JP2009290188A - Abrasive powder and polishing method - Google Patents

Abrasive powder and polishing method Download PDF

Info

Publication number
JP2009290188A
JP2009290188A JP2008301301A JP2008301301A JP2009290188A JP 2009290188 A JP2009290188 A JP 2009290188A JP 2008301301 A JP2008301301 A JP 2008301301A JP 2008301301 A JP2008301301 A JP 2008301301A JP 2009290188 A JP2009290188 A JP 2009290188A
Authority
JP
Japan
Prior art keywords
polishing
abrasive
film
particles
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008301301A
Other languages
Japanese (ja)
Other versions
JP5287174B2 (en
Inventor
Daisuke Ryuzaki
大介 龍崎
Yosuke Hoshi
陽介 星
Naoyuki Koyama
直之 小山
Shigeru Nobe
茂 野部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008301301A priority Critical patent/JP5287174B2/en
Publication of JP2009290188A publication Critical patent/JP2009290188A/en
Application granted granted Critical
Publication of JP5287174B2 publication Critical patent/JP5287174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide abrasive powder and polishing method employing the abrasive powder which polishes the projected part of a film to be polished, which incudes recesses and projections, at high speed and which reduces polishing scratch given to the film to be polished, in CMP technology employing ceria system abrasive powder. <P>SOLUTION: The abrasive powder contains at least four-valuent cerium oxide grain and four-valuent hydroxylate cerium grain as abrasive grain while containing at least water as a medium. In this case, the primary grain size of the cerium oxide grain and the primary grain size of the hydroxylate cerium grain are respectively not less than 1 nm and not more than 70 nm while the secondary grain size of the cerium oxide and the secondary grain size of the hydroxylate cerium grain in the abrasive powder are respectively not less than 10 nm and not more than 400 nm. In the polishing method, a film to be polished is polished employing the abrasive powder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体デバイス製造に用いる研磨剤及び研磨方法に関し、特に基板上に形成された被研磨膜を化学機械研磨で平坦化するための研磨剤及び研磨方法に関する。   The present invention relates to an abrasive and a polishing method used for manufacturing a semiconductor device, and more particularly to an abrasive and a polishing method for planarizing a film to be polished formed on a substrate by chemical mechanical polishing.

大規模集積回路(LSI)に代表される半導体デバイスは、世代ごとに回路寸法を縮小することで高性能化を実現している。このため半導体デバイスの製造工程では、様々な高精度の加工技術が要求されている。中でも化学機械研磨(CMP)による平坦化技術は、現在の半導体デバイスの製造工程には不可欠であり、シャロー・トレンチ・アイソレーションの形成、プリメタル絶縁膜や層間絶縁膜の平坦化、コンタクトプラグや銅ダマシン配線の形成等に広く使われている。   Semiconductor devices typified by large-scale integrated circuits (LSIs) achieve high performance by reducing circuit dimensions for each generation. For this reason, various high-precision processing techniques are required in the semiconductor device manufacturing process. Above all, planarization by chemical mechanical polishing (CMP) is indispensable for the current manufacturing process of semiconductor devices, forming shallow trench isolation, planarizing premetal insulating film and interlayer insulating film, contact plug and copper. Widely used for forming damascene wiring.

一般にCMP工程では、被研磨膜が形成された半導体基板を研磨パッドに押し付けながら互いに摺動させることで研磨を進行させる。このとき研磨パッドには研磨剤が連続的に滴下されるが、この研磨剤は被研磨膜の研磨速度、平坦性、欠陥密度等のCMP特性を決定する重要な因子である。特に研磨剤に含まれる砥粒の種類や濃度を変更することで、CMP特性は大きく変化する。   In general, in a CMP process, polishing is performed by sliding a semiconductor substrate on which a film to be polished is pressed against a polishing pad while sliding each other. At this time, a polishing agent is continuously dropped onto the polishing pad, and this polishing agent is an important factor that determines CMP characteristics such as polishing rate, flatness, and defect density of a film to be polished. In particular, the CMP characteristics change greatly by changing the type and concentration of abrasive grains contained in the abrasive.

CMP用の研磨剤として最も一般的に使われているのは、ヒュームドシリカやコロイダルシリカ等のシリカ砥粒を含む研磨剤である。シリカ系研磨剤は汎用性が高いことが特徴であり、砥粒濃度、pH、添加剤等を適切に選択することで、絶縁膜や導電膜を問わず幅広い種類の膜を研磨することができる。   The most commonly used abrasive for CMP is an abrasive containing silica abrasive such as fumed silica or colloidal silica. Silica-based abrasives are characterized by high versatility, and a wide variety of films can be polished regardless of whether they are insulating films or conductive films by appropriately selecting the abrasive concentration, pH, additives, etc. .

一方で、主に酸化シリコン膜等の絶縁膜を対象とした、セリア砥粒を含む研磨剤の適用も拡大している。セリア系研磨剤は、シリカ系研磨剤よりも低い砥粒濃度で高速に酸化シリコン膜を研磨できるのが特徴である。また、セリア系研磨剤に適当な添加剤を加えれば、被研磨膜の研磨後の平坦性を改善できたり、異なる被研磨膜の研磨速度に選択性を付与できたりすることが知られている。CMP工程に用いるセリア系研磨剤は、例えば特許文献1や特許文献2に開示されている。   On the other hand, the application of abrasives containing ceria abrasive grains mainly for insulating films such as silicon oxide films is also expanding. A ceria-based abrasive is characterized in that it can polish a silicon oxide film at a high speed with a lower abrasive concentration than a silica-based abrasive. Further, it is known that if an appropriate additive is added to the ceria-based polishing agent, the flatness after polishing of the film to be polished can be improved, or selectivity can be imparted to the polishing rate of different films to be polished. . The ceria type abrasive | polishing agent used for CMP process is disclosed by patent document 1 or patent document 2, for example.

しかしながら、一方で、酸化セリウム研磨剤を使用する場合、高い研磨速度と少ない研磨傷を両立するのは必ずしも容易ではなかった。酸化セリウムの場合、酸化セリウム自体が有する化学的活性による化学的作用と、粒子としての機械的除去作用で加工が進行すると考えられ、粒子による機械的除去作用が強いと研磨傷が入る傾向がある。   However, on the other hand, when using a cerium oxide abrasive, it is not always easy to achieve both a high polishing rate and a few polishing scratches. In the case of cerium oxide, it is considered that processing proceeds due to the chemical action by the chemical activity of cerium oxide itself and the mechanical removal action as particles, and if the mechanical removal action by particles is strong, there is a tendency to cause polishing scratches .

研磨剤中の粒子による研磨傷を無くすために、粒子の化学的作用を活かし、かつ機械的作用を極力小さくして研磨することに着目して、4価の金属水酸化物の粒子、又は、密度が3〜6g/cmであり2次粒子の平均粒径が1〜300nmであるセリウム化合物粒子のいずれかを含む研磨剤が知られており、例えば、4価の金属水酸化物の粒子のみを含む研磨剤を用いて酸化シリコン膜のブランケット基板を研磨したときに、光学顕微鏡による観察で研磨傷が無いことが示されている(特許文献3参照)。 In order to eliminate polishing scratches caused by particles in the abrasive, focusing on polishing with the chemical action of the particles and making the mechanical action as small as possible, particles of tetravalent metal hydroxide, or An abrasive containing any one of cerium compound particles having a density of 3 to 6 g / cm 3 and an average particle size of secondary particles of 1 to 300 nm is known. For example, tetravalent metal hydroxide particles When a blanket substrate made of a silicon oxide film is polished using a polishing agent containing only silicon, it is shown that there are no polishing flaws by observation with an optical microscope (see Patent Document 3).

特開平8−22970号公報JP-A-8-22970 特開平10−106994号公報Japanese Patent Laid-Open No. 10-106994 再公表特許WO2002/067309号公報Republished patent WO2002 / 067309

半導体デバイスの回路寸法が微細化するのに伴い、CMP工程で発生する研磨傷が深刻な問題となってきている。この問題に対して、前記特許文献3に記載されるように砥粒の1次粒径を小さくして研磨傷を減らそうとする試みがなされているが、近年の技術の進歩に伴って、さらに高レベルでの研磨傷の低減が求められている。   As circuit dimensions of semiconductor devices become finer, polishing scratches generated in the CMP process have become a serious problem. In order to solve this problem, attempts have been made to reduce the polishing scratches by reducing the primary particle size of the abrasive grains as described in Patent Document 3, but along with recent technological advances, Further, there is a demand for reduction of polishing scratches at a high level.

砥粒の1次粒径を小さくすると、研磨傷は低減できる傾向にあるが、同時に機械的作用も低下する。このため、表面に凹凸のない、いわゆるブランケット基板は研磨できるものの、表面に凹凸を持った、いわゆるパターン基板の凸部の研磨速度(以下、パターン研磨速度)が低下してしまう問題が新たに発生することがわかった。例えば、前記特許文献3に記載の研磨剤は、ブランケット基板に対する研磨速度(以下、ブランケット研磨速度)が良好であることが記載されているが、パターン基板に対する研磨速度については一切触れられていない。   If the primary particle size of the abrasive grains is reduced, polishing flaws tend to be reduced, but at the same time the mechanical action is also reduced. For this reason, a so-called blanket substrate with no irregularities on the surface can be polished, but a new problem arises that the polishing rate of the projections of the so-called pattern substrate with irregularities on the surface (hereinafter referred to as the pattern polishing rate) decreases. I found out that For example, the polishing agent described in Patent Document 3 describes that the polishing rate for the blanket substrate (hereinafter, blanket polishing rate) is good, but does not mention the polishing rate for the pattern substrate at all.

また、パターン研磨速度が低下することによって、ブランケット研磨速度に対するパターン研速度の比が小さくなると、被研磨膜のパターン密度の違いによる研磨速度の変動が大きくなる傾向がある。すなわち、同一面内にパターン密度の差がある被研磨面を研磨する場合に、場所によって研磨量が異なってしまうこととなる。従って、パターン密度に依存せず、安定して研磨できる研磨剤が求められている。   In addition, when the ratio of the pattern polishing rate to the blanket polishing rate decreases due to the decrease in the pattern polishing rate, the variation in the polishing rate due to the difference in pattern density of the film to be polished tends to increase. That is, when polishing a surface to be polished having a difference in pattern density within the same plane, the polishing amount varies depending on the location. Therefore, there is a demand for an abrasive that can be stably polished without depending on the pattern density.

本発明は、前記問題点に鑑みなされてものであり、以下の目的を達成することを課題とする。
本発明の目的は、セリア系研磨剤を用いたCMP技術において、凹凸を持った被研磨膜の凸部を高速に研磨し、かつ被研磨膜に与える研磨傷を低減する研磨剤及びこの研磨剤を用いた研磨方法を提供することにある。
また、本発明の別の目的は、パターン密度の差がある被研磨面を研磨する場合に、場所による研磨量の差を小さくすることのできる研磨剤及びこの研磨剤を用いた研磨方法を提供することにある。
This invention is made in view of the said problem, and makes it a subject to achieve the following objectives.
SUMMARY OF THE INVENTION An object of the present invention is to provide a polishing agent capable of polishing a convex portion of a film to be polished having irregularities at a high speed and reducing polishing scratches on the film to be polished in a CMP technique using a ceria-based polishing agent. It is providing the grinding | polishing method using this.
Another object of the present invention is to provide a polishing agent capable of reducing the difference in polishing amount depending on the location when polishing a surface to be polished having a difference in pattern density, and a polishing method using this polishing agent. There is to do.

前記課題は以下の本発明により解決される。
(1)砥粒として少なくとも4価の酸化セリウム粒子と4価の水酸化セリウム粒子とを含み、媒体として少なくとも水を含む研磨剤であり、
前記酸化セリウム粒子の1次粒径が1nm以上70nm以下であり、
前記水酸化セリウム粒子の1次粒径が1nm以上70nm以下であり、
研磨剤中での前記酸化セリウム粒子の2次粒径と前記水酸化セリウム粒子の2次粒径が、それぞれ10nm以上400nm以下であることを特徴とする研磨剤。
The above problems are solved by the present invention described below.
(1) An abrasive containing at least tetravalent cerium oxide particles and tetravalent cerium hydroxide particles as abrasive grains, and containing at least water as a medium,
The primary particle size of the cerium oxide particles is 1 nm or more and 70 nm or less,
The primary particle size of the cerium hydroxide particles is 1 nm or more and 70 nm or less,
A polishing agent, wherein a secondary particle size of the cerium oxide particles and a secondary particle size of the cerium hydroxide particles in the polishing agent are 10 nm or more and 400 nm or less, respectively.

(2)前記水酸化セリウム粒子が砥粒全量に対して5重量%以上95重量%以下含まれることを特徴とする前記(1)に記載の研磨剤。 (2) The abrasive according to (1), wherein the cerium hydroxide particles are contained in an amount of 5% by weight to 95% by weight with respect to the total amount of the abrasive grains.

(3)前記砥粒が研磨剤に対して0.01重量%以上10重量%以下含まれることを特徴とする前記(1)又は(2)に記載の研磨剤。 (3) The abrasive according to (1) or (2), wherein the abrasive grains are contained in an amount of 0.01% by weight to 10% by weight with respect to the abrasive.

(4)前記水酸化セリウム粒子が4価のセリウム塩とアルカリ液とを混合して得られたものであることを特徴とする前記(1)から(3)のいずれかに記載の研磨剤。 (4) The abrasive according to any one of (1) to (3), wherein the cerium hydroxide particles are obtained by mixing a tetravalent cerium salt and an alkali solution.

(5)添加剤をさらに含むことを特徴とする前記(1)から(4)のいずれかに記載の研磨剤。 (5) The abrasive according to any one of (1) to (4), further comprising an additive.

(6)前記(5)に記載の研磨剤を、少なくとも前記砥粒を含むスラリと、少なくとも前記添加剤を含む添加液とに分割してなる2液式の研磨剤。 (6) A two-component abrasive obtained by dividing the abrasive according to (5) into a slurry containing at least the abrasive grains and an additive containing at least the additive.

(7)被研磨膜を形成した基板を研磨パッドに押し当てて加圧し、前記(1)から(5)のいずれかに記載の研磨剤を被研磨膜と研磨パッドとの間に供給しながら、基板と研磨パッドとを互いに摺動させることで被研磨膜を研磨することを特徴とする研磨方法。 (7) The substrate on which the film to be polished is formed is pressed against the polishing pad and pressurized, and the abrasive according to any one of (1) to (5) is supplied between the film to be polished and the polishing pad. A polishing method comprising polishing a film to be polished by sliding a substrate and a polishing pad relative to each other.

(8)被研磨膜を形成した基板を研磨パッドに押し当てて加圧し、前記(6)に記載の2液式の研磨剤を混合した状態で被研磨膜と研磨パッドとの間に供給しながら、基板と研磨パッドとを互いに摺動させることで被研磨膜を研磨することを特徴とする研磨方法。 (8) The substrate on which the film to be polished is formed is pressed against the polishing pad and pressurized, and then supplied between the film to be polished and the polishing pad in a state where the two-component abrasive described in (6) above is mixed. A polishing method comprising polishing a film to be polished by sliding a substrate and a polishing pad against each other.

本発明によれば、セリア系研磨剤を用いたCMP工程において、被研磨膜の研磨傷低減を達成しつつ、凹凸を持った被研磨膜の凸部を高速に研磨することが可能となる。またブランケット研磨速度に対するパターン研磨速度の比が大きく、被研磨膜の凹凸の存在割合による研磨速度の変動の割合が小さい研磨剤を提供することができる。これにより、CMP工程のスループットを向上でき、また、CMP工程に起因する欠陥を減らすことで半導体デバイスの歩留まりを向上できる。   According to the present invention, in a CMP process using a ceria-based polishing agent, it is possible to polish a convex portion of a film to be polished having irregularities at high speed while achieving reduction of polishing scratches on the film to be polished. Further, it is possible to provide an abrasive having a large ratio of the pattern polishing rate to the blanket polishing rate and a small rate of fluctuation of the polishing rate due to the presence / absence ratio of the unevenness of the film to be polished. As a result, the throughput of the CMP process can be improved, and the yield of semiconductor devices can be improved by reducing defects resulting from the CMP process.

<研磨剤>
本発明の研磨剤は、砥粒として少なくとも4価の酸化セリウム粒子と4価の水酸化セリウム粒子とを含み、媒体として少なくとも水を含む研磨剤であり、前記酸化セリウム粒子の1次粒径が1nm以上70nm以下であり、前記水酸化セリウム粒子の1次粒径が1nm以上70nm以下であり、研磨剤中での前記酸化セリウム粒子の2次粒径と前記水酸化セリウム粒子の2次粒径が、それぞれ10nm以上400nm以下であることを特徴としている。
以下に、本発明の各構成要素について詳述する。
<Abrasive>
The abrasive of the present invention is an abrasive containing at least tetravalent cerium oxide particles and tetravalent cerium hydroxide particles as abrasive grains, and containing at least water as a medium, and the primary particle diameter of the cerium oxide particles is 1 nm or more and 70 nm or less, the primary particle diameter of the cerium hydroxide particles is 1 nm or more and 70 nm or less, the secondary particle diameter of the cerium oxide particles in the abrasive and the secondary particle diameter of the cerium hydroxide particles However, it is characterized by each being 10 nm or more and 400 nm or less.
Below, each component of this invention is explained in full detail.

(砥粒)
本発明の研磨剤において、砥粒は、4価の酸化セリウム粒子と、4価の水酸化セリウム粒子とを少なくとも含む。また、本発明の研磨剤の効果を損なわない程度において、必要に応じて他の粒子を含むこともできる。
(Abrasive grains)
In the abrasive of the present invention, the abrasive grains include at least tetravalent cerium oxide particles and tetravalent cerium hydroxide particles. In addition, other particles can be included as necessary to the extent that the effect of the abrasive of the present invention is not impaired.

(4価の酸化セリウム粒子)
一般に、4価の酸化セリウム粒子(以下、単に酸化セリウム粒子)は、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩等のセリウム化合物を酸化することによって得られる。酸化の方法としては、焼成又は過酸化水素等による酸化法を使用することができる。焼成の場合、焼成温度は350℃以上900℃以下が好ましい。また、酸化セリウム粒子を作製する方法として、水熱合成法を用いることもできる。例えば、水酸化セリウム等の前駆体を、水中で100℃以上に加熱する方法を挙げることができる。
(Tetravalent cerium oxide particles)
In general, tetravalent cerium oxide particles (hereinafter simply referred to as cerium oxide particles) are obtained by oxidizing cerium compounds such as carbonates, nitrates, sulfates and oxalates. As the oxidation method, firing or oxidation using hydrogen peroxide or the like can be used. In the case of firing, the firing temperature is preferably 350 ° C. or higher and 900 ° C. or lower. Moreover, a hydrothermal synthesis method can also be used as a method for producing cerium oxide particles. For example, the method of heating precursors, such as cerium hydroxide, in water at 100 degreeC or more can be mentioned.

酸化セリウム粒子として、市販のセリア粒子を用いることもできる。例えば、ナノフェーズ・テクノロジーズ社、フェロ社、アドバンスド・ナノ・プロダクツ社、ローディア・エレクトロニクス・アンド・カタリシシス社、シーアイ化成株式会社等により販売されているものなどを挙げることができる。   Commercially available ceria particles can also be used as the cerium oxide particles. Examples thereof include those sold by Nanophase Technologies, Ferro, Advanced Nano Products, Rhodia Electronics & Catalysis, CI Kasei Co., Ltd., and the like.

(4価の水酸化セリウム粒子)
一般に、4価の水酸化セリウム粒子(以下、単に水酸化セリウム粒子)は、セリウム塩とアルカリ液とを混合して水酸化セリウム粒子を析出する方法で得られる。この方法は、例えば「希土類の科学」(足立吟也編、株式会社化学同人、1999年)304〜305頁に説明されている。セリウム塩としては、例えばCe(SO、Ce(NH(NO、Ce(NH(SO等が好ましい。アルカリ液はアンモニア水、水酸化カリウム水溶液、水酸化ナトリウム水溶液等が使用できる。研磨剤を半導体デバイス製造に用いる観点からは、アルカリ金属を含まないアンモニア水が好ましい。前記方法で合成された水酸化セリウム粒子は、洗浄して金属不純物を除去できる。洗浄方法としては、遠心分離等で固液分離を数回繰り返す方法等が使用できる。
また、半導体デバイスの製造に係る研磨に使用することから、アルカリ金属及びハロゲン類の含有率は水酸化セリウム粒子中10ppm以下に抑えることが好ましい。
(Tetravalent cerium hydroxide particles)
In general, tetravalent cerium hydroxide particles (hereinafter simply referred to as cerium hydroxide particles) are obtained by a method in which a cerium salt and an alkali liquid are mixed to precipitate cerium hydroxide particles. This method is described in, for example, “Science of rare earth” (edited by Adachi Ginya, Kagaku Dojin, 1999), pages 304-305. As the cerium salt, for example, Ce (SO 4 ) 2 , Ce (NH 4 ) 2 (NO 3 ) 6 , Ce (NH 4 ) 4 (SO 4 ) 4 and the like are preferable. As the alkaline solution, ammonia water, potassium hydroxide aqueous solution, sodium hydroxide aqueous solution or the like can be used. From the viewpoint of using the abrasive for semiconductor device production, aqueous ammonia containing no alkali metal is preferred. The cerium hydroxide particles synthesized by the above method can be washed to remove metal impurities. As a washing method, a method of repeating solid-liquid separation several times by centrifugation or the like can be used.
Moreover, since it uses for grinding | polishing which concerns on manufacture of a semiconductor device, it is preferable to suppress the content rate of an alkali metal and halogens to 10 ppm or less in a cerium hydroxide particle.

本発明において、砥粒は、酸化セリウム粒子と、水酸化セリウム粒子と、必要に応じて他の粒子とを混合することで得られる。この際、混合方法には特に制限が無く、それぞれの乾燥粉を混合する方法、どちらか一方を媒体に分散した分散液に他の乾燥粉を混合する方法、それぞれの分散液を混合する方法等を挙げることができる。   In this invention, an abrasive grain is obtained by mixing a cerium oxide particle, a cerium hydroxide particle, and another particle as needed. At this time, there is no particular limitation on the mixing method, a method of mixing each dry powder, a method of mixing one of the other dry powders in a dispersion in which one of them is dispersed in a medium, a method of mixing each dispersion, etc. Can be mentioned.

また、酸化セリウム粒子の分散液、セリウム塩及びアルカリ液を混合し、酸化セリウム粒子の分散液中で水酸化セリウム粒子を析出させてもよい。また、水酸化セリウム粒子を水中で加熱し、水酸化セリウム粒子の一部を酸化セリウム粒子に変換してもよい。   Further, a dispersion liquid of cerium oxide particles, a cerium salt, and an alkali liquid may be mixed to precipitate cerium hydroxide particles in the dispersion liquid of cerium oxide particles. Alternatively, the cerium hydroxide particles may be heated in water to convert part of the cerium hydroxide particles into cerium oxide particles.

また、研磨剤中で酸化セリウム粒子と水酸化セリウム粒子とは、結合していても結合していなくてもよい。結合している場合、結合形態には特に制限が無く、共有結合、ファンデルワールス力、静電引力、双極子−双極子相互作用、疎水結合、水素結合等が挙げられる。   Further, the cerium oxide particles and the cerium hydroxide particles in the abrasive may or may not be bonded. In the case of bonding, the bonding form is not particularly limited, and examples thereof include covalent bond, van der Waals force, electrostatic attraction, dipole-dipole interaction, hydrophobic bond, and hydrogen bond.

本発明において、砥粒の分散性を向上させるために砥粒を機械的に粉砕してもよい。粉砕方法としては、ジェットミル等による乾式粉砕や遊星ビーズミル等による湿式粉砕が好ましい。   In the present invention, the abrasive grains may be mechanically pulverized in order to improve the dispersibility of the abrasive grains. As the pulverization method, dry pulverization using a jet mill or the like, or wet pulverization using a planetary bead mill or the like is preferable.

また、砥粒を水中に分散させる際、その分散方法に特に制限は無い。通常の攪拌機による分散処理の他に、ホモジナイザ、超音波分散機、湿式ボールミル等を用いることができる。分散方法、粒径制御方法については、例えば、分散技術大全集(情報機構、2005年7月)に記述されている方法を用いることができる。   Further, when the abrasive grains are dispersed in water, there is no particular limitation on the dispersion method. A homogenizer, an ultrasonic disperser, a wet ball mill or the like can be used in addition to the dispersion treatment with a normal stirrer. As the dispersion method and the particle size control method, for example, the method described in the complete collection of dispersion technologies (Information Organization, July 2005) can be used.

酸化セリウム粒子や水酸化セリウム粒子の1次粒径は、大きいほど高速研磨が可能となるが、研磨傷が入りやすい傾向がある。そこで、本発明で用いる酸化セリウム粒子と水酸化セリウム粒子の1次粒径は、それぞれ1nm以上70nm以下とする。少なくとも一方の粒子の1次粒径が1nmより小さいと実用的な研磨速度が得られない傾向があり、また、いずれか一方の粒子の1次粒径が70nmより大きいと研磨傷が顕著になる傾向がある。当該1次粒径は、1nm以上70nm以下が好ましく、2nm以上50nm以下がより好ましく、3nm以上15nm以下がさらに好ましい。   The larger the primary particle size of the cerium oxide particles and cerium hydroxide particles, the higher the speed of polishing possible, but there is a tendency for polishing flaws to occur. Therefore, the primary particle diameters of the cerium oxide particles and the cerium hydroxide particles used in the present invention are 1 nm or more and 70 nm or less, respectively. When the primary particle size of at least one of the particles is smaller than 1 nm, there is a tendency that a practical polishing rate cannot be obtained, and when the primary particle size of any one of the particles is larger than 70 nm, polishing scratches become remarkable. Tend. The primary particle size is preferably 1 nm to 70 nm, more preferably 2 nm to 50 nm, and still more preferably 3 nm to 15 nm.

(1次粒径)
本発明において、1次粒子とは、例えば透過型電子顕微鏡(TEM)等により粉体状態で観察した際に認められる結晶子に相当する最小単位の粒子をいう。本発明では、透過型電子顕微鏡(TEM)写真を撮り、1次粒子を2本の平行線で挟んだとき、その間隔が最小の部分の値を短径、最大の部分の値を長径とし、その短径と長径との平均を結晶子の粒径とした。そしてランダムに選択した100個の結晶子の粒径を測定し、その算術平均を1次粒径とする。
(Primary particle size)
In the present invention, primary particles refer to particles of a minimum unit corresponding to a crystallite observed when observed in a powder state with, for example, a transmission electron microscope (TEM). In the present invention, when a transmission electron microscope (TEM) photograph is taken and the primary particle is sandwiched between two parallel lines, the value of the portion with the smallest interval is the minor axis, the value of the largest portion is the major axis, The average of the minor axis and the major axis was defined as the crystallite grain size. And the particle size of 100 crystallites selected at random is measured, and the arithmetic average is taken as the primary particle size.

なお、セリウム化合物を焼成して得られる酸化セリウム粒子は、その焼成条件によって、結晶粒界に囲まれた複数の結晶子からなる多結晶体を形成することがある。多結晶体は、複数の一次粒子が単に凝集した凝集体とは異なる。この場合、前記1次粒子とは、多結晶体一つではなく、結晶粒界に囲まれた結晶子一つを指す。   The cerium oxide particles obtained by firing the cerium compound may form a polycrystal composed of a plurality of crystallites surrounded by crystal grain boundaries depending on the firing conditions. A polycrystalline body is different from an aggregate in which a plurality of primary particles are simply aggregated. In this case, the primary particle refers to one crystallite surrounded by a crystal grain boundary, not one polycrystal.

(2次粒径)
砥粒の2次粒径(研磨剤中での凝集体粒径)が小さすぎると、粒子の表面エネルギーが高くなり、粒子同士が凝集しやすくなる。その結果、研磨剤中で2次粒径が変動してしまい、研磨速度等のCMP特性が安定しなくなる傾向がある。また、砥粒の2次粒径が大きすぎると、粒子の重量が増加して研磨剤中で沈降しやすくなるため、研磨に寄与する砥粒の有効数が減少して研磨速度が低下する傾向がある。
そこで、本発明で用いる砥粒の2次粒径は、10nm以上400nm以下とする。2次粒径が10nm以上であれば研磨剤中で2次粒径の安定性の低下を抑制することができ、また、2次粒径が400nm以下であれば研磨剤中で粒子の沈降を抑制できる傾向がある。そのような観点で、前記2次粒径としては40nm以上300nm以下が好ましく、60nm以上200nm以下がより好ましい。
(Secondary particle size)
If the secondary particle size of the abrasive grains (aggregate particle size in the abrasive) is too small, the surface energy of the particles becomes high and the particles tend to aggregate. As a result, the secondary particle size fluctuates in the abrasive and the CMP characteristics such as the polishing rate tend to become unstable. Further, if the secondary particle size of the abrasive grains is too large, the weight of the particles increases and the particles tend to settle in the abrasive, and therefore the effective number of abrasive grains contributing to polishing tends to decrease and the polishing rate tends to decrease. There is.
Therefore, the secondary particle size of the abrasive grains used in the present invention is 10 nm or more and 400 nm or less. If the secondary particle size is 10 nm or more, a decrease in the stability of the secondary particle size can be suppressed in the abrasive, and if the secondary particle size is 400 nm or less, particles are precipitated in the abrasive. There is a tendency to be able to suppress. From such a viewpoint, the secondary particle size is preferably 40 nm or more and 300 nm or less, and more preferably 60 nm or more and 200 nm or less.

本発明で、4価の金属水酸化物粒子の平均粒径とは、動的光散乱法を用い、キュムラント解析で得られるZ−average Sizeをいう。測定には、例えば、ゼータサイザーナノS(マルバーン・インスツルメンツ社)を使用でき、動的光散乱測定において多重散乱が起こらない程度に研磨剤を水で希釈して測定することができる。具体的には、例えば、研磨剤を砥粒濃度が0.05重量%となるように水で希釈し、分散媒の屈折率を1.33、粘度を0.887とし、25℃において測定を行い、Z−average Sizeとして表示される値を読み取る。   In the present invention, the average particle size of the tetravalent metal hydroxide particles refers to Z-average Size obtained by cumulant analysis using a dynamic light scattering method. For example, Zetasizer Nano S (Malvern Instruments Co., Ltd.) can be used for the measurement, and the abrasive can be diluted with water to the extent that multiple scattering does not occur in the dynamic light scattering measurement. Specifically, for example, the abrasive is diluted with water so that the abrasive concentration is 0.05% by weight, the refractive index of the dispersion medium is 1.33, the viscosity is 0.887, and the measurement is performed at 25 ° C. And read the value displayed as Z-average Size.

(水酸化セリウム粒子の含有量)
本発明において、パターン研磨速度を向上させることができる点で、水酸化セリウム粒子が砥粒全量に対して5重量%以上含まれることが好ましい。水酸化セリウムを5重量%以上含むことで、酸化セリウム粒子を単独で用いた場合に比べてパターン研磨速度が加速される効果を顕著に得ることができる。含有量としては、パターン研磨速度がより向上するという点で、10重量%以上であることがより好ましく、15重量%以上であることがさらに好ましく、20重量%以上であることが極めて好ましい。
(Content of cerium hydroxide particles)
In this invention, it is preferable that 5 weight% or more of cerium hydroxide particle | grains are contained with respect to the abrasive grain whole quantity at the point which can improve a pattern polishing rate. By containing 5% by weight or more of cerium hydroxide, the effect of accelerating the pattern polishing rate can be significantly obtained as compared with the case where cerium oxide particles are used alone. The content is more preferably 10% by weight or more, further preferably 15% by weight or more, and extremely preferably 20% by weight or more in that the pattern polishing rate is further improved.

前記水酸化セリウム粒子を添加すると、酸化セリウム粒子を単独で用いた場合に比べてパターン研磨速度が加速される傾向があるが、ある程度の添加量を超えると、それ以上パターン研磨速度が加速されなくなる傾向がある。また、水酸化セリウム粒子の添加量を増やすことによりブランケット研磨速度が少しずつ向上する傾向がある。このため、水酸化セリウム粒子を多量に添加すると、ブランケット研磨速度に対するパターン研磨速度の比が小さくなってしまう傾向がある。
このような点で、前記酸化セリウムの含有量としては、砥粒全量に対して95重量%以下含まれることが好ましく、90重量%以下であることがより好ましく、85重量%以下であることがさらに好ましく、80重量%以下であることが特に好ましく、75重量%以下であることが極めて好ましく、70重量%以下であることが最も好ましい。
When the cerium hydroxide particles are added, the pattern polishing rate tends to be accelerated as compared with the case where the cerium oxide particles are used alone. However, if the addition amount exceeds a certain amount, the pattern polishing rate is not further accelerated. Tend. Moreover, there is a tendency that the blanket polishing rate is gradually improved by increasing the addition amount of the cerium hydroxide particles. For this reason, when a large amount of cerium hydroxide particles is added, the ratio of the pattern polishing rate to the blanket polishing rate tends to be small.
In this respect, the content of the cerium oxide is preferably 95% by weight or less, more preferably 90% by weight or less, and 85% by weight or less with respect to the total amount of the abrasive grains. More preferably, it is particularly preferably 80% by weight or less, particularly preferably 75% by weight or less, and most preferably 70% by weight or less.

最終的な研磨剤に含まれる砥粒において水酸化セリウム粒子の含有量を同定する方法として、熱重量分析法が挙げられる(前記「希土類の科学」参照)。例えば、米国特許第5389352号明細書で開示しているようにセリウム塩の焼成によって得られた酸化セリウム粒子と、セリウム塩とアルカリ液との混合によって得られた水酸化セリウムを、それぞれ40℃で15時間乾燥した後に熱重量分析する。このとき、1000℃までの重量減少は、酸化セリウム粒子の場合は3重量%、水酸化セリウム粒子の場合は17〜26重量%である。水酸化セリウム粒子の化学式はCe(OH)又はCeO・2HOと表され、酸化セリウム粒子との重量減少の差は結晶水である。例えば、水酸化セリウム粒子が砥粒全量に対して5重量%含まれる場合、前記方法で測定される砥粒の重量減少は3.7〜4.2重量%であり、酸化セリウム粒子単独の重量減少(3重量%)と区別できる。また例えば、水酸化セリウム粒子が砥粒に対して95重量%含まれる場合、前記方法で測定される砥粒の重量減少は16.3〜24.9重量%であり、水酸化セリウム粒子単独の重量減少(17〜26重量%)と区別できる。 As a method for identifying the content of cerium hydroxide particles in the abrasive grains contained in the final abrasive, thermogravimetric analysis can be cited (see "Science of rare earths" above). For example, as disclosed in US Pat. No. 5,389,352, cerium oxide particles obtained by calcination of a cerium salt and cerium hydroxide obtained by mixing a cerium salt and an alkali solution at 40 ° C., respectively. Thermogravimetric analysis after drying for 15 hours. At this time, the weight loss up to 1000 ° C. is 3% by weight in the case of cerium oxide particles and 17 to 26% by weight in the case of cerium hydroxide particles. The chemical formula of the cerium hydroxide particles is expressed as Ce (OH) 4 or CeO 2 .2H 2 O, and the difference in weight reduction from the cerium oxide particles is crystal water. For example, when cerium hydroxide particles are contained in an amount of 5% by weight with respect to the total amount of abrasive grains, the weight loss of the abrasive grains measured by the above method is 3.7 to 4.2% by weight, and the weight of cerium oxide particles alone. It can be distinguished from a decrease (3% by weight). For example, when 95 weight% of cerium hydroxide particles are contained with respect to the abrasive grains, the weight loss of the abrasive grains measured by the above method is 16.3 to 24.9 weight%, and the cerium hydroxide particles alone Distinguishable from weight loss (17-26% by weight).

本発明において、砥粒の研磨剤中でのゼータ電位は正電位であることが好ましい。これにより、砥粒の研磨中でのゼータ電位が負電位である場合に比べて、凹凸を持った被研磨膜の凸部の研磨速度が高速化する。ゼータ電位測定には、例えば、商品名ゼータサイザー3000HS(マルバーン・インスツルメンツ社)を使用でき、研磨剤をゼータサイザー3000HSの推奨される散乱光量(500〜2000KCts)となるように水で希釈して測定することができる。   In the present invention, the zeta potential of the abrasive grains in the polishing agent is preferably a positive potential. Thereby, the polishing speed of the convex part of the film to be polished having irregularities is increased as compared with the case where the zeta potential during polishing of the abrasive grains is a negative potential. For the zeta potential measurement, for example, the brand name Zeta Sizer 3000HS (Malvern Instruments Co., Ltd.) can be used, and the abrasive is diluted with water so that the amount of scattered light (500 to 2000 KCts) recommended for Zeta Sizer 3000HS is measured. can do.

(その他の粒子)
一方、砥粒として、酸化セリウム粒子及び水酸化セリウム粒子以外の粒子を含有させることができ、該粒子としては、シリカ粒子、アルミナ粒子、チタニア粒子、ジルコニア粒子、ダイヤモンド粒子、炭素粒子などの無機粒子類、ウレタン系樹脂粒子、アクリル系樹脂粒子、メタクリル系樹脂粒子、スチレン系樹脂粒子、エポキシ系樹脂粒子などの有機樹脂粒子類などが挙げられる。
その他の砥粒を含有させる場合、その含有量は、砥粒全量に対して5〜95重量%とすることが好ましく、10〜90重量%とすることがより好しく、15〜85重量%とすることがさらに好ましい。
(Other particles)
On the other hand, particles other than cerium oxide particles and cerium hydroxide particles can be included as abrasive grains, and the particles include inorganic particles such as silica particles, alumina particles, titania particles, zirconia particles, diamond particles, and carbon particles. And organic resin particles such as urethane resin particles, acrylic resin particles, methacrylic resin particles, styrene resin particles, and epoxy resin particles.
When other abrasive grains are contained, the content is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, and more preferably 15 to 85% by weight with respect to the total amount of the abrasive grains. More preferably.

砥粒の研磨剤中での濃度は、低すぎると研磨速度が低くなり、高すぎても粒子が凝集しやすくなって研磨速度が低下する傾向がある。そこで砥粒の含有量は、研磨剤に対して0.01重量%以上10重量%以下であることが好ましく、0.05重量%以上5重量%以下がより好ましく、0.1重量%以上1重量%以下がさらに好ましい。   If the concentration of the abrasive grains in the abrasive is too low, the polishing rate is low, and if it is too high, the particles tend to aggregate and the polishing rate tends to decrease. Therefore, the content of the abrasive grains is preferably 0.01% by weight or more and 10% by weight or less, more preferably 0.05% by weight or more and 5% by weight or less, and more preferably 0.1% by weight or more and 1% by weight or less. More preferably, it is less than wt%.

(媒体)
本発明の研磨剤において、媒体としては少なくとも水を含むものである。また、必要に応じて水以外の媒体を含むことができ、具体的には例えば、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、sec−ブチルアルコール、t−ブチルアルコール等のアルコール類、ヘキサン、シクロヘキサン、ヘプタン等の炭化水素類の他、エーテル類、ケトン類、エステル類等が挙げられる。
(Medium)
In the abrasive of the present invention, the medium contains at least water. Further, if necessary, a medium other than water can be contained. Specifically, for example, methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl In addition to alcohols such as alcohol and hydrocarbons such as hexane, cyclohexane and heptane, ethers, ketones, esters and the like can be mentioned.

(研磨剤のpH)
本発明において、研磨剤のpHは、良好な研磨速度が得られ、かつ粒子の凝集を抑えられる点で、3.0〜9.0であることが好ましい。研磨速度に優れる点で、pHは、4.0以上であることがより好ましく、5.0以上であることがさらに好ましい。また、粒子の凝集を抑えやすい点で、pHとしては8.0以下がより好ましく、7.0以下がさらに好ましい。
(Abrasive pH)
In the present invention, the pH of the abrasive is preferably 3.0 to 9.0 in that a good polishing rate can be obtained and the aggregation of particles can be suppressed. In terms of excellent polishing rate, the pH is more preferably 4.0 or more, and even more preferably 5.0 or more. Further, the pH is more preferably 8.0 or less, and even more preferably 7.0 or less, from the viewpoint of easily suppressing particle aggregation.

前記pHは公知のpH調整剤によって調整することができる。pH調整剤としては、特に限定されないが、主としてpHの調整に寄与することができ、研磨特性に悪い影響を与えないものが好ましい。そのような観点から、pH調製剤としては、硝酸、硫酸、塩酸、リン酸、ホウ酸等の酸や、アンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド、イミダゾール等のアルカリ成分を挙げることができる。また、pHを安定化させるため、緩衝液を添加してもよい。このような緩衝液としては、例えば、酢酸塩緩衝液、フタル酸塩緩衝液等を挙げることができる。   The pH can be adjusted with a known pH adjusting agent. Although it does not specifically limit as a pH adjuster, The thing which can mainly contribute to adjustment of pH and does not have a bad influence on a grinding | polishing characteristic is preferable. From such a viewpoint, examples of the pH adjuster include acids such as nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, and boric acid, and alkaline components such as ammonia, sodium hydroxide, tetramethylammonium hydroxide, and imidazole. . A buffer may be added to stabilize the pH. Examples of such a buffer solution include an acetate buffer solution and a phthalate buffer solution.

研磨剤のpHは、一般的なガラス電極を用いたpHメータによって測定できる。具体的には、例えば、横河電機株式会社のModel pH81を用いた。フタル酸塩pH緩衝液(pH4.21)と中性リン酸塩pH緩衝液(pH6.86)を標準緩衝液として用い、pHメータを2点校正した後、pHメータの電極を研磨剤に入れて、2分以上経過して安定した後の値を測定することで得られる。このとき、標準緩衝液と研磨剤の液温は、例えば、共に25℃とすることができる。   The pH of the abrasive can be measured by a pH meter using a general glass electrode. Specifically, for example, Model pH81 manufactured by Yokogawa Electric Corporation was used. Use phthalate pH buffer solution (pH 4.21) and neutral phosphate pH buffer solution (pH 6.86) as standard buffers, calibrate the pH meter at two points, and then place the pH meter electrode in the abrasive. Then, it can be obtained by measuring the value after 2 minutes or more has passed and stabilized. At this time, the liquid temperature of the standard buffer solution and the abrasive can be set to 25 ° C., for example.

(添加剤)
本発明において、研磨剤は添加剤を含んでいてもよい。ここで添加剤とは、砥粒及び媒体以外に含まれる物質を指す。添加剤を加えることで、研磨剤の分散性や保存安定性等を調整することができる。また、被研磨膜の研磨速度を向上する、研磨後の平坦性を改善する、異なる被研磨膜の研磨速度に選択性を付与する等、研磨特性を調整することもできる。なお、研磨剤のpHを調整するための酸成分やアルカリ成分も添加剤と見なすことができる。
(Additive)
In the present invention, the abrasive may contain an additive. Here, the additive refers to a substance contained in addition to the abrasive grains and the medium. By adding an additive, the dispersibility and storage stability of the abrasive can be adjusted. In addition, the polishing characteristics can be adjusted, such as improving the polishing rate of the film to be polished, improving the flatness after polishing, and imparting selectivity to the polishing rate of different films to be polished. Note that an acid component or an alkali component for adjusting the pH of the abrasive can also be regarded as an additive.

本発明に用いる添加剤は、単量体であっても重合体であってもよく、単独で使用しても、複数を組み合わせて使用してもよい。これらの添加剤の添加量は、研磨剤に対して、0.01重量%以上30重量%部以下であることが好ましい。通常、添加量が少なすぎると研磨特性を調整する効果を充分得ることが難しくなり、添加量が多すぎると粒子が沈降しやすくなる傾向がある。   The additive used in the present invention may be a monomer or a polymer, and may be used alone or in combination. The addition amount of these additives is preferably 0.01% by weight or more and 30% by weight or less with respect to the abrasive. Usually, when the addition amount is too small, it is difficult to obtain a sufficient effect of adjusting the polishing characteristics, and when the addition amount is too large, the particles tend to settle.

単量体である添加剤としては、例えば、例えば、カルボン酸、アミノ酸、両性界面活性剤、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤等を挙げることができる。   Examples of the additive that is a monomer include carboxylic acid, amino acid, amphoteric surfactant, anionic surfactant, nonionic surfactant, and cationic surfactant. .

前記カルボン酸としては、水への溶解性を有していれば特に限定されないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、乳酸が挙げられる。   The carboxylic acid is not particularly limited as long as it has solubility in water, and examples thereof include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, and lactic acid.

前記アミノ酸としては、例えば、アルギニン、リシン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、ヒスチジン、プロリン、チロシン、トリプトファン、セリン、トレオニン、グリシン、アラニン、β−アラニン、メチオニン、システイン、フェニルアラニン、ロイシン、バリン、イソロイシンが挙げられる。   Examples of the amino acid include arginine, lysine, aspartic acid, glutamic acid, asparagine, glutamine, histidine, proline, tyrosine, tryptophan, serine, threonine, glycine, alanine, β-alanine, methionine, cysteine, phenylalanine, leucine, valine, An isoleucine is mentioned.

前記両性界面活性剤としては、例えば、ベタイン、β−アラニンベタイン、ラウリルベタイン、ステアリルベタイン、ラウリルジメチルアミンオキサイド、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン、ラウリン酸アミドプロピルベタイン、ヤシ油脂肪酸アミドプロピルベタイン、ラウリルヒドロキシスルホベタイン等が挙げられる。   Examples of the amphoteric surfactant include betaine, β-alanine betaine, lauryl betaine, stearyl betaine, lauryl dimethylamine oxide, 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaine, amidopropyl laurate. Examples include betaine, coconut oil fatty acid amidopropyl betaine, and lauryl hydroxysulfobetaine.

前記陰イオン性界面活性剤としては、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン、特殊ポリカルボン酸型高分子分散剤等が挙げられる。   Examples of the anionic surfactant include lauryl sulfate triethanolamine, ammonium lauryl sulfate, polyoxyethylene alkyl ether sulfate triethanolamine, and a special polycarboxylic acid type polymer dispersant.

前記非イオン性界面活性剤としては例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタントリオレエート、テトラオレイン酸ポリオキシエチレンソルビット、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート、ポリオキシエチレンアルキルアミン、ポリオキシエチレン硬化ヒマシ油、2−ヒドロキシエチルメタクリレート、アルキルアルカノールアミド等が挙げられる。   Examples of the nonionic surfactant include polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, polyoxyethylene octyl phenyl ether, polyoxyethylene Ethylene nonylphenyl ether, polyoxyalkylene alkyl ether, polyoxyethylene derivative, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxy Ethylene sorbitan monooleate, polyoxyethylene sorbitan trioleate, tetraoleic acid polio Siethylene sorbit, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene alkylamine, polyoxyethylene hydrogenated castor oil, 2-hydroxyethyl methacrylate, alkylalkanolamide Etc.

前記陽イオン性界面活性剤としては、例えば、ココナットアミンアセテート、ステアリルアミンアセテート等が挙げられる。   Examples of the cationic surfactant include coconut amine acetate and stearylamine acetate.

これらの添加剤のうち、分散性、研磨速度に優れる点で、カルボン酸、アミノ酸、両性界面活性剤が好ましい。さらに、研磨剤の安定性に優れる点で、両性界面活性剤がより好ましく、中でもベタイン、β−アラニンベタイン、ラウリン酸アミドプロピルベタインが特に好ましい。   Of these additives, carboxylic acids, amino acids, and amphoteric surfactants are preferable from the viewpoint of excellent dispersibility and polishing rate. Furthermore, an amphoteric surfactant is more preferable in terms of excellent stability of the abrasive, and betaine, β-alanine betaine, and amidopropyl betaine laurate are particularly preferable.

添加剤として、研磨速度を向上させるために水溶性の重合体を使用することもできる。具体的には、例えばアルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン及びプルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ等;ポリアクリルアミド、ポリジメチルアクリルアミド等のアクリル系ポリマ等、ポリエチレングリコール等が挙げられる。これら水溶性高分子の分子量は500以上が好ましい。   As an additive, a water-soluble polymer can be used to improve the polishing rate. Specifically, for example, polysaccharides such as alginic acid, pectinic acid, carboxymethylcellulose, agar, curdlan and pullulan; polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, polyfumaric acid (P-styrene carboxylic acid), polyamic acid ammonium salt, polyamic acid sodium salt, polycarboxylic acid such as polyglyoxylic acid and salts thereof; vinyl polymers such as polyvinyl alcohol, polyvinylpyrrolidone and polyacrolein; polyacrylamide, polydimethyl Examples thereof include acrylic polymers such as acrylamide, polyethylene glycol, and the like. The molecular weight of these water-soluble polymers is preferably 500 or more.

前記水溶性の重合体の分子量は、静的光散乱法を用いて測定することができ、具体的には例えば、ゼータサイザーナノ(マルバーン・インスツルメンツ社)を使用し、濃度の異なる試料の散乱光量を測定し、Debyeプロットを作製して求めることができる。また、この際、屈折率の濃度増分(dn/dC)は、示差屈折計(大塚電子社DRM−3000)を用いて測定することができる。いずれの測定においても、水を溶媒として25℃で測定する。   The molecular weight of the water-soluble polymer can be measured using a static light scattering method. Specifically, for example, using Zetasizer Nano (Malvern Instruments), the amount of scattered light of samples having different concentrations can be measured. And a Debye plot can be prepared and obtained. At this time, the refractive index concentration increment (dn / dC) can be measured using a differential refractometer (Otsuka Electronics DRM-3000). In any measurement, water is used at 25 ° C. as a solvent.

本発明において、研磨剤の保存方法に特に制限は無い。砥粒、水、及び必要に応じて添加剤を含む1液式研磨剤として保存してもよい。また例えば、少なくとも砥粒を含むスラリ(以下、単にスラリ)と、少なくとも添加剤を含む添加液に分割して、2液式研磨剤として保存してもよい。また、いずれの場合においても、水の含有量を減じた濃縮研磨剤、濃縮スラリ、又は濃縮添加液として保存し、研磨時に水で希釈して用いてもよい。   In the present invention, the method for storing the abrasive is not particularly limited. You may preserve | save as 1 liquid type abrasive | polishing agent containing an abrasive grain, water, and an additive as needed. Further, for example, it may be divided into a slurry containing at least abrasive grains (hereinafter simply referred to as slurry) and an additive solution containing at least an additive and stored as a two-component abrasive. In any case, it may be stored as a concentrated abrasive, concentrated slurry, or concentrated additive solution with reduced water content and diluted with water during polishing.

砥粒、水、及び必要に応じて添加剤を含む1液式研磨剤を用いて研磨する場合、研磨剤の供給方法としては、例えば、研磨剤を直接送液して供給する方法、濃縮研磨剤と水を別々の配管で送液し、これらを合流、混合させて供給する方法、あらかじめ濃縮研磨剤、水を混合しておき供給する方法などを用いることができる。   When polishing using a one-part abrasive containing abrasive grains, water, and, if necessary, an additive, as a method for supplying the abrasive, for example, a method of feeding and supplying the abrasive directly, concentrated polishing For example, a method of feeding the agent and water through separate pipes, joining them, mixing them and supplying them, a method of mixing concentrated abrasives and water in advance, and supplying them can be used.

砥粒と添加液とを分けた2液式研磨剤の場合、これら2液の配合を任意に変えることにより、研磨特性を調整することができる。2液式研磨剤を用いて研磨する場合、研磨剤の供給方法としては、例えば、スラリと添加液とを別々の配管で送液し、これらの配管を合流、混合させて供給する方法を用いることができる。また、濃縮スラリ、濃縮添加液、水を別々の配管で送液し、これらを合流、混合させて供給する方法も用いることができる。また、あらかじめスラリと添加液を混合しておいたものを供給する方法も用いることができる。さらには、あらかじめ濃縮スラリ、濃縮添加液、水を混合しておいたものを供給する方法も用いることができる。   In the case of a two-component abrasive in which the abrasive grains and the additive solution are separated, the polishing characteristics can be adjusted by arbitrarily changing the composition of these two components. When polishing using a two-component abrasive, for example, a method of supplying the abrasive is a method in which the slurry and the additive liquid are fed through separate pipes, and these pipes are joined and mixed to be supplied. be able to. Further, it is also possible to use a method in which a concentrated slurry, a concentrated additive solution, and water are fed through separate pipes, and these are joined and mixed to be supplied. Further, a method of supplying a mixture of slurry and additive solution in advance can be used. Furthermore, a method of supplying a premixed slurry, concentrated additive solution, and water can be used.

前記のように1液式の濃縮研磨剤とする場合、濃縮研磨剤中の砥粒の2次粒径は、10nm以上400nm以下であることが好ましい。このようにすることで、濃縮研磨剤を水で希釈して研磨剤を調整する際に、研磨剤中の砥粒の2次粒径を10nm以上400nm以下に制御するのが容易になる。   As described above, when a one-component concentrated abrasive is used, the secondary particle size of the abrasive grains in the concentrated abrasive is preferably 10 nm or more and 400 nm or less. This makes it easy to control the secondary particle size of the abrasive grains in the abrasive to 10 nm or more and 400 nm or less when the concentrated abrasive is diluted with water to adjust the abrasive.

同様に、2液式研磨剤とする場合も、スラリ又は濃縮スラリ中の砥粒の2次粒径は、10nm以上400nm以下であることが好ましい。このようにすることで、スラリ又は濃縮スラリを、添加液、濃縮研磨液、水と混合して研磨剤を調整する際に、研磨剤中の砥粒の2次粒径を10nm以上400nm以下に制御するのが容易になる。   Similarly, also when it is set as a 2 liquid type abrasive | polishing agent, it is preferable that the secondary particle size of the abrasive grain in a slurry or concentrated slurry is 10 nm or more and 400 nm or less. In this way, when the slurry or concentrated slurry is mixed with the additive solution, the concentrated polishing solution, and water to adjust the polishing agent, the secondary particle size of the abrasive grains in the polishing agent is 10 nm or more and 400 nm or less. Easy to control.

<研磨方法>
本発明の研磨剤を用いて被研磨膜を研磨する研磨方法としては、従来公知の方法を用いることができる。例えば、被研磨膜を有する基板を、研磨布が貼り付けられた研磨定盤に対して、被研磨膜と研磨布とが接するように押し付け、被研磨膜と研磨布との間に本実施形態に係るCMP研磨剤を供給しながら、基板及び/又は研磨定盤を動かすことにより被研磨膜を研磨する方法などがある。この方法は、特に、表面に段差を有する基板を研磨し、これにより段差を平坦化するような研磨工程に好適である。
<Polishing method>
As a polishing method for polishing a film to be polished using the polishing agent of the present invention, a conventionally known method can be used. For example, the substrate having a film to be polished is pressed against a polishing surface plate to which a polishing cloth is attached so that the film to be polished and the polishing cloth are in contact with each other, and this embodiment is interposed between the film to be polished and the polishing cloth. There is a method of polishing a film to be polished by moving a substrate and / or a polishing surface plate while supplying the CMP abrasive according to the above. This method is particularly suitable for a polishing process in which a substrate having a step on the surface is polished, thereby flattening the step.

本発明において、使用することができる研磨装置には特に制限は無く、基板を保持可能な基板ホルダーと、研磨パッドを貼り付け可能な研磨定盤とを有する一般的な研磨装置が使用できる。基板ホルダーと研磨定盤には、それぞれに回転数が変更可能なモータ等が取り付けられる。例えば、株式会社荏原製作所のEPO−111、EPO−222、FREX−200、FREX−300、アプライド・マテリアルズ社のMIRRA、Reflexion等が研磨装置として使用できる。   In the present invention, a polishing apparatus that can be used is not particularly limited, and a general polishing apparatus having a substrate holder capable of holding a substrate and a polishing surface plate to which a polishing pad can be attached can be used. A motor or the like whose rotation speed can be changed is attached to each of the substrate holder and the polishing surface plate. For example, EPO-111, EPO-222, FREX-200, FREX-300 manufactured by Ebara Manufacturing Co., Ltd., MIRRA, Reflexion manufactured by Applied Materials, etc. can be used as the polishing apparatus.

これら研磨装置による研磨の条件に特に制限は無いが、基板が基板ホルダーから外れないように、定盤の回転速度は200rpm以下が好ましく、基板にかける圧力(研磨荷重)は100kPa以下が好ましい。また、研磨パッド上への研磨剤供給量に特に制限は無いが、研磨パッドの表面が常に研磨剤で覆われていることが好ましい。   The conditions for polishing by these polishing apparatuses are not particularly limited, but the rotation speed of the surface plate is preferably 200 rpm or less, and the pressure (polishing load) applied to the substrate is preferably 100 kPa or less so that the substrate does not come off the substrate holder. Moreover, there is no restriction | limiting in particular in the abrasive | polishing agent supply amount on a polishing pad, However, It is preferable that the surface of a polishing pad is always covered with the abrasive | polishing agent.

本発明において、使用することができる研磨パッドには特に制限が無く、一般的な不織布、非発泡樹脂、発泡樹脂、多孔質樹脂等が使用できる。また、研磨パッドには研磨剤が溜まるような溝加工を施すことが好ましい。   In the present invention, the polishing pad that can be used is not particularly limited, and general nonwoven fabrics, non-foamed resins, foamed resins, porous resins, and the like can be used. Further, it is preferable that the polishing pad is subjected to groove processing so that an abrasive is accumulated.

研磨パッドの材質には特に制限が無く、ポリウレタン、アクリル、ポリエステル、アクリル−エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4−メチルペンテン、セルロース、セルロースエステル、ナイロン及びアラミド等のポリアミド、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。   The material of the polishing pad is not particularly limited, and polyamides such as polyurethane, acrylic, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, nylon, and aramid are used. Resin such as polyimide, polyimide amide, polysiloxane copolymer, oxirane compound, phenol resin, polystyrene, polycarbonate, epoxy resin can be used.

研磨パッドの表面は、研磨の回数を増しても常に同一の状態であることが好ましい。このため、研磨の最中、又は各回の研磨後に、研磨パッドのコンディショニングをすることが好ましい。例えば、ダイヤモンド粒子のついたドレッサを用いてコンディショニングをすることができる。   The surface of the polishing pad is preferably always in the same state even if the number of polishings is increased. For this reason, it is preferable to condition the polishing pad during polishing or after each polishing. For example, it can be conditioned using a dresser with diamond particles.

研磨終了後の基板は、よく洗浄して基板に付着した粒子を除去することが好ましい。洗浄には純水以外に希フッ酸やアンモニア水を併用してもよいし、洗浄効率を高めるためにブラシを併用してもよい。また、洗浄後はスピンドライヤ等を用いて基板上に付着した水滴を払い落としてから乾燥させることが好ましい。   The substrate after polishing is preferably washed well to remove particles adhering to the substrate. In addition to pure water, dilute hydrofluoric acid or ammonia water may be used in combination for cleaning, or a brush may be used in combination to increase cleaning efficiency. Further, after washing, it is preferable to dry after removing water droplets adhering to the substrate using a spin dryer or the like.

本発明の研磨剤及び研磨方法は、半導体デバイスの製造において、被研磨膜の平坦化が必要な工程に広く適用できる。例えば、シャロー・トレンチ・アイソレーション用の絶縁膜、プリメタル絶縁膜、層間絶縁膜を平坦化する工程、コンタクトプラグや銅ダマシン配線を形成する工程等に適用することができる。このような平坦化工程において、本発明の研磨方法によって被研磨膜の凹凸が解消され、基板全面にわたって平滑な面が得られる。   The abrasive and the polishing method of the present invention can be widely applied to processes that require planarization of a film to be polished in the manufacture of semiconductor devices. For example, the present invention can be applied to a process for planarizing an insulating film for shallow trench isolation, a premetal insulating film, an interlayer insulating film, a process for forming a contact plug or a copper damascene wiring, and the like. In such a flattening step, the unevenness of the film to be polished is eliminated by the polishing method of the present invention, and a smooth surface is obtained over the entire surface of the substrate.

本発明の研磨剤及び研磨方法で研磨できる製膜方法には特に制限が無く、化学気相成長(CVD)法、物理気相成長(PVD)法、塗布法、熱酸化法、メッキ法等を用いることができる。   There is no particular limitation on the film forming method that can be polished by the polishing agent and polishing method of the present invention, such as chemical vapor deposition (CVD) method, physical vapor deposition (PVD) method, coating method, thermal oxidation method, plating method and the like. Can be used.

また、被研磨膜の材質には特に制限が無く、絶縁膜、半導体、金属を研磨することができる。中でも、本発明の研磨剤は、シリコン系化合物を含む被研磨膜を研磨する用途において、優れた研磨速度と研磨傷の抑制を両立することができる。シリコン系化合物としては、具体的には例えば、酸化シリコン膜や窒化シリコン膜等のシリコン系絶縁膜を挙げることができる。   The material of the film to be polished is not particularly limited, and an insulating film, a semiconductor, and a metal can be polished. Among these, the polishing agent of the present invention can achieve both excellent polishing rate and suppression of polishing scratches in applications where a film to be polished containing a silicon compound is polished. Specific examples of silicon compounds include silicon insulating films such as silicon oxide films and silicon nitride films.

シリコン系化合物の被研磨膜の例としては、アモルファスシリコン膜、ポリシリコン膜、シリコンゲルマニウム膜、金属シリサイド膜、酸化シリコン膜、窒化シリコン膜、炭化シリコン膜、酸窒化シリコン膜、炭窒化シリコン膜、炭酸化シリコン膜等が挙げられる。   Examples of silicon compound polishing films include amorphous silicon films, polysilicon films, silicon germanium films, metal silicide films, silicon oxide films, silicon nitride films, silicon carbide films, silicon oxynitride films, silicon carbonitride films, Examples thereof include a silicon carbonate film.

酸化シリコン膜の製膜方法としては、例えば、モノシランと酸素を熱反応させる熱CVD法、テトラエトキシシランとオゾンを熱反応させる準常圧CVD法、モノシランと二酸化窒素(又はテトラエトキシシランと酸素)をプラズマ反応させるプラズマCVD法、無機ポリシラザンや無機シロキサン等を含む液体原料を基板上に塗布する塗布法等が挙げられる。以上のような方法で得られた酸化シリコン膜には、水素、ホウ素、リン、炭素等、シリコンと酸素以外の元素が含まれていてもよく、これにより、下地の凹凸に対する埋め込み性や膜質を調整することができる。また、以上のような方法で得られた酸化シリコン膜の膜質を安定化させるために、製膜後に必要に応じて150℃から1000℃の温度で熱処理をしてもよい。   As a method for forming a silicon oxide film, for example, a thermal CVD method in which monosilane and oxygen are thermally reacted, a quasi-atmospheric pressure CVD method in which tetraethoxysilane and ozone are thermally reacted, monosilane and nitrogen dioxide (or tetraethoxysilane and oxygen). A plasma CVD method in which a plasma reaction is performed, and a coating method in which a liquid raw material containing inorganic polysilazane, inorganic siloxane, or the like is applied onto a substrate. The silicon oxide film obtained by the method as described above may contain elements other than silicon and oxygen, such as hydrogen, boron, phosphorus, and carbon. Can be adjusted. Further, in order to stabilize the film quality of the silicon oxide film obtained by the above method, heat treatment may be performed at a temperature of 150 ° C. to 1000 ° C. as necessary after the film formation.

窒化シリコン膜の製膜方法としては、例えば、ジクロルシランとアンモニアを熱反応させる低圧CVD法、モノシラン、アンモニア及び窒素をプラズマ反応させるプラズマCVD法等が挙げられる。   As a method for forming a silicon nitride film, for example, a low pressure CVD method in which dichlorosilane and ammonia are thermally reacted, a plasma CVD method in which monosilane, ammonia and nitrogen are subjected to plasma reaction, and the like can be given.

シリコン系化合物以外の被研磨膜の例としては、例えば、ハフニウム系、チタン系、タンタル系酸化物等の高誘電率膜、銅、アルミニウム、タンタル、チタン、タングステン、コバルト等の金属膜、ゲルマニウム、窒化ガリウム、リン化ガリウム、ガリウム砒素、有機半導体等の半導体膜、ゲルマニウム・アンチモン・テルル等の相変化膜、酸化インジウムスズ等の無機導電膜、ポリイミド系、ポリベンゾオキサゾール系、アクリル系、エポキシ系、フェノール系等のポリマ樹脂膜等が挙げられる。   Examples of films to be polished other than silicon-based compounds include, for example, high dielectric constant films such as hafnium-based, titanium-based, and tantalum-based oxides, metal films such as copper, aluminum, tantalum, titanium, tungsten, and cobalt, germanium, Semiconductor films such as gallium nitride, gallium phosphide, gallium arsenide, organic semiconductors, phase change films such as germanium, antimony, and tellurium, inorganic conductive films such as indium tin oxide, polyimides, polybenzoxazoles, acrylics, and epoxys And a phenolic polymer resin film.

本発明の研磨剤及び研磨方法は、膜材料の研磨に限定されるものでは無く、ガラス、シリコン、シリコンカーバイド、シリコンゲルマニウム、ゲルマニウム、窒化ガリウム、リン化ガリウム、ガリウム砒素、サファイヤ、プラスチック等、各種基板材料の研磨にも適用しうる。さらに本発明の研磨剤及び研磨方法は、半導体デバイスの製造に限定されるものでは無く、液晶、有機EL等の画像表示装置、フォトマスク、レンズ、プリズム、光ファイバー、単結晶シンチレータ等の光学部品、光スイッチング素子、光導波路等の光学素子、固体レーザー、青色レーザーLED等の発光素子、磁気ディスク、磁気ヘッド等の磁気記憶装置の製造にも適用しうる。   The polishing agent and polishing method of the present invention are not limited to polishing film materials, and include various types such as glass, silicon, silicon carbide, silicon germanium, germanium, gallium nitride, gallium phosphide, gallium arsenide, sapphire, and plastic. It can also be applied to polishing of substrate material. Furthermore, the polishing agent and polishing method of the present invention are not limited to the production of semiconductor devices, but include image display devices such as liquid crystal and organic EL, photomasks, lenses, prisms, optical fibers, optical components such as single crystal scintillators, It can also be applied to the manufacture of optical storage elements such as optical switching elements, optical elements such as optical waveguides, light emitting elements such as solid state lasers and blue laser LEDs, magnetic disks, and magnetic heads.

(研磨傷の測定)
本発明の研磨剤は、これまで説明したとおり、高い研磨速度と研磨傷の抑制という効果を両立することができる。ここで研磨傷とは、従来は目視又は光学顕微鏡で観測されていたものであり、光学顕微鏡の平均的な倍率は約500倍であるので、明確な傷として観測される傷の大きさはせいぜい数十μmのオーダーであった。
(Measurement of polishing scratches)
The abrasive | polishing agent of this invention can make compatible the effect of suppression of a high grinding | polishing speed and a grinding | polishing damage | wound as demonstrated so far. Here, the polishing flaw is conventionally observed visually or with an optical microscope. Since the average magnification of the optical microscope is about 500 times, the size of the flaw observed as a clear flaw is at most. The order was several tens of μm.

本発明の研磨剤は、前記数十μmの大きさの傷が無いことはもとより、走査型電子顕微鏡を用いて観測される微小な傷も低減することができ、例えば、0.2μm以上の傷の数を低減することができる。0.2μm以上の傷の数としては、8インチウエハ一枚あたり20個以下とすることが好ましく、10個以下とすることがさらに好ましい。前記走査型電子顕微鏡の検出限界は数十nmであるが、測定精度及び特性の点から、0.2μm以上の傷を検出すれば充分であると言える。   The abrasive of the present invention can reduce not only scratches of the size of several tens of μm but also fine scratches observed using a scanning electron microscope, for example, scratches of 0.2 μm or more. The number can be reduced. The number of scratches of 0.2 μm or more is preferably 20 or less, more preferably 10 or less, per 8 inch wafer. Although the detection limit of the scanning electron microscope is several tens of nm, it can be said that it is sufficient to detect a scratch of 0.2 μm or more from the viewpoint of measurement accuracy and characteristics.

このような微小な研磨傷を測定する場合には、走査型電子顕微鏡式欠陥検査装置を使用することができ、例えば、アプライド・マテリアルズ社のSEMVisionを使用することができる。具体的には例えば、研磨後のブランケット評価基板又はパターン評価基板の表面をレーザーでスキャンして欠陥の位置とサイズを検出する。次に前記装置に検出する欠陥の最低サイズを入力して、それ以上のサイズの欠陥を走査型電子顕微鏡で撮影する。例えば0.2μmとすれば、画像上、0.2μmの大きさの欠陥が全て撮影される。しかし撮影された欠陥が全て研磨傷であるとは限らず、異物や研磨剤中の砥粒が残存している場合もある。撮影された欠陥についてはモニタ上で画像を見ることができるので、目視で傷か異物かを確認し、傷の数だけをカウントする。まれに、画像を目視しても傷であるのか、異物であるのか判別できない欠陥が存在する場合がある。その場合は、その欠陥を三方向から電子顕微鏡で観察すれば、欠陥の立体情報を得ることができる。被研磨基板に対して凹状になっていれば研磨傷であり、凸状になっていれば傷ではない。   When measuring such a fine polishing flaw, a scanning electron microscope type defect inspection apparatus can be used, for example, SEMVision of Applied Materials can be used. Specifically, for example, the surface of the blanket evaluation substrate or pattern evaluation substrate after polishing is scanned with a laser to detect the position and size of the defect. Next, the minimum defect size to be detected is input to the apparatus, and a defect having a size larger than that is photographed with a scanning electron microscope. For example, if the thickness is 0.2 μm, all defects having a size of 0.2 μm are photographed on the image. However, not all of the photographed defects are polishing scratches, and foreign particles or abrasive grains in the abrasive may remain. Since the image of the photographed defect can be seen on the monitor, it is visually confirmed whether it is a scratch or a foreign object, and only the number of scratches is counted. In rare cases, there may be a defect that cannot be identified as a flaw or a foreign object even when the image is viewed. In that case, if the defect is observed with an electron microscope from three directions, three-dimensional information of the defect can be obtained. If it is concave with respect to the substrate to be polished, it is a polishing flaw, and if it is convex, it is not a flaw.

(実施例1)
(研磨剤の調製)
市販の酸化セリウム粒子であるシーアイ化成株式会社のNanotekセリア(商品名、以下酸化セリウム粒子Aという)と水とを混合して、0.5重量%の酸化セリウム粒子Aの懸濁液を用意した。この懸濁液を十分に乾燥させて得られた粉体をTEMで観察したところ、酸化セリウム粒子の1次粒径は14nmであった。
(Example 1)
(Preparation of abrasive)
Nanotek Ceria (trade name, hereinafter referred to as cerium oxide particle A), which is a commercially available cerium oxide particle, was mixed with water to prepare a suspension of 0.5% by weight of cerium oxide particle A. . When the powder obtained by sufficiently drying this suspension was observed with a TEM, the primary particle diameter of the cerium oxide particles was 14 nm.

別途、430gのCe(NH(NOを7300gの純水に溶解し、次にこの溶液に240gの25重量%のアンモニア水溶液を混合・攪拌することにより、160gの水酸化セリウム粒子Bを得た。得られた水酸化セリウム粒子Bを遠心分離(4000rpm、5分間)によって、固液分離を施した。液体を除去し、新たに純水を加えて、再び前記条件で遠心分離を行った。このような操作を5回繰り返して、水酸化セリウム粒子Bを洗浄した。最後に、水酸化セリウム粒子Bに適当な量の水を加えて、0.5重量%の水酸化セリウム粒子Bの懸濁液を得た。この懸濁液を十分に乾燥させて得られた粉体をTEMで観察したところ、水酸化セリウム粒子Bの1次粒径は3nmであった。 Separately, 430 g of Ce (NH 4 ) 2 (NO 3 ) 6 was dissolved in 7300 g of pure water, and then 240 g of 25% by weight aqueous ammonia solution was mixed and stirred in this solution to obtain 160 g of cerium hydroxide. Particle B was obtained. The obtained cerium hydroxide particles B were subjected to solid-liquid separation by centrifugation (4000 rpm, 5 minutes). The liquid was removed, pure water was newly added, and centrifugation was again performed under the above conditions. Such an operation was repeated 5 times to wash the cerium hydroxide particles B. Finally, an appropriate amount of water was added to the cerium hydroxide particles B to obtain a suspension of 0.5 wt% cerium hydroxide particles B. When the powder obtained by sufficiently drying this suspension was observed with a TEM, the primary particle diameter of the cerium hydroxide particles B was 3 nm.

前記の酸化セリウム粒子Aの懸濁液と水酸化セリウム粒子Bの懸濁液とを4対1の割合で混合し、超音波洗浄機を用いて分散させ、さらに、5重量%のアンモニア水溶液を分散液のpHが6.0になるまで加えて、0.4重量%の酸化セリウム粒子及び0.1重量%の水酸化セリウム粒子を含む研磨剤1を得た。研磨剤1において、水酸化セリウム粒子は砥粒全量に対して20重量%含まれる。   The suspension of the cerium oxide particles A and the suspension of the cerium hydroxide particles B are mixed at a ratio of 4 to 1, and dispersed using an ultrasonic cleaner, and a 5 wt% aqueous ammonia solution is further added. The slurry 1 was added until the pH of the dispersion reached 6.0 to obtain an abrasive 1 containing 0.4 wt% cerium oxide particles and 0.1 wt% cerium hydroxide particles. In the abrasive 1, the cerium hydroxide particles are contained at 20% by weight with respect to the total amount of the abrasive grains.

このようにして得られた研磨剤1を、砥粒の濃度が0.05重量%になるように水で希釈した後、マルバーン社のゼータサイザー3000ナノSを用いて砥粒の2次粒径を測定したところ85nmであった。また、マルバーン社のゼータサイザー3000HSを用いてゼータ電位を測定したところ、+44mVであった。   The abrasive 1 thus obtained was diluted with water so that the concentration of the abrasive grains was 0.05% by weight, and then the secondary grain size of the abrasive grains was used with Malvern Zeta Sizer 3000 Nano S. Was measured to be 85 nm. Further, the zeta potential was measured using a Malvern Zeta Sizer 3000HS and found to be +44 mV.

(研磨評価)
直径200mmのシリコン基板を用意し、膜厚1000nmのプラズマCVD法による酸化シリコン(SiO)膜を基板全面に形成し、SiO膜を形成したブランケット基板を得た。以下、この基板を「SiOブランケット評価基板」という。
(Polishing evaluation)
A silicon substrate having a diameter of 200 mm was prepared, and a silicon oxide (SiO 2 ) film having a thickness of 1000 nm was formed on the entire surface of the substrate by a plasma CVD method to obtain a blanket substrate on which the SiO 2 film was formed. Hereinafter, this substrate is referred to as “SiO 2 blanket evaluation substrate”.

別途、直径200mmのシリコン基板を用意し、溝幅100μm、溝ピッチ200μm、溝深さ400nmの溝パターンを基板全面に形成した。溝パターンの形成には、半導体デバイスの製造工程として周知のフォトリソグラフィーとドライエッチングを用いた。溝パターンの形成後、溝を埋め込むように、厚さ600nmのプラズマCVD法によるSiO膜を基板全面に形成した。このようにして、段差400nmの凹凸を持ったSiO膜形成されたシリコン基板を得た。以下、この基板を、「SiOパターン評価基板」と呼ぶ。 Separately, a silicon substrate having a diameter of 200 mm was prepared, and a groove pattern having a groove width of 100 μm, a groove pitch of 200 μm, and a groove depth of 400 nm was formed on the entire surface of the substrate. For the formation of the groove pattern, well-known photolithography and dry etching were used as the semiconductor device manufacturing process. After the formation of the groove pattern, a SiO 2 film having a thickness of 600 nm was formed on the entire surface of the substrate so as to fill the groove. In this way, a silicon substrate on which a SiO 2 film having unevenness with a step of 400 nm was formed was obtained. Hereinafter, this substrate is referred to as “SiO 2 pattern evaluation substrate”.

また、以下において、前記SiOブランケット評価基板上に形成されたSiO膜のことを「ブランケットSiO膜」といい、SiOパターン評価基板上に形成されたSiO膜を「パターンSiO膜」という。なお、表1においては、それぞれSiOBTW、SiOPTWと示す。 In the following, to a SiO 2 film formed on the SiO 2 blanket evaluation substrate is referred to as "blanket SiO 2 film", the SiO 2 film formed on the SiO 2 pattern evaluation board "pattern SiO 2 film " In Table 1, they are shown as SiO 2 BTW and SiO 2 PTW, respectively.

研磨装置(株式会社荏原製作所のEPO−111)の基板ホルダーに、前記SiOブランケット評価基板又はSiOパターン評価基板を固定した。直径600mmの研磨定盤に多孔質ウレタン樹脂製で同心円状溝を有する研磨パッド(ロデール社のIC−1000)を貼り付けた。研磨パッド上に前記評価基板が接するように基板ホルダーを押し当て、加工荷重を30kPaに設定した。研磨パッド上に研磨剤を200mL/分の速度で滴下しながら、定盤と基板ホルダーとをそれぞれ50rpmで回転させて、評価基板を60秒間研磨した。研磨の終了後、評価基板を純水でよく洗浄し、さらに乾燥した。 The SiO 2 blanket evaluation substrate or the SiO 2 pattern evaluation substrate was fixed to a substrate holder of a polishing apparatus (EPO-111 of Ebara Corporation). A polishing pad (IC-1000 manufactured by Rodel) made of porous urethane resin and having concentric grooves was attached to a polishing surface plate having a diameter of 600 mm. The substrate holder was pressed so that the evaluation substrate was in contact with the polishing pad, and the processing load was set to 30 kPa. While dropping the polishing agent on the polishing pad at a rate of 200 mL / min, the platen and the substrate holder were rotated at 50 rpm, respectively, and the evaluation substrate was polished for 60 seconds. After the polishing, the evaluation substrate was thoroughly washed with pure water and further dried.

その後、光干渉式膜厚装置(ナノメトリクス社のNanospec AFT−5100)を用いて、ブランケットSiO膜又はパターンSiO膜の残膜厚を測定した。ここで単位時間あたりに研磨されたSiO膜の減少量を研磨速度として定義した。さらに、光学顕微鏡(ニコン社のECLIPSE L200)及び走査型電子顕微鏡式欠陥検査装置(アプライド・マテリアルズ社のSEMVision)を用いて、ブランケットSiO膜又はパターンSiO膜に発生した研磨傷の数を測定した。なお、研磨速度を、以下R/Rと略記することがある。 Thereafter, the remaining film thickness of the blanket SiO 2 film or the patterned SiO 2 film was measured using an optical interference film thickness apparatus (Nanospec AFT-5100 manufactured by Nanometrics). Here, the reduction amount of the SiO 2 film polished per unit time was defined as the polishing rate. Furthermore, using an optical microscope (Nikon ECLIPSE L200) and a scanning electron microscope type defect inspection device (Applied Materials SEMVision), the number of polishing scratches generated on the blanket SiO 2 film or the patterned SiO 2 film was measured. It was measured. Hereinafter, the polishing rate may be abbreviated as R / R.

前記評価の結果、研磨剤1を用いた場合、ブランケットSiO膜の研磨速度は680nm/分、パターンSiO膜の研磨速度は凸部で480nm/分、凹部で0nm/分であった。また、光学顕微鏡及び走査型電子顕微鏡式欠陥検査装置を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、ともに0個だった。 As a result of the evaluation, when abrasive 1 was used, the polishing rate for the blanket SiO 2 film was 680 nm / min, the polishing rate for the pattern SiO 2 film was 480 nm / min for the convex portion, and 0 nm / min for the concave portion. Further, the number of polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using an optical microscope and a scanning electron microscope type defect inspection apparatus was zero.

(実施例2)
(研磨剤の調製)
実施例1における水酸化セリウム粒子Bの含有量を20重量%から60重量%に変えた実験を行った。
すなわち、実施例1と同様の方法で、0.5重量%の酸化セリウム粒子Aの懸濁液と0.5重量%の水酸化セリウム粒子Bの懸濁液を用意した。
前記の酸化セリウム粒子Aの懸濁液と水酸化セリウム粒子Bの懸濁液とを2対3の割合で混合し、超音波洗浄機を用いて分散させ、スラリ2を得た。スラリ2に5重量%のアンモニア水溶液を分散液のpHが6.0になるまで加えて、0.2重量%の酸化セリウム粒子及び0.3重量%の水酸化セリウム粒子を含む研磨剤2を得た。研磨剤2において、水酸化セリウム粒子は砥粒全量に対して60重量%含まれる。
このようにして得られた研磨剤2を、砥粒の濃度が0.05重量%になるように水で希釈した後、マルバーン社のゼータサイザー3000ナノSを用いて砥粒の2次粒径を測定したところ81nmであった。また、マルバーン社のゼータサイザー3000HSを用いてゼータ電位を測定したところ、+46mVであった。なお、スラリ2についても同様に砥粒の濃度が0.05重量%になるように希釈して、砥粒の2次粒径を測定した。スラリ2の砥粒の2次粒径は77nmであった。
(Example 2)
(Preparation of abrasive)
An experiment was conducted in which the content of the cerium hydroxide particles B in Example 1 was changed from 20 wt% to 60 wt%.
That is, a suspension of 0.5% by weight of cerium oxide particles A and a suspension of 0.5% by weight of cerium hydroxide particles B were prepared in the same manner as in Example 1.
The suspension of the cerium oxide particles A and the suspension of cerium hydroxide particles B were mixed at a ratio of 2 to 3, and dispersed using an ultrasonic cleaner to obtain slurry 2. A slurry 2 containing 0.2% by weight of cerium oxide particles and 0.3% by weight of cerium hydroxide particles is added to the slurry 2 until a pH of the dispersion reaches 6.0% by weight. Obtained. In the abrasive 2, the cerium hydroxide particles are contained by 60% by weight with respect to the total amount of the abrasive grains.
The abrasive 2 thus obtained was diluted with water so that the concentration of the abrasive grains was 0.05% by weight, and then the secondary particle size of the abrasive grains was used with a Malvern Zeta Sizer 3000 nano S. Was 81 nm. Further, the zeta potential was measured using Malvern Zeta Sizer 3000HS and found to be +46 mV. Similarly, slurry 2 was diluted so that the concentration of the abrasive grains was 0.05% by weight, and the secondary particle diameter of the abrasive grains was measured. The secondary particle size of the slurry 2 of slurry 2 was 77 nm.

(研磨評価)
研磨剤が異なる以外は実施例1と同じ方法で評価した結果、研磨剤2を用いた場合、ブランケットSiO膜の研磨速度は800nm/分、パターンSiO膜の研磨速度は凸部で450nm/分、凹部で0nm/分であった。また、光学顕微鏡及び走査型電子顕微鏡式欠陥検査装置を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、ともに0個だった。
(Polishing evaluation)
As a result of evaluation by the same method as in Example 1 except that the polishing agent is different, when the polishing agent 2 is used, the polishing rate of the blanket SiO 2 film is 800 nm / min, and the polishing rate of the pattern SiO 2 film is 450 nm / min at the convex portion. Minutes and 0 nm / min at the recess. Further, the number of polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using an optical microscope and a scanning electron microscope type defect inspection apparatus was zero.

(実施例3)
実施例1において1次粒径が14nmの酸化セリウム粒子を使用したのに対し、実施例3においては、1次粒径が43nmの酸化セリウム粒子を使用した。
(研磨剤の調製)
炭酸セリウム水和物2kgを400℃で焼成して酸化セリウムを得た。酸化セリウム50gと純水9950gを混合し、ビーズミルによって粉砕・分散を施した。その後、1μmのメンブレンフィルタでろ過を行い、0.5重量%の酸化セリウム粒子(以下、酸化セリウム粒子C)の懸濁液を得た。この懸濁液を十分に乾燥させて得られた粉体をTEMで観察したところ、酸化セリウム粒子の1次粒径は43nmであった。
一方で、実施例1と同様の方法で、0.5重量%の水酸化セリウム粒子Bの懸濁液を用意した。
前記の酸化セリウム粒子Cの懸濁液と水酸化セリウム粒子Bの懸濁液とを4対1の割合で混合し、超音波洗浄機を用いて分散させ、さらに、5重量%のアンモニア水溶液を分散液のpHが6.0になるまで加えて、0.4重量%の酸化セリウム粒子及び0.1重量%の水酸化セリウム粒子を含む研磨剤3を得た。研磨剤3において、水酸化セリウム粒子は砥粒全量に対して20重量%含まれる。
このようにして得られた研磨剤3を、砥粒の濃度が0.05重量%になるように水で希釈した後、マルバーン社のゼータサイザー3000ナノSを用いて砥粒の2次粒径を測定したところ93nmであった。また、マルバーン社のゼータサイザー3000HSを用いてゼータ電位を測定したところ、+45mVであった。
(Example 3)
In Example 1, cerium oxide particles having a primary particle size of 14 nm were used, whereas in Example 3, cerium oxide particles having a primary particle size of 43 nm were used.
(Preparation of abrasive)
2 kg of cerium carbonate hydrate was calcined at 400 ° C. to obtain cerium oxide. 50 g of cerium oxide and 9950 g of pure water were mixed and pulverized and dispersed by a bead mill. Then, it filtered with a 1 micrometer membrane filter, and obtained the suspension of 0.5 weight% cerium oxide particle (henceforth cerium oxide particle C). When the powder obtained by sufficiently drying this suspension was observed with a TEM, the primary particle diameter of the cerium oxide particles was 43 nm.
On the other hand, a suspension of 0.5 wt% cerium hydroxide particles B was prepared in the same manner as in Example 1.
The suspension of the cerium oxide particles C and the suspension of the cerium hydroxide particles B are mixed at a ratio of 4 to 1, dispersed using an ultrasonic cleaner, and a 5 wt% aqueous ammonia solution is further added. The dispersion 3 was added until the pH of the dispersion reached 6.0 to obtain an abrasive 3 containing 0.4 wt% cerium oxide particles and 0.1 wt% cerium hydroxide particles. In the abrasive 3, the cerium hydroxide particles are contained at 20% by weight with respect to the total amount of the abrasive grains.
The abrasive 3 thus obtained was diluted with water so that the concentration of the abrasive grains was 0.05% by weight, and then the secondary particle size of the abrasive grains was used with a Malvern Zeta Sizer 3000 nano S. Was measured to be 93 nm. Further, the zeta potential was measured using Malvern Zeta Sizer 3000HS and found to be +45 mV.

(研磨評価)
研磨剤が異なる以外は実施例1と同じ方法で評価した結果、研磨剤3を用いた場合、ブランケットSiO膜の研磨速度は715nm/分、パターンSiO膜の研磨速度は凸部で485nm/分、凹部で0nm/分であった。また、光学顕微鏡及び走査型電子顕微鏡式欠陥検査装置を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、ともに0個だった。
(Polishing evaluation)
As a result of evaluation by the same method as in Example 1 except that the polishing agent was different, when the polishing agent 3 was used, the polishing rate of the blanket SiO 2 film was 715 nm / min, and the polishing rate of the pattern SiO 2 film was 485 nm / min at the convex portion. Minutes and 0 nm / min at the recess. Further, the number of polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using an optical microscope and a scanning electron microscope type defect inspection apparatus was zero.

(実施例4)
実施例1において1次粒径が14nmの酸化セリウム粒子を使用したのに対し、実施例4においては、1次粒径が67nmの酸化セリウム粒子を使用した。
(研磨剤の調製)
炭酸セリウム水和物2kgを425℃で焼成して酸化セリウムを得た。酸化セリウム50gと純水9950gを混合し、ビーズミルによって粉砕・分散を施した。その後、1μmのメンブレンフィルタでろ過を行い、0.5重量%の酸化セリウム粒子(以下、酸化セリウム粒子D)の懸濁液を得た。この懸濁液を十分に乾燥させて得られた粉体をTEMで観察したところ、酸化セリウム粒子の1次粒径は67nmであった。
一方で、実施例1と同様の方法で、0.5重量%の水酸化セリウム粒子Bの懸濁液を用意した。
前記の酸化セリウム粒子Dの懸濁液と水酸化セリウム粒子Bの懸濁液とを4対1の割合で混合し、超音波洗浄機を用いて分散させ、さらに、5重量%のアンモニア水溶液を分散液のpHが6.0になるまで加えて、0.4重量%の酸化セリウム粒子及び0.1重量%の水酸化セリウム粒子を含む研磨剤4を得た。研磨剤4において、水酸化セリウム粒子は砥粒全量に対して20重量%含まれる。
このようにして得られた研磨剤4を、砥粒の濃度が0.05重量%になるように水で希釈した後、マルバーン社のゼータサイザー3000ナノSを用いて砥粒の2次粒径を測定したところ111nmであった。また、マルバーン社のゼータサイザー3000HSを用いてゼータ電位を測定したところ、+46mVであった。
Example 4
In Example 1, cerium oxide particles having a primary particle size of 14 nm were used, whereas in Example 4, cerium oxide particles having a primary particle size of 67 nm were used.
(Preparation of abrasive)
Cerium carbonate hydrate 2 kg was calcined at 425 ° C. to obtain cerium oxide. 50 g of cerium oxide and 9950 g of pure water were mixed and pulverized and dispersed by a bead mill. Then, it filtered with a 1 micrometer membrane filter, and obtained the suspension of 0.5 weight% cerium oxide particle (henceforth cerium oxide particle D). When the powder obtained by sufficiently drying this suspension was observed with a TEM, the primary particle diameter of the cerium oxide particles was 67 nm.
On the other hand, a suspension of 0.5 wt% cerium hydroxide particles B was prepared in the same manner as in Example 1.
The suspension of the cerium oxide particles D and the suspension of the cerium hydroxide particles B are mixed at a ratio of 4 to 1, dispersed using an ultrasonic cleaner, and a 5% by weight aqueous ammonia solution is further added. The dispersion 4 was added until the pH of the dispersion reached 6.0 to obtain an abrasive 4 containing 0.4 wt% cerium oxide particles and 0.1 wt% cerium hydroxide particles. In the abrasive 4, the cerium hydroxide particles are contained in an amount of 20% by weight with respect to the total amount of the abrasive grains.
The abrasive 4 thus obtained was diluted with water so that the concentration of the abrasive grains was 0.05% by weight, and then the secondary particle size of the abrasive grains was used with Malvern Zeta Sizer 3000 Nano S. Was 111 nm. Further, the zeta potential was measured using Malvern Zeta Sizer 3000HS and found to be +46 mV.

(研磨評価)
研磨剤が異なる以外は実施例1と同じ方法で評価した結果、研磨剤4を用いた場合、ブランケットSiO膜の研磨速度は740nm/分、パターンSiO膜の研磨速度は凸部で490nm/分、凹部で0nm/分であった。また、光学顕微鏡及び走査型電子顕微鏡式欠陥検査装置を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、ともに0個だった。
(Polishing evaluation)
As a result of evaluation by the same method as in Example 1 except that the polishing agent was different, when the polishing agent 4 was used, the polishing rate of the blanket SiO 2 film was 740 nm / min, and the polishing rate of the pattern SiO 2 film was 490 nm / min at the convex portion. Minutes and 0 nm / min at the recess. Further, the number of polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using an optical microscope and a scanning electron microscope type defect inspection apparatus was zero.

(実施例5)
実施例1における水酸化セリウム粒子Bの含有量を20重量%から10重量%に変えた実験を行った。
(研磨剤の調製)
実施例1と同様の方法で、0.5重量%の酸化セリウム粒子Aの懸濁液と0.5重量%の水酸化セリウム粒子Bの懸濁液を用意した。
前記の酸化セリウム粒子Aの懸濁液と水酸化セリウム粒子Bの懸濁液とを45対5の割合で混合し、超音波洗浄機を用いて分散させ、さらに、5重量%のアンモニア水溶液を分散液のpHが6.0になるまで加えて、0.45重量%の酸化セリウム粒子及び0.05重量%の水酸化セリウム粒子を含む研磨剤5を得た。研磨剤5において、水酸化セリウム粒子は砥粒全量に対して10重量%含まれる。
このようにして得られた研磨剤5を、砥粒の濃度が0.05重量%になるように水で希釈した後、マルバーン社のゼータサイザー3000ナノSを用いて砥粒の2次粒径を測定したところ88nmであった。また、マルバーン社のゼータサイザー3000HSを用いてゼータ電位を測定したところ、+43mVであった。
(Example 5)
An experiment was conducted in which the content of the cerium hydroxide particles B in Example 1 was changed from 20 wt% to 10 wt%.
(Preparation of abrasive)
In the same manner as in Example 1, a suspension of 0.5% by weight of cerium oxide particles A and a suspension of 0.5% by weight of cerium hydroxide particles B were prepared.
The suspension of the cerium oxide particles A and the suspension of cerium hydroxide particles B are mixed at a ratio of 45: 5 and dispersed using an ultrasonic cleaner, and a 5% by weight aqueous ammonia solution is further added. The dispersion 5 was added until the pH of the dispersion became 6.0 to obtain an abrasive 5 containing 0.45 wt% cerium oxide particles and 0.05 wt% cerium hydroxide particles. In the abrasive 5, the cerium hydroxide particles are contained in an amount of 10% by weight with respect to the total amount of the abrasive grains.
The abrasive 5 thus obtained was diluted with water so that the concentration of the abrasive grains was 0.05% by weight, and then the secondary particle size of the abrasive grains was used with a Malvern Zeta Sizer 3000 nano S. Was measured to be 88 nm. Further, the zeta potential was measured using Malvern Zeta Sizer 3000HS and found to be +43 mV.

(研磨評価)
研磨剤が異なる以外は実施例1と同じ方法で評価した結果、研磨剤5を用いた場合、ブランケットSiO膜の研磨速度は645nm/分、パターンSiO膜の研磨速度は凸部で360nm/分、凹部で0nm/分であった。また、光学顕微鏡及び走査型電子顕微鏡式欠陥検査装置を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、ともに0個だった。
(Polishing evaluation)
As a result of evaluation by the same method as in Example 1 except that the polishing agent is different, when the polishing agent 5 is used, the polishing rate of the blanket SiO 2 film is 645 nm / min, and the polishing rate of the pattern SiO 2 film is 360 nm / min at the convex portion. Minutes and 0 nm / min at the recess. Further, the number of polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using an optical microscope and a scanning electron microscope type defect inspection apparatus was zero.

(実施例6)
実施例1における水酸化セリウム粒子Bの含有量を20重量%から90重量%に変えた実験を行った。
(研磨剤の調製)
実施例1と同様の方法で、0.5重量%の酸化セリウム粒子Aの懸濁液と0.5重量%の水酸化セリウム粒子Bの懸濁液を用意した。
前記の酸化セリウム粒子Aの懸濁液と水酸化セリウム粒子Bの懸濁液とを5対45の割合で混合し、超音波洗浄機を用いて分散させ、さらに、5重量%のアンモニア水溶液を分散液のpHが6.0になるまで加えて、0.05重量%の酸化セリウム粒子及び0.45重量%の水酸化セリウム粒子を含む研磨剤6を得た。研磨剤6において、水酸化セリウム粒子は砥粒全量に対して90重量%含まれる。
このようにして得られた研磨剤6を、砥粒の濃度が0.05重量%になるように水で希釈した後、マルバーン社のゼータサイザー3000ナノSを用いて砥粒の2次粒径を測定したところ82nmであった。また、マルバーン社のゼータサイザー3000HSを用いてゼータ電位を測定したところ、+47mVであった。
(Example 6)
An experiment was conducted in which the content of the cerium hydroxide particles B in Example 1 was changed from 20 wt% to 90 wt%.
(Preparation of abrasive)
In the same manner as in Example 1, a suspension of 0.5% by weight of cerium oxide particles A and a suspension of 0.5% by weight of cerium hydroxide particles B were prepared.
The suspension of the cerium oxide particles A and the suspension of the cerium hydroxide particles B are mixed at a ratio of 5 to 45, dispersed using an ultrasonic cleaner, and a 5 wt% aqueous ammonia solution is further added. The dispersion 6 was added until the pH of the dispersion reached 6.0 to obtain an abrasive 6 containing 0.05 wt% cerium oxide particles and 0.45 wt% cerium hydroxide particles. In the abrasive 6, the cerium hydroxide particles are contained in 90% by weight with respect to the total amount of the abrasive grains.
The abrasive 6 thus obtained was diluted with water so that the concentration of the abrasive grains was 0.05% by weight, and then the secondary particle size of the abrasive grains was used with Malvern Zeta Sizer 3000 nano S. Was 82 nm. Further, the zeta potential was measured using Malvern Zeta Sizer 3000HS and found to be +47 mV.

(研磨評価)
研磨剤が異なる以外は実施例1と同じ方法で評価した結果、研磨剤6を用いた場合、ブランケットSiO膜の研磨速度は820nm/分、パターンSiO膜の研磨速度は凸部で295nm/分、凹部で0nm/分であった。また、光学顕微鏡及び走査型電子顕微鏡式欠陥検査装置を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、ともに0個だった。
(Polishing evaluation)
As a result of evaluation by the same method as in Example 1 except that the abrasive was different, when the abrasive 6 was used, the polishing rate of the blanket SiO 2 film was 820 nm / min, and the polishing rate of the pattern SiO 2 film was 295 nm / min at the convex portion. Minutes and 0 nm / min at the recess. Further, the number of polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using an optical microscope and a scanning electron microscope type defect inspection apparatus was zero.

(比較例1)
実施例1における水酸化セリウム粒子Bの含有量を20重量%から0重量%に変えた実験を行った。すなわち、砥粒を全て酸化セリウム粒子Aとして実験を行った。
(研磨剤の調製)
実施例1と同様の方法で、0.5重量%の酸化セリウム粒子Aの懸濁液を用意した。
前記の酸化セリウム粒子の懸濁液を超音波洗浄機で分散させ、さらに、5重量%のアンモニア水溶液を分散液のpHが6.0になるまで加えて、0.5重量%の酸化セリウム粒子を含む研磨剤Aを得た。研磨剤Aにおいて、水酸化セリウム粒子の含有率は砥粒全量に対して0重量%含まれる。
このようにして得られた研磨剤Aを、砥粒の濃度が0.05重量%になるように水で希釈した後、マルバーン社のゼータサイザー3000ナノSを用いて砥粒の2次粒径を測定したところ93nmであった。また、マルバーン社のゼータサイザー3000HSを用いてゼータ電位を測定したところ、+42mVであった。
(Comparative Example 1)
An experiment was conducted in which the content of the cerium hydroxide particles B in Example 1 was changed from 20 wt% to 0 wt%. That is, the experiment was conducted with all abrasive grains as cerium oxide particles A.
(Preparation of abrasive)
A suspension of 0.5 wt% cerium oxide particles A was prepared in the same manner as in Example 1.
The suspension of the cerium oxide particles is dispersed with an ultrasonic cleaner, and 5% by weight of an aqueous ammonia solution is added until the pH of the dispersion becomes 6.0. An abrasive A containing In the abrasive A, the content of the cerium hydroxide particles is 0% by weight with respect to the total amount of the abrasive grains.
The polishing agent A thus obtained was diluted with water so that the concentration of the abrasive grains was 0.05% by weight, and then the secondary particle size of the abrasive grains was used with a Malvern Zeta Sizer 3000 nano S. Was measured to be 93 nm. Further, the zeta potential was measured using Malvern Zeta Sizer 3000HS and found to be +42 mV.

(研磨評価)
研磨剤が異なる以外は実施例1と同じ方法で評価した結果、研磨剤Aを用いた場合、ブランケットSiO膜の研磨速度は610nm/分、パターンSiO膜の研磨速度は凸部で260nm/分、凹部で0nm/分であった。また、光学顕微鏡及び走査型電子顕微鏡式欠陥検査装置を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、ともに0個だった。
(Polishing evaluation)
As a result of evaluation by the same method as in Example 1 except that the polishing agent was different, when the polishing agent A was used, the polishing rate of the blanket SiO 2 film was 610 nm / min, and the polishing rate of the pattern SiO 2 film was 260 nm / min at the convex portion. Minutes and 0 nm / min at the recess. Further, the number of polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using an optical microscope and a scanning electron microscope type defect inspection apparatus was zero.

(比較例2)
実施例1における水酸化セリウム粒子Bの含有量を20重量%から100重量%に変えた実験を行った。すなわち、砥粒を全て水酸化セリウム粒子Bとして実験を行った。
(研磨剤の調製)
実施例1と同様の方法で、0.5重量%の水酸化セリウム粒子Bの懸濁液を用意した。
前記の水酸化セリウム粒子の懸濁液を超音波洗浄機で分散させ、さらに、5重量%のアンモニア水溶液を分散液のpHが6.0になるまで加えて、0.5重量%の水酸化セリウム粒子を含む研磨剤Bを得た。研磨剤Bにおいて、水酸化セリウム粒子は砥粒全量に対して100重量%含まれる。
このようにして得られた研磨剤Bを、砥粒の濃度が0.05重量%になるように水で希釈した後、マルバーン社のゼータサイザー3000ナノSを用いて砥粒の2次粒径を測定したところ77nmであった。また、マルバーン社のゼータサイザー3000HSを用いてゼータ電位を測定したところ、+48mVであった。
(Comparative Example 2)
An experiment was conducted in which the content of the cerium hydroxide particles B in Example 1 was changed from 20 wt% to 100 wt%. That is, the experiment was conducted using all abrasive grains as cerium hydroxide particles B.
(Preparation of abrasive)
A suspension of 0.5 wt% cerium hydroxide particles B was prepared in the same manner as in Example 1.
The above suspension of cerium hydroxide particles was dispersed with an ultrasonic cleaner, and 5% by weight aqueous ammonia solution was added until the pH of the dispersion reached 6.0. An abrasive B containing cerium particles was obtained. In the abrasive B, cerium hydroxide particles are contained in an amount of 100% by weight based on the total amount of the abrasive grains.
The abrasive B thus obtained was diluted with water so that the concentration of the abrasive grains was 0.05% by weight, and then the secondary grain size of the abrasive grains was used with a Malvern Zeta Sizer 3000 nano S. Was 77 nm. Further, the zeta potential was measured using Malvern Zeta Sizer 3000HS and found to be +48 mV.

(研磨評価)
研磨剤が異なる以外は実施例1と同じ方法で評価した結果、研磨剤Bを用いた場合、ブランケットSiO膜の研磨速度は830nm/分、パターンSiO膜の研磨速度は凸部で240nm/分、凹部で0nm/分であった。また、光学顕微鏡及び走査型電子顕微鏡式欠陥検査装置を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、ともに0個だった。
(Polishing evaluation)
As a result of evaluating by the same method as in Example 1 except that the polishing agent was different, when the polishing agent B was used, the polishing rate of the blanket SiO 2 film was 830 nm / min, and the polishing rate of the pattern SiO 2 film was 240 nm / min at the convex portion. Minutes and 0 nm / min at the recess. Further, the number of polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using an optical microscope and a scanning electron microscope type defect inspection apparatus was zero.

(比較例3)
(研磨剤の調製)
実施例1と同様の方法で、0.5重量%の酸化セリウム粒子Aの懸濁液と0.5重量%の水酸化セリウム粒子Bの懸濁液を用意した。
前記の酸化セリウム粒子Aの懸濁液と水酸化セリウム粒子Bの懸濁液とを2対3の割合で混合し、攪拌棒を用いて手動で攪拌して分散させ、スラリCを得た。スラリCに5重量%のアンモニア水溶液を分散液のpHが6.0になるまで加えて、0.2重量%の酸化セリウム粒子及び0.3重量%の水酸化セリウム粒子を含む研磨剤Cを得た。研磨剤Cにおいて、水酸化セリウム粒子は砥粒全量に対して60重量%含まれる。
このようにして得られた研磨剤Cを、砥粒の濃度が0.05重量%になるように水で希釈した後、マルバーン社のゼータサイザー3000ナノSを用いて砥粒の2次粒径を測定したところ440nmであった。また、マルバーン社のゼータサイザー3000HSを用いてゼータ電位を測定したところ、+39mVであった。なお、スラリCについても同様に砥粒の濃度が0.05重量%になるように希釈して、砥粒の2次粒径を測定した。スラリ2の砥粒の2次粒径は410nmであった。
(Comparative Example 3)
(Preparation of abrasive)
In the same manner as in Example 1, a suspension of 0.5% by weight of cerium oxide particles A and a suspension of 0.5% by weight of cerium hydroxide particles B were prepared.
The suspension of the cerium oxide particles A and the suspension of cerium hydroxide particles B were mixed at a ratio of 2 to 3, and dispersed manually by stirring with a stirring rod to obtain slurry C. A slurry C containing 0.2 wt% cerium oxide particles and 0.3 wt% cerium hydroxide particles was added to slurry C until 5 wt% aqueous ammonia solution was added until the pH of the dispersion reached 6.0. Obtained. In the abrasive C, the cerium hydroxide particles are contained in an amount of 60% by weight based on the total amount of the abrasive grains.
The abrasive C thus obtained was diluted with water so that the concentration of the abrasive grains was 0.05% by weight, and then the secondary grain size of the abrasive grains was used with Malvern Zeta Sizer 3000 Nano S. Was 440 nm. The zeta potential was measured using a Malvern Zeta Sizer 3000HS and found to be +39 mV. Similarly, the slurry C was diluted so that the concentration of the abrasive grains was 0.05% by weight, and the secondary particle diameter of the abrasive grains was measured. The secondary particle size of the slurry 2 of slurry 2 was 410 nm.

(研磨評価)
研磨剤が異なる以外は実施例1と同じ方法で評価した結果、研磨剤Cを用いた場合、ブランケットSiO膜の研磨速度は330nm/分、パターンSiO膜の研磨速度は凸部で175nm/分、凹部で0nm/分であった。また、光学顕微鏡及び走査型電子顕微鏡式欠陥検査装置を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、ともに0個だった。
(Polishing evaluation)
As a result of evaluation by the same method as in Example 1 except that the polishing agent is different, when the polishing agent C is used, the polishing rate of the blanket SiO 2 film is 330 nm / min, and the polishing rate of the pattern SiO 2 film is 175 nm / min at the convex portion. Minutes and 0 nm / min at the recess. Further, the number of polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using an optical microscope and a scanning electron microscope type defect inspection apparatus was zero.

(比較例4)
(研磨剤の調製)
炭酸セリウム水和物2kgを450℃で焼成して酸化セリウムを得た。酸化セリウム50gと純水9950gを混合し、ビーズミルによって粉砕・分散を施した。その後、1μmのメンブレンフィルタでろ過を行い、0.5重量%の酸化セリウム粒子(以下、酸化セリウム粒子E)の懸濁液を得た。この懸濁液を十分に乾燥させて得られた粉体をTEMで観察したところ、酸化セリウム粒子の1次粒径は83nmであった。
前記の酸化セリウム粒子Eの懸濁液を超音波洗浄機で分散させ、さらに、5重量%の酢酸水溶液を分散液のpHが6.0になるまで加えて、0.5重量%の水酸化セリウム粒子を含む研磨剤Dを得た。研磨剤Dにおいて、水酸化セリウム粒子は砥粒全量に対して0重量%含まれる。
このようにして得られた研磨剤Dを、砥粒の濃度が0.05重量%になるように水で希釈した後、マルバーン社のゼータサイザー3000ナノSを用いて砥粒の2次粒径を測定したところ185nmであった。また、マルバーン社のゼータサイザー3000HSを用いてゼータ電位を測定したところ、+24mVであった。
(Comparative Example 4)
(Preparation of abrasive)
Cerium carbonate hydrate (2 kg) was calcined at 450 ° C. to obtain cerium oxide. 50 g of cerium oxide and 9950 g of pure water were mixed and pulverized and dispersed by a bead mill. Then, it filtered with a 1 micrometer membrane filter, and obtained the suspension of 0.5 weight% cerium oxide particle (henceforth cerium oxide particle E). When the powder obtained by sufficiently drying this suspension was observed with a TEM, the primary particle diameter of the cerium oxide particles was 83 nm.
The suspension of the cerium oxide particles E is dispersed with an ultrasonic cleaner, and 5% by weight of an acetic acid aqueous solution is added until the pH of the dispersion becomes 6.0. An abrasive D containing cerium particles was obtained. In the abrasive D, 0% by weight of cerium hydroxide particles is contained with respect to the total amount of abrasive grains.
The abrasive D thus obtained was diluted with water so that the concentration of the abrasive grains was 0.05% by weight, and then the secondary grain size of the abrasive grains was used with a Malvern Zeta Sizer 3000 nano S. Was measured to be 185 nm. Further, the zeta potential was measured using Malvern Zeta Sizer 3000HS and found to be +24 mV.

(研磨評価)
研磨剤が異なる以外は実施例1と同じ方法で評価した結果、研磨剤Dを用いた場合、ブランケットSiO膜の研磨速度は720nm/分、パターンSiO膜の研磨速度は凸部で440nm/分、凹部で0nm/分であった。また、光学顕微鏡を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、ともに0個だった。一方で、走査型電子顕微鏡式欠陥検査装置を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、それぞれ33個と25個だった。このとき、走査型電子顕微鏡式欠陥検査装置を用いて観察された典型的な傷の大きさは0.2〜1μmであった。
(Polishing evaluation)
As a result of evaluation by the same method as in Example 1 except that the polishing agent is different, when the polishing agent D is used, the polishing rate of the blanket SiO 2 film is 720 nm / min, and the polishing rate of the pattern SiO 2 film is 440 nm / min at the convex portion. Minutes and 0 nm / min at the recess. Further, the number of polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using an optical microscope was zero. On the other hand, the polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using the scanning electron microscope type defect inspection apparatus were 33 and 25, respectively. At this time, the size of a typical scratch observed using a scanning electron microscope type defect inspection apparatus was 0.2 to 1 μm.

(比較例5)
(研磨剤の調製)
比較例4と同様の方法で、0.5重量%の酸化セリウム粒子Eの懸濁液を、実施例1と同様の方法で、0.5重量%の水酸化セリウム粒子Bの懸濁液を用意した。
前記の酸化セリウム粒子Eの懸濁液と水酸化セリウム粒子Bの懸濁液とを4対1の割合で混合し、超音波洗浄機を用いて分散させ、さらに、5重量%のアンモニア水溶液を分散液のpHが6.0になるまで加えて、0.4重量%の酸化セリウム粒子及び0.1重量%の水酸化セリウム粒子を含む研磨剤Eを得た。研磨剤Eにおいて、水酸化セリウム粒子は砥粒全量に対して20重量%含まれる。
このようにして得られた研磨剤Eを、砥粒の濃度が0.05重量%になるように水で希釈した後、マルバーン社のゼータサイザー3000ナノSを用いて砥粒の2次粒径を測定したところ128nmであった。また、マルバーン社のゼータサイザー3000HSを用いてゼータ電位を測定したところ、+46mVであった。
(Comparative Example 5)
(Preparation of abrasive)
A suspension of 0.5 wt% cerium oxide particles E was prepared in the same manner as in Comparative Example 4, and a suspension of 0.5 wt% cerium hydroxide particles B was prepared in the same manner as in Example 1. Prepared.
The suspension of the cerium oxide particles E and the suspension of the cerium hydroxide particles B are mixed at a ratio of 4 to 1, dispersed using an ultrasonic cleaner, and a 5 wt% aqueous ammonia solution is further added. The slurry E was added until the pH of the dispersion reached 6.0 to obtain abrasive E containing 0.4 wt% cerium oxide particles and 0.1 wt% cerium hydroxide particles. In the abrasive E, cerium hydroxide particles are contained in an amount of 20% by weight based on the total amount of the abrasive grains.
The abrasive E thus obtained was diluted with water so that the concentration of the abrasive grains was 0.05% by weight, and then the secondary grain size of the abrasive grains was used with a Malvern Zeta Sizer 3000 nano S. Was 128 nm. Further, the zeta potential was measured using Malvern Zeta Sizer 3000HS and found to be +46 mV.

(研磨評価)
研磨剤が異なる以外は実施例1と同じ方法で評価した結果、研磨剤Eを用いた場合、ブランケットSiO膜の研磨速度は760nm/分、パターンSiO膜の研磨速度は凸部で495nm/分、凹部で0nm/分であった。また、光学顕微鏡を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、ともに0個だった。一方で、走査型電子顕微鏡式欠陥検査装置を用いて観察されたブランケットSiO膜とパターンSiO膜の研磨傷は、それぞれ28個と22個だった。このとき、走査型電子顕微鏡式欠陥検査装置を用いて観察された典型的な傷の大きさは0.2〜1μmであった。
(Polishing evaluation)
As a result of evaluation by the same method as in Example 1 except that the polishing agent is different, when the polishing agent E is used, the polishing rate of the blanket SiO 2 film is 760 nm / min, and the polishing rate of the pattern SiO 2 film is 495 nm / min at the convex portion. Minutes and 0 nm / min at the recess. Further, the number of polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using an optical microscope was zero. On the other hand, the polishing flaws of the blanket SiO 2 film and the pattern SiO 2 film observed using the scanning electron microscope type defect inspection apparatus were 28 and 22, respectively. At this time, the size of a typical scratch observed using a scanning electron microscope type defect inspection apparatus was 0.2 to 1 μm.

これらの結果をまとめたのが表1である。   Table 1 summarizes the results.

Figure 2009290188
Figure 2009290188

実施例1〜6、比較例1〜5から、所定の酸化セリウム粒子と所定の水酸化セリウム粒子とを併用することにより、被研磨膜の研磨傷を少なく保ったまま、パターンSiO膜の研磨速度を大きくすることができることが明らかである。すなわち、酸化セリウム粒子Aと水酸化セリウム粒子Bを併用した研磨剤1〜2、5〜6では、酸化セリウム粒子A又は水酸化セリウム粒子Bのみを用いた研磨剤A及びBに比べて、研磨傷が少なく保たれたまま、パターンSiO膜の研磨速度が向上している。特に研磨剤1〜5については、比較例1及び2の研磨剤A及びBに比べて、ブランケットSiO膜の研磨速度に対するパターンSiO膜の研磨速度の比が大きくなる効果も確認された。また、研磨剤3〜4の評価結果から明らかなように、研磨剤1の酸化セリウム粒子の粒径を本発明の範囲内で変更した場合においても、研磨傷が少なく、パターンSiO膜の研磨速度が大きく、さらに、ブランケットSiO膜の研磨速度に対するパターンSiO膜の研磨速度の比が大きいことが確認された。
一方で、研磨剤Aの酸化セリウム粒子の粒径を単純に大きくした研磨剤Dについては、研磨剤Aに比べてパターンSiO膜の研磨速度が向上したものの、研磨傷が増加した。同様に、研磨剤1の酸化セリウム粒子の粒径を本発明の範囲外で変更した研磨剤Eについても、研磨剤1に比べてパターンSiO膜の研磨速度が向上したものの、研磨傷が増加した。以上の事実から、本発明の研磨剤及び研磨方法が、研磨傷を少なく保ったまま、パターン研磨速度を大きくできることが確認された。
図1は同じ一次粒径を有する酸化セリウム粒子及び同じ一次粒径を有する水酸化セリウム粒子を使用し、その混合割合のみが異なる実施例1〜2、5〜6と比較例1〜2を抽出し、水酸化セリウム粒子の重量比と、ブランケットSiO膜及びパターンSiO膜に対する研磨速度との関係をプロットしている。図1からも、本発明の研磨剤及び研磨方法が、パターン研磨速度を向上させることが明らかである。
From Examples 1 to 6 and Comparative Examples 1 to 5, by using the predetermined cerium oxide particles and the predetermined cerium hydroxide particles in combination, polishing the pattern SiO 2 film while keeping the polishing scratches of the film to be polished small It is clear that the speed can be increased. That is, in the polishing agents 1-2 and 5-6 in which the cerium oxide particles A and the cerium hydroxide particles B are used in combination, polishing is performed as compared with the polishing agents A and B using only the cerium oxide particles A or the cerium hydroxide particles B. The polishing rate of the patterned SiO 2 film is improved while keeping few scratches. In particular, for the abrasives 1 to 5, the effect of increasing the ratio of the polishing rate of the pattern SiO 2 film to the polishing rate of the blanket SiO 2 film as compared with the polishing agents A and B of Comparative Examples 1 and 2 was also confirmed. Further, as is apparent from the evaluation results of the abrasives 3 to 4, even when the particle size of the cerium oxide particles of the abrasive 1 is changed within the scope of the present invention, the polishing scratches are small and the pattern SiO 2 film is polished. It was confirmed that the rate was high and the ratio of the polishing rate of the pattern SiO 2 film to the polishing rate of the blanket SiO 2 film was large.
On the other hand, with respect to the polishing agent D in which the particle size of the cerium oxide particles of the polishing agent A was simply increased, the polishing rate of the pattern SiO 2 film was improved as compared with the polishing agent A, but the polishing scratches increased. Similarly, for the polishing agent E in which the particle size of the cerium oxide particles of the polishing agent 1 was changed outside the scope of the present invention, the polishing rate of the pattern SiO 2 film was improved as compared with the polishing agent 1, but the polishing scratches increased. did. From the above facts, it was confirmed that the polishing agent and the polishing method of the present invention can increase the pattern polishing rate while keeping few scratches.
FIG. 1 uses Examples 1 to 2 and 5 to 6 and Comparative Examples 1 and 2 to extract cerium oxide particles having the same primary particle size and cerium hydroxide particles having the same primary particle size, only in the mixing ratio. The relationship between the weight ratio of the cerium hydroxide particles and the polishing rate for the blanket SiO 2 film and the patterned SiO 2 film is plotted. Also from FIG. 1, it is clear that the polishing agent and polishing method of the present invention improve the pattern polishing rate.

SiO膜の研磨速度と、水酸化セリウム粒子の砥粒全量に対する含有率との関係をグラフで示す図である。And the polishing rate of the SiO 2 film, illustrates graphically the relationship between the content ratio relative to the abrasive grains the total amount of cerium hydroxide particles.

Claims (8)

砥粒として少なくとも4価の酸化セリウム粒子と4価の水酸化セリウム粒子とを含み、媒体として少なくとも水を含む研磨剤であり、
前記酸化セリウム粒子の1次粒径が1nm以上70nm以下であり、
前記水酸化セリウム粒子の1次粒径が1nm以上70nm以下であり、
研磨剤中での前記酸化セリウム粒子の2次粒径と前記水酸化セリウム粒子の2次粒径が、それぞれ10nm以上400nm以下であることを特徴とする研磨剤。
An abrasive containing at least tetravalent cerium oxide particles and tetravalent cerium hydroxide particles as abrasive grains and at least water as a medium;
The primary particle size of the cerium oxide particles is 1 nm or more and 70 nm or less,
The primary particle size of the cerium hydroxide particles is 1 nm or more and 70 nm or less,
A polishing agent, wherein a secondary particle size of the cerium oxide particles and a secondary particle size of the cerium hydroxide particles in the polishing agent are 10 nm or more and 400 nm or less, respectively.
前記水酸化セリウム粒子が砥粒全量に対して5重量%以上95重量%以下含まれることを特徴とする請求項1に記載の研磨剤。   The abrasive according to claim 1, wherein the cerium hydroxide particles are contained in an amount of 5 wt% to 95 wt% with respect to the total amount of abrasive grains. 前記砥粒が研磨剤に対して0.01重量%以上10重量%以下含まれることを特徴とする請求項1又は2に記載の研磨剤。   The abrasive according to claim 1 or 2, wherein the abrasive is contained in an amount of 0.01 wt% to 10 wt% with respect to the abrasive. 前記水酸化セリウム粒子が4価のセリウム塩とアルカリ液とを混合して得られたものであることを特徴とする請求項1から3のいずれか1項に記載の研磨剤。   The abrasive according to any one of claims 1 to 3, wherein the cerium hydroxide particles are obtained by mixing a tetravalent cerium salt and an alkali solution. 添加剤をさらに含むことを特徴とする請求項1から4のいずれか1項に記載の研磨剤。   The abrasive according to any one of claims 1 to 4, further comprising an additive. 請求項5に記載の研磨剤を、少なくとも前記砥粒を含むスラリと、少なくとも前記添加剤を含む添加液とに分割してなることを特徴とする2液式の研磨剤。   6. A two-component abrasive comprising: the abrasive according to claim 5 divided into a slurry containing at least the abrasive grains and an additive containing at least the additive. 被研磨膜を形成した基板を研磨パッドに押し当てて加圧し、請求項1から5のいずれか1項に記載の研磨剤を被研磨膜と研磨パッドとの間に供給しながら、基板と研磨パッドとを互いに摺動させることで被研磨膜を研磨することを特徴とする研磨方法。   The substrate on which the film to be polished is formed is pressed against the polishing pad and pressurized, and the substrate and the polishing are supplied while supplying the abrasive according to any one of claims 1 to 5 between the film to be polished and the polishing pad. A polishing method comprising polishing a film to be polished by sliding a pad against each other. 被研磨膜を形成した基板を研磨パッドに押し当てて加圧し、請求項6に記載の2液式の研磨剤を混合した状態で被研磨膜と研磨パッドとの間に供給しながら、基板と研磨パッドとを互いに摺動させることで被研磨膜を研磨することを特徴とする研磨方法。   The substrate on which the film to be polished is formed is pressed against the polishing pad and pressurized, and the substrate is supplied while being supplied between the film to be polished and the polishing pad in a state where the two-component abrasive according to claim 6 is mixed. A polishing method comprising polishing a film to be polished by sliding the polishing pad against each other.
JP2008301301A 2008-04-30 2008-11-26 Abrasive and polishing method Active JP5287174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008301301A JP5287174B2 (en) 2008-04-30 2008-11-26 Abrasive and polishing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008118419 2008-04-30
JP2008118419 2008-04-30
JP2008301301A JP5287174B2 (en) 2008-04-30 2008-11-26 Abrasive and polishing method

Publications (2)

Publication Number Publication Date
JP2009290188A true JP2009290188A (en) 2009-12-10
JP5287174B2 JP5287174B2 (en) 2013-09-11

Family

ID=41459063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008301301A Active JP5287174B2 (en) 2008-04-30 2008-11-26 Abrasive and polishing method

Country Status (1)

Country Link
JP (1) JP5287174B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070541A1 (en) * 2010-11-22 2012-05-31 日立化成工業株式会社 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
WO2012070542A1 (en) * 2010-11-22 2012-05-31 日立化成工業株式会社 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
WO2012102187A1 (en) * 2011-01-25 2012-08-02 日立化成工業株式会社 Cmp polishing fluid, method for manufacturing same, method for manufacturing composite particle, and method for polishing base material
CN102666014A (en) * 2010-03-12 2012-09-12 日立化成工业株式会社 Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
CN103221503A (en) * 2010-11-22 2013-07-24 日立化成株式会社 Method for producing abrasive grains, method for producing slurry, and method for producing polishing liquid
JP2014028424A (en) * 2012-07-31 2014-02-13 Noritake Co Ltd Polishing system and abrasive life determination method
KR20140117495A (en) * 2012-01-16 2014-10-07 가부시키가이샤 후지미인코퍼레이티드 Polishing composition, manufacturing process therefor, undiluted liquid, process for producing silicon substrate, and silicon substrate
CN104335331A (en) * 2012-05-22 2015-02-04 日立化成株式会社 Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
CN104334675A (en) * 2012-05-22 2015-02-04 日立化成株式会社 Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
WO2015019877A1 (en) * 2013-08-09 2015-02-12 コニカミノルタ株式会社 Polishing material, polishing material slurry
JP2016071916A (en) * 2014-09-30 2016-05-09 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk
US10196542B2 (en) 2012-02-21 2019-02-05 Hitachi Chemical Company, Ltd Abrasive, abrasive set, and method for abrading substrate
WO2019043819A1 (en) * 2017-08-30 2019-03-07 日立化成株式会社 Slurry and polishing method
CN110462791A (en) * 2017-03-27 2019-11-15 日立化成株式会社 Suspension and grinding method
WO2020021680A1 (en) * 2018-07-26 2020-01-30 日立化成株式会社 Slurry and polishing method
US10549399B2 (en) 2012-05-22 2020-02-04 Hitachi Chemcial Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US10557059B2 (en) 2012-05-22 2020-02-11 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US10557058B2 (en) 2012-02-21 2020-02-11 Hitachi Chemical Company, Ltd. Polishing agent, polishing agent set, and substrate polishing method
CN112740366A (en) * 2018-09-25 2021-04-30 昭和电工材料株式会社 Slurry and grinding method
CN114560489A (en) * 2022-03-23 2022-05-31 益阳鸿源稀土有限责任公司 Preparation method of nano cerium hydroxide powder
US11352523B2 (en) 2018-03-22 2022-06-07 Showa Denko Materials Co., Ltd. Polishing liquid, polishing liquid set and polishing method
CN114605921A (en) * 2022-03-11 2022-06-10 江苏葛西光学科技有限公司 Optical fiber end face polishing solution and preparation method thereof
US11773291B2 (en) 2017-03-27 2023-10-03 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189291A (en) * 1996-02-07 2001-07-10 Hitachi Chem Co Ltd Cerium oxide polishing agent, semiconductor chip, their manufacturing method, and method for polishing board
WO2002067309A1 (en) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Polishing compound and method for polishing substrate
JP2004128511A (en) * 1996-02-07 2004-04-22 Hitachi Chem Co Ltd Cerium oxide polishing agent, semiconductor chip and semiconductor devices, those manufacturing methods, as well as method for polishing substrate
JP2007031686A (en) * 2005-06-23 2007-02-08 Hitachi Chem Co Ltd Method for producing cerium oxide for abrasive, cerium oxide for abrasive, abrasive and method for polishing substrate by using the same
JP2007031261A (en) * 2005-06-23 2007-02-08 Hitachi Chem Co Ltd Cerium oxide composition, abrasive material using the same and polishing method for substrate
JP2007311779A (en) * 2006-04-21 2007-11-29 Hitachi Chem Co Ltd Cmp abrasive, and method of polishing substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189291A (en) * 1996-02-07 2001-07-10 Hitachi Chem Co Ltd Cerium oxide polishing agent, semiconductor chip, their manufacturing method, and method for polishing board
JP2004128511A (en) * 1996-02-07 2004-04-22 Hitachi Chem Co Ltd Cerium oxide polishing agent, semiconductor chip and semiconductor devices, those manufacturing methods, as well as method for polishing substrate
WO2002067309A1 (en) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Polishing compound and method for polishing substrate
JP2007031686A (en) * 2005-06-23 2007-02-08 Hitachi Chem Co Ltd Method for producing cerium oxide for abrasive, cerium oxide for abrasive, abrasive and method for polishing substrate by using the same
JP2007031261A (en) * 2005-06-23 2007-02-08 Hitachi Chem Co Ltd Cerium oxide composition, abrasive material using the same and polishing method for substrate
JP2007311779A (en) * 2006-04-21 2007-11-29 Hitachi Chem Co Ltd Cmp abrasive, and method of polishing substrate

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011111421A1 (en) * 2010-03-12 2013-06-27 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, and substrate polishing method using these
US10703947B2 (en) 2010-03-12 2020-07-07 Hitachi Chemical Company, Ltd. Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
US9982177B2 (en) * 2010-03-12 2018-05-29 Hitachi Chemical Company, Ltd Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
CN102666014A (en) * 2010-03-12 2012-09-12 日立化成工业株式会社 Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
JP2015007236A (en) * 2010-03-12 2015-01-15 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, and method for polishing substrate by using the slurry, the set, and the liquid
US20120322346A1 (en) * 2010-03-12 2012-12-20 Tomohiro Iwano Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
JP5582187B2 (en) * 2010-03-12 2014-09-03 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, and substrate polishing method using these
CN103222035B (en) * 2010-11-22 2016-09-21 日立化成株式会社 The set agent of suspension, lapping liquid, lapping liquid, the Ginding process of substrate and substrate
CN103500706A (en) * 2010-11-22 2014-01-08 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
CN103222035A (en) * 2010-11-22 2013-07-24 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
CN103222036A (en) * 2010-11-22 2013-07-24 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
CN103221503A (en) * 2010-11-22 2013-07-24 日立化成株式会社 Method for producing abrasive grains, method for producing slurry, and method for producing polishing liquid
US9881802B2 (en) 2010-11-22 2018-01-30 Hitachi Chemical Company, Ltd Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
JP2013211571A (en) * 2010-11-22 2013-10-10 Hitachi Chemical Co Ltd Slurry, polishing liquid set, polishing liquid, process of polishing substrate, and substrate
CN103374330A (en) * 2010-11-22 2013-10-30 日立化成株式会社 Method for producing abrasive grains, method for producing slurry, and method for producing polishing liquid
CN103409108A (en) * 2010-11-22 2013-11-27 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US9881801B2 (en) 2010-11-22 2018-01-30 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
CN103497733A (en) * 2010-11-22 2014-01-08 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
CN103497732A (en) * 2010-11-22 2014-01-08 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US10825687B2 (en) 2010-11-22 2020-11-03 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
JPWO2012070541A1 (en) * 2010-11-22 2014-05-19 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, substrate polishing method and substrate
JPWO2012070542A1 (en) * 2010-11-22 2014-05-19 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, substrate polishing method and substrate
US20120329371A1 (en) * 2010-11-22 2012-12-27 Tomohiro Iwano Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
JP5590144B2 (en) * 2010-11-22 2014-09-17 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, and substrate polishing method
WO2012070542A1 (en) * 2010-11-22 2012-05-31 日立化成工業株式会社 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
JP5626358B2 (en) * 2010-11-22 2014-11-19 日立化成株式会社 Slurry, polishing liquid set, polishing liquid, and substrate polishing method
KR101476943B1 (en) * 2010-11-22 2014-12-24 히타치가세이가부시끼가이샤 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US9988573B2 (en) 2010-11-22 2018-06-05 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US20130137265A1 (en) * 2010-11-22 2013-05-30 Tomohiro Iwano Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
JP2013211566A (en) * 2010-11-22 2013-10-10 Hitachi Chemical Co Ltd Slurry, polishing liquid set, polishing liquid, process of polishing substrate, and substrate
CN103497733B (en) * 2010-11-22 2016-11-23 日立化成株式会社 The set agent of suspension, lapping liquid, lapping liquid, the Ginding process of substrate and substrate
US9039796B2 (en) 2010-11-22 2015-05-26 Hitachi Chemical Company, Ltd. Method for producing abrasive grains, method for producing slurry, and method for producing polishing liquid
CN103374330B (en) * 2010-11-22 2015-10-14 日立化成株式会社 The manufacture method of the manufacture method of abrasive particle, the manufacture method of suspension and lapping liquid
TWI510606B (en) * 2010-11-22 2015-12-01 Hitachi Chemical Co Ltd Slurry, polishing fluid set, polishing fluid, polishing method of substrate and substrate
TWI512065B (en) * 2010-11-22 2015-12-11 Hitachi Chemical Co Ltd Slurry, polishing fluid set, polishing fluid and polishing method of substrate
WO2012070541A1 (en) * 2010-11-22 2012-05-31 日立化成工業株式会社 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
CN103497732B (en) * 2010-11-22 2016-08-10 日立化成株式会社 The set agent of suspension, lapping liquid, lapping liquid, the Ginding process of substrate and substrate
WO2012102187A1 (en) * 2011-01-25 2012-08-02 日立化成工業株式会社 Cmp polishing fluid, method for manufacturing same, method for manufacturing composite particle, and method for polishing base material
US9447306B2 (en) 2011-01-25 2016-09-20 Hitachi Chemical Company, Ltd. CMP polishing fluid, method for manufacturing same, method for manufacturing composite particle, and method for polishing base material
JP2012238831A (en) * 2011-01-25 2012-12-06 Hitachi Chem Co Ltd Cmp polishing fluid, method for manufacturing the same, method for manufacturing composite particle, and method for polishing base material
KR20140117495A (en) * 2012-01-16 2014-10-07 가부시키가이샤 후지미인코퍼레이티드 Polishing composition, manufacturing process therefor, undiluted liquid, process for producing silicon substrate, and silicon substrate
KR101981826B1 (en) * 2012-01-16 2019-05-23 가부시키가이샤 후지미인코퍼레이티드 Polishing composition, manufacturing process therefor, undiluted liquid, process for producing silicon substrate, and silicon substrate
US10196542B2 (en) 2012-02-21 2019-02-05 Hitachi Chemical Company, Ltd Abrasive, abrasive set, and method for abrading substrate
US10557058B2 (en) 2012-02-21 2020-02-11 Hitachi Chemical Company, Ltd. Polishing agent, polishing agent set, and substrate polishing method
US9346978B2 (en) 2012-05-22 2016-05-24 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
CN104334675A (en) * 2012-05-22 2015-02-04 日立化成株式会社 Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US9932497B2 (en) 2012-05-22 2018-04-03 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
CN104335331A (en) * 2012-05-22 2015-02-04 日立化成株式会社 Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US10557059B2 (en) 2012-05-22 2020-02-11 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US10549399B2 (en) 2012-05-22 2020-02-04 Hitachi Chemcial Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
JP2014028424A (en) * 2012-07-31 2014-02-13 Noritake Co Ltd Polishing system and abrasive life determination method
WO2015019877A1 (en) * 2013-08-09 2015-02-12 コニカミノルタ株式会社 Polishing material, polishing material slurry
JP2016071916A (en) * 2014-09-30 2016-05-09 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk
CN110462791A (en) * 2017-03-27 2019-11-15 日立化成株式会社 Suspension and grinding method
US11566150B2 (en) 2017-03-27 2023-01-31 Showa Denko Materials Co., Ltd. Slurry and polishing method
US11773291B2 (en) 2017-03-27 2023-10-03 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method
US11814548B2 (en) 2017-03-27 2023-11-14 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method
CN110462791B (en) * 2017-03-27 2023-06-16 株式会社力森诺科 Suspension and grinding method
CN111065707A (en) * 2017-08-30 2020-04-24 日立化成株式会社 Slurry for polishing and polishing method
WO2019043819A1 (en) * 2017-08-30 2019-03-07 日立化成株式会社 Slurry and polishing method
US11702569B2 (en) 2017-08-30 2023-07-18 Resonac Corporation Slurry and polishing method
JPWO2019044978A1 (en) * 2017-08-30 2020-04-23 日立化成株式会社 Slurry and polishing method
US11572490B2 (en) 2018-03-22 2023-02-07 Showa Denko Materials Co., Ltd. Polishing liquid, polishing liquid set, and polishing method
US11352523B2 (en) 2018-03-22 2022-06-07 Showa Denko Materials Co., Ltd. Polishing liquid, polishing liquid set and polishing method
US11767448B2 (en) 2018-03-22 2023-09-26 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method
US11499078B2 (en) 2018-07-26 2022-11-15 Showa Denko Materials Co., Ltd. Slurry, polishing solution production method, and polishing method
US11505731B2 (en) 2018-07-26 2022-11-22 Showa Denko Materials Co., Ltd. Slurry and polishing method
US11518920B2 (en) 2018-07-26 2022-12-06 Showa Denko Materials Co., Ltd. Slurry, and polishing method
US11492526B2 (en) 2018-07-26 2022-11-08 Showa Denko Materials Co., Ltd. Slurry, method for producing polishing liquid, and polishing method
JPWO2020022290A1 (en) * 2018-07-26 2021-08-12 昭和電工マテリアルズ株式会社 Slurry and polishing method
TWI771603B (en) * 2018-07-26 2022-07-21 日商昭和電工材料股份有限公司 Grinding and grinding methods
WO2020022290A1 (en) * 2018-07-26 2020-01-30 日立化成株式会社 Slurry, and polishing method
WO2020021680A1 (en) * 2018-07-26 2020-01-30 日立化成株式会社 Slurry and polishing method
CN112740366A (en) * 2018-09-25 2021-04-30 昭和电工材料株式会社 Slurry and grinding method
CN114605921A (en) * 2022-03-11 2022-06-10 江苏葛西光学科技有限公司 Optical fiber end face polishing solution and preparation method thereof
CN114560489A (en) * 2022-03-23 2022-05-31 益阳鸿源稀土有限责任公司 Preparation method of nano cerium hydroxide powder

Also Published As

Publication number Publication date
JP5287174B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5287174B2 (en) Abrasive and polishing method
JP4983603B2 (en) Cerium oxide slurry, cerium oxide polishing liquid, and substrate polishing method using the same
JP5418590B2 (en) Abrasive, abrasive set and substrate polishing method
JP3649279B2 (en) Substrate polishing method
JP5444625B2 (en) CMP polishing liquid, substrate polishing method, and electronic component
JP2010153782A (en) Polishing method for substrate
JP2010153781A (en) Polishing method for substrate
KR20120102792A (en) Polishing liquid for cmp and polishing method using the same
JP2004297035A (en) Abrasive agent, polishing method, and manufacturing method of electronic component
JP2010028086A (en) Cmp abrasive, and polishing method using the same
JP4972829B2 (en) CMP polishing agent and substrate polishing method
JP2009272601A (en) Abrasive, substrate polishing method using same, and solution and slurry for use in this method
JP2008182179A (en) Additives for abrasives, abrasives, method for polishing substrate and electronic component
JP2009260236A (en) Abrasive powder, polishing method of substrate employing the same as well as solution and slurry employed for the polishing method
JP2014187268A (en) Cmp polishing agent, and method for polishing substrate
JP4062977B2 (en) Abrasive and substrate polishing method
JP2009266882A (en) Abrasive powder, polishing method of base using same, and manufacturing method of electronic component
JP2000109803A (en) Polishing agent for cmp and polishing of substrate
JP2010272733A (en) Abrasive and polishing method of substrate using the abrasive
JP4604727B2 (en) Additive for CMP abrasives
JP2003158101A (en) Cmp abrasive and manufacturing method therefor
JP4501694B2 (en) Additive for CMP abrasives
JP4776387B2 (en) Cerium oxide abrasive and substrate polishing method
JP2000256656A (en) Cmp abrasive material and abrasion of substrate
JP2004200268A (en) Cmp polishing agent and polishing method of substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R151 Written notification of patent or utility model registration

Ref document number: 5287174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350