JP2009292665A - Production method of highly spherical shirasu balloon and shirasu balloon obtained thereby - Google Patents

Production method of highly spherical shirasu balloon and shirasu balloon obtained thereby Download PDF

Info

Publication number
JP2009292665A
JP2009292665A JP2008145985A JP2008145985A JP2009292665A JP 2009292665 A JP2009292665 A JP 2009292665A JP 2008145985 A JP2008145985 A JP 2008145985A JP 2008145985 A JP2008145985 A JP 2008145985A JP 2009292665 A JP2009292665 A JP 2009292665A
Authority
JP
Japan
Prior art keywords
shirasu balloon
shirasu
sphericity
high sphericity
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008145985A
Other languages
Japanese (ja)
Other versions
JP5070505B2 (en
Inventor
Kenichi Sodeyama
研一 袖山
Shunichi Nakamura
俊一 中村
Kazuro Higashi
和朗 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PRINCIPLE KK
Kagoshima Prefecture
Principle Co Ltd
Original Assignee
PRINCIPLE KK
Kagoshima Prefecture
Principle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PRINCIPLE KK, Kagoshima Prefecture, Principle Co Ltd filed Critical PRINCIPLE KK
Priority to JP2008145985A priority Critical patent/JP5070505B2/en
Publication of JP2009292665A publication Critical patent/JP2009292665A/en
Application granted granted Critical
Publication of JP5070505B2 publication Critical patent/JP5070505B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new production method capable of obtaining a shirasu balloon having the high sphericity and the high pressure resistance by one-time calcination even if using any shirasu raw ore recovered from nature. <P>SOLUTION: A residual part after a heavy ore component is removed from the shirasu raw ore, is supplied to an impact treatment in a high-speed air flow to be crushed, thereafter sieved so that an optional division of the particle diameter in the range of 20-150 μm is recovered, and calcined at 900-1,150°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シラスバルーン、特に真球度0.9以上を有する高真球度シラスバルーンの製造方法及びそれによって得られる新規な高真球度、高耐圧性のシラスバルーンに関するものである。   The present invention relates to a shirasu balloon, particularly a high sphericity shirasu balloon having a sphericity of 0.9 or more, and a novel high sphericity and high pressure resistant shirasu balloon obtained thereby.

軽量フィラーの中で、ガラス質微小中空球、例えばシラスバルーンは、軽量で耐熱性である上、等方性を示すため、マトリックス材料に異方性を与えず、耐衝撃性を付与することができ、流動性やハンドリング性にも優れているため、セメント系建築材料、紙粘土、プラスチックのフィラーとして多用されている(非特許文献1参照)。   Among lightweight fillers, glassy hollow microspheres, such as Shirasu balloons, are lightweight and heat resistant, and exhibit isotropic properties, so they can impart impact resistance without imparting anisotropy to the matrix material. In addition, since it is excellent in fluidity and handling properties, it is frequently used as a filler for cement-based building materials, paper clay, and plastics (see Non-Patent Document 1).

このガラス質微小中空球の代表的なものであるシラスバルーンは、ガラス質火山噴出堆積物のシラスを焼成発泡させたものであるが、原料が容易に入手でき、比較的簡単に発泡できるため、開発されて以来、その製造方法が多数提案されている。   Shirasu balloon, which is representative of this glassy micro-hollow sphere, is made by firing and foaming shirasu of glassy volcanic eruption deposits, but since the raw materials are readily available and can be foamed relatively easily, Since its development, many manufacturing methods have been proposed.

このシラスバルーンの製造方法としては、最初、電気炉やロータリーキルンを用いて焼成する方法が行われ、例えばシラスを分級して微粒区分を分離し、これを電気炉や外熱式ロータリーキルンにより800〜1200℃で10秒〜10分間熱処理したのち、水中における比重分離(以下、浮水分離と称す)又は空気分級することによる微細中空ガラス球状体の製造方法(特許文献1参照)が知られている。   As a manufacturing method of this shirasu balloon, first, a method of firing using an electric furnace or a rotary kiln is performed. For example, shirasu is classified and fine particles are separated, and this is divided into 800 to 1200 by an electric furnace or an external heating rotary kiln. There is known a method for producing fine hollow glass spheres (see Patent Document 1) by performing specific gravity separation in water (hereinafter referred to as floating water separation) or air classification after heat treatment at 10 ° C. for 10 seconds to 10 minutes.

その後、高温流動層を用いて発泡物質を製造する方法が開発され(特許文献2参照)、これを利用した内燃式熱媒体流動床炉を用いたガラス質微小中空球の製造方法が主流を占めるようになり、これまでに、火山ガラス質堆積物の微粒子と、この微粒子の親水性を減少させる親水性減少剤との混合物を流動層式加熱炉を用いて900〜1200℃で熱処理する微粒中空ガラス球状体の製造方法(特許文献3参照)、平均粒径20μm以下であって、40μm以上の粒分を25%以上48%以下含む火山ガラス原料を内燃式流動床炉で発泡させて得られる中空ガラス球状体を含む気流を、直列に連結した複数のサイクロンに供給してタッピングかさ密度0.25g/cm3以下、平均粒径20μm以下の中空ガラス球状体及び平均粒径の異なる2種類以上の中空ガラス球状体を連続的に製造する方法(特許文献4参照)、内燃式流動床炉内のセラミックスボールを用い、このセラミックスボールに燃料ガスと空気との混合ガスを供給し、この燃料ガスの燃焼熱でセラミックスボールを900℃以上まで昇温し、設定温度±3℃以内で温度制御を行うと同時に微粒中空ガラス球状体の原料粉体を前記混合ガスに随伴させて供給することにより微粒中空ガラス球状体を製造する方法(特許文献5参照)、天然軽石を内燃式熱媒体流動床炉の排気側から流動床に供給し、900〜1100℃で焼成し、ゆるみ見掛比重0.18〜0.31の焼成発泡軽石の連続的製造方法(特許文献6参照)などがこれまでに提案されている。 Thereafter, a method for producing a foamed material using a high-temperature fluidized bed was developed (see Patent Document 2), and a method for producing glassy hollow microspheres using an internal combustion heat medium fluidized bed furnace using the same dominates. So far, fine hollow particles in which a mixture of fine particles of volcanic glassy deposits and a hydrophilic reducing agent that reduces the hydrophilicity of the fine particles is heat treated at 900 to 1200 ° C. using a fluidized bed heating furnace. A method for producing glass spheres (see Patent Document 3), obtained by foaming a volcanic glass raw material having an average particle diameter of 20 μm or less and containing particles of 40 μm or more in a range of 25% to 48% in an internal fluidized bed furnace. the air flow containing the hollow glass, tapping bulk density 0.25 g / cm 3 or less is supplied to the plurality of cyclones which are coupled in series, different average particle size 20μm or less of the hollow glass microspheres and the mean particle size of 2 A method for continuously producing spherical glass spheres of the kind or higher (see Patent Document 4), using ceramic balls in an internal fluidized bed furnace, supplying a mixed gas of fuel gas and air to the ceramic balls, The ceramic ball is heated to 900 ° C. or higher with the combustion heat of the fuel gas, and the temperature is controlled within the set temperature ± 3 ° C., and at the same time, the raw material powder of the fine hollow glass sphere is supplied along with the mixed gas. (See Patent Document 5), natural pumice is supplied to the fluidized bed from the exhaust side of the internal combustion heat medium fluidized bed furnace, calcined at 900 to 1100 ° C., and loose apparent specific gravity is 0 A continuous production method of fired foamed pumice stone of 18 to 0.31 (see Patent Document 6) has been proposed so far.

他方、中空球構造をとらず、開放型気泡からなる多泡構造を有する球状パーライトについては、粉砕、粒度調整した天然ガラス質岩石を、その軟化点より低い温度で予備加熱して含有水分量を0.1〜2重量%に調整し、次いでこれに高融点微粉末を30〜200容量%混合してロータリーキルンや電気炉により900〜1300℃の温度で発泡焼成させた後、生成したパーライトを高融点微粉末から分離する方法(特許文献7参照)や、流紋岩質の非造粒岩石粒を原料とした、平均粒径5mm以下、真球度0.7以上、圧縮強度25N/mm2以上の硬質発泡パーライト及び平均粒径0.6mm〜5mm、含水量3wt%以下の流紋岩質の非造粒岩石粒を一段焼成する際に、焼成後の発泡パーライトの圧縮強度に応じて焼成温度を選択する方法(特許文献8参照)などが知られている。 On the other hand, for spherical pearlite that has a multi-bubble structure consisting of open-type bubbles without taking a hollow sphere structure, natural glassy rocks that have been crushed and adjusted in particle size are preheated at a temperature lower than their softening point to reduce the water content. After adjusting the content to 0.1 to 2% by weight, and then mixing 30 to 200% by volume of a high melting point fine powder and foaming and firing it at a temperature of 900 to 1300 ° C. with a rotary kiln or electric furnace, A method of separating from a melting point fine powder (refer to Patent Document 7) and a rhyolitic non-granulated rock grain as a raw material, an average particle diameter of 5 mm or less, a sphericity of 0.7 or more, and a compressive strength of 25 N / mm 2 When the above-mentioned hard foamed pearlite and rhyolitic non-granulated rock grains having an average particle size of 0.6 to 5 mm and a water content of 3 wt% or less are fired in one step, firing is performed according to the compressive strength of the foamed perlite after firing. Who chooses the temperature And the like are known (see Patent Document 8).

「工業材料」、日刊工業新聞社発行、第42巻、1994年、p.102−111“Industrial Materials”, published by Nikkan Kogyo Shimbun, Volume 42, 1994, p. 102-111 特公昭48−17645号公報(特許請求の範囲その他)Japanese Patent Publication No. 48-17645 (claims and others) 特公昭51−22922号公報(特許請求の範囲その他)Japanese Patent Publication No. 51-22922 (claims and others) 特公平7−24299号公報(特許請求の範囲その他)Japanese Patent Publication No. 7-24299 (Claims and others) 特開2002−338280号公報(特許請求の範囲その他)JP 2002-338280 A (Claims and others) 特開平11−11960号公報(特許請求の範囲その他)Japanese Patent Laid-Open No. 11-11960 (Claims and others) 特開2004−91283号公報(特許請求の範囲その他)JP 2004-91283 A (Claims and others) 特開平9−183612号公報(特許請求の範囲その他)JP-A-9-183612 (Claims and others) 特開2007−320805号公報(特許請求の範囲その他)JP 2007-320805 A (Claims and others)

従来のシラスバルーンは、真球度が0.8未満と低く、等方性を欠く上、耐圧強度すなわち8MPaで1分間の静水圧浮揚度が41%以下と低いため、化粧料添加物や紙粘土、プラスチックのフィラーとして用いる場合、流動性や耐圧性が不十分で、その利用分野が制限されるのを免れなかった。   The conventional Shirasu balloon has a low sphericity of less than 0.8, lacks isotropy, and has a compressive strength, that is, a hydrostatic pressure levitation rate of 8 MPa for 1 minute, which is low at 41% or less. When used as a filler for clay and plastic, fluidity and pressure resistance are insufficient, and it is inevitable that the field of use is limited.

本発明は、このような事情のもとで、天然から採取されたどのようなシラス原鉱を用いても、1回の焼成により、高真球度、高耐圧強度をもつシラスバルーンを得ることができる新規な製造方法を提供することを目的としてなされたものである。   Under such circumstances, the present invention can obtain a shirasu balloon having high sphericity and high pressure strength by one firing even if any shirasu ore collected from nature is used. The present invention has been made for the purpose of providing a novel manufacturing method capable of achieving the above.

本発明者らは、高真球度シラスバルーンを得るために鋭意研究を重ねた結果、シラス原鉱から重鉱物成分を除いた残部を、高速気流中衝撃処理したものを分級し、所定の画分を回収し、焼成すれば高真球度でしかも高耐圧強度のシラスバルーンが得られることを見出し、この知見に基づいて本発明をなすに至った。   As a result of intensive research to obtain a high sphericity shirasu balloon, the present inventors classified the remainder obtained by removing the heavy mineral component from the shirasu ore in a high-speed air current, It was found that a shirasu balloon having a high sphericity and a high pressure resistance can be obtained by collecting and firing the components, and based on this finding, the present invention has been made.

すなわち、本発明は、シラス原鉱より重鉱物成分を除去した残分を、高速気流中衝撃処理に付して粉砕したのち、ふるい分けし、粒径20〜150μmの範囲内の任意の画分を回収し、900〜1150℃において焼成することを特徴とする高真球度シラスバルーンの製造方法及びそれによって得られる高真球度、高耐圧強度をもつシラスバルーンを提供するものである。   That is, in the present invention, the residue from which the heavy mineral components are removed from the shirasu ore is subjected to a high-speed air current impact treatment and pulverized, and then sieved to obtain an arbitrary fraction having a particle diameter of 20 to 150 μm. The present invention provides a method for producing a high sphericity shirasu balloon, which is collected and fired at 900 to 1150 ° C., and a shirasu balloon having high sphericity and high pressure strength obtained thereby.

本発明方法において用いるシラス原鉱としては、通常のシラスバルーンの製造に用いているシラス、例えば加久藤シラス、吉田シラスのほか、ガラス質中空球の製造原料としてシラスと同様に用いられている中野白土、美瑛白土などの風化火山灰や、黒曜石、真珠岩、松脂岩、天然軽石、ボラ、コラなどの火山噴出物がある。本発明方法によれば、重鉱物が多く含まれるためシラスバルーンの原料として不適とされていた南九州のシラス台地を形成するシラスなどの火砕流堆積物を用いることができる。そのほか、火山ガラスを主成分とする風化した降下軽石からなる鹿沼土や南九州の鹿屋土等も同様に用いることができる。   As the shirasu ore used in the method of the present invention, shirasu used in the production of ordinary shirasu balloons, such as Kakuto shirasu and yoshida shirasu, as well as Shirasu as a raw material for producing glassy hollow spheres , There are weathered volcanic ash such as Biei white clay, and volcanic eruptions such as obsidian, pearlite, pine stone, natural pumice, mullet, cora. According to the method of the present invention, pyroclastic flow deposits such as shirasu forming a shirasu plateau in south Kyushu, which is considered unsuitable as a raw material for shirasu balloons because of its large amount of heavy minerals, can be used. In addition, Kanuma soil composed of weathered pumice that is mainly composed of volcanic glass and Kanoya soil in Minami Kyushu can be used in the same manner.

これらのシラス原鉱は、低温含水量(室温から200℃までの脱水量)で0.3〜13%、高温含水量(200℃から800℃までの脱水量)で1.8〜6.0%という広い温度範囲にわたる異なった含水量を有している。低温含水量とは、熱重量分析において昇温速度10℃/分で室温から200℃までに蒸散する脱水量のことであり、高温含水量とは、同じく200℃から800℃までに蒸散する脱水量のことである。
本発明方法においては、発泡源としてほとんど寄与せず蒸発熱を奪うだけで発泡効率を低減させる低温含水量を減らすために、あらかじめ高温乾燥処理を施して、発泡源として寄与する高温含水量を0.4%以下に減らさぬように注意しながら、高温含水量を適正範囲内に調整した上、昇温速度を制御して水分を消失しないように焼成するのが好ましい。
These Shirasu ores have a low-temperature water content (dehydration amount from room temperature to 200 ° C.) of 0.3 to 13%, and a high-temperature water content (dehydration amount from 200 ° C. to 800 ° C.) of 1.8 to 6.0. % Have different water contents over a wide temperature range. The low-temperature water content is a dehydration amount that evaporates from room temperature to 200 ° C. at a heating rate of 10 ° C./min in thermogravimetric analysis, and the high-temperature water content is a dehydration that also evaporates from 200 ° C. to 800 ° C. It is a quantity.
In the method of the present invention, in order to reduce the low-temperature water content, which hardly contributes as a foaming source and reduces the foaming efficiency only by taking the heat of evaporation, the high-temperature water content contributing to the foaming source is reduced to 0 by performing a high-temperature drying treatment in advance. It is preferable to calcinate so as not to lose moisture by adjusting the high temperature water content within an appropriate range while taking care not to reduce it to less than 4%.

本発明方法における重鉱物の除去は、例えば原鉱を室温下で、気流分級することにより容易に行うことができる。このようにして除去される粒径1mm以上の重鉱物は原鉱の種類や産地により変動するが、通常原鉱の質量に基づき3〜10質量%程度である。   The removal of heavy minerals in the method of the present invention can be easily performed, for example, by classifying the raw ore at room temperature and air flow classification. The heavy mineral having a particle diameter of 1 mm or more removed in this manner varies depending on the type of the ore and the production area, but is usually about 3 to 10% by mass based on the mass of the ore.

次に、本発明方法における高速気流中衝撃処理は、これまで化粧品、医療品、トナーなどの粉砕に利用されている方法で、例えば粉体を秒速80〜150m、好ましくは90〜110mの高速気流中で撹拌、混合して粒子同士を衝突させ、表面に強い機械的エネルギーを与えることによって、大粒子表面に小粒子を付着、固定化する方法であり、このようにして真球度の高い球状の粒子を得ることができる。
本発明方法においては、粒径20〜200μmの比較的大きい粒子の表面に、粒径1〜10μmの比較的小さい粒子が付着して、ハイブリッド化し、真球度の高い球状粒子が得られる。この際の処理時間は、所望の粒径により左右されるが、通常20秒〜30分間の範囲である。この高速気流中衝撃処理は、ハイブリダイザーを用いて行われる。
Next, the impact treatment in a high-speed air stream in the method of the present invention is a method that has been used so far for pulverizing cosmetics, medical products, toners, and the like. For example, powder is a high-speed air stream of 80 to 150 m / second, preferably 90 to 110 m / second This is a method of adhering and immobilizing small particles on the surface of large particles by agitation and mixing in the particles to make particles collide and give strong mechanical energy to the surface. Particles can be obtained.
In the method of the present invention, relatively small particles having a particle diameter of 1 to 10 μm adhere to the surface of relatively large particles having a particle diameter of 20 to 200 μm, and are hybridized to obtain spherical particles having a high sphericity. The treatment time at this time depends on the desired particle size, but is usually in the range of 20 seconds to 30 minutes. This impact treatment in high-speed air current is performed using a hybridizer.

この高速気流中衝撃処理によるシラス原鉱のハイブリッド化は、次の生成機構が考えられる。
(1)大粒子の粉砕と粒子凸部の摩砕による10μm以下の超微粒子の発生。
(2)ファン・デル・ワールス力及び静電引力による大粒子表面への10μm以下の超微粒子の再付着と凝集。
(3)混合・攪拌作用の結果、引き起こされる大粒子表面への衝撃力や圧縮せん断力による超微粒子の固定化。
(4)上記の生成機構(1)〜(3)が繰り返されることによる大粒子表面への超微粒子付着の多層化。
The following generation mechanism can be considered for the hybrid of Shirasu ore by impact treatment in high-speed air current.
(1) Generation of ultrafine particles of 10 μm or less by pulverization of large particles and grinding of the convex portions of the particles.
(2) Reattachment and aggregation of ultrafine particles of 10 μm or less on the surface of large particles by van der Waals force and electrostatic attraction.
(3) Immobilization of ultrafine particles by the impact force and compression shear force on the large particle surface caused as a result of mixing and stirring action.
(4) Multilayering of adhesion of ultrafine particles to the surface of large particles by repeating the above generation mechanisms (1) to (3).

このハイブリッド化されたシラス原鉱は、昇温速度を制御して水分を消失しないように焼成することによって、所望の高真球度シラスバルーンが得られる。例えば、焼成炉として内燃式媒体流動床炉を用いた場合、無処理のシラス原鉱の焼成温度よりも30〜100℃低い温度で焼成発泡させることが可能であり、焼成コストを抑えられる利点がある。
また、得られた高真球度シラスバルーンは、ピンク色もしくは茶褐色など呈色しており、同じ焼成条件にも係わらず、無処理のシラス原鉱から得られたものと明らに物性を異にしている。当然ながら、本発明により得られたシラスバルーンは、無処理のシラス原鉱から得られたものよりも、真球度が高く、高耐圧性であり、単泡中空構造という点で異なる。
The hybrid shirasu ore is fired so as not to lose moisture by controlling the heating rate, thereby obtaining a desired high sphericity shirasu balloon. For example, when an internal combustion medium fluidized bed furnace is used as the firing furnace, it can be fired and foamed at a temperature 30 to 100 ° C. lower than the firing temperature of the untreated shirasu ore, which has the advantage of reducing the firing cost. is there.
In addition, the obtained high sphericity shirasu balloon has a color such as pink or brown, and the physical properties clearly differ from those obtained from untreated shirasu ore regardless of the same firing conditions. I have to. Naturally, the Shirasu balloon obtained by the present invention is higher in sphericity, higher pressure resistance, and different from the one obtained from the untreated Shirasu ore.

次に、添付図面に従ってハイブリダイザーの構造及び作用を説明する。
図1は、ハイブリダイザーの1例の略解断面図であって、このものは扁平型円筒状ジャケット1とその内部に配設されたローター2及びブレード3及び固気混合流を循環させる循環回路4とから構成されている。上記の循環回路4には開閉弁付きの原料投入口5が連結されており、ジャケット1には、粉砕後の粉体が排出される排出弁6、6´が付設されている。
Next, the structure and operation of the hybridizer will be described with reference to the attached drawings.
FIG. 1 is a schematic cross-sectional view of an example of a hybridizer, which is a flat cylindrical jacket 1, a rotor 2 and blades 3 disposed therein, and a circulation circuit 4 for circulating a solid-gas mixed flow. It consists of and. The circulation circuit 4 is connected to a raw material inlet 5 with an open / close valve, and the jacket 1 is provided with discharge valves 6 and 6 ′ for discharging the pulverized powder.

本発明方法においては、原料投入口5からジャケット1内に導入されたシラス粉体が、ブレード3の付いたローター2の高速回転と循環回路4によって生じた秒速100mという高速の循環気流により担送され、所定の時間、固体と気体が混合した固気混合流が高速で循環している間に、ブレード3や配管壁面との衝突や摩擦を繰り返ながら、高速気流中での粒子間相互作用により、静電気的、機械的な力が複雑に働いて、微砕化と真球化が行われ、粒径5〜200μmの高真球度シラス粒体が得られる。図中の破線は粒子の運動経路を示す。   In the method of the present invention, the shirasu powder introduced into the jacket 1 from the raw material inlet 5 is transported by the high-speed rotation of the rotor 2 with the blade 3 and a high-speed circulating air flow of 100 m / s generated by the circulation circuit 4. The interaction between particles in a high-speed air flow is repeated while the solid-gas mixed flow in which the solid and the gas are mixed for a predetermined time is circulating at high speed while repeatedly colliding with the blade 3 and the pipe wall surface and friction. Thus, electrostatic and mechanical forces work in a complicated manner, whereby pulverization and spheroidization are performed, and high sphericity shirasu granules having a particle size of 5 to 200 μm are obtained. The broken line in the figure indicates the movement path of the particles.

本発明方法においては、このようにして高速気流中衝撃処理したシラス粉体をふるい分けして、粒径20〜150μmの画分を分離し、高真球度シラスバルーンの製造に用いる。この際のふるい分けは、通常振動ふるいを用いて行うのが好ましいが、そのほか、風簸のような気相分離を用いて行ってもよい。   In the method of the present invention, the shirasu powder subjected to the impact treatment in a high-speed air stream is screened to separate a fraction having a particle size of 20 to 150 μm, which is used for the production of a high sphericity shirasu balloon. In this case, the sieving is usually preferably performed using a vibrating screen, but in addition, it may be performed using a gas phase separation such as a wind screen.

このようにして得られるシラス原料粉体を用いて、シラスバルーンを製造するには、通常のシラスバルーン製造に用いている電気炉加熱焼成法、ロータリーキルン法などを用いてもよいが、特に好ましいのは、熱媒体を用いる内燃式媒体流動床炉法である。
この方法は、縦長円筒体とその内部を上部の流動層形成部と下部の風箱部に区画する分散板と上部の区画に装填された熱媒体から構成された内燃式媒体流動床炉を用いて行われる。
In order to produce a shirasu balloon using the shirasu raw material powder obtained in this way, an electric furnace heating and firing method, a rotary kiln method, etc., which are used for ordinary shirasu balloon production may be used, but it is particularly preferable. Is an internal combustion medium fluidized bed furnace method using a heat medium.
This method uses an internal combustion medium fluidized bed furnace comprising a vertically long cylindrical body, a dispersion plate that divides the inside into an upper fluidized bed forming section and a lower wind box section, and a heat medium loaded in the upper section. Done.

上記の縦長円筒体は、ステンレス鋼のような耐食性、耐熱性材料で作られ、そのサイズは、目的とするガラス質中空球の生産量に応じ適宜選択される。工業的に実施する場合には、通常、内径50〜1000mm、高さ1〜10mの範囲内で選ばれるが、特に制限はない。   The vertically long cylindrical body is made of a corrosion-resistant and heat-resistant material such as stainless steel, and the size thereof is appropriately selected according to the production amount of the target glassy hollow sphere. When implemented industrially, it is usually selected within a range of an inner diameter of 50 to 1000 mm and a height of 1 to 10 m, but there is no particular limitation.

分散板としては、耐食、耐熱性の金属、例えばステンレス鋼の厚さ2〜8mmの板に、直径1.5〜5mmの孔を開孔比2〜5%の割合で穿孔した多孔板が用いられている。熱媒体としては、直径2.0〜3.5mmの耐熱性セラミックス、例えばムライト製ボールが用いられるが、本発明方法においては、ムライトボールよりも安価で流動化し易いムライト破砕物からなる粒径1.7mm〜2.8mmのものを用いることにより、効率を向上させることができる。また、シラス原鉱から、あらかじめ除去された粒径1mm以上の重鉱物から分別されたものも同様に用いることができる。   As the dispersion plate, a perforated plate in which holes having a diameter of 1.5 to 5 mm are drilled in a ratio of 2 to 5% in a plate of corrosion resistant and heat resistant metal such as stainless steel having a thickness of 2 to 8 mm is used. It has been. As the heat medium, heat-resistant ceramics having a diameter of 2.0 to 3.5 mm, for example, mullite balls, are used. In the method of the present invention, the particle size 1 is made of crushed mullite that is cheaper and easier to fluidize than mullite balls. Efficiency can be improved by using a thing of .7 mm to 2.8 mm. Moreover, what was fractionated from the heavy mineral with a particle diameter of 1 mm or more previously removed from the Shirasu ore can be used in the same manner.

本発明方法においては、この流動床炉の温度をコンプレッサから圧送される燃料ガスと空気の混合物の供給量及び燃料ガスと空気との割合を調節することにより900〜1150℃、好ましくは950〜1100℃の範囲内に制御する。内燃式媒体流動床炉で生成したガラス質中空球は中空球分離用サイクロンに送られ回収される。このようにして得られる高真球度シラスバルーンの粒径は、通常30〜300μmである。   In the method of the present invention, the temperature of the fluidized bed furnace is set to 900 to 1150 ° C., preferably 950 to 1100 by adjusting the supply amount of the mixture of the fuel gas and air pumped from the compressor and the ratio of the fuel gas and air. Control within the range of ° C. The vitreous hollow spheres produced in the internal combustion medium fluidized bed furnace are sent to a cyclone for separating hollow spheres and collected. The particle diameter of the high sphericity shirasu balloon thus obtained is usually 30 to 300 μm.

また、本発明方法においては、流動床の静止層高を50〜300mm、空塔速度0.4〜2.0m/sの条件下で、かつ火山ガラス原鉱の供給量5〜40kg/hrで操作するのが好ましい。   In the method of the present invention, the static bed height of the fluidized bed is 50 to 300 mm, the superficial velocity is 0.4 to 2.0 m / s, and the volcanic glass ore supply rate is 5 to 40 kg / hr. It is preferable to operate.

本発明方法によると、従来法によっては得ることのできなかった0.9以上の高い真球度を有し、しかも8MPaで1分間の静水圧浮揚率50%以上という高耐圧性の単泡中空球構造のシラスバルーンを得ることができる。   According to the method of the present invention, a single bubble hollow having a high sphericity of 0.9 or higher, which could not be obtained by the conventional method, and having a hydrostatic pressure levitation rate of 50% or higher at 8 MPa for 1 minute. A shirasu balloon having a spherical structure can be obtained.

次に、実施例により、本発明を実施するための最良の形態を説明する。
なお、実施例においては、高速気流中衝撃処理を行うための装置として、(株)奈良機械製作所製造のハイブリダイザーI型を用い、シラス粉体を周速100m/s、仕込量300g/Batch、処理時間180秒という条件下で行った。装置内部からのコンタミネーションを防ぐために、ハイブリダイザーのジャケット内部及び循環回路はアルミナライニング製、ローター及びブレードはアルミナ製のものを用いた。
また、焼成処理は、内燃式媒体流動床炉として、内径129mm、高さ1.8mのステンレス鋼製円筒容器内に、厚さ4.0mmのステンレス鋼板に直径1.7mmの孔を開孔比2.9%で設けた分散板を配置し、底部の風箱部に逆火防止用の直径26〜31mmの磁性ボールを装填したものを用いた。熱媒体には、伊藤忠セラテック製のムライト破砕物を篩い選別した粒径1.7mm〜2.8mmのものを2.8kg用いた。
Next, the best mode for carrying out the present invention will be described by way of examples.
In the examples, a hybridizer type I manufactured by Nara Machinery Co., Ltd. is used as an apparatus for performing impact treatment in a high-speed air stream, and a shirasu powder is used at a peripheral speed of 100 m / s, a charging amount of 300 g / Batch, The treatment time was 180 seconds. In order to prevent contamination from inside the apparatus, the inside of the jacket of the hybridizer and the circulation circuit were made of alumina lining, and the rotor and blade were made of alumina.
In addition, the firing treatment is carried out by using a stainless steel cylindrical container having an inner diameter of 129 mm and a height of 1.8 m as an internal combustion medium fluidized bed furnace, and a hole diameter ratio of 1.7 mm in a 4.0 mm thick stainless steel plate. A dispersion plate provided at 2.9% was disposed, and a magnetic box having a diameter of 26 to 31 mm for preventing backfire was loaded on the bottom air box portion. As the heat medium, 2.8 kg having a particle size of 1.7 mm to 2.8 mm obtained by sieving and sorting mullite crushed material manufactured by ITOCHU CERATECH was used.

火山ガラス原鉱として、宮崎県えびの市に産出する加久藤シラス(火山ガラス含有量95%以上、低温含水量0.36%、高温含水量3.86%、平均粒径62.2μm)を熱風乾燥器により300℃で6時間乾燥したもの(低温含水量0.04%、高温含水量1.86%)を用い、これを秒速100mの空気流により3分間、高速気流中衝撃処理に付して粉砕したのち、振動ふるいにより、30〜60μm画分のものを回収した。
次に、上記の画分を内燃式媒体流動床炉に投入し、1050℃において焼成したところ、平均粒径74.8μm、真球度0.94のほとんど単泡構造からなる褐色のシラスバルーンが得られた。
このものの浮水物の8MPaで1分間における静水圧浮揚率は55.6%であった。このものの表面SEM写真を図2に、また断面SEM写真を図3に示す。
As a volcanic glass ore, Shirasu Kakuto produced in Ebino City, Miyazaki Prefecture (volcanic glass content 95% or more, low temperature water content 0.36%, high temperature water content 3.86%, average particle size 62.2μm) hot air drying What was dried at 300 ° C. for 6 hours (low-temperature water content 0.04%, high-temperature water content 1.86%) was subjected to impact treatment in high-speed air current for 3 minutes with an air flow of 100 m / s. After pulverization, a 30-60 μm fraction was collected by a vibration sieve.
Next, when the above fraction was put into an internal combustion medium fluidized bed furnace and baked at 1050 ° C., a brown shirasu balloon having an average particle size of 74.8 μm and a sphericity of 0.94 consisting of almost a single bubble structure was obtained. Obtained.
The floated product had a hydrostatic levitation rate of 55.6% for 1 minute at 8 MPa. The surface SEM photograph of this is shown in FIG. 2, and the cross-sectional SEM photograph is shown in FIG.

比較例1
実施例1で用いたものと同じ火山ガラス原鉱を、通常の方法で粉砕し、その粉砕物をサイクロンにより気流分級し、粒径8.5〜208.9μmの画分を捕集し、実施例1と同様にして焼成した。得られたシラスバルーンは、8MPaで1分間における静水圧浮揚率は23.5%と低く、真球度も0.74と低かった。このものの表面SEM写真を図4に、また断面SEM写真を図5に示す。得られたシラスバルーンは、実施例1と異なり、粒子のほとんどが多泡構造をしている。
Comparative Example 1
The same volcanic glass ore as used in Example 1 is pulverized by a normal method, and the pulverized product is air-flow classified by a cyclone, and a fraction having a particle size of 8.5 to 208.9 μm is collected. Firing was carried out in the same manner as in Example 1. The obtained shirasu balloon had a hydrostatic pressure levitation rate of 8 MPa at 1 MPa for 2 minutes and a low sphericity of 0.74. The surface SEM photograph of this product is shown in FIG. 4, and the cross-sectional SEM photograph is shown in FIG. Unlike the example 1, the obtained shirasu balloon has a multi-bubble structure in most of the particles.

比較例2
比較のために、市販されているシラスバルーンの静水圧浮揚率、真球度及び形状を表1に示す。
Comparative Example 2
For comparison, Table 1 shows the hydrostatic levitation rate, sphericity, and shape of a commercially available shirasu balloon.

このように、市販されているシラスバルーンは、形状が不均一であり、ほとんどが多泡状である上、いずれも静水圧浮揚率は41%以下で殻壁の膜厚は総じて1μm以下と非常に薄く、真球度は0.80未満である。   Thus, the commercially available shirasu balloons are non-uniform in shape, mostly foamy, and all have a hydrostatic levitation rate of 41% or less and a shell wall thickness of 1 μm or less as a whole. The sphericity is less than 0.80.

各種充填剤、化粧料として有用な高真球度で高耐圧性のシラスバルーンを簡単に得ることができるので、広く利用することができる。   Since a high sphericity and high pressure resistant shirasu balloon useful as various fillers and cosmetics can be easily obtained, it can be widely used.

ハイブリダイザーの1例の略解断面図。FIG. 3 is a schematic cross-sectional view of an example of a hybridizer. 実施例1で得られた高真球度シラスバルーンの電子顕微鏡表面写真図。FIG. 2 is an electron microscope surface photograph of the high sphericity shirasu balloon obtained in Example 1. FIG. 実施例1で得られた高真球度シラスバルーンの電子顕微鏡断面写真図。FIG. 3 is an electron microscopic cross-sectional photograph of the high sphericity shirasu balloon obtained in Example 1. 比較例1で得られたシラスバルーンの電子顕微鏡表面写真図。The electron microscope surface photograph figure of the shirasu balloon obtained in the comparative example 1. FIG. 比較例1で得られたシラスバルーンの電子顕微鏡断面写真図。The electron microscope cross-sectional photograph figure of the shirasu balloon obtained in the comparative example 1. FIG.

符号の説明Explanation of symbols

1 扁平型円筒状ジャケット
2 ローター
3 ブレード
4 循環回路
5 原料投入口
6、6´ 排出弁
DESCRIPTION OF SYMBOLS 1 Flat type cylindrical jacket 2 Rotor 3 Blade 4 Circulation circuit 5 Raw material inlet 6, 6 'discharge valve

Claims (8)

シラス原鉱より重鉱物成分を除去した残分を、高速気流中衝撃処理に付して粉砕したのち、ふるい分けし、粒径20〜150μmの範囲内の任意の画分を回収し、900〜1150℃において焼成することを特徴とする高真球度シラスバルーンの製造方法。   The residue from which the heavy mineral components are removed from the shirasu ore is subjected to impact treatment in a high-speed air stream and pulverized, and then sieved to collect an arbitrary fraction having a particle size of 20 to 150 μm. A method for producing a high sphericity shirasu balloon, characterized by firing at 0 ° C. 高速気流中衝撃処理を秒速80〜150mの空気流により、20秒〜30分間行う請求項1記載の高真球度シラスバルーンの製造方法。   The method for producing a high sphericity shirasu balloon according to claim 1, wherein the impact treatment in the high-speed air stream is performed for 20 seconds to 30 minutes with an air flow of 80 to 150 m / s. 粒径20〜200μmの比較的大きい粒径をもつ粒子の表面に、粒径1〜10μmの比較的小さい粒径をもつ粒子が付着して、ハイブリッド化するまで高速気流中衝撃処理を行う請求項1又は2記載の高真球度シラスバルーンの製造方法。   A high-speed air current impact treatment is performed until a particle having a relatively small particle size of 1 to 10 μm adheres to the surface of a particle having a relatively large particle size of 20 to 200 μm and hybridizes. 3. A method for producing a high sphericity shirasu balloon according to 1 or 2. 高真球度シラスバルーンが真球度0.9以上、8MPaで1分間の静水圧浮揚率50%以上に相当する耐圧強度を有することを特徴とする請求項1ないし3のいずれかに記載の高真球度シラスバルーンの製造方法。   4. The high sphericity shirasu balloon has a sphericity of 0.9 or more and has a pressure resistance equivalent to a hydrostatic levitation rate of 50% or more at 8 MPa for 1 minute. Manufacturing method of high sphericity shirasu balloon. 得られるシラスバルーンが、単泡中空構造を有するものである請求項1ないし4のいずれかに記載の高真球度シラスバルーンの製造方法。   The method for producing a high sphericity shirasu balloon according to any one of claims 1 to 4, wherein the obtained shirasu balloon has a single-bubble hollow structure. 8MPaで1分間の静水圧浮揚率50%以上に相当する耐圧強度を有することを特徴とする高真球度シラスバルーン。   A high sphericity shirasu balloon characterized by having a compressive strength corresponding to a hydrostatic levitation rate of 50% or more at 8 MPa for 1 minute. 真球度0.9以上を特徴とする請求項6記載の高真球度シラスバルーン。   The high sphericity shirasu balloon according to claim 6 having a sphericity of 0.9 or more. 単泡中空構造を有する請求項6又は7記載の高真球度シラスバルーン。   The high sphericity shirasu balloon according to claim 6 or 7, having a single-bubble hollow structure.
JP2008145985A 2008-06-03 2008-06-03 Manufacturing method of high sphericity shirasu balloon and high sphericity shirasu balloon obtained thereby Expired - Fee Related JP5070505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145985A JP5070505B2 (en) 2008-06-03 2008-06-03 Manufacturing method of high sphericity shirasu balloon and high sphericity shirasu balloon obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145985A JP5070505B2 (en) 2008-06-03 2008-06-03 Manufacturing method of high sphericity shirasu balloon and high sphericity shirasu balloon obtained thereby

Publications (2)

Publication Number Publication Date
JP2009292665A true JP2009292665A (en) 2009-12-17
JP5070505B2 JP5070505B2 (en) 2012-11-14

Family

ID=41541215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145985A Expired - Fee Related JP5070505B2 (en) 2008-06-03 2008-06-03 Manufacturing method of high sphericity shirasu balloon and high sphericity shirasu balloon obtained thereby

Country Status (1)

Country Link
JP (1) JP5070505B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064933A (en) * 2008-09-12 2010-03-25 Principle:Kk Method of producing high strength glassy hollow sphere
CN104150750A (en) * 2014-07-29 2014-11-19 安徽盛世新能源材料科技有限公司 Uniform single bubble glass column production bubbling system
CN104150752A (en) * 2014-07-29 2014-11-19 安徽盛世新能源材料科技有限公司 Production process for uniform single-bubble glass columns

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322747U (en) * 1989-07-18 1991-03-08
JPH03297549A (en) * 1990-04-16 1991-12-27 Isuzu Motors Ltd Heat insulating material for cast-in and manufacture thereof
JPH06154586A (en) * 1992-03-03 1994-06-03 Kagoshima Pref Gov Fine ceramic balloon and manufacture of the same
JPH06243897A (en) * 1992-12-24 1994-09-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09255397A (en) * 1996-03-25 1997-09-30 Mokushitsu Fukugou Zairyo Gijutsu Kenkyu Kumiai Cement formed body material and its production and producing of cement formed body
JP2008019149A (en) * 2006-07-14 2008-01-31 Tomoe Engineering Co Ltd Low water-absorbing perlite and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322747U (en) * 1989-07-18 1991-03-08
JPH03297549A (en) * 1990-04-16 1991-12-27 Isuzu Motors Ltd Heat insulating material for cast-in and manufacture thereof
JPH06154586A (en) * 1992-03-03 1994-06-03 Kagoshima Pref Gov Fine ceramic balloon and manufacture of the same
JPH06243897A (en) * 1992-12-24 1994-09-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09255397A (en) * 1996-03-25 1997-09-30 Mokushitsu Fukugou Zairyo Gijutsu Kenkyu Kumiai Cement formed body material and its production and producing of cement formed body
JP2008019149A (en) * 2006-07-14 2008-01-31 Tomoe Engineering Co Ltd Low water-absorbing perlite and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064933A (en) * 2008-09-12 2010-03-25 Principle:Kk Method of producing high strength glassy hollow sphere
CN104150750A (en) * 2014-07-29 2014-11-19 安徽盛世新能源材料科技有限公司 Uniform single bubble glass column production bubbling system
CN104150752A (en) * 2014-07-29 2014-11-19 安徽盛世新能源材料科技有限公司 Production process for uniform single-bubble glass columns

Also Published As

Publication number Publication date
JP5070505B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
EA020857B1 (en) Method for producing hollow microspheres
Chen et al. Development of dry beneficiation of coal in China
JP6756951B2 (en) Fine aggregate, pumice stone, volcanic glass, mixed cement and perlite
JP5077848B2 (en) High-strength glassy lightweight filler material
JP2008525625A5 (en)
CN102083540A (en) Upgraded combustion ash and its method of production
CN1821160A (en) Process and products of chinese kaolin
ES2426500T3 (en) Procedure to increase the efficiency of grinding ores, minerals and concentrates
JP2006231125A (en) Manufacturing system of shell powder
JP2007506535A5 (en)
JP2018058059A (en) Processing apparatus of incineration ash and processing method thereof
JP3876296B2 (en) Method for continuously producing hollow glass spheres
CN104550026B (en) Method for sorting limestone chips by utilizing fluidized bed
CN105256130A (en) Method for recycling chloride process titanium dioxide chlorination furnace blown-out materials containing fine-grain rutile
JP5070505B2 (en) Manufacturing method of high sphericity shirasu balloon and high sphericity shirasu balloon obtained thereby
WO2018061545A1 (en) Incinerated-ash treatment device and treatment method
US6528446B1 (en) Process for making clay spheroids
JP5076197B2 (en) Method for producing high-strength glassy hollow sphere
JP5145498B2 (en) Manufacturing method of high strength, high sphericity shirasu balloon
JP5035563B2 (en) Manufacturing method of high strength, high sphericity glassy fine hollow sphere
JP2019006610A (en) Volcanic ejecta compound, method of producing the same, concrete composition, and cured product
Thulasikanth et al. Fabrication of sustainable closed-cell aluminium foams using recycled fly ash and eggshell powder
JP7462128B2 (en) Volcanic glass powder
Ryou Examination of grinding techniques for the reuse of by-products of cement production
JP6912696B2 (en) Hydraulic lime and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

R150 Certificate of patent or registration of utility model

Ref document number: 5070505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees