JP2009293422A - Cylinder injection type spark ignition internal combustion engine - Google Patents

Cylinder injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2009293422A
JP2009293422A JP2008145663A JP2008145663A JP2009293422A JP 2009293422 A JP2009293422 A JP 2009293422A JP 2008145663 A JP2008145663 A JP 2008145663A JP 2008145663 A JP2008145663 A JP 2008145663A JP 2009293422 A JP2009293422 A JP 2009293422A
Authority
JP
Japan
Prior art keywords
fuel
injection
internal combustion
combustion engine
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008145663A
Other languages
Japanese (ja)
Other versions
JP5067566B2 (en
Inventor
Masaru Tanaka
大 田中
Koji Hata
幸司 秦
Kimihiko Sato
公彦 佐藤
Kazuyoshi Nakane
一芳 中根
Shigeo Yamamoto
茂雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2008145663A priority Critical patent/JP5067566B2/en
Publication of JP2009293422A publication Critical patent/JP2009293422A/en
Application granted granted Critical
Publication of JP5067566B2 publication Critical patent/JP5067566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder injection type spark ignition internal combustion engine enlarging a stable lean combustion operation region by adopting a collision injection method of allowing fuel to collide from mutually facing directions to retain a mixture near an ignition part. <P>SOLUTION: The cylinder injection type spark ignition internal combustion engine is provided with a fuel injection means 11 capable of injecting fuel by an indirect supply method, a direct supply method and a collision injection method of allowing the fuel to collide from the mutually facing directions; operating state detecting means 23, 24 each detecting the operating state of the internal combustion engine; and an ECU 20 switching the indirect supply method, the direct supply method and the collision injection method according to the operating state of the internal combustion engine. By this constitution, the operation region of lean combustion is enlarged by properly using the indirect supply method advantageous to stratified combustion in a low rotation region, the direct supply method advantageous in a region with a small fuel injection quantity in a medium rotation region, and the collision injection method advantageous in a medium load region with a large fuel injection quantity in a lean combustion time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃焼室内に成層混合気を形成して燃焼を行う筒内噴射型火花点火式内燃機関に関する。   The present invention relates to an in-cylinder injection spark ignition type internal combustion engine that performs combustion by forming a stratified mixture in a combustion chamber.

燃焼室内に燃料を直接噴射して混合気を形成する筒内噴射型火花点火式内燃機関、いわゆる直噴火花点火式エンジンには、吸気絞り損失の大きい部分負荷(低・中負荷)での熱効率改善のために成層希薄燃焼を行うものがある。混合気の成層化を行う手法として様々なものがあるが,スプレーガイド方式と呼ばれる手法が良く知られている。
スプレーガイド方式のエンジンでは、例えば特許文献1に開示されているように燃焼室に設けた燃料噴射弁から、圧縮行程において、燃料を直接、点火プラグの点火部近傍へ噴射させることで、筒内の全体を空気過剰状態としながら、点火プラグの点火部近傍には、点火に適した量論比に近い混合気を配置(混合気の成層化)し、希薄燃焼を成立させている。ここで、スプレーガイド方式では、燃料噴射から点火までの時間インターバルが短いため、過度の混合気の拡散を防止でき、また、ピストンへの燃料衝突も抑制できるので、未燃HCの排出が少なく,高い燃焼効率を実現できる利点がある。
In-cylinder spark-ignition internal combustion engines that form fuel-air mixtures by directly injecting fuel into the combustion chamber, so-called direct-injection spark-ignition engines, have thermal efficiency at partial loads (low and medium loads) with large intake throttle loss Some perform stratified lean burn for improvement. There are various methods for stratifying the air-fuel mixture, and a method called spray guide method is well known.
In a spray guide type engine, for example, as disclosed in Patent Document 1, fuel is directly injected into the vicinity of an ignition portion of a spark plug in a compression stroke from a fuel injection valve provided in a combustion chamber. In the vicinity of the ignition part of the spark plug, an air-fuel mixture close to the stoichiometric ratio suitable for ignition is arranged (stratification of the air-fuel mixture) to establish lean combustion. Here, in the spray guide method, since the time interval from fuel injection to ignition is short, it is possible to prevent the diffusion of an excessive air-fuel mixture and to suppress the fuel collision to the piston, so that the amount of unburned HC is reduced, There is an advantage that high combustion efficiency can be realized.

一方、スプレーガイド方式は、噴霧が点火部近傍を通過する期間、すなわち燃料噴射中から噴射直後の限られた期間に点火を行わないと燃焼が成立しないため、低回転域の点火時期や噴射時期の制御性が悪いという欠点がある。
この欠点を述べると、エンジンの1行程当たりに必要な燃料量は、概ねエンジン負荷によって決まり、エンジン回転数の影響は比較的小さい。また、エンジンに供給する燃料量は燃料噴射弁の開弁期間(以下,噴射期間と略)によって制御されるので,負荷が高ければ噴射期間は長く,負荷が低ければ噴射期間は短くなる。
On the other hand, in the spray guide method, combustion is not established unless ignition is performed during a period in which the spray passes near the ignition unit, that is, during a limited period immediately after fuel injection, so that the ignition timing and injection timing in the low rotation range Has the disadvantage of poor controllability.
To describe this drawback, the amount of fuel required per one stroke of the engine is largely determined by the engine load, and the influence of the engine speed is relatively small. Further, since the amount of fuel supplied to the engine is controlled by the opening period of the fuel injection valve (hereinafter abbreviated as the injection period), the injection period is long when the load is high, and the injection period is short when the load is low.

また、一般に点火時期や噴射時期の制御はクランク角度刻み(例えば,点火時期を上死点前30゜に設定など)で行われることが多く、時間に換算すると高回転では1°の期間が長く(例えば3000rpmでは1゜は約0.056msに相当)、低回転になるにしたがい1°の期間が短くなる(例えば600rpmでは1゜は約0.278msに相当)ため、低回転では時間分解能が小さくなってしまう(例えば,600rpmでは3000rpmの1/5の時間分解能になる)。このため、点火時期の設定自由度は、低回転になるほど、小さくなってしまう。
このように、スプレーガイド方式は低回転域では点火・噴射制御の設定自由度が小さくなり、外乱などに対応することが難しく、失火が生じやすい。
In general, the ignition timing and injection timing are often controlled in increments of crank angle (for example, the ignition timing is set to 30 ° before top dead center). When converted to time, the period of 1 ° is long at high revolutions. (For example, 1 ° corresponds to about 0.056 ms at 3000 rpm), and the period of 1 ° decreases as the rotation speed decreases (for example, 1 ° corresponds to about 0.278 ms at 600 rpm). (For example, at 600 rpm, the time resolution is 1/5 of 3000 rpm). For this reason, the degree of freedom in setting the ignition timing becomes smaller as the rotation speed becomes lower.
As described above, the spray guide system has a low degree of freedom in setting the ignition / injection control in the low rotation range, it is difficult to cope with disturbances, and misfire is likely to occur.

だからといって、スプレーガイド方式は、燃料噴射量が多い、すなわち噴射期間の長い中負荷運転領域には安定して対応できるかというと、そうでもない。すなわち、スプレーガイド方式では、点火部近傍に対して燃料が、直接、噴射されるため、点火部近傍における混合気の流速が速くなる特徴がある。このため、比較的燃料噴射量の多い運転領域では、高速の気流によって点火放電の吹き消えが発生しやすく、安定した点火が成立せず、成層希薄燃焼が成立しがたいという問題もある。   That is why the spray guide system is not capable of stably dealing with a medium load operation region where the fuel injection amount is large, that is, the injection period is long. That is, in the spray guide system, fuel is directly injected into the vicinity of the ignition unit, and thus the flow rate of the air-fuel mixture in the vicinity of the ignition unit is increased. For this reason, in the operation region where the fuel injection amount is relatively large, there is a problem that the ignition discharge is easily blown out by the high-speed air flow, the stable ignition is not established, and the stratified lean combustion is difficult to be established.

一方、スプレーガイド方式に対し、例えば特許文献2にも示されているようにウォールガイド方式で、燃焼室内に成層混合気を生成する直噴火花点火式エンジンもある。
ウォールガイド方式は、圧縮行程において、燃料を上昇するピストンの頂面へめがけて噴射させ、噴霧がピストンの頂面ですくい上げられ、点火プラグの点火部近傍に輸送され、同部分に点火に適した混合気を生成させるもので、スプレーガイド方式と同様、点火部近傍に量論比に近い混合気を配置して、成層希薄燃焼を実現する。
On the other hand, there is also a direct-injection spark-ignition engine that generates a stratified mixture in a combustion chamber by a wall guide method as shown in Patent Document 2, for example, as opposed to a spray guide method.
In the wall guide system, in the compression stroke, fuel is injected toward the top surface of the ascending piston, and the spray is scooped up at the top surface of the piston and transported to the vicinity of the ignition part of the spark plug. Like the spray guide method, an air-fuel mixture close to the stoichiometric ratio is arranged in the vicinity of the ignition unit to realize stratified lean combustion.

ところで、ウォールガイド方式は、燃料をピストンの頂面を経て点火プラグの点火部近傍へ導くために、噴霧の流速は減速し,点火プラグの点火部近傍に、点火に適した混合気が滞留して、点火可能な期間が長くなる利点がある。また,点火部近傍の気流の流速も,スプレーガイド方式に比べて遅く,安定した点火が実現できる。しかし、エンジン回転が高まって、筒内の流動が速くなると,過度に混合気の拡散を促進して未燃HC排出の増大を招いてしまう。また、エンジン回転が高まったり、負荷が高くなって噴射期間が長くなると、噴射開始時期が早まるため、ピストン位置が遠くなって噴霧がピストンキャビティに捕捉できなくなり、効果的に点火部近傍に混合気を輸送できなくなってしまうという問題がある。   By the way, in the wall guide system, since the fuel is guided to the vicinity of the ignition part of the spark plug through the top surface of the piston, the flow rate of the spray is reduced, and an air-fuel mixture suitable for ignition stays in the vicinity of the ignition part of the spark plug. Thus, there is an advantage that the period during which ignition can be performed becomes long. In addition, the flow velocity of the airflow in the vicinity of the ignition unit is slower than that of the spray guide method, and stable ignition can be realized. However, if the engine speed increases and the flow in the cylinder increases, the diffusion of the air-fuel mixture is excessively promoted, resulting in an increase in unburned HC emission. In addition, if the engine speed increases or the load increases and the injection period becomes longer, the injection start timing is advanced, so that the piston position becomes far away so that the spray cannot be trapped in the piston cavity, and the air-fuel mixture is effectively placed near the ignition unit. There is a problem that it becomes impossible to transport.

このため、スプレーガイド方式やウォールガイド方式を単独で採用したのでは、広範囲な希薄燃焼運転を確保するのは難しい。そこで、特許文献2に示されているようにエンジンの運転状態に応じて、2種類のスプレーガイド方式、ウォールガイド方式を使い分ける技術が提案されている。
特開平10−54246号公報 特開2004−353594号公報
For this reason, it is difficult to secure a wide range of lean combustion operation by adopting the spray guide method or the wall guide method alone. Therefore, as shown in Patent Document 2, a technique has been proposed in which two types of spray guide methods and wall guide methods are selectively used according to the operating state of the engine.
Japanese Patent Laid-Open No. 10-54246 JP 2004-353594 A

しかし、スプレーガイド方式、ウォールガイド方式を使い分けても、希薄燃焼が行える範囲は限られるので、様々な運転状態下で、点火部近傍に、点火に適した混合気を生成させるには困難である。特に燃料噴射量が多い運転領域はスプレーガイド方式,ウォールガイド方式ともに欠点があり、特許文献2では、そのため燃料の噴射圧力を変更したり、バルブの閉弁時期を変更したりするなど複雑な制御手段が講じている。それでも、安定した希薄燃焼の運転領域を拡大するのは難しい。   However, even if the spray guide method and wall guide method are used properly, the range in which lean combustion can be performed is limited, so it is difficult to generate an air-fuel mixture suitable for ignition in the vicinity of the ignition unit under various operating conditions. . Particularly in the operation region where the fuel injection amount is large, both the spray guide method and the wall guide method have drawbacks, and in Patent Document 2, complicated control such as changing the fuel injection pressure or changing the valve closing timing. Means are taken. Nevertheless, it is difficult to expand the operating range of stable lean combustion.

そこで、本発明の目的は、相対向する方向から燃料を衝突させて点火部近傍に混合気を滞留させる衝突噴射方式を採用して、安定した希薄燃焼運転領域の拡大が図れる筒内噴射型火花点火式内燃機関を提供することにある。   Accordingly, an object of the present invention is to adopt an in-cylinder injection spark capable of expanding a stable lean combustion operation region by adopting a collision injection method in which fuel is collided from opposite directions and an air-fuel mixture is retained in the vicinity of an ignition part. The object is to provide an ignition type internal combustion engine.

請求項1に記載の発明は、上記目的を達成するために、内燃機関の圧縮行程中に燃料を間接的に点火部近傍へ噴射する間接供給方式、同じく燃料を直接に点火部近傍へ噴射する直接供給方式、同じく燃料を相対向する方向から衝突させて点火部近傍に滞留させる衝突噴射方式で燃料噴射が可能な燃料噴射手段を設け、内燃機関の運転状態を検出する運転状態検出手段を設け、さらに内燃機関の運転状態に応じて間接供給方式、直接供給方式、衝突噴射方式を切り換える制御部を設けた。   In order to achieve the above object, the invention according to claim 1 is an indirect supply system in which fuel is indirectly injected to the vicinity of the ignition part during the compression stroke of the internal combustion engine, and also the fuel is directly injected to the vicinity of the ignition part. A fuel injection means capable of fuel injection is provided by a direct supply system, and a collision injection system in which fuel is caused to collide from opposite directions and stay in the vicinity of the ignition unit, and an operating state detecting means for detecting the operating state of the internal combustion engine is provided. In addition, a controller that switches between an indirect supply method, a direct supply method, and a collision injection method according to the operating state of the internal combustion engine is provided.

すなわち、希薄燃焼運転時は、内燃機関の運転状態に応じて、低回転域では点火・噴射時期の制御性に優れる間接供給方式を使い、それ以外の領域では未燃HCの排出が少なく,燃焼効率の高い直接供給方式を使う。但し、間接供給,直接供給共に特性の悪化する中負荷域では、衝突噴射方式を使う。衝突噴射方式では、点火部近傍において相対向する方向から噴霧を衝突させることで、混合気を点火部近傍に配置・滞留させ、さらには互いの噴霧流速が衝突によりうち消し合うので、気流の流速も高まらないという特長があり,比較的負荷の高い領域でも良好な希薄燃焼特性を実現できる。
このように内燃機関の運転状態に応じて3種類の噴射モードを使い分けることで、希薄燃焼の運転領域の拡大が図れる。しかも、多くの複雑な制御を必要としない。
In other words, during lean burn operation, an indirect supply method with excellent controllability of ignition / injection timing is used in the low rotation range according to the operating state of the internal combustion engine, and unburned HC emissions are low in other regions and combustion is performed. Use an efficient direct supply system. However, the collision injection method is used in the middle load range where the characteristics of both indirect supply and direct supply deteriorate. In the collision injection method, the air-fuel mixture flows and stays in the vicinity of the ignition unit by causing the spray to collide in the vicinity of the ignition unit in the vicinity of the ignition unit. It has the feature that it does not increase, and good lean combustion characteristics can be realized even in a relatively high load region.
In this way, by properly using the three types of injection modes in accordance with the operating state of the internal combustion engine, the operating range of lean combustion can be expanded. Moreover, it does not require a lot of complicated control.

請求項2に記載の発明は、特に間接供給方式、直接供給方式、衝突噴射方式の良さが内燃機関の運転領域で十分に発揮されるよう、制御部は、内燃機関が低回転数の低負荷〜中負荷領域のときに間接供給方式に切換わり、内燃機関が中回転数の低負荷領域のときに直接供給方式に切換わり、内燃機関が中回転数の中負荷領域のときに衝突噴射方式に切換わるようにした。   According to the second aspect of the present invention, the control unit is configured so that the internal combustion engine has a low load with a low rotational speed so that the advantages of the indirect supply system, the direct supply system, and the collision injection system are sufficiently exhibited in the operation region of the internal combustion engine. Switching to the indirect supply method when the engine is in the middle load range, switching to the direct supply method when the internal combustion engine is in the low load region of medium speed, and collision injection method when the internal combustion engine is in the medium load region of medium speed It was made to switch to.

請求項3に記載の発明は、衝突噴射方式の領域のうち、特に燃料噴射量が多く、筒内の空燃比が十分希薄な状態でなくなるような中負荷上限域では、点火部近傍が過濃となって不完全燃焼によるCOやスモーク排出量の増大や燃焼効率の低下を招いたり、点火プラグのくすぶりが生じたりするため、混合気の拡散性を高めて燃焼しやすくするよう、高拡散モードに切り換わるようにした。   According to the third aspect of the present invention, in the middle injection upper limit region in which the fuel injection amount is particularly large and the in-cylinder air-fuel ratio is not sufficiently lean, the vicinity of the ignition unit is excessively concentrated. In order to increase CO and smoke emissions due to incomplete combustion, decrease combustion efficiency, or cause smoldering of spark plugs. Switch to.

好ましくは、特に優れた混合気の拡散性が得られるよう、高拡散モードは、内燃機関の圧縮行程中に燃料を間接的に点火部近傍へ噴射する間接供給で行う。また、同じく、高拡散モードは、内燃機関の吸気行程から圧縮行程中期に燃料を噴射した後、それに続く圧縮行程中に、直接供給または間接供給により燃料を直接に点火部近傍へ噴射する分割噴射で行う。   Preferably, the high diffusion mode is performed by indirect supply in which fuel is indirectly injected into the vicinity of the ignition unit during the compression stroke of the internal combustion engine so that particularly excellent diffusibility of the air-fuel mixture can be obtained. Similarly, in the high diffusion mode, after the fuel is injected from the intake stroke to the middle of the compression stroke of the internal combustion engine, the divided injection in which the fuel is directly injected into the vicinity of the ignition unit by direct supply or indirect supply during the subsequent compression stroke. To do.

請求項4に記載の発明は、衝突噴射方式として、間接供給方式による燃料と直接供給方式による燃料とを衝突させる方式を用いた。   The invention according to claim 4 uses a system in which the fuel by the indirect supply system and the fuel by the direct supply system are collided as the collision injection system.

請求項1の発明によれば、低回転域の成層燃焼に有利な間接供給方式と、中回転域の燃料噴射量が少ない領域で有利な直接供給方式と、燃料噴射量が多い中負荷域で有利な衝突噴射方式といった、3種類の噴射モードの使い分けにより、安定した希薄燃焼の運転領域を大幅に拡大することができる。しかも、多くの複雑な制御を必要としないですむ。
請求項2の発明によれば、間接供給方式、直接供給方式、衝突噴射方式の良さを内燃機関の運転領域で十分に発揮させることができる。
According to the first aspect of the present invention, an indirect supply method that is advantageous for stratified combustion in the low rotation region, a direct supply method that is advantageous in a region where the fuel injection amount in the middle rotation region is small, and a medium load region where the fuel injection amount is large. By properly using the three types of injection modes, such as an advantageous collision injection system, the operating range of stable lean combustion can be greatly expanded. Moreover, it does not require a lot of complicated control.
According to the invention of claim 2, the advantages of the indirect supply method, the direct supply method, and the collision injection method can be sufficiently exhibited in the operation region of the internal combustion engine.

請求項3の発明によれば、特に衝突噴射を行う領域のうち、筒内の空燃比が十分希薄な状態でなくなりやすい中負荷上限域は、混合気の拡散性が高められ、有害物質の排出を抑制し、点火プラグのくすぶりも防止でき,燃料噴射量が多くなっても、一層、安定した希薄燃焼の成立が約束できる。
請求項4の発明によれば、衝突噴射方式では、間接供給方式の燃料と直接供給方式の燃料とを衝突させているため、燃料噴射手段に衝突噴射方式用の新たな噴射形態を設計する必要がない。
According to the third aspect of the present invention, in the middle load upper limit region where the air-fuel ratio in the cylinder is likely not to be sufficiently lean, particularly in the region where the collision injection is performed, the diffusibility of the air-fuel mixture is enhanced and the discharge of harmful substances is performed. This suppresses the smoldering of the spark plug, and even when the fuel injection amount increases, it is possible to promise more stable lean combustion.
According to the invention of claim 4, in the collision injection method, since the indirect supply method fuel and the direct supply method fuel are caused to collide, it is necessary to design a new injection form for the collision injection method in the fuel injection means. There is no.

以下、本発明を図1〜図6に示す第1の実施形態にもとづいて説明する。
図1は、自動車(車両)に走行用として搭載された筒内噴射型火花点火式内燃機関、例えば4サイクルの直噴ガソリンエンジン(以下、単にエンジンという)の1気筒当たりの燃焼室構造を示す断面図を示す。
同エンジンの構造を説明すると、図1中1はエンジン本体を構成するシリンダブロック、2は同シリンダブロック1の上部に搭載されたシリンダヘッド、3はシリンダブロック1に形成されたシリンダライナ、4は同シリンダライナ3内に往復動可能に収められたピストンである。
Hereinafter, the present invention will be described based on a first embodiment shown in FIGS.
FIG. 1 shows a combustion chamber structure per cylinder of an in-cylinder spark-ignition internal combustion engine, for example, a four-cycle direct injection gasoline engine (hereinafter simply referred to as an engine) mounted on an automobile (vehicle) for traveling. A cross-sectional view is shown.
The structure of the engine will be explained. In FIG. 1, 1 is a cylinder block constituting the engine body, 2 is a cylinder head mounted on the cylinder block 1, 3 is a cylinder liner formed on the cylinder block 1, and 4 is The piston is accommodated in the cylinder liner 3 so as to be able to reciprocate.

このうちシリンダヘッド2のシリンダライナ3と向き合う下面には、例えばペントルーフ形の燃焼室6が形成されている。この燃焼室6の両側には、吸気ポート7からの吸気を制御する一対の吸気バルブ8(一方しか図示せず:いずれも破線)と、排気ポート9からの排気を制御する一対の排気バルブ10(一方しか図示せず:いずれも破線)が設けられている。また燃焼室6の中央には、1個の燃料噴射弁11(本願の燃料噴射手段に相当)が設けられている。燃料噴射弁11は、先端に燃料を噴射する噴射部12をもち、この噴射部12が燃焼室6内へ露出している。   Of these, a pent roof type combustion chamber 6 is formed on the lower surface of the cylinder head 2 facing the cylinder liner 3. On both sides of the combustion chamber 6, a pair of intake valves 8 (only one is shown: both are broken lines) for controlling intake air from the intake port 7 and a pair of exhaust valves 10 for controlling exhaust from the exhaust port 9. (Only one is shown: both are broken lines). Further, in the center of the combustion chamber 6, one fuel injection valve 11 (corresponding to the fuel injection means of the present application) is provided. The fuel injection valve 11 has an injection portion 12 that injects fuel at the tip, and this injection portion 12 is exposed into the combustion chamber 6.

また燃焼室6には、燃料噴射弁11と並んで点火プラグ14が設けられている。点火プラグ14は、先端部に点火部15をもつ。点火部15は、一般的な電極構造、具体的には中心電極16と側極17とを用いて、中心電極16の先端と側極17の先端間に放電部(点火位置)を形成したものである。この点火部15が燃焼室6内に突き出て、噴射部11と隣接している。   The combustion chamber 6 is provided with a spark plug 14 along with the fuel injection valve 11. The spark plug 14 has an ignition portion 15 at the tip. The ignition unit 15 has a general electrode structure, specifically, a center electrode 16 and a side electrode 17 and a discharge unit (ignition position) formed between the tip of the center electrode 16 and the tip of the side electrode 17. It is. The ignition unit 15 protrudes into the combustion chamber 6 and is adjacent to the injection unit 11.

点火プラグ14および燃料噴射弁11は、制御部、例えばECU20(例えばマイクロコンピュータで構成される)に接続され、成層混合気を燃焼させる希薄燃焼運転が可能にしている。すなわち、ECU20の指令により、エンジンのサイクル(吸気行程、圧縮行程、膨張行程、排気行程)のうち、圧縮行程時、噴射部11から燃料を噴射すると、燃焼室6の全体を空気過剰状態としながら、点火プラグ14の点火部15近傍に、点火に適した量論比近くの混合気エリアが形成され(成層混合気)、成層希薄燃焼が行われる。また吸気行程時に噴射部11から燃料を噴射すると、燃焼室6の全体を均一の混合気とした燃焼(均質燃焼)が行われるようにしている。   The spark plug 14 and the fuel injection valve 11 are connected to a control unit, for example, an ECU 20 (for example, composed of a microcomputer), and enable lean combustion operation for burning the stratified mixture. That is, when fuel is injected from the injection unit 11 during the compression stroke in the engine cycle (intake stroke, compression stroke, expansion stroke, exhaust stroke) according to the command of the ECU 20, the entire combustion chamber 6 is in an excessive air state. In the vicinity of the ignition part 15 of the spark plug 14, an air-fuel mixture area close to the stoichiometric ratio suitable for ignition is formed (stratified air-fuel mixture), and stratified lean combustion is performed. Further, when fuel is injected from the injection unit 11 during the intake stroke, combustion (homogeneous combustion) is performed with the entire combustion chamber 6 as a uniform mixture.

このうち燃料噴射弁11には、希薄燃焼運転用の3つの燃料噴射形態が用意されている。1つは間接供給方式であるウォールガイド方式で、例えば図1に示されるようにエンジンの圧縮行程中、燃料を間接的に点火部15近傍へ噴射するものである。ここでは、噴射部12から燃料を、圧縮行程中の上昇するピストン4の頂面へ向かって噴射させる。すると、噴霧がピストン4の頂面ですくい上げられて、点火部15近傍に戻り、同部分に点火に適した混合気(可燃混合気)を生成し続ける。むろん、ピストン4でなく、他の壁面の反射で燃料を点火部15近傍へ噴射させる形態でも構わない。このウォールガイド方式は、本願の「背景技術」の欄で述べたように、低回転域において点火・噴射時期の制御性に優れる特性をもつ。   Of these, the fuel injection valve 11 is provided with three fuel injection modes for lean combustion operation. One is a wall guide system that is an indirect supply system, and for example, as shown in FIG. 1, fuel is indirectly injected into the vicinity of the ignition unit 15 during the compression stroke of the engine. Here, the fuel is injected from the injection unit 12 toward the top surface of the piston 4 that rises during the compression stroke. Then, the spray is scooped up at the top surface of the piston 4 and returns to the vicinity of the igniter 15, and a mixture (combustible mixture) suitable for ignition continues to be generated in the same portion. Of course, the fuel may be injected to the vicinity of the ignition unit 15 by reflection of other wall surfaces instead of the piston 4. As described in the “Background Art” section of the present application, this wall guide system has a characteristic of excellent controllability of ignition / injection timing in a low rotation range.

2つ目は直接供給方式であるスプレーガイド方式である。同方式は、例えば図2に示されるようにエンジンの圧縮行程中、燃料を直接に点火部15近傍へ噴射するものである。これにより、点火部15近傍に、点火に適した混合気(可燃混合気)を生成する(燃料噴射期間から直後)。このスプレーガイド方式は、本願の「背景技術」の欄で述べたように、中回転域の燃料噴射量が少ない領域で、安定した燃焼が確保しやすく,また未燃HCが少なく,燃焼効率が高いという有利な特性をもつ。   The second is a spray guide method which is a direct supply method. In this system, as shown in FIG. 2, for example, fuel is directly injected into the vicinity of the ignition unit 15 during the compression stroke of the engine. Thereby, an air-fuel mixture suitable for ignition (combustible air-fuel mixture) is generated in the vicinity of the ignition unit 15 (immediately after the fuel injection period). As described in the “Background Art” section of this application, this spray guide system is easy to ensure stable combustion in a region where the fuel injection amount in the middle rotation region is small, and has little unburned HC, and combustion efficiency is low. It has the advantageous property of being high.

3つ目は衝突噴射方式である。同方式は、燃料を、相対向する方向から衝突させて点火部15近傍に混合気を滞留させるものである。これは、例えば2回に分割した燃料を圧縮行程内において所定の時期に順に噴射させて行う。具体的には、1回目の燃料噴射は、ウォールガイド方式と同様のタイミング(圧縮行程の中期〜後期)で行い、この1回目の燃料の噴射流がピストン4の頂面を経て、点火部15近傍に到達する直前から直後のタイミング(圧縮行程の後期)で、2回目の燃料噴射を行い、図3に示されるように1回目の燃料噴射によって生じたウォールガイド気流αと2回目の燃料噴射によって生じたスプレーガイド気流βとが、点火部15近傍の地点で、互いに打ち消し合うように衝突して、点火部15近傍に、点火に適した混合気(可燃混合気)を生成させる。この燃料衝突は、双方の気流のエネルギーが打ち消し合うので、点火部15におけるガス流速は大幅に低下するうえ、可燃混合気が点火部15近傍の地点に長い期間、停滞する。このため、衝突噴射方式は、図4の実線に示されるように成層希薄燃焼の安定燃焼域が、一点鎖線で示すスプレーガイド方式より、格段に広くなる利点がある。つまり、衝突噴射方式は、多くの燃料噴射量でも、点火部15近傍に、点火に適した混合気を停滞させやすいという有利な特性をもつ。この衝突噴射方式は、他の仕方で成立させても構わない。   The third is a collision injection system. In this method, fuel is caused to collide from opposite directions and the air-fuel mixture is retained in the vicinity of the ignition unit 15. This is performed by, for example, injecting fuel divided into two times in order at predetermined times in the compression stroke. Specifically, the first fuel injection is performed at the same timing (middle to late stage of the compression stroke) as in the wall guide system, and this first fuel injection flow passes through the top surface of the piston 4 and the ignition unit 15. The second fuel injection is performed at the timing immediately before and after reaching the vicinity (the latter stage of the compression stroke), and the wall guide airflow α generated by the first fuel injection and the second fuel injection as shown in FIG. The spray guide airflow β generated by the above causes collision with each other at a point near the ignition unit 15 so as to cancel each other, and an air-fuel mixture suitable for ignition (combustible air-fuel mixture) is generated in the vicinity of the ignition unit 15. In this fuel collision, the energy of both airflows cancel each other, so that the gas flow velocity in the igniter 15 is greatly reduced, and the combustible air-fuel mixture stagnates at a point near the igniter 15 for a long period. For this reason, the collision injection method has an advantage that the stable combustion region of the stratified lean combustion is markedly wider than the spray guide method indicated by the alternate long and short dash line, as shown by the solid line in FIG. In other words, the collision injection method has an advantageous characteristic that an air-fuel mixture suitable for ignition is easily stagnated in the vicinity of the ignition unit 15 even with a large amount of fuel injection. This collision injection method may be established in other ways.

なお、3種類の燃料噴射が的確に行われるよう、ここでは、ピストン4の頂面にピストンキャビティ21が形成してある。
またECU20には、エンジンの運転状態を検出するセンサとして、例えばエンジン回転数センサを検知するエンジン回転数センサ23やアクセル開度を検知するアクセル開度センサ24(いずれも本願の運転状態検出手段に相当)が接続されている。またECU20には、エンジン回転数センサ23からのエンジン回転数情報やアクセル開度センサ24からのアクセル開度情報などから検出されるエンジンの運転状態にしたがい、上記3種類の噴射モードを使い分ける機能が設定されている。具体的には3種類の噴射モードは、例えば予めECU20に設定してある図5の運転マップのように、各モードの良さが最も発揮できるエンジンの運転領域に定められている。
Here, a piston cavity 21 is formed on the top surface of the piston 4 so that three types of fuel injection can be performed accurately.
Further, the ECU 20 has, for example, an engine speed sensor 23 that detects an engine speed sensor and an accelerator position sensor 24 that detects an accelerator position as sensors for detecting the operating state of the engine (both are the operating state detecting means of the present application). Equivalent) is connected. Further, the ECU 20 has a function for properly using the three types of injection modes in accordance with the engine operating state detected from the engine speed information from the engine speed sensor 23 and the accelerator position information from the accelerator position sensor 24. Is set. Specifically, the three types of injection modes are defined in an engine operating region where the best of each mode can be exhibited, for example, as shown in the operation map of FIG.

すなわち、希薄燃焼運転時(成層燃焼時)、噴射モードを使い分ける運転マップ(図5)には、エンジンが低回転数域の低負荷〜中負荷領域に、ウォールガイド方式で燃料噴射を行うウォールガイド運転モードTが設定され、エンジンが中回転数域の低負荷領域に、スプレーガイド方式で燃料噴射を行うスプレーガイド運転モードUが設定され、エンジンが中回転数域の中負荷領域のときに、衝突噴射方式で燃料噴射を行う衝突リーン運転モードSが設定してある。なお、残るエンジンの高回転数域で高負荷域に設定されている予混合運転モードVは、通常の吸気行程時に燃料を噴射して、燃焼室6の全体を均一の混合気として燃焼(均質燃焼)を行う領域である。   That is, in the operation map (FIG. 5) in which the injection mode is selectively used during lean combustion operation (stratified combustion), the wall guide performs fuel injection by the wall guide method in the low load to medium load region in the low rotation speed region. When the operation mode T is set, the spray guide operation mode U in which fuel is injected by the spray guide method is set in the low load region of the medium rotation speed range, and the engine is in the medium load range of the medium rotation speed range, A collision lean operation mode S for performing fuel injection by the collision injection method is set. The premix operation mode V, which is set to a high load range in the remaining high engine speed range, injects fuel during the normal intake stroke and burns the entire combustion chamber 6 as a uniform mixture (homogeneous). (Combustion) area.

こうしたウォールガイド方式、スプレー方式、衝突噴射方式の使い分け(切り換え)により、希薄燃焼運転が広範囲な領域で行えるようにしている。図6には、こうした燃料噴射を使い分ける制御を行うフローチャートが示されている。
同フローチャートを参照して、希薄燃焼運転時の燃料噴射の使い分け(切り換え)について説明すると、今、エンジンの運転により、自動車(車両)が走行しているとする。この走行中、ECU20は、ステップS1により、エンジン回転数センサ23やアクセル開度センサ24で検知されるエンジン回転数やアクセル開度などエンジン情報からエンジンの運転状態を検出している。
By using (switching) the wall guide method, spray method, and collision injection method, the lean combustion operation can be performed in a wide range. FIG. 6 shows a flowchart for performing control to selectively use such fuel injection.
With reference to the flowchart, the proper use (switching) of fuel injection during lean combustion operation will be described. Now, it is assumed that an automobile (vehicle) is running by operating the engine. During this travel, the ECU 20 detects the operating state of the engine from the engine information such as the engine speed and the accelerator opening detected by the engine speed sensor 23 and the accelerator opening sensor 24 in step S1.

このとき、エンジンの運転状態が低回転域の低・中負荷領域(アイドルを含む)であるとする。すると、ECU20は、ステップS2を経てステップS3へ進み、図5の運転マップ中のウォールガイド運転モードTを選択し、同ウォールガイド運転モードTにしたがい、燃料噴射弁11を制御する。すると、燃料噴射弁11の噴射部12から、低負荷や中負荷に応じて求められた噴射量の燃料が、エンジンの圧縮行程内において、ウォールガイド方式により、点火プラグ14の点火部15近傍へ噴射される。   At this time, it is assumed that the operating state of the engine is a low / medium load region (including idle) in a low rotation region. Then, the ECU 20 proceeds to step S3 through step S2, selects the wall guide operation mode T in the operation map of FIG. 5, and controls the fuel injection valve 11 according to the wall guide operation mode T. Then, the fuel of the injection amount determined according to the low load or the medium load is injected from the injection unit 12 of the fuel injection valve 11 to the vicinity of the ignition unit 15 of the spark plug 14 by the wall guide method in the compression stroke of the engine. Be injected.

具体的には燃料は、例えば図1に示されるように圧縮行程の中期から後期のタイミングで、噴射部12からピストン4の頂面のピストンキャビティ21へ向かって噴射される。すると、噴射流は、ピストン4ですくい上げられて、点火部15近傍に向かう。燃料は、この間に拡散し、点火部15近傍に、点火に適した混合気(可燃混合気)を生成し続ける。   Specifically, for example, as shown in FIG. 1, the fuel is injected from the injection unit 12 toward the piston cavity 21 on the top surface of the piston 4 at the middle to late timing of the compression stroke. Then, the jet flow is scooped up by the piston 4 and is directed to the vicinity of the ignition unit 15. The fuel diffuses during this time, and continues to generate an air-fuel mixture suitable for ignition (a combustible air-fuel mixture) in the vicinity of the ignition unit 15.

エンジンの低回転域は、低・中負荷域のいずれでも、この可燃混合気の生成中、点火プラグ14の点火部15で点火すれば、成層燃焼が安定して行われる。つまり、ウォールガイド方式の特徴を活かして、スプレーガイド方式のような点火・噴射制御の時間分解能の不足をきたさずに、点火や燃料噴射の制御ができる。これにより、筒内の全体を空気過剰状態とし、点火部15近傍に量論比近くの混合気を配置することで希薄燃焼運転が安定して行われる。   In both the low and medium load ranges of the engine, stratified combustion is stably performed if ignition is performed by the ignition unit 15 of the spark plug 14 during the generation of the combustible mixture. In other words, by utilizing the characteristics of the wall guide system, ignition and fuel injection can be controlled without the lack of time resolution of ignition / injection control as in the spray guide system. As a result, the entire inside of the cylinder is in an excess air state, and the lean combustion operation is stably performed by disposing an air-fuel mixture near the stoichiometric ratio in the vicinity of the ignition unit 15.

また、エンジンの運転状態が中回転域の低負荷領域であると、ECU20は、ステップS4を経てステップS3へ進み、図5の運転マップ中のスプレーガイド運転モードUを選択し、同スプレーガイド運転モードUにしたがい、燃料噴射弁11を制御する。すると、燃料噴射弁11の噴射部12から、低負荷に応じて求められた少ない噴射量の燃料が、エンジンの圧縮行程内において、スプレーガイド方式により、直接、点火部15近傍へ噴射される。   If the engine operating state is the low load region in the middle rotation range, the ECU 20 proceeds to step S3 through step S4, selects the spray guide operation mode U in the operation map of FIG. The fuel injection valve 11 is controlled according to the mode U. Then, a small amount of fuel determined in accordance with the low load is injected from the injection unit 12 of the fuel injection valve 11 directly into the vicinity of the ignition unit 15 by the spray guide method in the compression stroke of the engine.

具体的には燃料は、例えば図2に示されるように圧縮行程の後期のタイミングで、噴射部12から筒内へ噴射される。これにより、筒内の全体を空気過剰状態としながら、点火プラグの点火部15近傍に、点火に適した混合気が生成される。そして、燃料噴射期間に概ね同期した短い期間に、混合気を点火プラグ14の点火部15で点火させる。
このエンジンの低負荷域は、燃料噴射が少なく(負荷に応じて定まるため)、点火部15近傍におけるガス流速は遅いので、点火部15近傍には、短い期間でも、スプレーガイドで、放電の吹き消えを抑えながら、点火に適した混合気が生成される。しかも、中回転域は、点火・噴射制御の時間分解能の不足がきたさずにすむので、スプレーガイド方式の特徴を活かして、点火や燃料噴射の制御が高い自由度のもとで行える。これにより、筒内の全体を空気過剰状態とし、点火部15近傍に量論比近くの混合気を配置することで希薄燃焼運転が安定して行われる。
Specifically, for example, as shown in FIG. 2, the fuel is injected from the injection unit 12 into the cylinder at a later stage of the compression stroke. As a result, an air-fuel mixture suitable for ignition is generated in the vicinity of the ignition portion 15 of the spark plug while the entire cylinder is in an excess air state. Then, the air-fuel mixture is ignited by the ignition unit 15 of the spark plug 14 in a short period substantially synchronized with the fuel injection period.
In the low load region of this engine, the fuel injection is small (because it is determined according to the load), and the gas flow velocity in the vicinity of the ignition unit 15 is slow. An air-fuel mixture suitable for ignition is generated while suppressing extinction. Moreover, in the middle rotation range, there is no shortage of time resolution of ignition / injection control, so that the control of ignition and fuel injection can be performed with a high degree of freedom by taking advantage of the characteristics of the spray guide system. As a result, the entire inside of the cylinder is in an excess air state, and the lean combustion operation is stably performed by disposing an air-fuel mixture near the stoichiometric ratio in the vicinity of the ignition unit 15.

また、エンジンの運転状態が中回転域の中負荷域であると、ECU20は、ステップS6を経てステップS7へ進み、図5の運転マップ中の衝突リーン運転モードSを選択し、同衝突リーン運転モードSにしたがい、燃料噴射弁11を制御する。すると、燃料噴射弁11の噴射部12から、中負荷に応じて求められた噴射量の燃料が、エンジンの圧縮行程内において、2回の分割噴射で、衝突噴射方式により、点火プラグ14の点火部15近傍へ噴射される。   If the engine operating state is the middle load region in the middle rotation region, the ECU 20 proceeds to step S7 through step S6, selects the collision lean operation mode S in the operation map of FIG. According to mode S, the fuel injection valve 11 is controlled. Then, the fuel of the injection amount obtained from the injection unit 12 of the fuel injection valve 11 according to the medium load is ignited by the spark plug 14 by the collision injection method in two divided injections in the compression stroke of the engine. Injected near the portion 15.

すなわち、同噴射方式を説明すると、例えばピストン4が圧縮行程中期まで進むと、中負荷により求められた燃料噴射量の一部が、1回目、噴射部12から、ウォールガイド用燃料として、ピストン4の頂面に向けて噴射される。この1回目に噴射されたウォールガイド用燃料は、図1に示されるように点火プラグ14の点火部15近傍を通り越して(点火プラグ14は作動していない)、ピストンキャビティ21内へ至り、燃料は上方へすくい上げられ、ピストン4とは反対側へ向かう。同燃料は、この間に拡散し、ウォールガイド混合気(点火に適した混合気)が生成される。この1回目の燃料噴射によって生じたウォールガイド気流α(噴流)は、矢印Aのように噴射部12とは反対の方向から点火部15近傍へ向かう。   That is, the same injection method will be described. For example, when the piston 4 advances to the middle of the compression stroke, a part of the fuel injection amount determined by the medium load is used as the wall guide fuel from the injection unit 12 for the first time. It is injected toward the top surface of The wall guide fuel injected for the first time passes through the vicinity of the ignition part 15 of the spark plug 14 (the spark plug 14 is not activated) as shown in FIG. Is scooped up and heads away from the piston 4. The fuel is diffused during this period, and a wall guide mixture (a mixture suitable for ignition) is generated. The wall guide airflow α (jet) generated by the first fuel injection is directed to the vicinity of the ignition unit 15 from a direction opposite to the injection unit 12 as indicated by an arrow A.

このウォールガイド気流αが、点火部15近傍に到達する直前〜直後となる圧縮行程後期のとき、燃料噴射弁11の噴射部12から、残りの燃料噴射量が、図3に示されるように噴射部12からスプレーガイド用燃料βとして、燃焼室6内へ噴射される。この2回目に噴射されたスプレーガイド用燃料βは、矢印Bのように点火部15近傍へ向かう。そして、点火部15近傍に到達する間に、スプレーガイド混合気(点火に適した混合気)が生成される。   When the wall guide airflow α is in the latter half of the compression stroke immediately before and immediately after reaching the vicinity of the ignition unit 15, the remaining fuel injection amount is injected from the injection unit 12 of the fuel injection valve 11 as shown in FIG. The fuel is injected into the combustion chamber 6 from the section 12 as spray guide fuel β. The spray guide fuel β injected for the second time is directed to the vicinity of the ignition unit 15 as indicated by an arrow B. Then, while reaching the vicinity of the ignition unit 15, a spray guide air-fuel mixture (air mixture suitable for ignition) is generated.

このとき、1回目の燃料噴射により生じたウォールガイド気流α(噴流)と2回目の燃料噴射により生じたスプレーガイド気流β(噴流)は、点火部15近傍の地点に対して、互いに向き合う方向(対向)から到達するから、当該点火部15近傍の地点で気流同士の衝突が生じる(図3)。
この衝突により、双方の気流のエネルギーが打ち消し合い、点火部15におけるガス流速は大幅に低下する。むろん、分割噴射は、1回の噴射量が少なく、燃料の流速が遅いから、それだけでも気流の流速低減に貢献する。しかも、点火に適した混合気は、衝突により、点火部15近傍の地点に滞留し続ける。
At this time, the wall guide airflow α (jet flow) generated by the first fuel injection and the spray guide airflow β (jet flow) generated by the second fuel injection face each other in a direction facing each other in the vicinity of the ignition unit 15 ( Therefore, air currents collide at a point in the vicinity of the ignition unit 15 (FIG. 3).
Due to this collision, the energy of both airflows cancel each other, and the gas flow velocity in the igniter 15 is greatly reduced. Of course, the split injection has a small injection amount and the fuel flow rate is slow, and that alone contributes to the reduction of the air flow rate. Moreover, the air-fuel mixture suitable for ignition continues to stay at a point near the ignition unit 15 due to collision.

これにより衝突噴射式は、燃料の噴射量が多い領域、特に中負荷域で、点火部15近傍に、長い期間、点火に適した混合気(可燃混合気)が滞留し続けさせることができる特徴がある。このため、燃料の噴射量が多い中負荷運転領域は、2回目の燃料噴射中または直後に点火プラグ14を点火することにより、同特徴を活かして、筒内の全体を空気過剰状態とし、点火部15近傍に量論比近くの混合気を配置することで希薄燃焼運転が安定して行える。   As a result, the collision injection type can keep a mixture (combustible mixture) suitable for ignition for a long period of time in the vicinity of the ignition unit 15 in a region where the fuel injection amount is large, particularly in a middle load region. There is. For this reason, in the middle load operation region where the fuel injection amount is large, the ignition plug 14 is ignited during or immediately after the second fuel injection, thereby making the entire cylinder in an excess air state and igniting. By disposing an air-fuel mixture near the stoichiometric ratio in the vicinity of the portion 15, the lean combustion operation can be performed stably.

かくして、低回転域の成層燃焼に有利なウォールガイド方式と、中回転域の燃料噴射量が少ない領域で有利なスプレーガイド方式と、燃料噴射量が多い中負荷域で有利な衝突噴射方式といった、3種類の噴射モードの採用により、安定した希薄燃焼の運転領域を大幅に拡大することができる。しかも、3種類の噴射モードを切り換えるだけで、大幅に希薄燃焼の運転領域が拡大されるから、複雑な制御を必要としないですむ。   Thus, a wall guide method that is advantageous for stratified combustion in the low rotation region, a spray guide method that is advantageous in a region where the fuel injection amount in the middle rotation region is small, and a collision injection method that is advantageous in a medium load region where the fuel injection amount is large, By adopting three types of injection modes, the operating range of stable lean combustion can be greatly expanded. In addition, simply switching between the three injection modes greatly expands the lean combustion operating range, eliminating the need for complicated control.

特に、エンジンが低回転数域の低負荷〜中負荷領域のときにウォールガイド方式に切換わり、中回転数域の低負荷領域のときにスプレーガイド方式に切換わり、中回転数域の中負荷領域のときに衝突噴射に切換わるようにすると、ウォールガイド方式、スプレー方式、衝突噴射方式の良さをエンジンの運転領域で十分に発揮させることができる。
図7および図8は、本発明の第2の実施形態を示す。
In particular, when the engine is in the low load to medium load range in the low rotation speed range, it switches to the wall guide method, and when the engine is in the low load range in the medium rotation speed range, it switches to the spray guide method. By switching to the collision injection in the region, the advantages of the wall guide method, the spray method, and the collision injection method can be sufficiently exhibited in the engine operation region.
7 and 8 show a second embodiment of the present invention.

本実施形態について説明すると、衝突リーン運転モードSの領域のうち、中負荷上限域は、特に燃料噴射量が多く、空燃比が十分に希薄な状態でなくなりやすい傾向にある。このため、図7の運転マップに示す衝突リーン運転モードSの中負荷上限域S1だけは、その状態に適した混合気の拡散性に優れる高拡散モードに切り換えようとしたものである。具体的には本実施形態では、図7に示す運転マップのように衝突リーン運転モードSの上限域S1に、高拡散モードとして、燃料噴射量が多くとも、混合気の拡散が期待できるウォールガイド方式の噴射モードを設定した。この高拡散用噴射モードは、図8に示すフローチャートのようにステップS6とステップS12との間に、同モードを実行するステップS8,S9のルーチンを介在させて、衝突リーン運転モードSの中負荷上限域S1のとき、高拡散用ウォールガイド(高拡散モード)に切り換わるようにした。   The present embodiment will be described. Among the regions of the collision lean operation mode S, the middle load upper limit region has a particularly large fuel injection amount and the air-fuel ratio tends not to be sufficiently lean. Therefore, only the middle load upper limit region S1 of the collision lean operation mode S shown in the operation map of FIG. 7 is intended to be switched to the high diffusion mode excellent in the diffusibility of the air-fuel mixture suitable for the state. Specifically, in the present embodiment, as shown in the operation map shown in FIG. 7, a wall guide that can be expected to diffuse the air-fuel mixture at the upper limit region S1 of the collision lean operation mode S as a high diffusion mode even if the fuel injection amount is large. The injection mode of the method was set. In this high diffusion injection mode, as shown in the flowchart of FIG. 8, the routine of steps S8 and S9 for executing the mode is interposed between step S6 and step S12, and the medium load of the collision lean operation mode S When the upper limit area S1, the wall guide for high diffusion (high diffusion mode) is switched.

このようにすると、エンジンの中回転の中負荷上限域といった、燃料噴射量が多く、筒内の空燃比が十分に希薄な状態でない運転状態のとき、筒内における混合気の拡散により、点火部15近傍や筒内が過濃(不完全燃焼によるCOやスモーク排出量の増大や燃焼効率の低下を招く)に成るのを防止し、燃焼しやすい環境となり、有害物質の排出が抑制され、点火プラグ14のくすぶりが防止され、一層、安定した希薄燃焼運転が行えるようになる。   In this manner, when the fuel injection amount is large and the air-fuel ratio in the cylinder is not in a sufficiently lean state, such as the middle load upper limit region of the medium rotation of the engine, the ignition unit 15 near the cylinder and the inside of the cylinder is prevented from becoming rich (increasing CO and smoke emissions due to incomplete combustion and lowering combustion efficiency), creating an environment that is easy to burn, reducing emissions of harmful substances, and igniting The smoldering of the plug 14 is prevented, and a more stable lean combustion operation can be performed.

但し、図7に示す運転マップや図8に示すフローチャートのうち、第1の実施形態と同じ部分は、同一符号を付してその説明を省略した。
図9および図10は、本発明の第3の実施形態を示す。
本実施形態は、第2の実施形態の変形例で、衝突リーン運転モードSの中負荷上限域S1の高拡散モードとして、分割噴射で行う分割リーンモードを用いたものである。
However, in the operation map shown in FIG. 7 and the flowchart shown in FIG. 8, the same parts as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
9 and 10 show a third embodiment of the present invention.
This embodiment is a modification of the second embodiment, and uses a split lean mode performed by split injection as a high diffusion mode in the middle load upper limit region S1 of the collision lean operation mode S.

具体的には分割リーンモードには、燃料噴射弁11から、負荷により求められた燃料噴射量の一部の燃料を、エンジンの吸気行程中に、1回目として噴射して、吸気行程や圧縮行程の中期までを利用して燃料を拡散させ、筒内を均一な混合気にする。その後、吸気行程に続く圧縮行程中、例えば圧縮行程の中期や後期のとき、燃料噴射弁11から、残りの燃料をスプレーガイドで点火部15近傍へ噴射して、均一混合気の点火部15近傍に量論比に近い混合気を生成させるという、分割噴射が採用してある。   Specifically, in the split lean mode, a part of the fuel injection amount determined by the load is injected from the fuel injection valve 11 as the first time during the intake stroke of the engine, and the intake stroke and the compression stroke are injected. The middle stage is used to diffuse the fuel and make the cylinder a uniform mixture. Thereafter, during the compression stroke following the intake stroke, for example, in the middle or later stage of the compression stroke, the remaining fuel is injected from the fuel injection valve 11 to the vicinity of the igniter 15 by the spray guide, and near the igniter 15 of the uniform mixture. The split injection is used to generate a gas mixture close to the stoichiometric ratio.

図9に示す運転マップには、衝突リーン運転モードSの上限域S1に、この分割リーンモードが設定してある。また図10に示すフローチャートには、第2の実施形態のステップS9に代えて、分割噴射リーンモード(吸気行程での燃料噴射と、圧縮行程での燃料噴射)を実行するためのステップS10を設けて、衝突リーン運転モードSの中負荷上限域S1のとき、高拡散用分割噴射に切り換わるようにした。   In the operation map shown in FIG. 9, the split lean mode is set in the upper limit region S1 of the collision lean operation mode S. Further, the flowchart shown in FIG. 10 is provided with step S10 for executing the split injection lean mode (fuel injection in the intake stroke and fuel injection in the compression stroke) instead of step S9 of the second embodiment. Thus, when the collision lean operation mode S is in the middle load upper limit region S1, the high-split split injection is switched.

このようにすると、第2の実施形態と同様、エンジンの中回転の中負荷上限域といった、燃料噴射量が多く、筒内の空燃比が十分に希薄な状態でない運転状態のとき、分割噴射により、点火部15近傍や筒内が過濃に成るのを防止し,成層燃焼しやすい環境が確保されるので、一層、安定した希薄燃焼運転が行える。しかも、同分割噴射は、ウォールガイドのようにピストン位置の影響を受けないので、図9に示されるようにエンジン回転数が高い領域でも十分に発揮し得る利点がある。   In this way, as in the second embodiment, when the fuel injection amount is large and the in-cylinder air-fuel ratio is not sufficiently lean, such as the middle load upper limit region of the medium rotation of the engine, the split injection is performed. In addition, the vicinity of the ignition unit 15 and the inside of the cylinder are prevented from being excessively concentrated, and an environment in which stratified combustion is easily performed is ensured, so that a more stable lean combustion operation can be performed. Moreover, since the split injection is not affected by the piston position unlike the wall guide, there is an advantage that it can be sufficiently exerted even in a region where the engine speed is high as shown in FIG.

但し、図9に示す運転マップや図10に示すフローチャートのうち、第1の実施形態と同じ部分は、同一符号を付してその説明を省略した。
なお、本発明は上述したいずれの実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施してもよい。例えば上述した実施形態では、1個の燃料噴射弁を用いて、衝突噴射を実現したが、複数個(例えば2個)の燃料噴射弁を用いて、衝突噴射を実現しても構わない。
However, in the operation map shown in FIG. 9 and the flowchart shown in FIG. 10, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
The present invention is not limited to any of the above-described embodiments, and various modifications may be made without departing from the spirit of the present invention. For example, in the above-described embodiment, the collision injection is realized by using one fuel injection valve. However, the collision injection may be realized by using a plurality of (for example, two) fuel injection valves.

本発明の第1の実施形態に係る筒内噴射型火花点火式内燃機関の燃焼室構造を、間接供給方式で供給した燃料の噴射流と共に示す断面図。1 is a cross-sectional view showing a combustion chamber structure of a direct injection spark ignition type internal combustion engine according to a first embodiment of the present invention, together with an injection flow of fuel supplied by an indirect supply system. 直接供給方式で供給した燃料の噴射流を説明する示す断面図。Sectional drawing which shows the injection flow of the fuel supplied with the direct supply system. 衝突噴射方式で供給した燃料の噴射流を説明する断面図。Sectional drawing explaining the injection flow of the fuel supplied by the collision injection system. 衝突噴射方式がもたらす成層希薄燃焼の燃焼安定性を説明する線図。The diagram explaining the combustion stability of the stratified lean combustion which a collision injection system brings. 間接供給方式、直接供給方式、衝突噴射方式を切り換える運転マップを示す線図。The diagram which shows the driving | operation map which switches an indirect supply system, a direct supply system, and a collision injection system. 同運転マップにしたがい切り換える制御を説明するフローチャート。The flowchart explaining the control switched according to the driving | operation map. 本発明の第2の実施形態に係る要部となる中負荷上限域に高拡散モードを採用した運転マップを示す線図。The diagram which shows the driving | operation map which employ | adopted high diffusion mode in the middle load upper limit area | region used as the principal part which concerns on the 2nd Embodiment of this invention. 同運転マップにしたがい切り換える制御を説明するフローチャート。The flowchart explaining the control switched according to the driving | operation map. 本発明の第3の実施形態に係る要部となる中負荷上限域に高拡散モードを採用した運転マップを示す線図。The diagram which shows the driving | operation map which employ | adopted high diffusion mode in the medium load upper limit area | region used as the principal part which concerns on the 3rd Embodiment of this invention. 同運転マップにしたがい切り換える制御を説明するフローチャート。The flowchart explaining the control switched according to the driving | operation map.

符号の説明Explanation of symbols

4 ピストン
6 燃焼室
11 燃料噴射弁(燃料噴射手段)
20 ECU(制御部)
23,24 エンジン回転数センサ、アクセル開度センサ(運転状態検出手段)
4 Piston 6 Combustion chamber 11 Fuel injection valve (fuel injection means)
20 ECU (control unit)
23, 24 Engine speed sensor, accelerator opening sensor (operating state detection means)

Claims (4)

内燃機関の圧縮行程中に燃料を間接的に点火部近傍へ噴射する間接供給方式、同じく燃料を直接に点火部近傍へ噴射する直接供給方式、同じく燃料を相対向する方向から衝突させて点火部近傍に滞留させる衝突噴射方式で、それぞれ燃料噴射が可能な燃料噴射手段と、
内燃機関の運転状態を検出する運転状態検出手段と、
前記内燃機関の運転状態に応じて前記間接供給方式、前記直接供給方式、前記衝突噴射方式を切り換える制御部と
を具備したことを特徴とする筒内噴射型火花点火式内燃機関。
An indirect supply method in which fuel is indirectly injected near the ignition unit during the compression stroke of the internal combustion engine, a direct supply method in which fuel is directly injected into the vicinity of the ignition unit, and an ignition unit by causing fuel to collide from opposite directions. A fuel injection means capable of injecting fuel in a collision injection system for staying in the vicinity;
An operating state detecting means for detecting an operating state of the internal combustion engine;
A direct injection spark ignition type internal combustion engine comprising: a control unit that switches between the indirect supply method, the direct supply method, and the collision injection method in accordance with an operating state of the internal combustion engine.
前記制御部は、
前記内燃機関が低回転数の低負荷〜中負荷領域のときに前記間接供給方式に切換わり、
前記内燃機関が中回転数の低負荷領域のときに前記直接供給方式に切換わり、
前記内燃機関が中回転数の中負荷領域のときに前記衝突噴射方式に切換わるように設定される
ことを特徴とする請求項1に記載の筒内噴射型火花点火式内燃機関。
The controller is
When the internal combustion engine is in the low load to medium load region at a low rotational speed, the indirect supply method is switched,
When the internal combustion engine is in a low load region of medium speed, switching to the direct supply system,
The in-cylinder injection type spark ignition type internal combustion engine according to claim 1, wherein the internal combustion engine is set so as to be switched to the collision injection method when the internal combustion engine is in a medium load region of medium speed.
さらに、前記衝突噴射方式を行う領域のうち、中負荷上限域だけは、高拡散モードに切り換わる
ことを特徴とする請求項2に記載の筒内噴射型火花点火式内燃機関。
The in-cylinder injection spark ignition internal combustion engine according to claim 2, wherein only the middle load upper limit region of the region in which the collision injection method is performed is switched to the high diffusion mode.
前記衝突噴射方式は、間接供給方式による燃料と直接供給方式による燃料とを衝突させることを特徴とする請求項1ないし請求項3のいずれか1つに記載の筒内噴射型火花点火式内燃機関。   The in-cylinder injection spark ignition type internal combustion engine according to any one of claims 1 to 3, wherein the collision injection method causes a fuel of an indirect supply method and a fuel of a direct supply method to collide with each other. .
JP2008145663A 2008-06-03 2008-06-03 In-cylinder injection type spark ignition internal combustion engine Active JP5067566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145663A JP5067566B2 (en) 2008-06-03 2008-06-03 In-cylinder injection type spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145663A JP5067566B2 (en) 2008-06-03 2008-06-03 In-cylinder injection type spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009293422A true JP2009293422A (en) 2009-12-17
JP5067566B2 JP5067566B2 (en) 2012-11-07

Family

ID=41541828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145663A Active JP5067566B2 (en) 2008-06-03 2008-06-03 In-cylinder injection type spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP5067566B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172662A (en) * 2011-02-24 2012-09-10 Mazda Motor Corp Control device for spark-ignited gasoline engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256791A (en) * 2004-03-15 2005-09-22 Nissan Motor Co Ltd Cylinder direct injection engine
JP2006291839A (en) * 2005-04-11 2006-10-26 Hitachi Ltd Cylinder direct fuel injection type engine and its control method, and piston and fuel injection valve to be used for the same
JP2007270655A (en) * 2006-03-30 2007-10-18 Mitsubishi Motors Corp Control device of cylinder injection type internal combustion engine
JP2008057479A (en) * 2006-09-01 2008-03-13 Hitachi Ltd Direct injection engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256791A (en) * 2004-03-15 2005-09-22 Nissan Motor Co Ltd Cylinder direct injection engine
JP2006291839A (en) * 2005-04-11 2006-10-26 Hitachi Ltd Cylinder direct fuel injection type engine and its control method, and piston and fuel injection valve to be used for the same
JP2007270655A (en) * 2006-03-30 2007-10-18 Mitsubishi Motors Corp Control device of cylinder injection type internal combustion engine
JP2008057479A (en) * 2006-09-01 2008-03-13 Hitachi Ltd Direct injection engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172662A (en) * 2011-02-24 2012-09-10 Mazda Motor Corp Control device for spark-ignited gasoline engine

Also Published As

Publication number Publication date
JP5067566B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP4424147B2 (en) Exhaust gas purification device for internal combustion engine
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
JP4407581B2 (en) Gas fuel engine
JP2007162618A (en) Auxiliary chamber type engine
JP4736518B2 (en) In-cylinder direct injection internal combustion engine control device
KR20080103071A (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
JP2009185688A (en) Direct-injection spark-ignition internal combustion engine
JP2010138743A (en) Diesel engine and control method for diesel engine
JP4306499B2 (en) In-cylinder direct injection engine
JPH1182030A (en) Fuel injection control device for cylinder direct injection type spark ignition engine
JP2004245171A (en) Internal combustion engine capable of self-ignition operation for permitting compressive self-ignition of air-fuel mixture
JP4155184B2 (en) In-cylinder internal combustion engine
JP3627546B2 (en) Direct cylinder injection spark ignition engine
JP5067566B2 (en) In-cylinder injection type spark ignition internal combustion engine
JPH1136959A (en) Direct injection spark ignition type internal combustion engine
JP4046055B2 (en) In-cylinder internal combustion engine
JP6402753B2 (en) Combustion chamber structure of direct injection engine
JP4967691B2 (en) Control unit for gasoline engine
JP4108806B2 (en) Combustion chamber structure of in-cylinder direct injection spark ignition engine
JP4214410B2 (en) In-cylinder injection type spark ignition internal combustion engine
JP2004324532A (en) Direct injection internal combustion engine
JP5704360B2 (en) Intake port fuel injection engine
JP2006329117A (en) Controller for direct injection spark ignition type internal combustion engine
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4029737B2 (en) Direct-injection spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5067566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350