldh gene was cloned by PCR using KOD-Plus-polymerase using the cDNA obtained by the above operation as an amplification template and the oligonucleotides represented by SEQ ID NO: 1 and SEQ ID NO: 2 as a primer set. Each PCR amplified fragment was purified and the end was phosphorylated with T4 Polynucleotide Kinase (manufactured by TAKARA), and then ligated to a pUC118 vector (cut with the restriction enzyme HincII and the cut surface was dephosphorylated). Ligation was performed using DNA Ligation Kit Ver.2 (manufactured by TAKARA). Escherichia coli DH5α was transformed with the ligation plasmid product, and the plasmid DNA was recovered to obtain a plasmid in which various L-ldh genes (SEQ ID NO: 3) were subcloned. The obtained pUC118 plasmid into which the L-ldh gene was inserted was digested with restriction enzymes XhoI and NotI, and the resulting DNA fragment was inserted into the XhoI / NotI cleavage site of the yeast expression vector pTRS11 (FIG. 4). Thus, a human-derived L-ldh gene expression plasmid pL-ldh5 was obtained. The above-mentioned pL-ldh5, which is a human-derived L-ldh gene expression vector, is FERM AP- in the independent biological corporation National Institute of Advanced Industrial Science and Technology Patent Biology Depositary Center (1-1-1, Chuo 6-1-1, Tsukuba, Ibaraki). Deposited as 20421 (Deposit date: February 21, 2005).

ヒト由来LDH遺伝子を含むプラスミドpL−ldh5を増幅鋳型とし、配列番号4および配列番号5で表されるオリゴヌクレオチドをプライマーセットとしたPCRにより、1.3kbのヒト由来LDH遺伝子、及びサッカロミセス・セレビセ由来のTDH3遺伝子のターミネーター配列含むDNA断片を増幅した。また、プラスミドpRS424を増幅鋳型として、配列番号6および配列番号7で表されるオリゴヌクレオチドをプライマーセットとしたPCRにより、1.2kbのサッカロミセス・セレビセ由来のTRP1遺伝子を含むDNA断片を増幅した。それぞれのDNA断片を、1.5%アガロースゲル電気泳動により分離し、常法に従い精製した。ここで得られた1.3kb断片と1.2kb断片を混合したものを増幅鋳型とし、配列番号4および配列番号7で表されるオリゴヌクレオチドをプライマーセットとしたPCR法によって得られた産物を1.5%アガロースゲル電気泳動して、ヒト由来LDH遺伝子およびTRP1遺伝子が連結された2.5kbのDNA断片を、常法に従い調整した。この2.5kbのDNA断片で、出芽酵母NBRC10505株を常法に従いトリプトファン非要求性に形質転換した。   By PCR using the plasmid pL-ldh5 containing the human-derived LDH gene as an amplification template and the oligonucleotides represented by SEQ ID NO: 4 and SEQ ID NO: 5 as primer sets, the human-derived LDH gene of 1.3 kb and Saccharomyces cerevisiae are derived. A DNA fragment containing the terminator sequence of the TDH3 gene was amplified. In addition, a DNA fragment containing the TRP1 gene derived from Saccharomyces cerevisiae of 1.2 kb was amplified by PCR using the plasmid pRS424 as an amplification template and the oligonucleotides represented by SEQ ID NO: 6 and SEQ ID NO: 7 as a primer set. Each DNA fragment was separated by 1.5% agarose gel electrophoresis and purified according to a conventional method. A product obtained by PCR using a mixture of the 1.3 kb fragment and the 1.2 kb fragment obtained here as an amplification template and the oligonucleotides represented by SEQ ID NO: 4 and SEQ ID NO: 7 as a primer set was obtained as 1 A 2.5 kb DNA fragment to which the human-derived LDH gene and TRP1 gene were linked was prepared according to a conventional method by electrophoresis on 5% agarose gel. With this 2.5 kb DNA fragment, the budding yeast strain NBRC10505 was transformed to tryptophan non-requirement according to a conventional method.

得られた形質転換細胞が、ヒト由来LDH遺伝子を酵母ゲノム上のPDC1プロモーターの下流に連結されている細胞であることの確認は、下記のようにして行った。まず、形質転換細胞のゲノムDNAを常法に従って調製し、これを増幅鋳型とした配列番号8および配列番号9で表されるオリゴヌクレオチドをプライマーセットとしたPCRにより0.7kbの増幅DNA断片が得られることにより確認した。また、形質転換細胞が乳酸生産能力を持つかどうかは、SC培地(METHODS IN YEAST GENETICS 2000 EDITION、 CSHL PRESS)で形質転換細胞を培養した培養上澄に乳酸が含まれていることを、下記に示す条件でHPLC法により乳酸量を測定することにより確認した。   Confirmation that the obtained transformed cells were cells in which the human-derived LDH gene was linked downstream of the PDC1 promoter on the yeast genome was performed as follows. First, genomic DNA of a transformed cell was prepared according to a conventional method, and a 0.7 kb amplified DNA fragment was obtained by PCR using the oligonucleotides represented by SEQ ID NO: 8 and SEQ ID NO: 9 as a primer set. Confirmed by In addition, whether or not the transformed cells have lactic acid production ability is determined by the fact that lactic acid is contained in the culture supernatant obtained by culturing the transformed cells in SC medium (METHODS IN YEAS GENETIC 2000 EDITION, CSHL PRESS). It confirmed by measuring the amount of lactic acid by HPLC method on the conditions shown.

・カラム:Shim-Pack SPR-H(島津社製)
・移動相:5mM p−トルエンスルホン酸(流速0.8mL/min)
・反応液:5mM p−トルエンスルホン酸、20mM ビストリス、0.1mM EDTA・2Na(流速0.8mL/min)
・検出方法:電気伝導度
・温度:45℃。
・ Column: Shim-Pack SPR-H (manufactured by Shimadzu Corporation)
-Mobile phase: 5 mM p-toluenesulfonic acid (flow rate 0.8 mL / min)
Reaction solution: 5 mM p-toluenesulfonic acid, 20 mM Bistris, 0.1 mM EDTA · 2Na (flow rate 0.8 mL / min)
Detection method: electrical conductivity Temperature: 45 ° C.

また、L−乳酸の光学純度測定は以下の条件でHPLC法により測定した。   The optical purity of L-lactic acid was measured by the HPLC method under the following conditions.

・カラム:TSK-gel Enantio L1(東ソー社製)
・移動相:1mM 硫酸銅水溶液
・流速:1.0ml/min
・検出方法:UV254nm
・温度:30℃。
・ Column: TSK-gel Enantio L1 (manufactured by Tosoh Corporation)
・ Mobile phase: 1 mM copper sulfate aqueous solution ・ Flow rate: 1.0 ml / min
・ Detection method: UV254nm
-Temperature: 30 degreeC.

また、L−乳酸の光学純度は次式で計算される。   Moreover, the optical purity of L-lactic acid is calculated by the following formula.

・光学純度(%)=100×(L−D)/(L+D)
ここで、LはL−乳酸の濃度を表し、DはD−乳酸の濃度を表す。
Optical purity (%) = 100 × (LD) / (L + D)
Here, L represents the concentration of L-lactic acid, and D represents the concentration of D-lactic acid.

HPLC分析の結果、4g/LのL−乳酸が検出され、D−乳酸は検出限界以下であった。以上の検討により、この形質転換体がL−乳酸生産能力を持つことが確認された。得られた形質転換細胞を、酵母SW−1株として、実施例に用いた。   As a result of HPLC analysis, 4 g / L of L-lactic acid was detected, and D-lactic acid was below the detection limit. From the above examination, it was confirmed that this transformant has L-lactic acid production ability. The obtained transformed cells were used in Examples as yeast strain SW-1.

(参考例2)多孔性平膜の作製(その1)
樹脂としてポリフッ化ビニリデン(PVDF)樹脂を、また溶媒としてN,N−ジメチルアセトアミド(DMAc)をそれぞれ用い、これらを90℃の温度下に十分に攪拌し、次の組成の原液を得た。
(Reference Example 2) Production of porous flat membrane (Part 1)
Polyvinylidene fluoride (PVDF) resin was used as a resin and N, N-dimethylacetamide (DMAc) was used as a solvent, respectively, and these were sufficiently stirred at a temperature of 90 ° C. to obtain a stock solution having the following composition.

・PVDF:13.0重量%
・DMAc:87.0重量%
次に、上記原液を25℃の温度に冷却した後、あらかじめガラス板上に貼り付けて置いた、密度が0.48g/cm3で、厚みが220μmのポリエステル繊維製不織布(多孔質基材)に塗布し、直ちに次の組成を有する25℃の温度の凝固浴中に5分間浸漬して、多孔質基材に多孔質樹脂層が形成された多孔質性膜を得た。
・ PVDF: 13.0% by weight
DMAc: 87.0% by weight
Next, after the stock solution is cooled to a temperature of 25 ° C., a non-woven fabric made of polyester fiber (porous substrate) having a density of 0.48 g / cm 3 and a thickness of 220 μm, which is previously pasted on a glass plate. And immediately immersed in a coagulation bath at 25 ° C. having the following composition for 5 minutes to obtain a porous film having a porous resin layer formed on a porous substrate.

・水:30.0重量%
・DMAc:70.0重量%。
・ Water: 30.0% by weight
DMAc: 70.0% by weight.

この多孔質性膜をガラス板から剥がした後、80℃の温度の熱水に3回浸漬してDMAcを洗い出し、分離膜(多孔性膜)を得た。多孔質樹脂層表面の9.2μm×10.4μmの範囲内を、倍率10,000倍で走査型電子顕微鏡観察を行ったところ、観察できる細孔すべての直径の平均は0.1μmであった。次に、上記の分離膜について純水透過係数を評価したところ、50×10-93/m2・s・Paであった。純水透水量の測定は、逆浸透膜による25℃の温度の精製水を用い、ヘッド高さ1mで行った。また、細孔径の標準偏差 は0.035μmで、膜表面粗さは0.06μmであった。 The porous membrane was peeled off from the glass plate and then immersed in hot water at a temperature of 80 ° C. three times to wash out DMAc to obtain a separation membrane (porous membrane). When the surface of the porous resin layer was observed with a scanning electron microscope at a magnification of 10,000 within the range of 9.2 μm × 10.4 μm, the average diameter of all observable pores was 0.1 μm. . Next, when the pure water permeability coefficient of the separation membrane was evaluated, it was 50 × 10 −9 m 3 / m 2 · s · Pa. The pure water permeation amount was measured using purified water at a temperature of 25 ° C. by a reverse osmosis membrane at a head height of 1 m. The standard deviation of the pore diameter was 0.035 μm, and the membrane surface roughness was 0.06 μm.

(参考例3)多孔性中空糸膜の作製
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ-ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解し原液を作製した。この原液をγ-ブチロラクトンを中空部形成液体として随拌させながら口金から吐出し、温度20℃のγ-ブチロラクトン80重量%水溶液からなる冷却浴中で固化して中空糸膜を作製した。
Reference Example 3 Production of Porous Hollow Fiber Membrane A vinylidene fluoride homopolymer having a weight average molecular weight of 417,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. Stock solutions were made. This stock solution was discharged from the base while stirring γ-butyrolactone as a hollow portion forming liquid, and solidified in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to produce a hollow fiber membrane.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテートプロピオネート(イーストマンケミカル社、CAP482−0.5)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して原液を調整した。この原液を、上記で得られた中空糸膜の表面に均一に塗布し、すぐに水浴中で凝固させた本発明で用いる多孔性中空糸膜を製作した。得られた多孔性中空糸膜の被処理水側表面の平均細孔径は、0.05μmであった。次に、上記の分離膜である多孔性中空糸膜について純水透水量を評価したところ、5.5×10-93/m2・s・Paであった。透過液量の測定は、逆浸透膜による25℃の温度の精製水を用い、ヘッド高さ1mで行った。また、細孔径の標準偏差 は0.006μmであった。 Next, 14% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate propionate (Eastman Chemical Co., CAP482-0.5), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (Sanyo Kasei Co., Ltd., trade name Ionette T-20C) was mixed and dissolved at a temperature of 95 ° C. at a rate of 5% by weight and 3% by weight of water to prepare a stock solution. . This stock solution was uniformly applied to the surface of the hollow fiber membrane obtained above, and a porous hollow fiber membrane used in the present invention was immediately solidified in a water bath. The average pore diameter of the surface of the treated water side of the obtained porous hollow fiber membrane was 0.05 μm. Next, the pure water permeation rate of the porous hollow fiber membrane as the separation membrane was evaluated and found to be 5.5 × 10 −9 m 3 / m 2 · s · Pa. The amount of permeated liquid was measured using purified water at a temperature of 25 ° C. by a reverse osmosis membrane at a head height of 1 m. The standard deviation of the pore diameter was 0.006 μm.

(実施例1)連続培養によるL−乳酸の製造(その1)
酵母SW−1株、図1の概要図に示した連続培養装置、表1に示す組成の乳酸生産培地を用い、連続培養を行うことによるL−乳酸の製造を行った。実施例1では2L容の培養反応槽、150ml容の膜分離槽を用い、分離膜エレメントには参考例2で作製した多孔性平膜を装着した図2に示す分離膜エレメントを用いた。
Example 1 Production of L-lactic acid by continuous culture (Part 1)
Using the yeast SW-1 strain, the continuous culture apparatus shown in the schematic diagram of FIG. 1, and the lactic acid production medium having the composition shown in Table 1, L-lactic acid was produced by continuous culture. In Example 1, a 2 L culture reaction tank and a 150 ml membrane separation tank were used, and the separation membrane element shown in FIG. 2 equipped with the porous flat membrane prepared in Reference Example 2 was used as the separation membrane element.

なお、培養運転時に培養反応槽ならびに膜分離槽に満たされる培養液量をそれぞれ1.5L、100mL(培養液容積比15)とし、連続培養装置内(配管内は除く)の培養液量が1.6Lとなるように連続培養を行った。乳酸生産培地は、121℃の温度で15分間、高圧蒸気滅菌して用いた。分離膜エレメントの基材部材には、ステンレスおよびポリサルホン樹脂の成型品を用いた。   Note that the amount of the culture solution filled in the culture reaction tank and the membrane separation tank during the culture operation is 1.5 L and 100 mL (culture solution volume ratio 15), respectively, and the amount of the culture solution in the continuous culture apparatus (excluding the inside of the pipe) is 1. Continuous culture was performed to obtain 6 L. The lactic acid production medium was used after autoclaving at 121 ° C. for 15 minutes. For the base member of the separation membrane element, a molded product of stainless steel and polysulfone resin was used.

また、実施例1における運転条件は、下記のとおりとした。
・培養反応槽容量:2(L)(運転時培養液量として1.5L)
・膜分離槽容量:150(mL)(運転時培養液量として100mL)
・使用分離膜:平膜(参考例2参照)
・膜分離エレメント有効濾過面積:120平方cm
・温度調整:30(℃)
・培養反応槽通気量:0.05(L/min)
・培養反応槽攪拌速度:100(rpm)
・pH調整:1N NaOHによりpH5に調整
・乳酸生産培地供給速度:50〜300ml/hr.の範囲で可変制御
・培養液循ポンプによる循環液量:0.1(L/min)
・膜透過液量制御:膜間差圧による流量制御
(連続培養開始後〜100時間:膜間差圧0.1kPa以上5kPa以下で制御
100時間〜200時間:膜間差圧0.1kPa以上2kPa以下で制御
200時間〜300時間:膜間差圧0.1kPa以上20kPa以下で制御)
より具体的には、まず、試験管中で5mlの乳酸生産培地を用いSW−1株を一晩振とう培養した(前々々培養)。得られた培養液を新鮮な乳酸生産培地100mlに植菌し、500ml容坂口フラスコ中で24時間、30℃の温度で振とう培養した(前々培養)。前々培養液を、図1に示した膜分離型連続培養装置の1.5Lの乳酸生産培地に植菌し、培養反応槽1を付属の攪拌機2によって400rpmで攪拌し、培養反応槽1の通気量の調整、温度調整およびpH調整を行いながら、培養液循環ポンプ5を稼働させることなく、24時間培養を行った(前培養)。前培養完了後直ちに、培養液循環ポンプ5を稼働させた。前培養時の運転条件に加え、培地の連続供給を行い、連続培養装置における全培養液量が2Lとなるように膜透過液量の制御を行いながら連続培養し、連続培養によるL−乳酸の製造を行った。
The operating conditions in Example 1 were as follows.
-Culture reactor capacity: 2 (L) (1.5 L as the culture volume during operation)
・ Membrane separation tank capacity: 150 (mL) (100 mL as culture volume during operation)
-Separation membrane used: flat membrane (see Reference Example 2)
・ Membrane separation element effective filtration area: 120 square cm
・ Temperature adjustment: 30 (℃)
-Aeration volume of culture reaction tank: 0.05 (L / min)
-Stirring speed of culture reaction tank: 100 (rpm)
-PH adjustment: adjusted to pH 5 with 1N NaOH-Lactic acid production medium supply rate: 50-300 ml / hr. Circulated fluid volume with variable control and culture fluid circulation pump in the range: 0.1 (L / min)
-Membrane permeate volume control: flow rate control by transmembrane differential pressure (after continuous culture up to 100 hours: controlled at transmembrane differential pressure of 0.1 kPa to 5 kPa 100 hours to 200 hours: transmembrane differential pressure of 0.1 kPa to 2 kPa Control at 200 hours to 300 hours: Control at a transmembrane pressure difference of 0.1 kPa to 20 kPa)
More specifically, first, the SW-1 strain was cultured with shaking overnight in a test tube using 5 ml of lactic acid production medium (pre-culture). The obtained culture solution was inoculated into 100 ml of a fresh lactic acid production medium, and cultured with shaking at a temperature of 30 ° C. for 24 hours in a 500 ml Sakaguchi flask (pre-culture). The culture solution was inoculated in a 1.5 L lactic acid production medium of the membrane separation type continuous culture apparatus shown in FIG. 1 and the culture reaction tank 1 was stirred at 400 rpm by the attached stirrer 2. While adjusting the aeration amount, adjusting the temperature, and adjusting the pH, the culture medium circulation pump 5 was operated and the culture was performed for 24 hours (pre-culture). Immediately after completion of the preculture, the culture medium circulation pump 5 was operated. In addition to the operating conditions at the time of pre-culture, the medium is continuously supplied, and the continuous culture is performed while controlling the amount of the membrane permeate so that the total culture volume in the continuous culture apparatus is 2 L. Manufactured.

連続培養を行うときの膜透過液量の制御は、水頭差圧制御装置4により水頭差を膜間差圧として測定し、上記の膜透過液量制御条件で変化させることで行った。連続培養の期間中の膜間差圧は、結果的に2kPa以下で推移した。適宜、膜透過培養液中の生産されたL−乳酸濃度および残存グルコース濃度を測定した。なお、L−乳酸の濃度の評価には参考例1に示したHPLCを用い、グルコース濃度の測定には“グルコーステストワコーC”(登録商標)(和光純薬社製)を用いた。   Control of the amount of membrane permeate when performing continuous culture was performed by measuring the head differential as the transmembrane differential pressure with the head differential pressure controller 4 and changing it under the above-mentioned membrane permeate control conditions. As a result, the transmembrane pressure difference during the continuous culture was maintained at 2 kPa or less. The produced L-lactic acid concentration and residual glucose concentration in the membrane permeation culture solution were measured as appropriate. The HPLC shown in Reference Example 1 was used for evaluation of the concentration of L-lactic acid, and “Glucose Test Wako C” (registered trademark) (manufactured by Wako Pure Chemical Industries, Ltd.) was used for measurement of the glucose concentration.

以上の条件で300時間の連続培養を行った結果を表2に示す。その結果、図1の連続培養装置を用いることにより、連続培養による安定したL−乳酸の製造が可能であることを確認することができた。   Table 2 shows the results of continuous culture for 300 hours under the above conditions. As a result, it was confirmed that stable L-lactic acid production by continuous culture was possible by using the continuous culture apparatus of FIG.

Figure 2009296921
Figure 2009296921

(実施例2)連続培養によるL−乳酸の製造(その2)
分離膜として参考例2で作製した多孔性膜を用い、実施例1と同様の連続培養によるL−乳酸の製造を行った。但し、実施例2では2L容の培養反応槽、400ml容の膜分離槽を用い、培養運転時に培養反応槽ならびに膜分離槽に満たされる培養液量をそれぞれ1.5L、300mL(培養液容積比5)とし、連続培養装置内(配管内は除く)の培養液量が1.8Lとなるように連続培養を行った。実施例2においても連続培養の期間中の膜間差圧は、結果的に2kPa以下で推移した。その結果を表2に示す。その結果、安定したL−乳酸の連続培養による安定したL−乳酸の製造が可能であることを確認することができた。
(Example 2) Production of L-lactic acid by continuous culture (part 2)
Using the porous membrane produced in Reference Example 2 as the separation membrane, L-lactic acid was produced by continuous culture in the same manner as in Example 1. However, in Example 2, a 2 L culture reaction tank and a 400 ml volume membrane separation tank were used, and the amount of the culture solution filled in the culture reaction tank and the membrane separation tank during the culture operation was 1.5 L and 300 mL, respectively. 5), and continuous culture was performed so that the amount of the culture solution in the continuous culture apparatus (excluding the inside of the pipe) was 1.8 L. Also in Example 2, the transmembrane pressure difference during the continuous culture period changed as a result of 2 kPa or less. The results are shown in Table 2. As a result, it was confirmed that stable L-lactic acid production by continuous culture of stable L-lactic acid was possible.

(実施例3)連続培養によるL−乳酸の製造(その3)
分離膜として参考例2で作製した多孔性膜を用い、実施例1と同様の連続培養によるL−乳酸の製造を行った。但し、実施例3では2L容の培養反応槽、100ml容の膜分離槽を用い、連続培養運転時に培養反応槽ならびに膜分離槽に満たされる培養液量をそれぞれ1.5L、50mL(培養液容積比30)とし、連続培養装置内(配管内は除く)の培養液量が1.55Lとなるように連続培養を行った。実施例3においても連続培養の期間中の膜間差圧は、結果的に2kPa以下で推移した。その結果を表2に示す。その結果、連続培養による安定したL−乳酸の製造が可能であることが確認できた。
(Example 3) Production of L-lactic acid by continuous culture (part 3)
Using the porous membrane produced in Reference Example 2 as the separation membrane, L-lactic acid was produced by continuous culture in the same manner as in Example 1. However, in Example 3, a 2 L culture reaction tank and a 100 ml membrane separation tank were used, and the volume of the culture solution filled in the culture reaction tank and the membrane separation tank during continuous culture operation was 1.5 L and 50 mL, respectively. The ratio was 30), and the continuous culture was performed so that the amount of the culture solution in the continuous culture apparatus (excluding the pipe) was 1.55 L. Also in Example 3, the transmembrane pressure difference during the period of continuous culture changed as a result of 2 kPa or less. The results are shown in Table 2. As a result, it was confirmed that stable L-lactic acid production by continuous culture was possible.

(比較例1)連続培養によるL−乳酸の製造(その1)
分離膜として参考例2で作製した多孔性膜を用い、実施例1と同様の連続培養を行った。但し、比較例1では2L容の培養反応槽、500ml容の膜分離槽を用い、培養運転時に培養反応槽ならびに膜分離槽に満たされる培養液量をそれぞれ1.5L、500mL(培養液容積比3)とし、連続培養装置内(配管内は除く)の培養液量が2Lとなるように連続培養を行った。比較例1においても連続培養の期間中の膜間差圧は、結果的に2kPa以下で推移した。その結果を表2に示す。
Comparative Example 1 Production of L-lactic acid by continuous culture (Part 1)
Using the porous membrane produced in Reference Example 2 as the separation membrane, continuous culture similar to Example 1 was performed. However, in Comparative Example 1, a 2 L culture reaction tank and a 500 ml membrane separation tank were used, and the amount of the culture solution filled in the culture reaction tank and the membrane separation tank during the culture operation was 1.5 L and 500 mL, respectively. 3), and the continuous culture was performed so that the amount of the culture solution in the continuous culture apparatus (excluding the inside of the pipe) was 2L. Also in Comparative Example 1, the transmembrane pressure difference during the continuous culture period changed as a result of 2 kPa or less. The results are shown in Table 2.

(実施例4)連続培養によるL−乳酸の製造(その4)
酵母SW−1株、図1の概要図に示した連続培養装置、表2に示す組成の酵母乳酸生産培地を用い、連続培養を行った。なお、実施例4では2L容の培養反応槽、150ml容の膜分離槽を用い、分離膜エレメントには参考例3で作製した多孔性中空糸膜を装着した図3に示す分離膜エレメントを用いた。
(Example 4) Production of L-lactic acid by continuous culture (part 4)
The yeast SW-1 strain, the continuous culture apparatus shown in the schematic diagram of FIG. 1, and the yeast lactic acid production medium having the composition shown in Table 2 were used for continuous culture. In Example 4, a 2 L culture reaction tank and 150 ml membrane separation tank were used, and the separation membrane element shown in FIG. 3 equipped with the porous hollow fiber membrane prepared in Reference Example 3 was used as the separation membrane element. It was.

なお、連続培養運転時に培養反応槽ならびに膜分離槽に満たされる培養液量をそれぞれ1.5L、100mL(培養液容積比15)とし、連続培養装置内(配管内は除く)の培養液量が1.6Lとなるように連続培養試験を行った。該酵母乳酸生産培地は、121℃の温度で15分間、高圧蒸気滅菌して用いた。分離膜エレメントの基材部材には、ステンレスおよびポリサルホン樹脂の成型品を用いた。   The volume of the culture solution filled in the culture reaction tank and the membrane separation tank during continuous culture operation is 1.5 L and 100 mL (culture solution volume ratio of 15), respectively. A continuous culture test was conducted so as to obtain 1.6 L. The yeast lactic acid production medium was used after autoclaving at 121 ° C. for 15 minutes. For the base member of the separation membrane element, a molded product of stainless steel and polysulfone resin was used.

また、実施例4における運転条件は、下記のとおりとした。
・培養反応槽容量:2(L)(運転時培養液量として1.5L)
・膜分離槽容量:150(mL)(運転時培養液量として100mL)
・使用分離膜:中空糸膜(参考例3参照)
・膜分離エレメント有効濾過面積:120平方cm
・温度調整:30(℃)
・培養反応槽通気量:0.05(L/min)
・培養反応槽攪拌速度:100(rpm)
・pH調整:1N NaOHによりpH5に調整
・乳酸生産培地供給速度:50〜300ml/hr.の範囲で可変制御
・培養液循環ポンプによる循環液量:0.1(L/min)
・膜透過液量制御:膜間差圧による流量制御
(連続培養開始後〜100時間:膜間差圧0.1kPa以上5kPa以下で制御
100時間〜200時間:膜間差圧0.1kPa以上2kPa以下で制御
200時間〜300時間:膜間差圧0.1kPa以上20kPa以下で制御)
より具体的には、まず、試験管中で5mlの乳酸生産培地を用いSW−1株を一晩振とう培養した(前々々培養)。得られた培養液を新鮮な乳酸生産培地100mlに植菌し、500ml容坂口フラスコ中で24時間、30℃の温度で振とう培養した(前々培養)。前々培養液を、図1に示した連続培養装置の1.5Lの乳酸生産培地に植菌し、培養反応槽1を付属の攪拌機2によって400rpmで攪拌し、培養反応槽1の通気量の調整、温度調整およびpH調整を行いながら、培養液循環ポンプ5を稼働させることなく、24時間培養を行った(前培養)。前培養完了後直ちに、培養液循環ポンプ5を稼働させた。前培養時の運転条件に加え、乳酸生産培地の連続供給を行い、連続培養装置における全培養液量が2Lとなるように膜透過液量の制御を行いながら連続培養し、連続培養によるL−乳酸の製造を行った。
Moreover, the operating conditions in Example 4 were as follows.
-Culture reactor capacity: 2 (L) (1.5 L as the culture volume during operation)
・ Membrane separation tank capacity: 150 (mL) (100 mL as culture volume during operation)
-Separation membrane used: hollow fiber membrane (see Reference Example 3)
・ Membrane separation element effective filtration area: 120 square cm
・ Temperature adjustment: 30 (℃)
-Aeration volume of culture reaction tank: 0.05 (L / min)
-Stirring speed of culture reaction tank: 100 (rpm)
-PH adjustment: adjusted to pH 5 with 1N NaOH-Lactic acid production medium supply rate: 50-300 ml / hr. Circulated fluid volume by variable control and culture fluid circulation pump: 0.1 (L / min)
-Membrane permeate volume control: flow rate control by transmembrane pressure difference (after continuous culture up to 100 hours: control at transmembrane pressure difference 0.1 kPa to 5 kPa 100 hours to 200 hours: transmembrane pressure difference 0.1 kPa to 2 kPa Control at 200 hours to 300 hours: Control at a transmembrane pressure difference of 0.1 kPa to 20 kPa)
More specifically, first, the SW-1 strain was cultured with shaking overnight in a test tube using 5 ml of lactic acid production medium (pre-culture). The obtained culture solution was inoculated into 100 ml of a fresh lactic acid production medium, and cultured with shaking at a temperature of 30 ° C. for 24 hours in a 500 ml Sakaguchi flask (pre-culture). The culture solution is inoculated in a 1.5 L lactic acid production medium of the continuous culture apparatus shown in FIG. 1 and the culture reaction tank 1 is stirred at 400 rpm by the attached stirrer 2 so that the aeration volume of the culture reaction tank 1 is adjusted. While performing the adjustment, temperature adjustment and pH adjustment, the culture medium circulation pump 5 was operated for 24 hours (preculture). Immediately after completion of the preculture, the culture medium circulation pump 5 was operated. In addition to the operating conditions at the time of pre-culture, the lactic acid production medium is continuously supplied, and the continuous culture is performed while controlling the amount of the membrane permeate so that the total culture volume in the continuous culture apparatus is 2 L. Lactic acid was produced.

連続培養を行うときの膜透過液量の制御は、水頭差圧制御装置4により水頭差を膜間差圧として測定し、上記の膜透過液量制御条件で変化させることで行った。連続培養の期間中の膜間差圧は、結果的に2kPa以下で推移した。適宜、膜透過培養液中の生産されたL−乳酸濃度および残存グルコース濃度を測定した。なお、化学品であるL−乳酸の濃度の評価には参考例1に示したHPLCを用い、グルコース濃度の測定には“グルコーステストワコーC”(登録商標)(和光純薬社製)を用いた。   Control of the amount of membrane permeate when performing continuous culture was performed by measuring the head differential as the transmembrane differential pressure with the head differential pressure controller 4 and changing it under the above-mentioned membrane permeate control conditions. As a result, the transmembrane pressure difference during the continuous culture was maintained at 2 kPa or less. The produced L-lactic acid concentration and residual glucose concentration in the membrane permeation culture solution were measured as appropriate. The HPLC shown in Reference Example 1 was used to evaluate the concentration of L-lactic acid, which is a chemical product, and “Glucose Test Wako C” (registered trademark) (manufactured by Wako Pure Chemical Industries, Ltd.) was used to measure the glucose concentration. It was.

以上の条件で300時間の連続培養を行った結果を表3に示す。その結果、図1の連続培養装置を用いることにより、連続培養による安定したL−乳酸の製造が可能であることを確認することができた。   Table 3 shows the results of continuous culture for 300 hours under the above conditions. As a result, it was confirmed that stable L-lactic acid production by continuous culture was possible by using the continuous culture apparatus of FIG.

(実施例5)連続培養によるL−乳酸の製造(その5)
分離膜として参考例3で作製した多孔性中空糸膜を用い、実施例4と同様の連続培養を行った。但し、実施例5では2L容の培養反応槽、100ml容の膜分離槽を用い、培養運転時に培養反応槽ならびに膜分離槽に満たされる培養液量をそれぞれ1.5L、50mL(培養液容積比30)とし、連続培養装置内(配管内は除く)の培養液量が1.55Lとなるように連続培養を行った。実施例5においても連続培養の期間中の膜間差圧は、結果的に2kPa以下で推移した。その結果を表3に示す。その結果、連続培養による安定したL−乳酸の製造が可能であることが確認できた。
(Example 5) Production of L-lactic acid by continuous culture (5)
Using the porous hollow fiber membrane prepared in Reference Example 3 as a separation membrane, continuous culture similar to Example 4 was performed. However, in Example 5, a 2 L culture reaction tank and a 100 ml membrane separation tank were used, and the amount of the culture solution filled in the culture reaction tank and the membrane separation tank during the culture operation was 1.5 L and 50 mL, respectively. 30), and continuous culture was performed so that the amount of the culture solution in the continuous culture apparatus (excluding the pipe) was 1.55 L. Also in Example 5, the transmembrane pressure difference during the period of continuous culture changed as a result of 2 kPa or less. The results are shown in Table 3. As a result, it was confirmed that stable L-lactic acid production by continuous culture was possible.

(実施例6)連続培養によるL−乳酸の製造(その6)
分離膜として参考例3で作製した多孔性中空糸膜を用い、実施例4と同様の連続培養を行った。但し、実施例6では2L容の培養反応槽、50ml容の膜分離槽を用い、連続培養運転時に培養反応槽ならびに膜分離槽に満たされる培養液量をそれぞれ1.5L、15mL(培養液容積比100)とし、連続培養装置内(配管内は除く)の培養液量が1.515Lとなるように連続培養を行った。実施例6においても連続培養の期間中の膜間差圧は、結果的に2kPa以下で推移した。その結果を表3に示す。その結果、連続培養による安定したL−乳酸の製造が可能であることが確認できた。
(Example 6) Production of L-lactic acid by continuous culture (Part 6)
Using the porous hollow fiber membrane prepared in Reference Example 3 as a separation membrane, continuous culture similar to Example 4 was performed. However, in Example 6, a 2 L culture reaction tank and a 50 ml membrane separation tank were used, and the volume of the culture solution filled in the culture reaction tank and the membrane separation tank during continuous culture operation was 1.5 L and 15 mL, respectively. The ratio was 100), and the continuous culture was performed so that the amount of the culture solution in the continuous culture apparatus (excluding the pipe) was 1.515 L. Also in Example 6, the transmembrane pressure difference during the period of continuous culture changed as a result of 2 kPa or less. The results are shown in Table 3. As a result, it was confirmed that stable L-lactic acid production by continuous culture was possible.

(比較例2)連続培養によるL−乳酸の製造(その2)
分離膜として参考例3で作製した多孔性中空糸膜を用い、実施例4と同様の連続培養を行った。但し、比較例2では2L容の培養反応槽、500ml容の膜分離槽を用い、連続培養運転時に培養反応槽ならびに膜分離槽に満たされる培養液量をそれぞれ1.5L、500mL(培養液容積比3)とし、連続培養装置内(配管内は除く)の培養液量が2Lとなるように連続培養を行った。比較例2においても連続培養の期間中の膜間差圧は、結果的に2kPa以下で推移した。その結果を表3に示す。
Comparative Example 2 Production of L-lactic acid by continuous culture (part 2)
Using the porous hollow fiber membrane prepared in Reference Example 3 as a separation membrane, continuous culture similar to Example 4 was performed. However, in Comparative Example 2, a 2 L culture reaction tank and a 500 ml membrane separation tank were used, and the volume of the culture solution filled in the culture reaction tank and the membrane separation tank during continuous culture operation was 1.5 L and 500 mL, respectively. The ratio was 3), and the continuous culture was performed so that the amount of the culture solution in the continuous culture apparatus (excluding the inside of the pipe) was 2L. Also in Comparative Example 2, the transmembrane pressure difference during the period of continuous culture changed as a result of 2 kPa or less. The results are shown in Table 3.

Figure 2009296921
Figure 2009296921

Figure 2009296921
Figure 2009296921

実施例1〜6ならびに比較例1、2の連続培養結果から、従来の連続培養装置と比較して膜分離槽に対する培養反応槽の培養液容積比を5〜100の範囲にすることで、装置のコンパクト化を実現しつつも、培養液の培養反応槽滞留時間が長くなり適切な培養条件への調節が実現し、化学品の生産速度が向上することが明らかになった。 From the continuous culture results of Examples 1 to 6 and Comparative Examples 1 and 2, the culture solution volume ratio of the culture reaction tank to the membrane separation tank is in the range of 5 to 100 as compared with the conventional continuous culture apparatus. It has been clarified that, while realizing a more compact size, the residence time of the culture solution in the culture reaction tank becomes longer and adjustment to appropriate culture conditions is realized, thereby improving the production rate of chemical products.

図1は、本発明で用いられる膜分離型の連続培養装置の一つの実施の形態を説明するための概略側面図である。FIG. 1 is a schematic side view for explaining one embodiment of a membrane separation type continuous culture apparatus used in the present invention. 図2は、本発明で用いられる分離膜エレメントの一つの実施の形態を説明するための概略斜視図である。FIG. 2 is a schematic perspective view for explaining one embodiment of the separation membrane element used in the present invention. 図3は、本発明で用いられる他の分離膜エレメントの例を説明するための断面説明図である。FIG. 3 is a cross-sectional explanatory diagram for explaining an example of another separation membrane element used in the present invention. 図4は、実施例で用いた酵母用発現ベクターpTRS11のフィジカルマップを示す図である。FIG. 4 is a diagram showing a physical map of the expression vector for yeast pTRS11 used in the examples.

符号の説明Explanation of symbols

1 培養反応槽
2 攪拌機
3 分離膜(エレメント)
4 水頭差圧制御装置
5 培養液循環ポンプ
6 レベルセンサ
7 温度調節器
8 培地供給ポンプ
9 pH調整溶液供給ポンプ
10 pHセンサ・制御装置
11 気体供給装置
12 膜分離槽
13 支持板
14 流路材
15 分離膜
16 凹部
17 集液パイプ
18 上部樹脂封止層
19 下部樹脂封止層
1 Culture Reaction Tank 2 Stirrer 3 Separation Membrane (Element)
4 Hydrohead differential pressure control device 5 Culture fluid circulation pump 6 Level sensor 7 Temperature controller 8 Medium supply pump 9 pH adjustment solution supply pump 10 pH sensor / control device 11 Gas supply device 12 Membrane separation tank 13 Support plate 14 Channel material 15 Separation membrane 16 Concave portion 17 Liquid collecting pipe 18 Upper resin sealing layer 19 Lower resin sealing layer

Claims (3)

微生物もしくは培養細胞を培養するための培養反応槽と、該培養反応槽から連続的に供給される培養液を濾過する分離膜が配置される膜分離槽と、前記培養液を前記培養反応槽から前記膜分離槽へ供給するとともに濾過されなかった未濾過培養液を前記膜分離槽よりも上流側の前記培養液へ還流する培養液循環手段とを具備し、前記膜分離槽および前記培養反応槽は、前記膜分離槽における培養液に対する前記培養反応槽における培養液の培養液容積比が5以上100以下となる容積を有するものであることを特徴とする連続培養装置。   A culture reaction tank for culturing microorganisms or cultured cells, a membrane separation tank in which a separation membrane for filtering the culture solution continuously supplied from the culture reaction tank is disposed, and the culture solution from the culture reaction tank A culture medium circulation means for supplying unfiltered culture medium that has been supplied to the membrane separation tank and refluxed to the culture medium upstream of the membrane separation tank; and the membrane separation tank and the culture reaction tank Is a continuous culture apparatus characterized in that the culture solution volume ratio of the culture solution in the culture reaction vessel to the culture solution in the membrane separation vessel has a volume of 5 or more and 100 or less. 前記膜分離槽および前記培養反応槽は、前記培養液容積比が15以上100以下となる容積を有するものである、請求項1記載の連続培養装置。   The continuous culture apparatus according to claim 1, wherein the membrane separation tank and the culture reaction tank have a volume in which the culture liquid volume ratio is 15 or more and 100 or less. 培養反応槽において微生物もしくは培養細胞を培養し、連続的に培養液を前記培養反応槽から膜分離槽へ供給して分離膜で濾過し生産物を回収するとともに、濾過されなかった未濾過培養液を前記膜分離槽よりも上流側の前記培養液へ還流するにあたり、前記膜分離槽における培養液に対する前記培養反応槽における培養液の培養液容積比を5以上100以下とすることを特徴とする化学品の製造方法。   A microorganism or cultured cell is cultured in a culture reaction tank, and the culture solution is continuously supplied from the culture reaction tank to the membrane separation tank and filtered through the separation membrane to recover the product. Is refluxed to the culture medium upstream of the membrane separation tank, the culture liquid volume ratio of the culture liquid in the culture reaction tank to the culture liquid in the membrane separation tank is 5 or more and 100 or less. Manufacturing method of chemical products.
JP2008153846A 2008-06-12 2008-06-12 Continuous culture device and method for producing chemical Pending JP2009296921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008153846A JP2009296921A (en) 2008-06-12 2008-06-12 Continuous culture device and method for producing chemical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008153846A JP2009296921A (en) 2008-06-12 2008-06-12 Continuous culture device and method for producing chemical

Publications (1)

Publication Number Publication Date
JP2009296921A true JP2009296921A (en) 2009-12-24

Family

ID=41544490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008153846A Pending JP2009296921A (en) 2008-06-12 2008-06-12 Continuous culture device and method for producing chemical

Country Status (1)

Country Link
JP (1) JP2009296921A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138184A (en) * 1985-12-12 1987-06-20 Takeshi Kobayashi Apparatus for continuous culture of microorganism
JPH01199584A (en) * 1988-02-03 1989-08-10 Ngk Insulators Ltd Production of erythritol
JPH0279966A (en) * 1988-06-30 1990-03-20 Shimadzu Corp Biorector system
JPH02174674A (en) * 1988-12-27 1990-07-06 Snow Brand Milk Prod Co Ltd Method for culturing lactic acid bacterium and apparatus used therefor
JPH05317067A (en) * 1992-05-19 1993-12-03 Mitsubishi Petrochem Co Ltd Production of l-tryptophan
JPH09299769A (en) * 1996-05-14 1997-11-25 Kao Corp Method of recovering fermented products
JPH10118461A (en) * 1996-10-16 1998-05-12 Kao Corp Recovery of fermentation product
JPH10174594A (en) * 1996-12-17 1998-06-30 Ngk Insulators Ltd Production of glycolic acid by microorganism
JPH10323543A (en) * 1997-05-22 1998-12-08 Arakawa Chem Ind Co Ltd Method for separating product in microbial reaction
JP2007252367A (en) * 2006-02-24 2007-10-04 Toray Ind Inc Method for producing chemical by continuous fermentation and continuous fermentation apparatus
JP2007289941A (en) * 2006-03-31 2007-11-08 Toray Ind Inc Method and apparatus for treating organic waste water

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138184A (en) * 1985-12-12 1987-06-20 Takeshi Kobayashi Apparatus for continuous culture of microorganism
JPH01199584A (en) * 1988-02-03 1989-08-10 Ngk Insulators Ltd Production of erythritol
JPH0279966A (en) * 1988-06-30 1990-03-20 Shimadzu Corp Biorector system
JPH02174674A (en) * 1988-12-27 1990-07-06 Snow Brand Milk Prod Co Ltd Method for culturing lactic acid bacterium and apparatus used therefor
JPH05317067A (en) * 1992-05-19 1993-12-03 Mitsubishi Petrochem Co Ltd Production of l-tryptophan
JPH09299769A (en) * 1996-05-14 1997-11-25 Kao Corp Method of recovering fermented products
JPH10118461A (en) * 1996-10-16 1998-05-12 Kao Corp Recovery of fermentation product
JPH10174594A (en) * 1996-12-17 1998-06-30 Ngk Insulators Ltd Production of glycolic acid by microorganism
JPH10323543A (en) * 1997-05-22 1998-12-08 Arakawa Chem Ind Co Ltd Method for separating product in microbial reaction
JP2007252367A (en) * 2006-02-24 2007-10-04 Toray Ind Inc Method for producing chemical by continuous fermentation and continuous fermentation apparatus
JP2007289941A (en) * 2006-03-31 2007-11-08 Toray Ind Inc Method and apparatus for treating organic waste water

Similar Documents

Publication Publication Date Title
JP5082496B2 (en) Process for producing chemicals by continuous fermentation and continuous fermentation apparatus
JP2008237213A (en) Continuous fermentation apparatus
JP5992135B2 (en) Process for producing lactic acid by continuous fermentation
JP5092487B2 (en) Production method of chemicals by continuous fermentation
JP5532919B2 (en) Lactate dehydrogenase expression cassette, transformed yeast, and method for producing lactic acid
JP5141126B2 (en) Method for producing D-lactic acid by continuous fermentation
JP5287029B2 (en) Process for producing chemicals by continuous fermentation
JP2010029108A (en) Method for producing chemical by continuous fermentation
JP5358911B2 (en) Process for producing chemicals by continuous fermentation
JP5130811B2 (en) Process for producing 1,3-propanediol by continuous fermentation
JP5223520B2 (en) Process for producing chemicals by continuous fermentation
JP5061639B2 (en) Continuous fermentation equipment
JP2009034030A (en) Method and apparatus for producing lactic acid
JP2008245537A (en) Method for producing chemicals by continuous fermentation
JP5262004B2 (en) Process for producing lactic acid by continuous fermentation
JP5130816B2 (en) Method for producing succinic acid by continuous fermentation
JP2009142210A (en) Method for producing lactic acid by continuous fermentation
JP5130826B2 (en) Process for producing lactic acid by continuous fermentation
WO2015159812A1 (en) Method for producing chemical substance by continuous fermentation
JP2009296921A (en) Continuous culture device and method for producing chemical
JP5593594B2 (en) Process for producing chemicals by continuous culture
JP2009039073A (en) Method for producing protein by continuous fermentation
JP2008061645A (en) Method for preparation of itaconic acid by continuous fermentation
JP2009171879A (en) Method for producing lactic acid
JP2008017837A (en) Method for producing pyruvic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304