JP2009294820A - Automatic pressure regulator for flow controller - Google Patents

Automatic pressure regulator for flow controller Download PDF

Info

Publication number
JP2009294820A
JP2009294820A JP2008146498A JP2008146498A JP2009294820A JP 2009294820 A JP2009294820 A JP 2009294820A JP 2008146498 A JP2008146498 A JP 2008146498A JP 2008146498 A JP2008146498 A JP 2008146498A JP 2009294820 A JP2009294820 A JP 2009294820A
Authority
JP
Japan
Prior art keywords
pressure
regulator
control
flow rate
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008146498A
Other languages
Japanese (ja)
Other versions
JP5177864B2 (en
Inventor
Kaoru Hirata
薫 平田
Katsuyuki Sugita
勝幸 杉田
Koji Nishino
功二 西野
Ryosuke Doi
亮介 土肥
Shinichi Ikeda
信一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to JP2008146498A priority Critical patent/JP5177864B2/en
Priority to KR1020107024380A priority patent/KR20100139118A/en
Priority to US12/996,370 priority patent/US8757197B2/en
Priority to CN200980121364.2A priority patent/CN102057340B/en
Priority to PCT/JP2009/001591 priority patent/WO2009147775A1/en
Priority to TW98114862A priority patent/TWI405059B/en
Publication of JP2009294820A publication Critical patent/JP2009294820A/en
Application granted granted Critical
Publication of JP5177864B2 publication Critical patent/JP5177864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Fluid Pressure (AREA)
  • Flow Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent overshoot of the output flow rate of a flow controller when changing the output flow rate or changing the type of flowing gas. <P>SOLUTION: The automatic pressure regulator 20 of a gas supply pressure supplied to a flow controller includes a piezoelectrically driven pressure regulating valve 15, a control pressure detector 14 disposed on the output side of the pressure regulating valve 15, and a controller 16 for capturing a value P<SB>2</SB>detected by the control pressure detector 14 and a set point Pst of control pressure and feeding a control signal by a proportional control method to a piezoelectric drive part of the pressure regulating valve 15 to regulate the valve travel. An integral action is disabled to make the proportional control system by the controller cause a residual deviation in a control pressure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体製造用のチャンバ等へガスを供給するガス供給装置の自動圧力調整器に関するものであり、供給ガス流量の切替時等に流量調整器の流量出力に生ずるオーバーシュートをほぼ完全に防止できるようにした自動圧力調整器に関するものである。   The present invention relates to an automatic pressure regulator of a gas supply device that supplies gas to a semiconductor manufacturing chamber or the like, and overshoot that occurs in the flow rate output of the flow rate regulator when the supply gas flow rate is switched is almost completely eliminated. The present invention relates to an automatic pressure regulator that can be prevented.

半導体製造装置等のガス供給装置に於いては、従前から図13に示す如く、ガス供給源SGからのガス供給ラインに圧力調整器Rを設け、この圧力調整器Rの出力側のガス供給管路Loに複数の分岐管路La、Lb、Lcを設けると共に、各分岐管路La、Lb、Lcにレギュレータ1a、1b、1c,入力側圧力センサ2a、2b、2c,出口側圧力センサ3a、3b、3c,コントローラ4a、4b、4cから成る自動圧力制御装置5a、5b、5cと,熱式質量流量調整器MFC1,MFC2,MFC3とを設け、各熱式質量流量調整器MFC1、MFC2、MFC3の入口側圧力センサ2a、2b、2cと出口側圧力センサ3a、3b、3cとの圧力差ΔPが設定値外になると、コントローラ4a、4b、4cを介してレギュレータに1a、1b、1cにフィードバックをかけ、各レギュレータ1a、1b、1cの出口側圧力を調整して上記圧力差ΔPが設定値内になるよう自動制御することにより、設定流量のガスを各ガス使用対象6a、6b、6cへ安定供給するようにしている。 In a gas supply apparatus such as a semiconductor manufacturing apparatus, a pressure regulator R is provided in a gas supply line from a gas supply source SG as shown in FIG. 13 and a gas supply pipe on the output side of the pressure regulator R has been provided. A plurality of branch lines La, Lb, Lc are provided in the path Lo, and regulators 1a, 1b, 1c, input side pressure sensors 2a, 2b, 2c, an outlet side pressure sensor 3a, 3b, 3c, automatic pressure control devices 5a, 5b, 5c comprising controllers 4a, 4b, 4c and thermal mass flow controllers MFC 1 , MFC 2 , MFC 3 are provided, and each thermal mass flow controller MFC 1 , the inlet-side pressure sensor 2a of MFC 2, MFC 3, 2b, 2c and the outlet side pressure sensor 3a, 3b, when the pressure difference ΔP between 3c is outside the set value, the controller 4a, 4b, 4c to the regulator through the A feedback is applied to a, 1b, and 1c, and the outlet pressure of each regulator 1a, 1b, and 1c is adjusted to automatically control the pressure difference ΔP to be within the set value. A stable supply is made to the objects 6a, 6b, and 6c.

また、前記各コントローラ4a、4b、4cによる制御には所謂PID制御動作の特性が備えられており、入口側圧力センサ2と出口側圧力センサ3との間の圧力差(偏差)ΔPがより少ないサイクリングでもって早期に零に収斂するようP制御動作、I制御動作及びD制御動作の各制御動作量を自動的に調整するオートチューニング機能が備えられている。   Further, the control by each of the controllers 4a, 4b, and 4c has a so-called PID control operation characteristic, and the pressure difference (deviation) ΔP between the inlet side pressure sensor 2 and the outlet side pressure sensor 3 is smaller. An auto-tuning function that automatically adjusts each control operation amount of the P control operation, the I control operation, and the D control operation so as to converge to zero early by cycling is provided.

上記図13に示した従前の自動圧力調整器5はガス使用対象である真空チャンバ等へ供給するガス流量を高精度で制御することが出来ると共に、供給ガス流量を変化させた場合に於いても、比較的迅速にガス流量を新たな設定流量に収斂させることが出来、優れた実用的効用を奏するものである。   The conventional automatic pressure regulator 5 shown in FIG. 13 can control the gas flow rate supplied to the vacuum chamber or the like to be used with high precision, and also when the supply gas flow rate is changed. The gas flow rate can be converged to a new set flow rate relatively quickly, and excellent practical utility can be achieved.

しかし、当該図13に示した自動圧調整器5にも解決すべき問題点が多く残されている。その中でも、緊急に解決すべき問題は、流量10〜1000SCCM程度のガスを真空チャンバ(101〜10-5torr)へ供給している際に、自動圧力調整器5によりガス流を断続させると、ガス供給開始時に熱式質量流量調整器MFC1の出口側流量に所謂オーバーシュートが発生し、ガス種の切換供給の激しい成膜装置等にあっては、膜の緻密さや膜厚等に変動を来たして均一な膜質の成膜が困難になると云う問題である。 However, many problems to be solved still remain in the automatic pressure regulator 5 shown in FIG. Among them, the problem to be solved urgently is that the gas flow is interrupted by the automatic pressure regulator 5 when a gas having a flow rate of about 10 to 1000 SCCM is supplied to the vacuum chamber (10 1 to 10 −5 torr). When the gas supply is started, so-called overshoot occurs in the outlet flow rate of the thermal mass flow controller MFC 1 and the film thickness changes in the film density and the film thickness in the film forming apparatus where the gas type is switched and supplied violently. This makes it difficult to form a uniform film quality.

特開平7−240375JP-A-7-240375 特開2005−339439JP-A-2005-339439

本願発明は、従前の自動圧力調整器に於ける上述の如き問題、即ちガス流量設定の切替時、特にガス供給開始時にコントローラ4の制御特性やオートレギュレータ1の流量制御特性によって質量流量調整器MFCに所謂流量のオーバーシュートが生じると云う現象を解消して、小流量ガスの流量制御であっても、オーバーシュートを生じることなく熱式質量流量調整器でもって高精度な流量制御を行えるようにした自動圧力調整器を提供することを発明の主目的とするものである。   The present invention is based on the above-mentioned problem in the conventional automatic pressure regulator, that is, when the gas flow rate setting is switched, particularly at the start of gas supply, depending on the control characteristics of the controller 4 and the flow control characteristics of the auto regulator 1. This eliminates the phenomenon of so-called flow overshoot, and enables high-precision flow control with a thermal mass flow controller without overshoot even when controlling the flow of small flow gas. It is a main object of the present invention to provide an automatic pressure regulator.

本願発明者等は、先ず最初に、手動圧力調整器40と流量調整器17とを用いて、図1に示す如き試験装置を形成し、手動圧力調整器40の流量応答性を調査した。即ち、手動圧力調整器40に制御圧の設定値Pstを設定し、その時の流量調整器17の流量出力のステップ応答及び安定性を調査した。   The inventors of the present application first formed a test apparatus as shown in FIG. 1 using the manual pressure regulator 40 and the flow rate regulator 17 and investigated the flow rate responsiveness of the manual pressure regulator 40. That is, the control pressure set value Pst was set in the manual pressure regulator 40, and the step response and stability of the flow rate output of the flow rate regulator 17 at that time were investigated.

尚、図1に於いて、10はN2ガス供給源、11は手動圧力調整器、12はフィルタ、13は供給圧検出器、14は制御圧検出器、17は熱式質量流量調整器、18・19は弁40は手動圧力調整器、21は真空ポンプである。 In FIG. 1, 10 is an N 2 gas supply source, 11 is a manual pressure regulator, 12 is a filter, 13 is a supply pressure detector, 14 is a control pressure detector, 17 is a thermal mass flow regulator, Reference numerals 18 and 19 denote a valve 40 for a manual pressure regulator and 21 for a vacuum pump.

前記N2ガス供給源にはN2充填容器が使用されており、手動圧力調整器11にはERSB−2069−WE(ユタカ製)が用いられている。また、手動圧力調整器40には、SQMICROHF502PUPG6010(Parker製)が使用されており、更に、熱式質量流量調整器17にはFC−D98CT−BF(Aera製、F.S.50SCCM)が使用されている。 An N 2 filling container is used as the N 2 gas supply source, and ERSB-2069-WE (manufactured by Yutaka) is used as the manual pressure regulator 11. Further, SQMICROF502PUPG6010 (manufactured by Parker) is used for the manual pressure regulator 40, and FC-D98CT-BF (manufactured by Aera, FS50SCCM) is used for the thermal mass flow regulator 17. ing.

具体的には、先ず各機器を接続し、図1の試験装置を構成する。次に、真空ポンプ21を運転して熱式質量流量調整器17の2次側を真空引きした。引き続き、手動圧力調整器11の供給圧を300kPaGに及び手動圧力調整器40の制御圧を280kPa abs.に夫々設定した。   Specifically, first, each device is connected to configure the test apparatus of FIG. Next, the vacuum pump 21 was operated to evacuate the secondary side of the thermal mass flow controller 17. Subsequently, the supply pressure of the manual pressure regulator 11 is set to 300 kPaG, and the control pressure of the manual pressure regulator 40 is set to 280 kPa abs. Respectively.

そして、熱式質量流量調整器17の入力と出力のステップ応答をデータロガーにより計測すると共に、手動圧力調整器40の制御圧を同様に計測した。尚、熱式質量流量調整器17の入・出力側のステップ応答及び手動圧力調整器40の制御圧の計測は、NR−600(キーエンス製)のデータロガーを使用した。   And while measuring the step response of the input and output of the thermal mass flow regulator 17 with a data logger, the control pressure of the manual pressure regulator 40 was similarly measured. Note that a data logger of NR-600 (manufactured by Keyence) was used for the step response on the input / output side of the thermal mass flow controller 17 and the measurement of the control pressure of the manual pressure controller 40.

図2は、上記試験に於ける手動圧力調整器40の流量応答特性を示すものであり、手動圧力調整器40の制御圧と熱式質量流量調整器17の入・出力とのステップ応答特性を示している。
即ち、図2に於いて、曲線Aは熱式質量流量調整器17の入力の値(電圧値)、曲線Bは出力の値(電圧値)を示すものであり、手動圧力調整器40の場合には、拡大部分Cからも明らかなように、熱式質量流量調整器17の立上り時のオーバーシュートはフルスケール(F.S.)流量の0.8%と極めて低いものであることが判明した。また、手動圧力調整器40による場合には、制御圧Dに静止時と動圧時とで偏差が生じ、静止時の流量0(SCCM)の時と動圧時の流量50(SCCM)のときの制御圧の差は約5kPa程度となることが判った。
FIG. 2 shows the flow response characteristics of the manual pressure regulator 40 in the above test. The step response characteristics of the control pressure of the manual pressure regulator 40 and the input / output of the thermal mass flow regulator 17 are shown. Show.
That is, in FIG. 2, the curve A shows the input value (voltage value) of the thermal mass flow regulator 17, and the curve B shows the output value (voltage value). As can be seen from the enlarged portion C, the overshoot at the start-up of the thermal mass flow regulator 17 was found to be as low as 0.8% of the full scale (FS) flow rate. did. Further, in the case of using the manual pressure regulator 40, the control pressure D has a difference between the static pressure and the dynamic pressure, and the static pressure is 0 (SCCM) and the dynamic pressure is 50 (SCCM). It was found that the difference in control pressure was about 5 kPa.

次に、図1に示す手動圧力調整器40を、図3に示すように圧力調整弁15及びコントローラ16とから成るPID制御動作による自動圧力調整器20へ置き換えた場合について、上記図2のときと同様に、自動圧力調整器20の制御圧と熱式質量流量調整器17の入・出力とのステップ応答特性を調査した。   Next, when the manual pressure regulator 40 shown in FIG. 1 is replaced with the automatic pressure regulator 20 by the PID control operation comprising the pressure regulating valve 15 and the controller 16 as shown in FIG. Similarly, the step response characteristics of the control pressure of the automatic pressure regulator 20 and the input / output of the thermal mass flow regulator 17 were investigated.

尚、自動圧力調整器20はコントローラ16によってPID制御動作による自動制御が行われるため、その制御圧の偏差は最終的に零となる。   Since the automatic pressure regulator 20 is automatically controlled by the controller 16 by the PID control operation, the deviation of the control pressure finally becomes zero.

図4は、その結果を示すものであり、コントローラ16によるPID制御動作が行われることにより、自動圧力調整器20の制御圧Dは、その偏差が無くなる方向に調整される。その結果、熱式質量流量調整器17の出力側の値は曲線Bのようになり、その拡大部Cからも明らかなように、フルスケール(F.S.)流量の約7.8%程度のオーバーシュートが生ずることが判明した。
即ち、自動圧力調整器20の制御圧を、コントローラ16によりPID制御動作を付加した自動フィードバック制御とすることにより、ガス流量の立上げ時に熱式質量流量調整器17の出力値により大きなオーバーシュートが起生することが判明した。
FIG. 4 shows the result. When the PID control operation by the controller 16 is performed, the control pressure D of the automatic pressure regulator 20 is adjusted in a direction in which the deviation disappears. As a result, the value on the output side of the thermal mass flow controller 17 becomes a curve B, which is about 7.8% of the full scale (FS) flow rate, as is clear from the enlarged portion C. It has been found that overshoot occurs.
That is, the control pressure of the automatic pressure regulator 20 is set to automatic feedback control with a PID control operation added by the controller 16, so that a large overshoot is caused by the output value of the thermal mass flow regulator 17 when the gas flow rate is raised. It was found to be born.

本願発明は、上記の如き知見をベースにして開発されたものであり、自動圧力制御器20の圧力調整弁15をフィードバック制御するコントローラ16の制御特性を調整することにより、ガス流量の立上げ時に於ける熱式質量流量調整器の出力に起生するオーバーシュートを防止することを着想し、当該着想に基づいて数多くの自動圧力制御器20について、圧力調整弁15と熱式質量流量調整器17との流量応答特性試験を実施した。   The present invention has been developed on the basis of the above-described knowledge. By adjusting the control characteristics of the controller 16 that feedback-controls the pressure regulating valve 15 of the automatic pressure controller 20, the gas flow rate is raised. It is conceived to prevent overshoot that occurs in the output of the thermal mass flow regulator in the system, and the pressure regulating valve 15 and the thermal mass flow regulator 17 for many automatic pressure controllers 20 based on the idea. A flow response characteristic test was conducted.

本願発明は、上記流量応答特性試験結果に基づいて創作されたものであり、請求項1の発明は、流量調整器へ供給するガス供給圧力の自動圧力調整器20であって、圧力調整弁15と,圧力調整弁15の出力側に設けた制御圧検出器14と,制御圧検出器14の検出値P2と制御圧の設定値Pstとが入力され、圧力調整弁15の駆動部へ比例制御方式により制御信号を供給して、弁の開度調整を行うコントローラ16とから前記自動圧力調整器20を構成すると共に、前記比例制御方式を、制御圧に残留偏差を生ずる比例動作の制御とするようにしたことを発明の基本構成とするものである。 The invention of the present application was created based on the flow rate response characteristic test result, and the invention of claim 1 is an automatic pressure regulator 20 for gas supply pressure supplied to the flow rate regulator, and includes a pressure regulating valve 15. And the control pressure detector 14 provided on the output side of the pressure adjustment valve 15, the detection value P 2 of the control pressure detector 14, and the set value Pst of the control pressure are input and are proportional to the drive unit of the pressure adjustment valve 15. The automatic pressure regulator 20 is composed of a controller 16 that adjusts the opening of the valve by supplying a control signal by a control method, and the proportional control method is a control of a proportional operation that causes a residual deviation in the control pressure. This is the basic configuration of the invention.

請求項2の発明は、請求項1の発明に於いて、圧力調整弁15を圧電素子駆動型の金属ダイヤフラム弁としたものである。   According to a second aspect of the present invention, in the first aspect of the present invention, the pressure regulating valve 15 is a piezoelectric element drive type metal diaphragm valve.

請求項3の発明は、請求項1の発明に於いて、流量調整器を真空チャンバへガスを供給する流量調整器としたものである。   According to a third aspect of the present invention, in the first aspect of the present invention, the flow rate regulator is a flow rate regulator for supplying gas to the vacuum chamber.

請求項4の発明は、請求項1の発明に於いて、圧力調整弁15の制御圧の範囲を−0.07〜0.7MPaGとすると共に熱式質量流量調整器17の最小定格流量を 1(SCCM)とするようにしたものである。   According to a fourth aspect of the present invention, in the first aspect of the invention, the control pressure range of the pressure regulating valve 15 is set to -0.07 to 0.7 MPaG, and the minimum rated flow rate of the thermal mass flow regulator 17 is set to 1. (SCCM).

請求項5の発明は、請求項1の発明に於いて、PID制御可能な状態から積分制御動作を無効とすることにより、制御圧に残留偏差を生ずる比例動作の制御とするようにしたものである。   According to a fifth aspect of the present invention, in the first aspect of the invention, the integral control operation is disabled from a state where PID control is possible, thereby controlling the proportional operation that causes a residual deviation in the control pressure. is there.

本発明に於いては、自動圧力調整器20のコントローラ16の制御方式を、積分動作を無効とすることにより制御圧に残留偏差を生ずる制御とし、流量調整器の出力側の応答特性にオーバーシュートが発生するのを防止する構成としている。その結果、微小流量のガス供給においても、ガス流量の変更や供給ガス種の切換時のオーバーシュートが防止されることになり、半導体製造装置等に於いては製品品質の大幅な向上が図れると共に製品歩留りが高まることになる。   In the present invention, the control method of the controller 16 of the automatic pressure regulator 20 is a control that causes a residual deviation in the control pressure by disabling the integral operation, and overshoots the response characteristic on the output side of the flow regulator. It is set as the structure which prevents generating. As a result, even in the case of gas flow at a minute flow rate, overshooting at the time of changing the gas flow rate or switching the supply gas type can be prevented, and the product quality can be greatly improved in semiconductor manufacturing equipment and the like. Product yield will increase.

以下、図面に基づいて本発明の実施形態を説明する。
図5は、本願発明の一実施形態を示すものである。尚、当該図5は、使用する熱式質量流量調整器17を、フルスケール(F.S.)流量が10SCCM及び500SCCMのものとした点、並びにコントローラ16を、PID制御動作と積分動作を無効とすることにより制御圧に残留偏差を生ずる制御動作の何れかを選択可能なものとした点、のみが前記図3の場合と異なるだけである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 5 shows an embodiment of the present invention. Note that FIG. 5 shows that the thermal mass flow controller 17 used has full scale (FS) flow rates of 10 SCCM and 500 SCCM, and the controller 16 disables PID control operation and integration operation. Thus, only the control operation that causes a residual deviation in the control pressure can be selected, which is different from the case of FIG.

尚、周知の如くPID制御動作は、圧力調整弁15の制御圧の制御偏差を最終的に零に収斂する制御方式であり、積分動作を無効とした制御動作は、制御偏差が零にならず、ある一定の偏差(オフセット)を有して収斂する制御方式である。   As is well known, the PID control operation is a control method in which the control deviation of the control pressure of the pressure regulating valve 15 is finally converged to zero. In the control operation in which the integral operation is disabled, the control deviation does not become zero. The control method converges with a certain deviation (offset).

図6は、本発明に係る自動圧力制御器20を構成する圧力調整弁15の断面概要図であり、圧力調整弁15には所謂ピエゾ駆動式メタルダイヤフラム型制御弁が使用されている。即ち、当該圧力調整弁15は、ステンレス鋼製の弁本体22と、金属ダイヤフラム弁体23と、押えアダプタ24と、下端部にダイヤフラム押え25が設けられ、弁本体23の孔部22a内へ垂直状に挿着した底壁を有する筒状の圧電素子支持筒体26と、支持筒体26の底壁上に配設した皿ばね27と、押えアダプタ24を押圧する割りベース28と、割りベース28の鍔部を下方に押圧することにより割りベース28を弁本体22へ固定する筒体固定・ガイド体29と、支持筒体26内に設けた下部受台30と、支持筒体26内へ挿着した圧電素子31と、圧電素子31の上端部に配設したベアリング32と、支持筒体26の上方に配設した位置決め材33等からその主要部が構成されている。また、弁本体22は出口側(2次側)の制御圧を検出するケージ圧センサ34及び弁本体22の気密性を保持するロングガスケット35が設けられており、更に、弁本体22には流体入口36、流体出口37、漏洩検査孔38等が設けられている。   FIG. 6 is a schematic cross-sectional view of the pressure regulating valve 15 constituting the automatic pressure controller 20 according to the present invention, and a so-called piezo-driven metal diaphragm type control valve is used for the pressure regulating valve 15. That is, the pressure regulating valve 15 includes a stainless steel valve body 22, a metal diaphragm valve body 23, a presser adapter 24, and a diaphragm presser 25 provided at a lower end portion, and is perpendicular to the hole 22 a of the valve main body 23. A cylindrical piezoelectric element support cylinder 26 having a bottom wall inserted in a shape, a disc spring 27 disposed on the bottom wall of the support cylinder 26, a split base 28 for pressing the presser adapter 24, and a split base A cylindrical body fixing / guide body 29 for fixing the split base 28 to the valve body 22 by pressing the flange portion 28 downward, a lower receiving base 30 provided in the supporting cylinder body 26, and the supporting cylinder body 26. The main part is composed of the inserted piezoelectric element 31, a bearing 32 disposed at the upper end of the piezoelectric element 31, a positioning member 33 disposed above the support cylinder 26, and the like. The valve body 22 is provided with a cage pressure sensor 34 for detecting the control pressure on the outlet side (secondary side) and a long gasket 35 for maintaining the airtightness of the valve body 22. An inlet 36, a fluid outlet 37, a leakage inspection hole 38, and the like are provided.

駆動信号が入力されない時には、スプリング27の弾性力によって支持筒体26が下方へ押圧され、樹脂シート製のダイヤフラム押え25を介して弁体23が弁座39側へ接当され、流体通路が閉鎖される。また、駆動信号が圧電素子31へ入力されると、圧電素子31が伸長し、下部受台30上に下端部が支持された圧電素子31の上端が上方へ上昇し、支持筒体26をスプリング27の弾性力に抗して上方へ持ち上げる。これにより、ダイヤフラム押え25も上方へ移動して弁体23が弁座39から離れることにより、流体通路が導通される。
尚、当該圧力調整弁15そのものの主要構成は公知であり、例えば特開2003−120832等により公開されているので、ここではその詳細な説明を省略する。
When no drive signal is input, the support cylinder 26 is pressed downward by the elastic force of the spring 27, the valve body 23 is brought into contact with the valve seat 39 via the diaphragm press 25 made of a resin sheet, and the fluid passage is closed. Is done. When a drive signal is input to the piezoelectric element 31, the piezoelectric element 31 expands, the upper end of the piezoelectric element 31 whose lower end is supported on the lower pedestal 30 rises upward, and the support cylinder 26 is spring-loaded. Lifts up against the elastic force of 27. As a result, the diaphragm retainer 25 is also moved upward and the valve body 23 is separated from the valve seat 39, whereby the fluid passage is conducted.
Note that the main configuration of the pressure regulating valve 15 itself is publicly known, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-120832.

前記コントローラ16は、制御圧検出器P2からの検出圧と圧力調整弁の設定圧Pstとの差を演算し、その偏差の大きさに比例した制御信号Qを圧力調整弁の駆動部(圧電素子31)へ供給するものであり、ここでは、比例制御方式における制御動作を、積分動作を無効とすることにより制御圧に残留偏差を生ずる制御動作とPID制御動作とに切換え可能なコントローラ16が使用されている。 The controller 16 controls pressure calculates a difference between the set pressure Pst detection pressure and the pressure regulating valve from the can P 2, the drive unit of the pressure regulating valve a control signal Q which is proportional to the magnitude of the deviation (piezoelectric Here, there is provided a controller 16 capable of switching the control operation in the proportional control method between a control operation that causes a residual deviation in the control pressure by disabling the integral operation and a PID control operation. in use.

図7は、熱式質量流量調整器17をF.S.10SCCMのものとし、これにPID制御動作によりコントローラ16を介して圧力調整弁15の制御圧を100kPa abs.に制御すると共に、熱式質量流量調整器17の流量設定を0−20−40−60−80−100%設定に切換した場合の熱式質量流量調整器17の入力値と出力値を示すものである。   FIG. 7 shows the thermal mass flow controller 17 as shown in FIG. S. 10 SCCM, and the control pressure of the pressure regulating valve 15 is set to 100 kPa abs. And the input value and output value of the thermal mass flow regulator 17 when the flow rate setting of the thermal mass flow regulator 17 is switched to the 0-20-40-60-80-100% setting. It is.

図7の拡大部分Cからも明らかなように、圧力調整弁の制御圧Dが設定値100kPa abs.に復帰する際に、熱式質量流量調整器17の出力側値に振れの発生することが見られる。尚、この事象は発明者に予め予想されていたところである。   As is clear from the enlarged portion C of FIG. 7, the control pressure D of the pressure regulating valve is set to a set value of 100 kPa abs. It can be seen that the output side value of the thermal mass flow regulator 17 is shaken when returning to step (b). This phenomenon has been predicted in advance by the inventors.

図8は、図7に於ける熱式質量流量調整器17をF.S.500SCCMの流量のものに換えた場合の測定値を示すものであり、図7の場合と同じ結果となった。   8 shows the thermal mass flow controller 17 in FIG. S. The measured values are shown when the flow rate is changed to 500 SCCM, and the same results as in FIG. 7 are obtained.

図9は、図7と同じ条件下で熱式質量流量調整器17の流量設定を0−100%に切換えした場合を示すものであり、熱式質量流量調整器17の出力値に振れが発生する。   FIG. 9 shows the case where the flow rate setting of the thermal mass flow controller 17 is switched to 0-100% under the same conditions as in FIG. 7, and the output value of the thermal mass flow controller 17 fluctuates. To do.

図7乃至図9からも明らかなように、自動圧力調整器20をPID制御動作による比例制御方式として作動させた場合には、何れの場合であっても熱式質量流量調整器17の出力値Bに振れが生ずる事となる。   As is apparent from FIGS. 7 to 9, when the automatic pressure regulator 20 is operated as a proportional control method by the PID control operation, the output value of the thermal mass flow regulator 17 is in any case. B will shake.

図10は、本願発明の主要部を成すものであり、前記図7と同一の試験条件下で、コントローラ16の制御動作をP1D制御動作から積分動作を無効とすることにより制御圧に残留偏差を生ずる制御動作に切換えした場合の試験結果を示すものである。
図10に於いては、積分動作を無効としているため、圧力調整弁の制御圧Dは、流量切換によって偏差が生じても、偏差が直ちに零に戻され無い。その結果、熱式質量流量調整器17の出力値Bに振れが生じなくなり、試験の結果からも明らかなように、万一振れが発生したとしてもそのF.S.流量に対する割合は極く小さなものとなり、実用上悪影響を生じる虞れが全くない。
FIG. 10 is a main part of the present invention. Under the same test conditions as in FIG. 7, the control operation of the controller 16 is changed from the P1D control operation to the integration operation, thereby reducing the residual deviation in the control pressure. The test result at the time of switching to the generated control operation is shown.
In FIG. 10, since the integral operation is disabled, the deviation of the control pressure D of the pressure regulating valve is not immediately returned to zero even if a deviation occurs due to the flow rate switching. As a result, no fluctuation occurs in the output value B of the thermal mass flow controller 17, and as is apparent from the test results, even if a fluctuation occurs, the F.V. S. The ratio to the flow rate is extremely small, and there is no possibility of causing an adverse effect on practical use.

図11は、前記図10における熱式質量流量調整器をF.S.500SCCMのものに取り替えした場合を示すものであり、図10の場合と同様に、熱式質量流量調整器17の出力値Bに振れを生ずることが殆ど無い。即ち、枠Cで示すように、圧力調整弁の制御圧が切換前の値に復帰されないため、熱式質量流量調整器17の出力値には振れが生じないことになる。   11 shows the thermal mass flow controller in FIG. S. This shows the case of replacement with the one of 500 SCCM, and there is almost no fluctuation in the output value B of the thermal mass flow controller 17 as in the case of FIG. That is, as indicated by the frame C, the control pressure of the pressure regulating valve is not restored to the value before switching, so that the output value of the thermal mass flow regulator 17 does not fluctuate.

図12は、前記図9に於けるPID制御動作を積分動作を無効とした制御動作に切替えした場合を示すものであり、ガス流量を0−100%に切換えした場合でも、熱式質量流量調整器17の出力値に殆ど振れが生じないことが示されている。   FIG. 12 shows a case where the PID control operation in FIG. 9 is switched to a control operation in which the integral operation is disabled. Even when the gas flow rate is switched to 0-100%, the thermal mass flow rate adjustment is performed. It is shown that the output value of the device 17 hardly fluctuates.

上記各実施例では、熱式質量流量調整器(MFC)17のフルスケール流量(F.S.)を10SCCM又は500SCCMとしているが、 1SCCM程度のフルスケール(F.S.)流量であっても同様の流量特性が得られている。レギュレータ制御圧についても同様であり、上記各実施例では100kPa abs.としているが、−0.07〜0.7MPaGであっても、同じ流量特性が得られている。   In each of the above embodiments, the full-scale flow rate (FS) of the thermal mass flow controller (MFC) 17 is set to 10 SCCM or 500 SCCM. Similar flow characteristics are obtained. The same applies to the regulator control pressure. In the above embodiments, 100 kPa abs. However, even if it is -0.07 to 0.7 MPaG, the same flow characteristics are obtained.

本発明に係る自動圧力調整器は、半導体製造分野のみならず、化学品製造分野や薬品製造分野等の流量調整器を用いるガス供給装置に広く適用することができるものであり、微流量のガス供給であっても、ガス流量の変動や供給ガス種の切換時に流量調整器の出力側にオーバーシュートが生じないため、高精度なガス流量制御が行える。   The automatic pressure regulator according to the present invention can be widely applied not only to the semiconductor manufacturing field, but also to gas supply devices using flow regulators in the chemical manufacturing field, the chemical manufacturing field, etc. Even when the gas is supplied, overshoot does not occur on the output side of the flow regulator when the gas flow rate is changed or the supply gas type is switched, so that highly accurate gas flow control can be performed.

手動圧力調整器を用いた熱式質量流量調整器の流量応答特性測定装置の説明図である。It is explanatory drawing of the flow-response characteristic measuring apparatus of the thermal mass flow regulator using a manual pressure regulator. 図1の流量応答特性測定装置を用いた場合の熱式質量流量調整器の流量応答特性を示す線図である。It is a diagram which shows the flow response characteristic of the thermal mass flow controller when the flow response characteristic measuring apparatus of FIG. 1 is used. 自動圧力調整器を用いた熱式質量流量調整器の流量応答特性測定装置の説明図である。It is explanatory drawing of the flow volume response characteristic measuring apparatus of the thermal mass flow regulator which used the automatic pressure regulator. 図3の流量応答特性測定装置の自動圧力調整器をPID制御動作とした場合の熱式質量流量調整器の流量応答特性を示す線図である。It is a diagram which shows the flow response characteristic of a thermal mass flow regulator when the automatic pressure regulator of the flow response characteristic measuring apparatus of FIG. 3 is set to PID control operation. 本発明に係る自動圧力調整器20の構成を示す系統図である。It is a systematic diagram which shows the structure of the automatic pressure regulator 20 which concerns on this invention. 本発明で使用する圧力調整弁の断面概要図である。It is a cross-sectional schematic diagram of the pressure regulating valve used in the present invention. 本発明に係る自動圧力調整器のコントローラをPID制御動作とした場合の熱式質量流量調整器(10SCCM)の流量応答特性の一例を示すものである。An example of the flow response characteristic of the thermal mass flow controller (10SCCM) when the controller of the automatic pressure regulator according to the present invention is set to PID control operation is shown. 本発明に係る自動圧力調整器のコントローラをPID制御動作とした場合の熱式質量流量調整器(500SCCM)の流量応答特性の一例を示すものである。An example of the flow response characteristic of a thermal mass flow controller (500 SCCM) when the controller of the automatic pressure regulator according to the present invention is set to PID control operation is shown. 図7と同様の流量応答特性の他の例を示すものである。It shows another example of the flow rate response characteristic similar to FIG. 本発明に係る自動圧力調整器のコントローラを積分動作を無効とした制御動作とした場合の熱式質量流量調整器(10SCCM)の流量応答特性の一例を示すものである。An example of the flow response characteristic of the thermal mass flow controller (10SCCM) when the controller of the automatic pressure regulator according to the present invention is a control operation in which the integral operation is disabled is shown. 本発明に係る自動圧力調整器のコントローラを積分動作を無効とした制御動作とした場合の熱式質量流量調整器(500SCCM)の流量応答特性の一例を示すものである。An example of the flow response characteristic of a thermal mass flow controller (500 SCCM) when the controller of the automatic pressure regulator according to the present invention is a control operation in which the integral operation is disabled is shown. 図10と同様の流量応答特性の他の例を示すものである。11 shows another example of the flow rate response characteristic similar to FIG. 従前の自動圧力調整器の一例を示す説明図である。It is explanatory drawing which shows an example of the conventional automatic pressure regulator.

符号の説明Explanation of symbols

A 熱式質量流量調整器(MFC)の入力値
B 熱式質量流量調整器(MFC)の出力値
C 拡大部分
D 圧力調整弁の制御圧力
Pst 制御圧の設定値
10 N2ガス
11 圧力調整器
12 フィルタ
13 供給圧検出器
14 制御圧検出器
15 圧力調整弁(レギュレータ)
16 コントローラ
17 熱式質量流量調整器
18・19 弁
20 自動圧力調整器(オートレギュレータ)
21 真空ポンプ
22 弁本体
22a 弁本体の孔部
23 ダイヤフラム弁体
24 押えアダプタ
25 ダイヤフラム押え
26 圧電素子支持筒体
27 皿ばね
28 割りベース
29 筒体固定・ガイド体
30 下部受台
31 圧電素子
32 ベアリング
33 位置決め材
34 ゲージ圧センサ
35 ロングガスケット
36 流体入口
37 流体出口
38 漏洩検査孔
39 弁座
40 手動圧力調整器
A Input value of thermal mass flow regulator (MFC) B Output value of thermal mass flow regulator (MFC) C Enlarged part D Control pressure of pressure regulating valve Pst Control pressure set value 10 N2 gas 11 Pressure regulator 12 Filter 13 Supply pressure detector 14 Control pressure detector 15 Pressure adjustment valve (regulator)
16 Controller 17 Thermal mass flow regulator 18, 19 Valve 20 Automatic pressure regulator (auto regulator)
21 Vacuum pump 22 Valve body 22a Hole in valve body 23 Diaphragm valve body 24 Presser adapter 25 Diaphragm holder 26 Piezoelectric element support cylinder 27 Belleville spring 28 Split base 29 Cylinder fixing / guide body 30 Lower base 31 Piezoelectric element 32 Bearing 33 Positioning material 34 Gauge pressure sensor 35 Long gasket 36 Fluid inlet 37 Fluid outlet 38 Leakage inspection hole 39 Valve seat 40 Manual pressure regulator

Claims (5)

流量調整器へ供給するガス供給圧力の自動圧力調整器20であって、圧力調整弁15と,圧力調整弁15の出力側に設けた制御圧検出器14と,制御圧検出器14の検出値P2と制御圧の設定値Pstとが入力され、圧力調整弁15の駆動部へ比例制御方式により制御信号を供給して、弁の開度調整を行うコントローラ16とから前記自動圧力調整器20を構成すると共に、前記比例制御方式を、制御圧に残留偏差を生ずる比例動作の制御とするようにしたことを特徴とする流量調整器用自動圧力調整器。 An automatic pressure regulator 20 for gas supply pressure to be supplied to a flow rate regulator, including a pressure regulation valve 15, a control pressure detector 14 provided on the output side of the pressure regulation valve 15, and a detection value of the control pressure detector 14 P 2 and the set value Pst of the control pressure are input, and the automatic pressure regulator 20 is supplied from the controller 16 that adjusts the opening of the valve by supplying a control signal to the drive unit of the pressure regulating valve 15 by a proportional control method. And an automatic pressure regulator for a flow rate regulator characterized in that the proportional control method is a proportional operation control that produces a residual deviation in the control pressure. 圧力調整弁15を圧電素子駆動型の金属ダイヤフラム弁とした請求項1に記載の流量調整器用自動圧力調整器。   The automatic pressure regulator for a flow regulator according to claim 1, wherein the pressure regulating valve (15) is a piezoelectric element driven metal diaphragm valve. 流量調整器を真空チャンバへガスを供給する流量調整器とするようにした請求項1に記載の流量調整器用自動圧力調整器。   2. The automatic pressure regulator for a flow rate regulator according to claim 1, wherein the flow rate regulator is a flow rate regulator that supplies gas to a vacuum chamber. 圧力調整弁15の制御圧の範囲を−0.07〜0.7MPaGとすると共に流量調整器17の最小定格流量を 1(SCCM)とするようにした請求項1に記載の流量調整器用自動圧力調整器。   The automatic pressure for a flow regulator according to claim 1, wherein the range of the control pressure of the pressure regulator 15 is -0.07 to 0.7 MPaG and the minimum rated flow of the flow regulator 17 is 1 (SCCM). Adjuster. PID制御可能な状態から積分制御動作を無効とすることにより、制御圧に残留偏差を生ずる比例動作の制御とするようにした請求項1に記載の流量調整器用自動圧力調整器。 2. The automatic pressure regulator for a flow rate regulator according to claim 1, wherein the integral control operation is disabled from a state where PID control is possible, thereby controlling the proportional operation that causes a residual deviation in the control pressure.
JP2008146498A 2008-06-04 2008-06-04 Automatic pressure regulator for thermal mass flow regulator Active JP5177864B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008146498A JP5177864B2 (en) 2008-06-04 2008-06-04 Automatic pressure regulator for thermal mass flow regulator
KR1020107024380A KR20100139118A (en) 2008-06-04 2009-04-06 Automatic pressure regulator for flow regulator
US12/996,370 US8757197B2 (en) 2008-06-04 2009-04-06 Automatic pressure regulator for flow rate regulator
CN200980121364.2A CN102057340B (en) 2008-06-04 2009-04-06 Automatic pressure regulator for flow regulator
PCT/JP2009/001591 WO2009147775A1 (en) 2008-06-04 2009-04-06 Automatic pressure regulator for flow regulator
TW98114862A TWI405059B (en) 2008-06-04 2009-05-05 Automatic pressure regulator for thermal mass flow regulators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146498A JP5177864B2 (en) 2008-06-04 2008-06-04 Automatic pressure regulator for thermal mass flow regulator

Publications (2)

Publication Number Publication Date
JP2009294820A true JP2009294820A (en) 2009-12-17
JP5177864B2 JP5177864B2 (en) 2013-04-10

Family

ID=41397863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146498A Active JP5177864B2 (en) 2008-06-04 2008-06-04 Automatic pressure regulator for thermal mass flow regulator

Country Status (6)

Country Link
US (1) US8757197B2 (en)
JP (1) JP5177864B2 (en)
KR (1) KR20100139118A (en)
CN (1) CN102057340B (en)
TW (1) TWI405059B (en)
WO (1) WO2009147775A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120132291A1 (en) * 2010-11-29 2012-05-31 Pivotal Systems Corporation Transient measurements of mass flow controllers
US9523435B2 (en) 2009-10-15 2016-12-20 Pivotal Systems Corporation Method and apparatus for gas flow control
CN106647842A (en) * 2016-11-21 2017-05-10 中国石油大学(北京) Pressure regulation and control device for high-pressure micro-flow experiment system
US10401202B2 (en) 2015-07-10 2019-09-03 Pivotal Systems Corporation Method and apparatus for gas flow control

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090938A1 (en) * 2010-01-19 2011-07-28 Millennial Net, Inc. Systems and methods utilizing a wireless mesh network
US20130118609A1 (en) * 2011-11-12 2013-05-16 Thomas Neil Horsky Gas flow device
US9557744B2 (en) 2012-01-20 2017-01-31 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US9846074B2 (en) 2012-01-20 2017-12-19 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US9471066B2 (en) 2012-01-20 2016-10-18 Mks Instruments, Inc. System for and method of providing pressure insensitive self verifying mass flow controller
US10031005B2 (en) 2012-09-25 2018-07-24 Mks Instruments, Inc. Method and apparatus for self verification of pressure-based mass flow controllers
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
US20140358303A1 (en) * 2013-06-03 2014-12-04 Tescom Corporation Method and Apparatus for Stabilizing Pressure in an Intelligent Regulator Assembly
WO2015045987A1 (en) * 2013-09-30 2015-04-02 日立金属株式会社 Flow volume control valve and mass flow controller using same
JP6372998B2 (en) * 2013-12-05 2018-08-15 株式会社フジキン Pressure flow control device
JP6484248B2 (en) * 2014-02-13 2019-03-13 エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated System and method for providing a pressure-insensitive self-verifying mass flow controller
KR102009242B1 (en) * 2015-08-21 2019-08-09 가부시키가이샤 후지킨 Piezoelectric linear actuators, piezoelectric drive valves and flow control devices
US11226641B2 (en) * 2016-10-14 2022-01-18 Fujikin Incorporated Fluid control device
US10983538B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
US10442545B2 (en) * 2017-04-18 2019-10-15 Simmonds Precision Products, Inc. Liquid measurement system for a tank
JP6841201B2 (en) * 2017-10-06 2021-03-10 株式会社島津製作所 Gas estimation device and vacuum exhaust device
WO2020044827A1 (en) * 2018-08-30 2020-03-05 株式会社フジキン Fluid control device
WO2021176864A1 (en) * 2020-03-05 2021-09-10 株式会社フジキン Flow rate control device and flow rate control method
CN112666827B (en) * 2021-01-19 2022-08-02 四川阿泰因机器人智能装备有限公司 Method for controlling liquid distribution in grading manner based on PID

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583901A (en) * 1978-12-19 1980-06-24 Jeol Ltd Pid automatic control method
JPH11345027A (en) * 1998-05-29 1999-12-14 Tadahiro Omi Gas supply equipment provided with pressure type flow rate controller
JP2003529218A (en) * 2000-03-27 2003-09-30 パーカー・ハニフィン・コーポレーション Process gas flow control in semiconductor manufacturing

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766928A (en) * 1986-10-27 1988-08-30 Packaged Systems, Inc. Constant flow rate control valve
US4930992A (en) * 1987-07-09 1990-06-05 Tokyo Keiki Company Ltd. Control apparatus of variable delivery pump
JPH07240375A (en) 1994-02-25 1995-09-12 Sony Corp Gas feeder
US5865205A (en) * 1997-04-17 1999-02-02 Applied Materials, Inc. Dynamic gas flow controller
KR100427563B1 (en) * 1999-04-16 2004-04-27 가부시키가이샤 후지킨 Parallel bypass type fluid feeding device, and method and device for controlling fluid variable type pressure system flow rate used for the device
US6138708A (en) * 1999-07-28 2000-10-31 Controls Corporation Of America Mass flow controller having automatic pressure compensator
JP2001191789A (en) * 2000-01-14 2001-07-17 Toyota Autom Loom Works Ltd Variable displacement compressor and air conditioner
US6644332B1 (en) * 2001-01-25 2003-11-11 Fisher Controls International Inc. Method and apparatus for multiple-input-multiple-output control of a valve/actuator plant
JP4119109B2 (en) 2001-10-17 2008-07-16 株式会社フジキン Piezoelectric element driven metal diaphragm type control valve
CN1688948B (en) * 2002-07-19 2010-05-26 布鲁克斯器具有限公司 Methods and apparatus for pressure compensation in a mass flow controller
JP3801570B2 (en) * 2003-02-24 2006-07-26 Smc株式会社 Flow control device
US7287541B2 (en) * 2004-01-16 2007-10-30 Battelle Energy Alliance, Llc Method, apparatus and system for controlling fluid flow
JP2005339439A (en) * 2004-05-31 2005-12-08 Tech Ware:Kk Automatic pressure controller
JP5190177B2 (en) * 2005-12-01 2013-04-24 太一 稲田 Pressure flow proportional control valve
US20080099705A1 (en) * 2006-10-25 2008-05-01 Enfield Technologies, Llc Retaining element for a mechanical component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583901A (en) * 1978-12-19 1980-06-24 Jeol Ltd Pid automatic control method
JPH11345027A (en) * 1998-05-29 1999-12-14 Tadahiro Omi Gas supply equipment provided with pressure type flow rate controller
JP2003529218A (en) * 2000-03-27 2003-09-30 パーカー・ハニフィン・コーポレーション Process gas flow control in semiconductor manufacturing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9523435B2 (en) 2009-10-15 2016-12-20 Pivotal Systems Corporation Method and apparatus for gas flow control
US9904297B2 (en) 2009-10-15 2018-02-27 Pivotal Systems Corporation Method and apparatus for gas flow control
US9983595B2 (en) 2009-10-15 2018-05-29 Pivotal Systems Corporation Method and apparatus for gas flow control
US20120132291A1 (en) * 2010-11-29 2012-05-31 Pivotal Systems Corporation Transient measurements of mass flow controllers
US9400004B2 (en) * 2010-11-29 2016-07-26 Pivotal Systems Corporation Transient measurements of mass flow controllers
US10401202B2 (en) 2015-07-10 2019-09-03 Pivotal Systems Corporation Method and apparatus for gas flow control
CN106647842A (en) * 2016-11-21 2017-05-10 中国石油大学(北京) Pressure regulation and control device for high-pressure micro-flow experiment system
CN106647842B (en) * 2016-11-21 2017-11-28 中国石油大学(北京) High pressure micro-flow experimental system pressure controlling device

Also Published As

Publication number Publication date
CN102057340B (en) 2014-07-16
US8757197B2 (en) 2014-06-24
WO2009147775A1 (en) 2009-12-10
TWI405059B (en) 2013-08-11
TW201009528A (en) 2010-03-01
US20110139271A1 (en) 2011-06-16
KR20100139118A (en) 2010-12-31
CN102057340A (en) 2011-05-11
JP5177864B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5177864B2 (en) Automatic pressure regulator for thermal mass flow regulator
JP4605790B2 (en) Raw material vaporization supply device and pressure automatic adjustment device used therefor.
US8201989B2 (en) Fluid mixing system and fluid mixing apparatus
JP5703114B2 (en) Raw material vaporizer
US6363958B1 (en) Flow control of process gas in semiconductor manufacturing
US11216016B2 (en) Flow rate control method and flow rate control device
KR100725098B1 (en) Method and appratus for sensing error operation of mass flow controller in semiconductor production device
KR20100048894A (en) Material gas concentration control system
JP2012234860A5 (en)
JP2008532325A (en) Control of fluid state in a mass fluid distribution system.
KR101098910B1 (en) Vacuum pressure control system and vacuum pressure control program
US20220163983A1 (en) Fluid control apparatus, fluid control method, and program recording medium in which program for fluid control apparatus is recorded
JP5118216B2 (en) Vacuum pressure control system and vacuum pressure control program
KR101536234B1 (en) Vaporizer
CN105051505B (en) System and method for automatically self-adjusting valve reference of a mass flow controller
US4153341A (en) Automatic focusing apparatus
KR102568642B1 (en) gas supply apparatus with internal-pressure adjustment by use of bellows drive
KR20230005977A (en) Fluid control device, fluid supply system and fluid supply method
JP2022115176A (en) Flow rate control device and flow rate control method
KR20080017117A (en) Mass flow controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

R150 Certificate of patent or registration of utility model

Ref document number: 5177864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250