JP2004297035A - Abrasive agent, polishing method, and manufacturing method of electronic component - Google Patents

Abrasive agent, polishing method, and manufacturing method of electronic component Download PDF

Info

Publication number
JP2004297035A
JP2004297035A JP2003368636A JP2003368636A JP2004297035A JP 2004297035 A JP2004297035 A JP 2004297035A JP 2003368636 A JP2003368636 A JP 2003368636A JP 2003368636 A JP2003368636 A JP 2003368636A JP 2004297035 A JP2004297035 A JP 2004297035A
Authority
JP
Japan
Prior art keywords
polishing
abrasive
film
cerium oxide
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003368636A
Other languages
Japanese (ja)
Inventor
Kazuhiro Enomoto
和宏 榎本
Yasushi Kurata
靖 倉田
Koji Haga
浩二 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003368636A priority Critical patent/JP2004297035A/en
Publication of JP2004297035A publication Critical patent/JP2004297035A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide abrasive agent, by which polishing can be effectively performed evenly, easily, at a high speed and independent of a polishing apparatus; a polishing method; and a manufacturing method of electronic parts obtained by the abrasive agent and the manufacturing method in a CMP technique for flattening an interlayer insulating film, a BPSG film, and an insulating film for shallow trench isolation. <P>SOLUTION: This abrasive agent includes a cerium oxide particle, a dispersant, an addition agent and water, and a surface tension of the abrasive agent is not more than 45 dyn/cm. Preferably, as the addition agent, a first addition agent for reducing the surface tension and a second addition agent for improving surface smoothness are included. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体素子等の電子部品製造技術における基体表面の平坦化工程、特に、層間絶縁膜の平坦化工程、シャロー・トレンチ分離の形成工程等において使用される研磨剤、その研磨剤を使用した研磨方法及びそれらにより研磨する電子部品の製造方法に関する。   The present invention relates to an abrasive used in a flattening process of a substrate surface in an electronic component manufacturing technology such as a semiconductor element, particularly a flattening process of an interlayer insulating film, a forming process of shallow trench isolation, and the like, and uses the abrasive. The present invention relates to a polishing method and a method for manufacturing an electronic component to be polished by the polishing method.

現在の半導体装置の超々大規模集積回路では、実装密度を高める傾向にあり、種々の微細加工技術が研究、開発されている。既に、デザインルールは、サブハーフミクロンのオーダーになっている。このような厳しい微細化の要求を満足するために開発されている技術の一つにCMP(ケミカルメカニカルポリッシング)技術がある。この技術は、半導体装置等の電子部品の製造工程において、露光を施す層を完全に平坦化し、露光技術の負担を軽減し、歩留まりを安定させることができるため、例えば、層間絶縁膜の平坦化、シャロー・トレンチ分離等を行う際に必須となる技術である。   2. Description of the Related Art At present, ultra-large-scale integrated circuits of semiconductor devices tend to increase the packaging density, and various microfabrication techniques have been researched and developed. Already, design rules are on the order of sub-half microns. One of the technologies developed to satisfy such strict requirements for miniaturization is a CMP (chemical mechanical polishing) technology. This technology can completely flatten a layer to be exposed in a manufacturing process of an electronic component such as a semiconductor device, thereby reducing a burden of the exposure technology and stabilizing a yield. This is a technique that is essential when performing shallow trench isolation and the like.

従来、半導体装置の製造工程において、プラズマ−CVD(Chemical Vapor Deposition、化学的蒸着法)、低圧−CVD等の方法で形成される酸化珪素絶縁膜等の無機絶縁膜層を平坦化するためのCMP研磨剤として、フュームドシリカ系の研磨剤が一般的に検討されていた。   2. Description of the Related Art Conventionally, in a manufacturing process of a semiconductor device, CMP for planarizing an inorganic insulating film layer such as a silicon oxide insulating film formed by a method such as plasma-CVD (Chemical Vapor Deposition) or low-pressure-CVD. As an abrasive, a fumed silica-based abrasive has been generally studied.

フュームドシリカ系の研磨剤は、シリカ粒子を四塩化珪酸に熱分解する等の方法で粒成長させ、pH調整を行って製造している。しかしながら、この様な研磨剤は被研磨膜である無機絶縁膜の研磨速度が十分な速度をもたず、実用化には低研磨速度という技術課題があった。   Fumed silica-based abrasives are produced by subjecting silica particles to grain growth by a method such as thermal decomposition into silica tetrachloride and adjusting the pH. However, such a polishing agent does not have a sufficient polishing rate for the inorganic insulating film to be polished, and there is a technical problem of a low polishing rate for practical use.

従来の層間絶縁膜を平坦化するCMP技術では、研磨速度の基板上被研磨膜のパターン依存性が大きく、パターン密度差或いはサイズ差の大小により凸部の研磨速度が大きく異なり、また凹部の研磨も進行してしまうため、ウエハ面内全体での高いレベルの平坦化を実現することができないという技術課題があった。   In the conventional CMP technique for planarizing an interlayer insulating film, the polishing rate greatly depends on the pattern of a film to be polished on a substrate, and the polishing rate of a convex portion differs greatly depending on the pattern density difference or the size difference. Therefore, there has been a technical problem that high-level planarization over the entire wafer surface cannot be realized.

デザインルール0.5μm以上の世代では、集積回路内の素子分離にLOCOS(シリコン局所酸化)が用いられていた。   In the generation of the design rule of 0.5 μm or more, LOCOS (local oxidation of silicon) has been used for element isolation in an integrated circuit.

その後さらに加工寸法が微細化すると素子分離幅の狭い技術が要求され、シャロー・トレンチ分離が用いられつつある。   After that, when the processing size is further reduced, a technique for narrowing the element isolation width is required, and the shallow trench isolation is being used.

シャロー・トレンチ分離では、基板上に成膜した余分の酸化珪素膜を除くためにCMPが使用され、研磨を停止させるために、酸化珪素膜の下に研磨速度の遅いストッパ膜が形成される。ストッパ膜には窒化珪素などが使用される。   In the shallow trench isolation, CMP is used to remove an excess silicon oxide film formed on the substrate, and a stopper film having a low polishing rate is formed below the silicon oxide film to stop polishing. Silicon nitride or the like is used for the stopper film.

更なるデザインルールの微細化に伴いCMP技術が一般的になるにつれ、研磨装置や、研磨装置内で被研磨面の研磨に直接使用する研磨布も多種多様に存在してきている。特に研磨布については、素材として発泡ポリウレタンが大部分のもので用いられているものの、研磨布上のスラリー状の研磨剤の流動性を最適にするため、あらゆる溝加工された研磨布が市販されている。   As the CMP technology becomes more general with further miniaturization of design rules, there are a wide variety of polishing apparatuses and polishing cloths directly used for polishing a surface to be polished in the polishing apparatus. In particular, most of the polishing cloth is made of foamed polyurethane, but in order to optimize the fluidity of the slurry-like abrasive on the polishing cloth, all grooved polishing cloths are commercially available. ing.

その一方で、研磨布成形時の発泡ポリウレタン素材ではロット差や深さ方向の違いにより発泡度が不均一である。そのため、研磨布の表面に露出している発泡度の不均一性の違いによる研磨速度のバラつきが発生しており、研磨速度の安定化が必要であった。   On the other hand, the foaming degree of the foamed polyurethane material at the time of forming the polishing cloth is not uniform due to the difference between lots and the difference in the depth direction. Therefore, the polishing rate varies due to the difference in the non-uniformity of the degree of foaming exposed on the surface of the polishing cloth, and the polishing rate needs to be stabilized.

さらにデザインルールの微細化に伴い平坦化特性の重要性がますます向上している。平坦化特性を維持するためには、層間絶縁膜、BPSG膜、シャロー・トレンチ分離用絶縁膜を被覆した後に形成される凹凸を如何に解消するかが重要であり、凸部の研磨のみを選択的に進行させるような添加剤が研磨剤に必要とされる。   In addition, the importance of planarization characteristics is increasing with the miniaturization of design rules. In order to maintain the flattening characteristics, it is important to eliminate the irregularities formed after coating the interlayer insulating film, the BPSG film, and the insulating film for shallow trench isolation. Additives are required in the abrasive to make it more efficient.

スループットと平坦性の両立の観点から、最近になって砥粒に酸化セリウム粒子を用いたCMP研磨剤が主流になりつつある(例えば、特許文献1、特許文献2参照。)。
特許番号3278532号公報 特開2000−17195号公報
From the viewpoint of achieving both throughput and flatness, CMP abrasives using cerium oxide particles as abrasive grains have recently become mainstream (for example, see Patent Documents 1 and 2).
Japanese Patent No. 3278532 JP 2000-17195 A

しかしながら、これらの研磨剤は上記のような研磨布の相違による研磨速度の違い(バラツキ)が著しく発生する。また、現在要求されている平坦性特性要求値を十分満たすものではなかった。   However, with these abrasives, the difference (variation) in the polishing rate due to the difference in the polishing cloth as described above occurs remarkably. In addition, the flatness characteristics required at present are not sufficiently satisfied.

本発明は、これら問題点に鑑み、研磨布に不均一な凹凸があるのにも関わらず、研磨剤が均一に分散することが可能となり、研磨布の溝形状や発泡度の不均一性から発生する研磨速度のバラつきを最小限に抑える研磨剤を提供する。また高平坦化が可能であり、酸化珪素絶縁膜等の被研磨面を傷なく研磨し、スループットの低減可能な研磨剤、さらには保存安定性を改良した研磨剤を提供するものである。また、本発明は、基体の被研磨面を、傷なく、研磨することが可能な研磨方法、その研磨剤又はその研磨方法で研磨する半導体装置等の電子部品の製造方法を提供するものである。   The present invention has been made in view of these problems, and enables the polishing agent to be uniformly dispersed in spite of the unevenness of the polishing cloth. Provided is an abrasive which minimizes variation in polishing rate that occurs. Another object of the present invention is to provide a polishing agent which can be highly flattened and can polish a surface to be polished such as a silicon oxide insulating film without being damaged, thereby reducing the throughput and further improving the storage stability. Further, the present invention provides a polishing method capable of polishing a surface to be polished of a base without being damaged, a polishing agent thereof, and a method of manufacturing an electronic component such as a semiconductor device which is polished by the polishing method. .

本発明者らは、研磨剤の表面張力と、研磨布の表面のぬれ特性を示す指標である臨界表面張力とに着目し、鋭意検討して本発明を完成させた。   The present inventors have focused on the surface tension of the abrasive and the critical surface tension, which is an index indicating the wettability of the surface of the polishing pad, and have made intensive studies to complete the present invention.

すなわち、本発明は、次の(1)〜(22)に関する。   That is, the present invention relates to the following (1) to (22).

(1)酸化セリウム粒子、分散剤、少なくとも一種の添加剤及び水を含む研磨剤であって、表面張力が45dyn/cm以下である研磨剤。   (1) An abrasive containing cerium oxide particles, a dispersant, at least one additive and water, the abrasive having a surface tension of 45 dyn / cm or less.

(2)表面張力が、30〜40dyn/cmである上記(1)記載の研磨剤。   (2) The abrasive according to the above (1), which has a surface tension of 30 to 40 dyn / cm.

(3)研磨剤の表面張力の低下を引き起こす添加剤を含有する上記(1)または(2)記載の研磨剤。   (3) The abrasive according to the above (1) or (2), which contains an additive that causes a decrease in the surface tension of the abrasive.

(4)前記添加剤が非イオン系界面活性剤を含有する上記(3)記載の研磨剤。   (4) The abrasive according to the above (3), wherein the additive contains a nonionic surfactant.

(5)前記添加剤がアセチレン系ジオールのオキシエチレン付加体である上記(3)または(4)記載の研磨剤。   (5) The abrasive according to the above (3) or (4), wherein the additive is an oxyethylene adduct of an acetylene-based diol.

(6)さらに、添加剤として水溶性ポリビニル系重合体を含有する上記(1)〜(5)のいずれか記載の研磨剤。   (6) The abrasive according to any one of (1) to (5), further comprising a water-soluble polyvinyl polymer as an additive.

(7)水溶性ポリビニル系重合体の重量平均分子量が1000〜300万である上記(6)記載の研磨剤。   (7) The abrasive according to the above (6), wherein the weight-average molecular weight of the water-soluble polyvinyl polymer is 1,000 to 3,000,000.

(8)水溶性ポリビニル系重合体が、ポロビニルピロリドン類、ポリアルキルアクリルアミド類、ポリジアルキルアクリルアミド類、ポリアクリルアミド、ポリアクリル酸アンモニウム塩類の群から選ばれる上記(6)または(7)記載の研磨剤。   (8) The polishing according to (6) or (7), wherein the water-soluble polyvinyl polymer is selected from the group consisting of polyvinylpyrrolidones, polyalkylacrylamides, polydialkylacrylamides, polyacrylamide, and ammonium polyacrylate. Agent.

(9)pHが4〜10である上記(1)〜(8)のいずれか記載の研磨剤。   (9) The abrasive according to any one of the above (1) to (8), which has a pH of 4 to 10.

(10)酸化セリウム粒子の平均粒径が0.1〜0.4μmである上記(1)〜(9)のいずれか記載の研磨剤。   (10) The abrasive according to any one of (1) to (9) above, wherein the cerium oxide particles have an average particle size of 0.1 to 0.4 μm.

(11)酸化セリウム粒子の粒径で1.0μm以上の粒子の体積分率が0.001%〜1.0%の範囲である上記(1)〜(10)のいずれか記載の研磨剤。   (11) The abrasive according to any one of (1) to (10) above, wherein the volume fraction of the particles having a particle diameter of 1.0 μm or more of the cerium oxide particles is in the range of 0.001% to 1.0%.

(12)分散剤がポリアクリル酸、そのアンモニウム塩及びポリアクリル酸アルキルから選ばれた少なくとも1種類である上記(1)〜(11)のいずれか記載の研磨剤。   (12) The abrasive according to any one of (1) to (11) above, wherein the dispersant is at least one selected from polyacrylic acid, its ammonium salt, and polyalkyl acrylate.

(13)分散剤が、酸化セリウム粒子100重量部に対して0.2〜5.0重量部の範囲である上記(12)記載の研磨剤。   (13) The abrasive according to (12), wherein the dispersant is in a range of 0.2 to 5.0 parts by weight based on 100 parts by weight of the cerium oxide particles.

(14)酸化セリウム粒子、分散剤、水のみで研磨剤が構成された場合の酸化セリウム粒子のゼータ電位が−30〜−100mVを示す上記(12)または(13)記載の研磨剤。   (14) The abrasive according to the above (12) or (13), wherein the cerium oxide particles have a zeta potential of -30 to -100 mV when the abrasive is composed only of cerium oxide particles, a dispersant, and water.

(15)分散剤がメタクリル酸もしくはアクリル酸の誘導体モノマである上記(1)〜(11)のいずれか記載の研磨剤。   (15) The abrasive according to any one of the above (1) to (11), wherein the dispersant is a derivative monomer of methacrylic acid or acrylic acid.

(16)分散剤が、酸化セリウム粒子100重量部に対して2.0〜20重量部の範囲である上記(15)記載の研磨剤。   (16) The abrasive according to (15), wherein the dispersant is in a range of 2.0 to 20 parts by weight based on 100 parts by weight of the cerium oxide particles.

(17)酸化セリウム粒子、分散剤、水のみで研磨剤が構成された場合の酸化セリウム粒子のゼータ電位が+30〜+100mVである上記(15)または(16)記載の研磨剤。   (17) The abrasive according to the above (15) or (16), wherein the cerium oxide particles have a zeta potential of +30 to +100 mV when the abrasive is composed only of cerium oxide particles, a dispersant, and water.

(18)被研磨膜を形成した基体を研磨布に押しあて加圧し、上記(1)〜(17)のいずれか記載の研磨剤を被研磨膜と研磨布との間に供給しながら、被研磨膜と研磨布とを相対的に動かして被研磨膜を研磨することを特徴とする研磨方法。   (18) The substrate on which the film to be polished is formed is pressed against a polishing cloth and pressurized to supply the polishing slurry according to any one of (1) to (17) above between the film to be polished and the polishing cloth. A polishing method characterized in that a polishing target film is polished by relatively moving a polishing film and a polishing cloth.

(19)研磨剤の表面張力が研磨布表面の臨界表面張力より小さい上記(18)記載の研磨方法。   (19) The polishing method according to the above (18), wherein the surface tension of the abrasive is smaller than the critical surface tension of the polishing cloth surface.

(20)被研磨膜が半導体装置の、層間絶縁膜、BPSG膜またはシャロー・トレンチ分離用絶縁膜であり、被研磨膜の凸部分の研磨速度が凹部分の研磨速度の3倍以上である上記(18)または(19)記載の研磨方法。   (20) The polishing method as described above, wherein the film to be polished is an interlayer insulating film, a BPSG film, or an insulating film for shallow trench isolation of a semiconductor device, and the polishing rate of the convex portion of the film to be polished is three times or more the polishing speed of the concave portion. The polishing method according to (18) or (19).

(21)凸部の研磨速度が凹部の研磨速度の5倍以上10倍以内である上記(20)記載の研磨方法。   (21) The polishing method according to the above (20), wherein the polishing rate of the convex portion is 5 times or more and 10 times or less than the polishing speed of the concave portion.

(22)上記(1)〜(17)のいずれか記載の研磨剤により研磨する工程、または上記(18)〜(21)のいずれか記載の方法により研磨する工程を含むことを特徴とする電子部品の製造方法。   (22) An electron, comprising: a step of polishing with the abrasive according to any one of the above (1) to (17), or a step of polishing by the method of any one of the above (18) to (21). The method of manufacturing the part.

本発明の研磨剤は、高平坦化可能であり、酸化珪素絶縁膜等の被研磨面を傷なく、高速に研磨することができ、さらには保存安定性に優れる。   The abrasive of the present invention can be highly planarized, can be polished at high speed without damaging the surface to be polished such as a silicon oxide insulating film, and has excellent storage stability.

又本発明の研磨方法により、基体の被研磨面を、傷なく、研磨することが可能となる。また、研磨布や研磨装置の研磨速度の依存性がなく、プロセス管理が容易である。   In addition, the polishing method of the present invention enables the surface to be polished of the substrate to be polished without scratches. Further, there is no dependency on the polishing rate of the polishing cloth or the polishing apparatus, and the process management is easy.

さらに、本発明の電子部品の製造方法によれば、被研磨面の平坦性に優れ、研磨工程のスループットを短縮することができる。   Further, according to the electronic component manufacturing method of the present invention, the surface to be polished is excellent in flatness, and the throughput of the polishing step can be reduced.

一般に酸化セリウムは、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩のセリウム化合物を酸化することによって得られる。   Generally, cerium oxide is obtained by oxidizing cerium compounds of carbonate, nitrate, sulfate and oxalate.

例えば、TEOS−CVD法等で形成される酸化珪素膜の研磨に使用する酸化セリウム研磨剤は、一次粒子径が大きく、かつ結晶ひずみが少ないほど、すなわち結晶性が良いほど高速研磨が可能であるが、研磨傷が入りやすい傾向がある。   For example, a cerium oxide abrasive used for polishing a silicon oxide film formed by a TEOS-CVD method or the like can perform high-speed polishing as the primary particle diameter is larger and the crystal strain is smaller, that is, the crystallinity is better. However, there is a tendency that polishing scratches easily occur.

そこで、本発明で用いる酸化セリウム粒子は、その製造方法を限定するものではないが、酸化セリウム結晶子径(一次粒子径)の中央値は5nm以上300nm以下であることが好ましい。   Therefore, the production method of the cerium oxide particles used in the present invention is not limited, but the median value of the cerium oxide crystallite diameter (primary particle diameter) is preferably 5 nm or more and 300 nm or less.

なお、本発明において、酸化セリウム粒子の結晶子径は、必要に応じて酸化セリウムスラリーを適当な濃度に希釈し、レーザ回折散乱式粒度分布計によって酸化セリウム結晶子径を測定して得られ、中央値は体積分布の中央値を採用する。   In the present invention, the crystallite size of the cerium oxide particles is obtained by diluting the cerium oxide slurry to an appropriate concentration as necessary and measuring the cerium oxide crystallite size with a laser diffraction / scattering particle size distribution analyzer, The median value adopts the median value of the volume distribution.

また、半導体装置等の電子部品製造に係る研磨に使用することから、アルカリ金属、イオウ及びハロゲン類の含有率は酸化セリウム粒子中10ppm以下に抑えることが好ましい。   Further, since it is used for polishing related to the production of electronic components such as semiconductor devices, the content of alkali metals, sulfur and halogens is preferably suppressed to 10 ppm or less in cerium oxide particles.

本発明において、酸化セリウム粉末を作製する方法として焼成または過酸化水素等による酸化法が使用できる。焼成温度は350℃以上900℃以下が好ましい。上記の方法により製造された酸化セリウム粒子は凝集しているため、機械的に粉砕することが好ましい。粉砕方法として、ジェットミル等による乾式粉砕や遊星ビーズミル等による湿式粉砕方法が好ましい。ジェットミルは例えば化学工業論文集第6巻第5号(1980)527〜532頁に説明されている。   In the present invention, as a method for producing the cerium oxide powder, a firing method or an oxidation method using hydrogen peroxide or the like can be used. The firing temperature is preferably from 350 ° C. to 900 ° C. Since the cerium oxide particles produced by the above method are agglomerated, it is preferable to mechanically pulverize the particles. As the pulverization method, a dry pulverization method using a jet mill or the like or a wet pulverization method using a planetary bead mill or the like is preferable. The jet mill is described in, for example, Chemical Industry Transactions, Vol. 6, No. 5, (1980), pp. 527-532.

ここで、研磨剤の酸化セリウム粒子の濃度に制限はないが、酸化セリウム粒子の分散性の観点から0.2重量%以上20重量%以下の範囲が好ましい。さらに好ましくは、0.5重量%から2重量%の範囲である。   Here, the concentration of the cerium oxide particles in the abrasive is not limited, but is preferably in the range of 0.2% by weight or more and 20% by weight or less from the viewpoint of the dispersibility of the cerium oxide particles. More preferably, it is in the range of 0.5% by weight to 2% by weight.

酸化セリウム粒子を水中に分散させる方法としては、通常の攪拌機による分散処理の他にホモジナイザー、超音波分散機、湿式ボールミル等を用いることができる。   As a method for dispersing the cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a wet ball mill, or the like can be used in addition to the dispersion treatment using a normal stirrer.

こうして作製された研磨剤中の酸化セリウム粒子(一次粒子が凝集した二次粒子を含む。)の平均粒径は、0.01μm〜1.0μmであることが好ましい。   The average particle size of the cerium oxide particles (including the secondary particles in which the primary particles are aggregated) in the abrasive thus produced is preferably 0.01 μm to 1.0 μm.

酸化セリウム粒子の平均粒径が0.01μm未満であると研磨速度が低くなりすぎ、1.0μmを超えると研磨する膜に傷がつきやすくなるからである。   If the average particle size of the cerium oxide particles is less than 0.01 μm, the polishing rate becomes too low, and if it exceeds 1.0 μm, the film to be polished is easily damaged.

上記酸化セリウム粒子の平均粒径は、0.1〜0.4μmであるのがより好ましい。さらに好ましくは0.15μm〜0.25μmである。なお、上記平均粒径は、レーザ回折式粒度分布計(マルバーン社製商品名マスターサイザ)で測定した粒子径の中央値を採用する。   The average particle size of the cerium oxide particles is more preferably 0.1 to 0.4 μm. More preferably, it is 0.15 μm to 0.25 μm. In addition, the median value of the particle diameter measured by a laser diffraction particle size distribution meter (trade name: Mastersizer, manufactured by Malvern Co., Ltd.) is adopted as the average particle diameter.

また、研磨傷に対しては大粒子の存在確率も重要で、粒径で1.0μm以上の酸化セリウム粒子の体積分率が0.001%〜1.0%の範囲であるのが好ましい。より好ましくは0.01%〜1.0%の範囲である。1.0μm以上の酸化セリウム粒子の体積分率が大き過ぎると研磨傷を引き起こす原因に繋がる場合があり、また、体積分率が小さ過ぎると研磨速度の低下に繋がったり、安定性が劣ったりする傾向がある。   The existence probability of large particles is also important for polishing scratches, and the volume fraction of cerium oxide particles having a particle diameter of 1.0 μm or more is preferably in the range of 0.001% to 1.0%. More preferably, it is in the range of 0.01% to 1.0%. If the volume fraction of the cerium oxide particles of 1.0 μm or more is too large, it may lead to the cause of polishing scratches, and if the volume fraction is too small, it leads to a decrease in polishing rate or poor stability. Tend.

本発明における研磨剤は、酸化セリウム粒子、分散剤、添加剤、水を含んで構成される一液式研磨剤、
又は酸化セリウム粒子、分散剤、及び水を含む酸化セリウムスラリーと、添加剤及び水からなる添加液とを分けた二液式研磨剤として調製することができる。いずれの場合も、安定した特性を得ることができる。
Abrasive in the present invention, cerium oxide particles, dispersant, additives, one-part abrasive comprising water,
Alternatively, it can be prepared as a two-part abrasive in which a cerium oxide slurry containing cerium oxide particles, a dispersant, and water, and an additive liquid composed of an additive and water are separated. In any case, stable characteristics can be obtained.

酸化セリウムスラリーと添加液とを分けた二液式研磨剤として保存する場合、これら二液の配合を任意に変えられることにより平坦化特性と研磨速度の調整が可能となる。二液式の場合、添加液は、酸化セリウムスラリーと別々の配管で送液し、これらの配管を合流させて供給配管出口の直前で混合して研磨定盤上に供給する方法か、研磨直前に酸化セリウムスラリーと混合する方法がとられる。   In the case where the cerium oxide slurry and the additive liquid are stored as a two-part abrasive, the flattening characteristics and the polishing rate can be adjusted by optionally changing the composition of these two parts. In the case of the two-pack type, the additive liquid is sent through a separate pipe with the cerium oxide slurry, and these pipes are combined and mixed immediately before the supply pipe outlet and supplied to the polishing platen, or just before polishing. And a method of mixing with a cerium oxide slurry.

本発明の研磨剤の表面張力は、45dyn/cm以下であることが必要であり、好ましくは、30〜40dyn/cmである。研磨剤の表面張力が低すぎると研磨剤の流動性が大きすぎるため、研磨剤を用いて効率よく研磨出来なくなるため、好ましくない。また、表面張力が高すぎると研磨布表面での研磨剤弾きの原因となり、研磨剤が研磨布表面に均一に分散しないことを引き起こし、研磨状態に依存した研磨速度のバラつきが発生するため、好ましくない。一般的に使用される発泡性ポリウレタン素材の研磨布は、後述する臨界表面張力が約45dyn/cm程度であり、本発明の研磨剤は表面張力が45dyn/cm以下であるため、このような研磨布表面で弾かず、均一に分散することができる。   The surface tension of the abrasive of the present invention needs to be 45 dyn / cm or less, and preferably 30 to 40 dyn / cm. If the surface tension of the abrasive is too low, the fluidity of the abrasive is too large, and it is not preferable because the abrasive cannot be efficiently polished. Also, if the surface tension is too high, it causes abrasive repelling on the polishing cloth surface, causing the polishing agent not to be uniformly dispersed on the polishing cloth surface, and a variation in the polishing rate depending on the polishing state occurs. Absent. Generally used abrasive cloth of foamable polyurethane material has a critical surface tension of about 45 dyn / cm, which will be described later, and the abrasive of the present invention has a surface tension of 45 dyn / cm or less. It can be evenly dispersed without repelling on the cloth surface.

表面張力とは、表面張力計で測定されたものである。一般的にはデュヌイ法と呼ばれる方法を用いており、白金リングを研磨剤中に静かに沈めてから、引っ張り上げることが出来る力を測定し、引き上げる力より表面張力を求める方法である。また最大泡圧法と呼ばれる方法もあり、液の中に差し込んだ細管から窒素ガスを吹きだして泡を膨らますことにより、液体と気体の界面を広げ、その際の最大圧力から表面張力を求めるものである。具体的な表面張力計としては、例えば最大泡圧法による協和界面科学社製のBP-D3型などが一般的に使用される。   The surface tension is measured by a surface tensiometer. Generally, a method called the Dunui's method is used, in which a platinum ring is gently immersed in an abrasive, and then the force that can be pulled up is measured, and the surface tension is determined from the pulling up force. There is also a method called the maximum bubble pressure method, in which nitrogen gas is blown out from a thin tube inserted into a liquid to expand bubbles, thereby expanding the interface between the liquid and gas, and calculating the surface tension from the maximum pressure at that time. . As a specific surface tensiometer, for example, BP-D3 type manufactured by Kyowa Interface Science Co., Ltd. by the maximum bubble pressure method is generally used.

本発明の分散剤としては、例えば、(A)ポリアクリル酸、そのアンモニウム塩及びポリアクリル酸アルキルから選ばれた少なくとも1種類、(B)メタクリル酸もしくはアクリル酸の誘導体モノマ、(C)水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性分散剤、水溶性両性分散剤から選ばれた少なくとも1種類等が挙げられる。2種類以上の分散剤を併用してもよい。   Examples of the dispersant of the present invention include (A) at least one selected from polyacrylic acid, its ammonium salt and polyalkyl acrylate, (B) a methacrylic acid or acrylic acid derivative monomer, and (C) water-soluble. At least one selected from an anionic dispersant, a water-soluble nonionic dispersant, a water-soluble cationic dispersant, and a water-soluble amphoteric dispersant is exemplified. Two or more dispersants may be used in combination.

分散剤として(A)ポリアクリル酸及びそのアンモニウム塩、ポリアクリル酸アルキルから選ばれた少なくとも1種類(以下、分散剤(A)という。)を用いるのが好ましい。前記分散剤(A)の濃度は砥粒として用いる酸化セリウム粒子100重量部に対して0.2〜5.0重量部であることが好ましい。より好ましくは、0.2〜2.0重量部であり、さらに好ましくは0.3〜1.0重量部である。分散剤の濃度が薄すぎると砥粒自身の安定性が低下する傾向があり、また分散剤の濃度が濃すぎると砥粒の凝集性に繋がる傾向がある。   As the dispersant, it is preferable to use (A) at least one kind selected from polyacrylic acid and its ammonium salt and polyalkyl acrylate (hereinafter, referred to as dispersant (A)). The concentration of the dispersant (A) is preferably 0.2 to 5.0 parts by weight based on 100 parts by weight of the cerium oxide particles used as the abrasive. More preferably, it is 0.2 to 2.0 parts by weight, even more preferably 0.3 to 1.0 part by weight. If the concentration of the dispersant is too low, the stability of the abrasive grains tends to decrease, and if the concentration of the dispersant is too high, the abrasive grains tend to cohere.

分散剤(A)の重量平均分子量は、100〜150,000が好ましく、1,000〜20,000がより好ましい。なお、本発明において重量平均分子量はGPCで測定し、標準ポリオキシエチレン換算した値である。   The weight average molecular weight of the dispersant (A) is preferably from 100 to 150,000, more preferably from 1,000 to 20,000. In the present invention, the weight average molecular weight is a value measured by GPC and converted to standard polyoxyethylene.

研磨剤中の分散剤が分散剤(A)であり、酸化セリウム粒子、分散剤(A)、水のみで研磨剤が構成された場合の酸化セリウム粒子のゼータ電位は−30〜−100mVを示すことが好ましい。さらに好ましくは−40〜−80mVで、とりわけ好ましくは−40〜−60mVである。−30mVを超える場合、安定性の低下が著しく、砥粒の反発力が小さいため、凝集を引き起こす傾向があり、−100mV未満の場合、被膜と酸化セリウム粒子との反発力が強くなり、研磨速度の低下に繋がる傾向がある。酸化セリウム粒子、分散剤、水のみで研磨剤が構成された場合とは、具体的には、上記酸化セリウムスラリーと添加液とを分けた二液式研磨剤における酸化セリウムスラリーに相当し、換言すれば、添加液を添加する前の研磨剤に相当する。   The dispersant in the abrasive is the dispersant (A), and the zeta potential of the cerium oxide particles when the abrasive is composed of only the cerium oxide particles, the dispersant (A), and water shows -30 to -100 mV. Is preferred. It is more preferably -40 to -80 mV, particularly preferably -40 to -60 mV. If it exceeds -30 mV, the stability is remarkably reduced, and the repulsive force of the abrasive grains is small, which tends to cause agglomeration. If it is less than -100 mV, the repulsive force between the coating and the cerium oxide particles becomes strong, and the polishing rate Tends to decrease. The case where the abrasive is composed only of cerium oxide particles, a dispersant, and water specifically corresponds to a cerium oxide slurry in a two-part abrasive in which the cerium oxide slurry and the additive liquid are separated. In this case, it corresponds to the abrasive before the addition liquid is added.

また、本発明において分散剤に(B)メタクリル酸もしくはアクリル酸の誘導体モノマ(以下、分散剤(B)という。)を用いることが好ましい。分散剤(B)は具体的にはアクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸イソブチル、アクリル酸N−オクチル、アクリル酸イソオクチル、アクリル酸イソノニル、アクリル酸ステアリル、アクリル酸メトキシエチル、アクリル酸ジメチルアミノエチル、1−6−ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、メタクリル酸ブチル、メタクリル酸tert−ブチル、メタクリル酸シクロヘキシルなどが挙げられる。   In the present invention, it is preferable to use (B) a methacrylic acid or acrylic acid derivative monomer (hereinafter, referred to as a dispersant (B)) as the dispersant. Dispersant (B) is specifically 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobutyl acrylate, N-octyl acrylate, isooctyl acrylate, isononyl acrylate, stearyl acrylate, methoxyethyl acrylate , Dimethylaminoethyl acrylate, 1-6-hexanediol diacrylate, trimethylolpropane triacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, butyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, etc. Is mentioned.

前記分散剤(B)の濃度は砥粒として用いる酸化セリウム粒子100重量部に対して0.2〜50重量部であること好ましい。より好ましくは、2.0〜20重量部であり、さらに好ましくは5.0〜10重量部である。分散剤の濃度が薄すぎると砥粒自身の安定性低下に繋がり、また分散剤の濃度が濃すぎると砥粒の凝集性に繋がる傾向がある。   The concentration of the dispersant (B) is preferably 0.2 to 50 parts by weight based on 100 parts by weight of the cerium oxide particles used as the abrasive. More preferably, it is 2.0 to 20 parts by weight, and still more preferably 5.0 to 10 parts by weight. If the concentration of the dispersant is too low, the stability of the abrasive grains themselves will decrease, and if the concentration of the dispersant is too high, the abrasive grains will tend to cohere.

研磨剤中の分散剤が分散剤(B)であり、酸化セリウム粒子、分散剤(B)、水のみで研磨剤が構成された場合の酸化セリウム粒子のゼータ電位は+30〜+100mVを示すことが好ましい。さらに好ましくは+40〜+80mVで、とりわけ好ましくは+40〜+60mVである。+30mV未満の場合、安定性の低下が著しく、砥粒の反発力が小さいため、凝集を引き起こす傾向があり、+100mVを超える場合、被膜と酸化セリウム粒子との吸着力が強すぎるため、酸化セリウムが基体に吸着されやすく除去することが難しくなる恐れがある。   The dispersant in the abrasive is the dispersant (B), and the zeta potential of the cerium oxide particles when the abrasive is composed of only cerium oxide particles, dispersant (B), and water may show +30 to +100 mV. preferable. It is more preferably +40 to +80 mV, particularly preferably +40 to +60 mV. If it is less than +30 mV, the stability is remarkably reduced, and the repulsive force of the abrasive grains is small, which tends to cause agglomeration. If it is more than +100 mV, the adsorbing force between the coating and the cerium oxide particles is too strong, so There is a possibility that it is easily adsorbed on the substrate and difficult to remove.

本発明において、(C)水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性分散剤、水溶性両性分散剤から選ばれた少なくとも1種類(以下、分散剤(C)という。)を用いるのが好ましく、2種類以上を使用してもよい。なお、分散剤(C)は、分散剤(A)及び分散剤(B)を含まないものとする。   In the present invention, (C) at least one kind selected from water-soluble anionic dispersants, water-soluble nonionic dispersants, water-soluble cationic dispersants, and water-soluble amphoteric dispersants (hereinafter, dispersant (C) )), And two or more types may be used. The dispersant (C) does not include the dispersant (A) and the dispersant (B).

分散剤(C)のうち、水溶性陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン、特殊ポリカルボン酸型高分子分散剤等の誘導体等が挙げられる。   Among the dispersants (C), examples of the water-soluble anionic dispersant include triethanolamine lauryl sulfate, ammonium lauryl sulfate, polyoxyethylene alkyl ether triethanolamine sulfate, and special polycarboxylic acid type polymer dispersants. Derivatives and the like.

分散剤(C)のうち、水溶性非イオン性分散剤としては、例えば、ポリオキシプロピレンポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンポリオキシプロピレンエーテル誘導体、ポリオキシプロピレングリセリルエーテル、ポリエチレングリコール、メトキシポリエチレングリコール、アセチレン系ジオールのオキシエチレン付加体等のエーテル型界面活性剤、ソルビタン脂肪酸エステル、グリセロールボレイト脂肪酸エステル等のエステル型界面活性剤、ポリオキシエチレンアルキルアミン等のアミノエーテル型界面活性剤、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセロールボレイト脂肪酸エステル、ポリオキシエチレンアルキルエステル等のエーテルエステル型界面活性剤、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アルカノールアミド等のアルカノールアミド型界面活性剤、ポリビニルピロリドン、ポリアクリルアミド、ポリジメチルアクリルアミド等が挙げられる。   Among the dispersants (C), examples of the water-soluble nonionic dispersant include polyoxypropylene polyoxyethylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, and polyoxyethylene polyoxypropylene ether derivatives. , Polyoxypropylene glyceryl ether, polyethylene glycol, methoxy polyethylene glycol, ether type surfactants such as oxyethylene adduct of acetylene diol, ester type surfactants such as sorbitan fatty acid ester, glycerol borate fatty acid ester, polyoxyethylene Amino ether surfactants such as alkylamines, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene glycerol borate fatty acid esters, polio Ether ester type surfactants such as shea polyoxyethylene alkyl esters, fatty acid alkanolamides, alkanolamide type surfactants such as polyoxyethylene fatty acid alkanolamide, polyvinyl pyrrolidone, polyacrylamide, polydimethyl acrylamide.

分散剤(C)のうち、水溶性陽イオン性分散剤としては、例えばココナットアミンアセテート、ステアリルアミンアセテート等が挙げられ、水溶性両性分散剤としては、例えば、ラウリルベタイン、ステアリルベタイン、ラウリルジメチルアミンオキサイド、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン等が挙げられる。   Among the dispersants (C), examples of the water-soluble cationic dispersant include coconutamine acetate and stearylamine acetate, and examples of the water-soluble amphoteric dispersant include lauryl betaine, stearyl betaine, and lauryl dimethyl. Amine oxide, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine and the like can be mentioned.

これらの分散剤(C)添加量は、スラリー状の研磨剤中の粒子の分散性及び沈降防止、さらに研磨傷と分散剤添加量との関係から酸化セリウム粒子100重量部に対して、0.2重量部以上50重量部以下の範囲が好ましい。   The dispersant (C) is added in an amount of 0.1 to 100 parts by weight of the cerium oxide particles in view of the dispersibility and prevention of sedimentation of the particles in the slurry-like abrasive and the relationship between the polishing scratches and the amount of the dispersant added. The range is preferably from 2 parts by weight to 50 parts by weight.

分散剤(C)がポリマーの場合、その重量平均分子量は、100〜50,000が好ましく、1,000〜20,000がより好ましい。ここで、分散剤(C)の重量平均分子量が100未満の場合は、分散剤としての効果を発揮せず酸化セリウム粒子の沈降を促進し、研磨速度の不安定性を引き起こす場合がある。50,000を超えた場合は、分散剤分子が粒子−粒子間の凝集を引き起こし、研磨剤の保存安定性が低下する場合がある。   When the dispersant (C) is a polymer, the weight average molecular weight is preferably from 100 to 50,000, more preferably from 1,000 to 20,000. Here, when the weight average molecular weight of the dispersant (C) is less than 100, the effect as a dispersant is not exhibited, and the sedimentation of cerium oxide particles is promoted, which may cause instability of the polishing rate. If it exceeds 50,000, the dispersant molecules may cause agglomeration between particles, and the storage stability of the abrasive may decrease.

電子部品製造に係る研磨に使用することから、分散剤(A)〜(C)中の、ナトリウムイオン、カリウムイオン等のアルカリ金属、イオウ及びハロゲン類の不純物含有率は10ppm以下に抑えることが好ましい。   Since it is used for polishing related to the production of electronic components, it is preferable to suppress the content of impurities of alkali metals such as sodium ions and potassium ions, sulfur and halogens in the dispersants (A) to (C) to 10 ppm or less. .

分散剤は特にポリアクリル酸アンモニウム塩であることが好ましい。   The dispersant is particularly preferably an ammonium polyacrylate.

研磨剤における添加剤は、電子部品製造に係る研磨に使用することから、ナトリウムイオン、カリウムイオン等のアルカリ金属、ハロゲン類及びイオウの含有率は10ppm以下に抑えることが好ましい。   Since the additive in the abrasive is used for polishing in the production of electronic components, the content of alkali metals such as sodium ions and potassium ions, halogens, and sulfur is preferably suppressed to 10 ppm or less.

添加剤としては、まず、研磨剤の表面張力の低下を引き起こすものであることが好ましい。このような添加剤(以下、第一の添加剤という。)は、保管安定性の観点から、水溶性の非イオン性分散剤、具体的には非イオン性界面活性剤を含むことが好ましい。   It is preferable that the additive first causes a decrease in the surface tension of the abrasive. Such an additive (hereinafter, referred to as a first additive) preferably contains a water-soluble nonionic dispersant, specifically, a nonionic surfactant, from the viewpoint of storage stability.

水溶性非イオン性分散剤としては、例えば、ポリオキシプロピレンポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンポリオキシプロピレンエーテル誘導体、ポリオキシプロピレングリセリルエーテル、ポリエチレングリコール、メトキシポリエチレングリコール、アセチレン系ジオールのオキシエチレン付加体等のエーテル型界面活性剤;ソルビタン脂肪酸エステル、グリセロールボレイト脂肪酸エステル等のエステル型界面活性剤;ポリオキシエチレンアルキルアミン等のアミノエーテル型界面活性剤;ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセロールボレイト脂肪酸エステル、ポリオキシエチレンアルキルエステル等のエーテルエステル型界面活性剤;脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アルカノールアミド等のアルカノールアミド型界面活性剤が挙げられる。第一の添加剤は、これらの成分から、一成分以上用いられる。   Examples of the water-soluble nonionic dispersant include polyoxypropylene polyoxyethylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene polyoxypropylene ether derivative, polyoxypropylene glyceryl ether, polyethylene Ether-type surfactants such as glycol, methoxypolyethylene glycol and oxyethylene adduct of acetylene-based diol; ester-type surfactants such as sorbitan fatty acid ester and glycerol borate fatty acid ester; amino ether-type surfactant such as polyoxyethylene alkylamine Activator: polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerol borate fatty acid ester, polyoxyethylene alkyl Ether ester type surfactants such as ester, fatty acid alkanolamides, alkanolamide type surfactants such as polyoxyethylene fatty acid alkanolamides. The first additive is used as one or more of these components.

特に表面張力の低下と平坦化効率の観点から第一の添加剤は、アセチレン系ジオールのオキシエチレン付加体がより好ましい。平坦性効率とは、凹凸を有する表面が酸化珪素被膜等の被研磨膜で被覆された場合の凸部のみの選択的研磨を表している。凸部を無くして平坦に研磨した後、均一に研磨出来るためには、凸部の研磨速度/凹部の研磨速度が3以上となるような研磨剤であることが好ましく、より好ましくは5以上である。アセチレン系ジオールのオキシエチレン付加体の場合、ここでいう平坦化効率が非常に高いものが得られるため好ましい。   In particular, the first additive is more preferably an oxyethylene adduct of acetylene-based diol from the viewpoint of lowering the surface tension and flattening efficiency. The flatness efficiency refers to selective polishing of only convex portions when the surface having irregularities is covered with a film to be polished such as a silicon oxide film. In order to be able to polish uniformly after removing the protrusions and flat polishing, it is preferable that the polishing agent is such that the polishing rate of the protrusions / the polishing rate of the recesses is 3 or more, more preferably 5 or more. is there. An oxyethylene adduct of an acetylene-based diol is preferable because a substance having extremely high flattening efficiency can be obtained.

アセチレン系ジオールのオキシエチレン付加体としては、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール-ジポリオキシエチレンエーテル、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール-モノポリオキシエチレンエーテル等の化合物であり、水溶性と表面張力低下の両方の観点から、特に2,4,7,9-テトラメチル-5-デシン-4,7-ジオール-ジポリオキシエチレンエーテルであることが好ましく、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール-ジポリオキシエチレンエーテルの中でもHLBが10以上となるものが特に好ましい。   Oxyethylene adducts of acetylenic diols include 2,4,7,9-tetramethyl-5-decyne-4,7-diol and 2,4,7,9-tetramethyl-5-decyne-4,7 Compounds such as -diol-dipolyoxyethylene ether and 2,4,7,9-tetramethyl-5-decyne-4,7-diol-monopolyoxyethylene ether. From, particularly preferably 2,4,7,9-tetramethyl-5-decyne-4,7-diol-dipolyoxyethylene ether, 2,4,7,9-tetramethyl-5-decyne- Among 4,7-diol-dipolyoxyethylene ethers, those having an HLB of 10 or more are particularly preferred.

第一の添加剤の添加量は、研磨剤中の粒子の分散性及び沈降防止、さらに平坦性特性の維持と添加剤の添加量との関係から、酸化セリウム粒子100重量部に対して、10重量部以上1000重量部以下の範囲が好ましい。添加量が少なすぎると十分な平坦化特性が得られにくく、多すぎると研磨速度が低下や凝集を引き起こす傾向があるためである。   The amount of the first additive added is 10 parts by weight based on 100 parts by weight of the cerium oxide particles in view of the relationship between the dispersibility and prevention of sedimentation of the particles in the abrasive, the maintenance of flatness characteristics, and the amount of the additive. The range of not less than 1000 parts by weight and not more than 1000 parts by weight is preferable. If the added amount is too small, it is difficult to obtain sufficient flattening characteristics, and if the added amount is too large, the polishing rate tends to decrease or cause aggregation.

さらには、研磨剤の放置安定性を保つ観点及び平坦性特性を維持する観点から、第一の添加剤に加えて、第一の添加剤とは異なる第二の添加剤を添加することが好ましく、かかる第二の添加剤として水溶性ポリビニル系重合体が好ましい。   Furthermore, it is preferable to add a second additive different from the first additive, in addition to the first additive, from the viewpoint of maintaining the standing stability of the abrasive and maintaining the flatness characteristics. As the second additive, a water-soluble polyvinyl polymer is preferable.

水溶性ポリビニル系重合体は重量平均分子量が1000〜300万であることが好ましく、より好ましくは、1万〜100万である。分子量が小さすぎると平坦化特性の低下に繋がり、分子量が高すぎると研磨剤中に含有する酸化セリウムスラリーの粒径放置安定性が低下する傾向があるためである。   The weight average molecular weight of the water-soluble polyvinyl polymer is preferably 1,000 to 3,000,000, and more preferably 10,000 to 1,000,000. If the molecular weight is too small, the flattening characteristics will be reduced, and if the molecular weight is too high, the particle size storage stability of the cerium oxide slurry contained in the abrasive tends to decrease.

第二の添加剤として挙げられる水溶性ポリビニル系重合体は、具体的にはポロビニルピロリドン類、ポリアルキルアクリルアミド類、ポリアクリルアミド、ポリジアルキルアクリルアミド類、ポリアクリル酸アンモニウム類などの群から選ばれる。これら添加剤の数は限定されるものではなく、1種類でも2種類以上でも問題はない。   The water-soluble polyvinyl polymer mentioned as the second additive is specifically selected from the group of polyvinylpyrrolidone, polyalkylacrylamide, polyacrylamide, polydialkylacrylamide, polyammonium acrylate and the like. The number of these additives is not limited, and there is no problem even if one kind or two or more kinds is used.

第二の添加剤の添加量は、研磨剤中の粒子の分散性及び沈降防止、さらに平坦性特性の維持と添加剤の添加量との関係から酸化セリウム粒子100重量部に対して、1重量部以上500重量部以下の範囲が好ましい。添加量が少なすぎると十分な平坦化特性が得られにくく、多すぎると研磨速度低下や凝集を引き起こす場合があるためである。   The amount of the second additive added is 1 part by weight based on 100 parts by weight of the cerium oxide particles because of the relationship between the dispersibility of the particles in the abrasive, the prevention of sedimentation, the maintenance of flatness characteristics, and the amount of the additive. The range is preferably from 500 parts by weight to 500 parts by weight. If the added amount is too small, it is difficult to obtain sufficient flattening characteristics, and if the added amount is too large, the polishing rate may be reduced or aggregation may be caused.

本発明の研磨剤は、上記の分散剤及び少なくとも一種の添加剤を含む研磨剤をそのまま使用してもよいが、さらに他の添加剤としてアンモニア、テトラメチルアンモニウムヒドロキシド(TMAH)等のpH調整剤、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、アミノエチルエタノールアミン等を添加して研磨剤とすることができる。   As the abrasive of the present invention, an abrasive containing the above-mentioned dispersant and at least one additive may be used as it is, but as another additive, pH adjustment of ammonia, tetramethylammonium hydroxide (TMAH) or the like may be used. An abrasive, N, N-diethylethanolamine, N, N-dimethylethanolamine, aminoethylethanolamine, or the like can be added to make an abrasive.

研磨剤中の水の配合量は残部でよく、含有されていれば特に限定されない。   The blending amount of water in the abrasive may be the balance, and is not particularly limited as long as it is contained.

さらに、本発明の研磨剤には、着色剤、水以外の溶媒等の、一般に研磨剤に使用される材料を、研磨剤の作用効果を損なわない範囲で添加しても良い。   Further, to the abrasive of the present invention, a material generally used for an abrasive, such as a coloring agent or a solvent other than water, may be added as long as the effect of the abrasive is not impaired.

本発明の研磨剤のpHは4〜10の範囲にあるのが好ましい。より好ましくは5〜9の範囲にあり、さらに好ましくは6.5〜8.5の範囲にある。pHが低すぎても高すぎても研磨剤の保存安定性の低下に繋がり傷発生の原因となるおそれがある。pHは酸成分、またはアンモニア、水酸化ナトリウム、TMAH等のアルカリ成分の添加によって調整可能である。   The pH of the abrasive of the present invention is preferably in the range of 4 to 10. It is more preferably in the range of 5 to 9, and even more preferably in the range of 6.5 to 8.5. If the pH is too low or too high, the storage stability of the abrasive may be reduced, which may cause scratches. The pH can be adjusted by adding an acid component or an alkali component such as ammonia, sodium hydroxide, or TMAH.

本発明の研磨剤のpHは、pHメータ(例えば、横河電機株式会社製の Model pH81)で測定した。標準緩衝液(フタル酸塩pH緩衝液pH:4.21(25℃)、中性りん酸塩pH緩衝液pH6.86(25℃))を用いて、2点校正した後、電極を研磨剤に入れて、2分以上経過して安定した後の値を測定した。   The pH of the abrasive of the present invention was measured with a pH meter (for example, Model pH81 manufactured by Yokogawa Electric Corporation). After two-point calibration using a standard buffer (phthalate pH buffer pH: 4.21 (25 ° C.), neutral phosphate pH buffer pH 6.86 (25 ° C.)), the electrode was polished. , And the value was measured after 2 minutes or more had passed and stabilized.

本発明の研磨剤の粘度は特に制限されるものではないが、0.5〜5mPa・sの範囲であることが好ましい。粘度が高すぎても低すぎても研磨剤の保管安定性を低下させる傾向がある。なお、上述の二液式研磨剤の場合にも、保管安定性を得るためには酸化セリウムスラリーの粘度が0.5〜5mPa・sであることが好ましい。   The viscosity of the abrasive of the present invention is not particularly limited, but is preferably in the range of 0.5 to 5 mPa · s. If the viscosity is too high or too low, the storage stability of the abrasive tends to decrease. In addition, even in the case of the above-mentioned two-part abrasive, in order to obtain storage stability, the viscosity of the cerium oxide slurry is preferably 0.5 to 5 mPa · s.

本発明の研磨方法は、被研磨膜を形成した基体を研磨布に押しあて加圧し、本発明の研磨剤を被研磨膜と研磨布との間に供給しながら、基体の被研磨膜と研磨布とを相対的に動かして被研磨膜を研磨することを特徴とする。   In the polishing method of the present invention, the substrate on which the film to be polished is formed is pressed against a polishing cloth and pressurized, and the polishing agent of the present invention is supplied between the film to be polished and the polishing cloth. The film to be polished is polished by relatively moving the cloth.

基体として、例えば半導体装置製造に係る基板、具体的には回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上に、無機絶縁層が形成された基板などが挙げられる。そして、被研磨膜は、前記無機絶縁層、例えば酸化珪素膜層あるいは窒化珪素膜層及び酸化珪素膜層等が挙げられる。   As a substrate, for example, an inorganic insulating layer is formed on a semiconductor substrate such as a substrate for manufacturing a semiconductor device, specifically, a semiconductor substrate on which circuit elements and wiring patterns are formed, and a semiconductor substrate on which circuit elements are formed. The formed substrate is exemplified. The film to be polished includes the inorganic insulating layer, for example, a silicon oxide film layer or a silicon nitride film layer and a silicon oxide film layer.

このような被研磨膜を上記研磨剤で研磨することによって、表面の凹凸を解消し、半導体基板全面にわたって平滑な面とすることができる。   By polishing such a film to be polished with the above-mentioned abrasive, unevenness on the surface can be eliminated, and a smooth surface can be obtained over the entire surface of the semiconductor substrate.

本発明の研磨方法において、研磨する装置としては、被研磨面を有する基体を保持するホルダーと、研磨布(パッド)を貼り付けられ、回転数が変更可能なモータ等を取り付けてある研磨定盤とを有する一般的な研磨装置が使用できる。例えば、荏原製作所株式会社製研磨装置:型番EPO111が使用できる。   In the polishing method of the present invention, as a polishing apparatus, a polishing table having a holder for holding a substrate having a surface to be polished, a polishing cloth (pad) attached thereto, and a motor or the like capable of changing the number of rotations is attached. A general polishing apparatus having the following can be used. For example, a polishing apparatus manufactured by EBARA CORPORATION: model number EPO111 can be used.

基体の被研磨面を研磨布に押圧した状態で研磨布と被研磨膜とを相対的に動かすには、具体的には基体と研磨定盤との少なくとも一方を動かせば良い。研磨定盤を回転させる他に、ホルダーを回転や揺動させて研磨しても良い。また、研磨定盤を遊星回転させる研磨方法、ベルト状の研磨布を長尺方向の一方向に直線状に動かす研磨方法等が挙げられる。なお、ホルダーは固定、回転、揺動のいずれの状態でも良い。これらの研磨方法は、研磨布と被研磨膜とを相対的に動かすのであれば、被研磨面や研磨装置により適宜選択できる。   In order to relatively move the polishing cloth and the film to be polished while the surface to be polished of the substrate is pressed against the polishing cloth, at least one of the substrate and the polishing platen may be moved. In addition to rotating the polishing platen, the holder may be rotated or rocked for polishing. In addition, a polishing method in which a polishing platen is rotated in a planetary manner, a polishing method in which a belt-shaped polishing cloth is linearly moved in one direction in a longitudinal direction, and the like are exemplified. Note that the holder may be in any of a fixed state, a rotating state, and a swinging state. These polishing methods can be appropriately selected depending on the surface to be polished and the polishing apparatus as long as the polishing cloth and the film to be polished are relatively moved.

研磨条件には制限はないが、定盤の回転速度は基体が飛び出さないように200rpm以下の低回転が好ましく、研磨布の基体にかける圧力(加工荷重)は研磨後に傷が発生しないように1kg/cm2(98kPa)以下が好ましい。研磨速度の被研磨面内均一性及びパターンの平坦性を満足するためには、5kPa〜50kPaであることがより好ましい。 The polishing conditions are not limited, but the rotation speed of the platen is preferably 200 rpm or less so that the substrate does not pop out. The pressure (working load) applied to the substrate of the polishing cloth is set so that no scratch occurs after polishing. It is preferably at most 1 kg / cm 2 (98 kPa). In order to satisfy the uniformity of the polishing rate within the surface to be polished and the flatness of the pattern, the pressure is more preferably 5 kPa to 50 kPa.

研磨している間、研磨布と被研磨膜との間にはスラリー状の本発明の研磨剤をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨剤で覆われていることが好ましい。具体的には、研磨布面積1cm当たり、0.005〜0.40ml供給されることが好ましい。二液式研磨剤の供給形態は、上記したように別々でも直前混合でもよい。 During polishing, the slurry of the present invention is continuously supplied between the polishing cloth and the film to be polished by a pump or the like. Although the supply amount is not limited, it is preferable that the surface of the polishing pad is always covered with the polishing agent. Specifically, it is preferable to supply 0.005 to 0.40 ml per 1 cm 2 of the polishing cloth area. The supply form of the two-part abrasive may be separate or immediately before mixing as described above.

研磨終了後の基体は、流水中で良く洗浄後、スピンドライヤ等を用いて基体上に付着した水滴を払い落としてから乾燥させることが好ましい。   After the polishing is completed, the substrate is preferably washed well in running water, and then dried using a spin drier or the like to remove water droplets adhered to the substrate.

例えば、本発明の研磨方法は、半導体装置の製造における、層間絶縁膜、BPSG膜、シャロー・トレンチ分離用絶縁膜を研磨する平坦化工程に使用できる。図1(a)〜(d)に本発明の研磨方法の一実施形態である、シャロー・トレンチ分離のプロセスを縦断面該略図で示す。シャロー・トレンチ分離とは図1のようなプロセスで形成される分離方法であり、一般的なプロセスを図1に沿って説明する。   For example, the polishing method of the present invention can be used in a planarization step of polishing an interlayer insulating film, a BPSG film, and a shallow trench isolation insulating film in the manufacture of a semiconductor device. 1 (a) to 1 (d) are schematic longitudinal sectional views showing a process of shallow trench isolation, which is one embodiment of the polishing method of the present invention. The shallow trench isolation is an isolation method formed by a process as shown in FIG. 1, and a general process will be described with reference to FIG.

図1(a)のように、シリコン1基板の表面の酸化珪素(SiO)2の、素子を埋め込む部分のみを窒化珪素膜3でキャップして保護し、素子と素子を分離するため、フォトレジスト法により、レジスト4を塗布し、感光、現像する。 As shown in FIG. 1A, only a portion of the silicon oxide (SiO 2 ) 2 on the surface of the silicon 1 substrate where the element is to be embedded is protected by capping with the silicon nitride film 3 to separate the element from the element. A resist 4 is applied, exposed, and developed by a resist method.

図1(b)のように、さらにドライエッチングで素子分離部分のシリコンを除去する。   As shown in FIG. 1B, the silicon in the element isolation portion is further removed by dry etching.

図1(c)のように、その除去した部分を含めてCVD法で形成される酸化珪素(SiO)膜5を被覆する。 As shown in FIG. 1C, the silicon oxide (SiO 2 ) film 5 formed by the CVD method is covered including the removed portion.

図1(d)のように、被覆された凸部分のみの酸化珪素膜5を除去した後、最終的には窒化珪素膜3が露出するまで研磨で削り込む。   As shown in FIG. 1D, after removing only the covered silicon oxide film 5, the silicon oxide film 5 is polished until the silicon nitride film 3 is finally exposed.

上記図1(d)の研磨の時、平坦化特性の出現が必要であり、平坦化特性を出すためには凸部分のみの選択的な研磨が要求される。図1のように被研磨膜の成分が酸化珪素(SiO)膜であって、図1(c)に示すように、研磨前の凸部分の酸化珪素膜の膜厚がa (nm)、凹部分の酸化珪素膜の膜厚がb (nm)とする場合、一般的には酸化珪素膜の成膜後a/bは成膜条件の違いによって変化するものであるが、一般的には、3<a/b<10である。よって凹部の酸化珪素膜の研磨速度に対して凸部の酸化珪素膜の研磨速度比が3倍以上になることが好ましい。より好ましくは5倍以上10倍以内である。研磨速度比が小さいと段差解消能力が小さくなるため好ましくなく、研磨速度比が大きすぎると研磨条件による差が大きいことを示しており、平坦化後の研磨速度にバラつきが生じるため好ましくない。 At the time of the polishing shown in FIG. 1D, it is necessary to provide a flattening characteristic. In order to obtain the flattening characteristic, selective polishing of only the convex portion is required. As shown in FIG. 1, the component of the film to be polished is a silicon oxide (SiO 2 ) film, and as shown in FIG. 1C, the thickness of the silicon oxide film at the convex portion before polishing is a 0 (nm). In the case where the thickness of the silicon oxide film for the concave portion is b 0 (nm), a 0 / b 0 generally changes after the formation of the silicon oxide film due to the difference in the film formation conditions. Generally, 3 <a 0 / b 0 <10. Therefore, it is preferable that the polishing rate ratio of the silicon oxide film of the convex portion to the polishing speed of the silicon oxide film of the concave portion is three times or more. More preferably, it is 5 times or more and 10 times or less. If the polishing rate ratio is small, the ability to eliminate the step is reduced, which is not preferable. If the polishing rate ratio is too large, the difference due to the polishing conditions is large, and the polishing rate after flattening is not preferred, which is not preferable.

被研磨膜の成分がBPSG膜である場合も、酸化珪素膜の場合とほぼ同様の研磨速度が好ましい。   When the component of the film to be polished is a BPSG film, the polishing rate is preferably substantially the same as that of the silicon oxide film.

本発明において、凸部、凹部の被研磨膜の研磨速度とは、凸部と凹部の膜厚標高差が400nm以上あるパターンウエハを研磨した場合のそれぞれの被研磨膜の研磨速度であり、被研磨膜が被覆された直後の研磨初期1分間で研磨された膜厚を示す。   In the present invention, the polishing rate of the film to be polished in the convex portion and the concave portion is the polishing rate of each film to be polished when a pattern wafer having a difference in film thickness elevation of the convex portion and the concave portion of 400 nm or more is polished. It shows the film thickness polished in the first minute of polishing immediately after the coating of the polishing film.

また、本発明の研磨方法を層間絶縁膜、BPSG膜、シャロー・トレンチ分離に使用するためには、研磨時に傷の発生が少ないことが特に好ましい。   In addition, in order to use the polishing method of the present invention for an interlayer insulating film, a BPSG film, and a shallow trench isolation, it is particularly preferable that scratches are not generated during polishing.

研磨定盤上の研磨布としては、一般的な発泡ポリウレタン、不織布、多孔質フッ素樹脂等が使用でき、特に制限がないが、研磨剤の表面張力が研磨布表面の臨界表面張力より小さいことが好ましい。これにより、研磨剤が研磨布上で均一に分散することができる。   As the polishing cloth on the polishing platen, general foamed polyurethane, non-woven fabric, porous fluororesin, etc. can be used, and there is no particular limitation, but the surface tension of the polishing agent is smaller than the critical surface tension of the polishing cloth surface. preferable. Thereby, the abrasive can be uniformly dispersed on the polishing cloth.

また、研磨布には研磨剤の流動性を保てるような溝加工を施すことが好ましい。研磨布の溝形状、溝深さ等は特に制限はないが、研磨布の溝加工が施されていないと、表面張力により、被研磨面が研磨布に吸着されてしまう傾向があるため、好ましくない。   Further, it is preferable to subject the polishing cloth to groove processing that can maintain the fluidity of the abrasive. The groove shape, groove depth, etc. of the polishing cloth are not particularly limited, but if the groove processing of the polishing cloth is not performed, since the surface to be polished tends to be adsorbed to the polishing cloth due to surface tension, it is preferable. Absent.

研磨布表面の臨界表面張力は、上記のように研磨剤の表面張力にあわせて選択すればよいが、一般に40dyn/cm以上であることが好ましい。また、45dyn/cm以上であることがより好ましく、45dyn/cmから55dyn/cmであることが特に好ましい。研磨布表面の臨界表面張力が小さ過ぎると研磨剤を研磨布上で弾いてしまい、研磨布上に不均一に存在することになり、機差や研磨布の状態に依存した研磨速度のバラつきが発生するため好ましくない。また研磨布表面の臨界表面張力が大き過ぎると、研磨剤の拡散が速くなりすぎて、研磨に寄与する研磨剤の量が少なくなってしまうため、好ましくない。   The critical surface tension of the polishing cloth surface may be selected according to the surface tension of the abrasive as described above, but is generally preferably 40 dyn / cm or more. Further, it is more preferably at least 45 dyn / cm, particularly preferably from 45 dyn / cm to 55 dyn / cm. If the critical surface tension of the polishing cloth surface is too small, the polishing agent will be repelled on the polishing cloth, and will be unevenly distributed on the polishing cloth. It is not preferable because it occurs. On the other hand, if the critical surface tension of the polishing cloth surface is too large, the diffusion of the polishing agent becomes too fast, and the amount of the polishing agent contributing to the polishing is reduced, which is not preferable.

臨界表面張力とは、数種類の異なった表面張力を持つ液体を固体表面上に滴下し、液滴の接触角(θ)を測定し、液体の表面張力(横軸)とcosθ値(縦軸)をプロットしたのち、表面張力とcosθ値から直線の式を求め、この直線をcosθ=1(θ=0)へ外挿したときの表面張力値をいう。   Critical surface tension is a method in which several types of liquids with different surface tensions are dropped on a solid surface, the contact angle (θ) of the liquid droplet is measured, and the surface tension of the liquid (horizontal axis) and cosθ value (vertical axis) Is plotted, a linear equation is determined from the surface tension and the cos θ value, and the surface tension value when this straight line is extrapolated to cos θ = 1 (θ = 0).

臨界表面張力は、固体表面のぬれ特性を示す尺度であり、固体表面が完全にぬれるときの特性値であると定義される。臨界表面張力が大きい固体表面は多くの液体にぬれやすく、臨界表面張力が小さい固体表面では多くの液体にぬれにくいことをあらわすとされている(「接着ハンドブック」日本接着協会編、第2版、P20-P49)。   Critical surface tension is a measure of the wetting characteristics of a solid surface, and is defined as a characteristic value when the solid surface is completely wetted. It is said that a solid surface having a large critical surface tension is easily wettable by many liquids, and a solid surface having a small critical surface tension is hardly wettable by many liquids ("Adhesion Handbook" edited by the Japan Adhesion Association, 2nd edition, P20-P49).

ここで、接触角θは、市販の接触角測定機と呼ばれる装置で容易に測定することができる。また、臨界表面張力は、液体の表面張力とcosθ値をプロットし、最小二乗法によって直線の傾きと切片を求めたのち、下記の式(1)からY:cosθ=1の場合のX:表面張力値として算出することができる。   Here, the contact angle θ can be easily measured by a device called a commercially available contact angle measuring device. The critical surface tension is obtained by plotting the surface tension of the liquid and the value of cos θ, calculating the slope and intercept of the straight line by the least squares method, and then using the following equation (1), It can be calculated as a tension value.

X=(Y−b)/a [dyn/cm =10-3N/m] ・・・(1)
ただし式(1)において、
Y: cosθ(θは接触角)
X:表面張力値[dyn/cm]
A:直線の傾き
b:直線の切片
また、数種類の異なった表面張力を持つ液体としては、水、グリセリン、ホルムアミド、エチレングリコール、プロピレングリコール、イソプロピルアルコールなどの水素結合液体、n-へキサン、n-デカンなどの炭化水素液体等を使用することができる。
X = (Y−b) / a [dyn / cm = 10 −3 N / m] (1)
However, in equation (1),
Y: cosθ (θ is the contact angle)
X: Surface tension value [dyn / cm]
A: Straight line slope
b: Straight section In addition, several types of liquids having different surface tensions include water, hydrogen-bonded liquids such as glycerin, formamide, ethylene glycol, propylene glycol, and isopropyl alcohol, and carbonized liquids such as n-hexane and n-decane. Hydrogen liquid or the like can be used.

また、一般に、研磨剤の表面張力が低いほど、研磨剤の接触角θは小さくなる。研磨剤の、研磨布表面との接触角θは、30°未満であるのが好ましい。   In general, the lower the surface tension of the abrasive, the smaller the contact angle θ of the abrasive. The contact angle θ of the abrasive with the polishing cloth surface is preferably less than 30 °.

本発明の研磨剤及び研磨方法が適用される無機絶縁膜の作製方法として、低圧CVD法、プラズマCVD法等が挙げられる。低圧CVD法による酸化珪素膜形成は、Si源としてモノシラン:SiH4、酸素源として酸素:O2を用いる。このSiH4−O2系酸化反応を400℃以下の低温で行わせることにより得られる。場合によっては、CVD後1000℃またはそれ以下の温度で熱処理される。高温リフローによる表面平坦化を図るためにリン:Pをドープするときには、SiH4−O2−PH3 系反応ガスを用いることが好ましい。 Examples of a method for manufacturing an inorganic insulating film to which the polishing agent and the polishing method of the present invention are applied include a low-pressure CVD method and a plasma CVD method. In forming a silicon oxide film by a low-pressure CVD method, monosilane: SiH 4 is used as a Si source, and oxygen: O 2 is used as an oxygen source. This is obtained by performing the SiH 4 —O 2 -based oxidation reaction at a low temperature of 400 ° C. or less. In some cases, heat treatment is performed at a temperature of 1000 ° C. or less after CVD. When doping phosphorus: P in order to planarize the surface by high-temperature reflow, it is preferable to use a SiH 4 —O 2 —PH 3 -based reaction gas.

プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH4、酸素源としてN2Oを用いたSiH4−N2O系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS−O2 系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は250℃〜400℃、反応圧力は1〜400Paの範囲が好ましい。このように、本発明の研磨剤及び研磨方法が適用される酸化珪素膜等の無機絶縁膜にはリン、ホウ素等の元素がドープされていても良い。 The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. There are two types of plasma generation methods, a capacitive coupling type and an inductive coupling type. As a reaction gas, a SiH 4 -N 2 O-based gas using SiH 4 as a Si source and N 2 O as an oxygen source and a TEOS-O 2 -based gas (TEOS-) using tetraethoxysilane (TEOS) as a Si source are used. Plasma CVD). The substrate temperature is preferably in the range of 250 ° C to 400 ° C, and the reaction pressure is preferably in the range of 1 to 400 Pa. As described above, the inorganic insulating film such as the silicon oxide film to which the polishing agent and the polishing method of the present invention are applied may be doped with an element such as phosphorus and boron.

同様に、低圧CVD法による窒化珪素膜形成は、Si源としてジクロルシラン:SiH2Cl2、窒素源としてアンモニア:NH3を用いる。このSiH2Cl2−NH3系酸化反応を900℃の高温で行わせることにより得られる。プラズマCVD法は、反応ガスとしては、Si源としてSiH4、窒素源としてNH3 を用いたSiH4−NH3系ガスが挙げられる。基板温度は300℃〜400℃が好ましい。 Similarly, in the formation of a silicon nitride film by a low-pressure CVD method, dichlorosilane: SiH 2 Cl 2 is used as a Si source, and ammonia: NH 3 is used as a nitrogen source. This is obtained by performing the SiH 2 Cl 2 —NH 3 -based oxidation reaction at a high temperature of 900 ° C. In the plasma CVD method, as a reaction gas, a SiH 4 —NH 3 gas using SiH 4 as a Si source and NH 3 as a nitrogen source may be used. The substrate temperature is preferably from 300C to 400C.

本発明の研磨剤および研磨方法は、半導体基板に形成された酸化珪素膜だけでなく、半導体装置を含む他の電子部品の製造にも適用することができる。すなわち、本発明の電子部品の製造方法は、上記本発明の研磨剤により研磨する工程を含むか、または、上記本発明の研磨方法により研磨する工程を含むことを特徴とする。例えば、所定の配線を有する配線板に形成された酸化珪素膜、ガラス、窒化珪素等の無機絶縁膜、ポリシリコン、Al、Cu、Ti、TiN、W、Ta、TaN等を主として含有する膜、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザLED用サファイヤ基板、SiC、GaP、GaAs等の半導体単結晶などの研磨工程で適用することができる。さらに磁気ディスク用ガラス基板、磁気ヘッド等の研磨にも適用することができる。   The polishing agent and the polishing method of the present invention can be applied not only to the manufacture of a silicon oxide film formed on a semiconductor substrate but also to other electronic components including a semiconductor device. That is, the method for manufacturing an electronic component according to the present invention is characterized by including a step of polishing with the polishing agent of the present invention or a step of polishing by the polishing method of the present invention. For example, a silicon oxide film formed on a wiring board having predetermined wiring, glass, an inorganic insulating film such as silicon nitride, a film mainly containing polysilicon, Al, Cu, Ti, TiN, W, Ta, TaN, etc., Optical glasses such as photomasks, lenses, prisms, etc., inorganic conductive films such as ITO, optical integrated circuits, optical switching elements, optical waveguides composed of glass and crystalline materials, optical fiber end faces, optical single crystals such as scintillators, The present invention can be applied to a polishing process for a solid-state laser single crystal, a sapphire substrate for a blue laser LED, a semiconductor single crystal such as SiC, GaP, and GaAs. Further, the present invention can be applied to polishing of a glass substrate for a magnetic disk, a magnetic head, and the like.

(実施例1〜9)
(酸化セリウム粒子の作製)
炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中にて焼成することにより黄白色の焼成粉末粒子を約1kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。
(Examples 1 to 9)
(Preparation of cerium oxide particles)
2 kg of cerium carbonate hydrate was placed in a platinum container and calcined at 800 ° C. for 2 hours in the air to obtain about 1 kg of yellow-white calcined powder particles. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed that the powder was cerium oxide.

焼成粉末粒子径は30〜100μmであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム一次粒子径を測定したところ、体積分布の中央値が190nm、最大値が500nmであった。なお、一次粒子径は、レーザ回折式粒度分布計(マルバーン社製商品名マスターサイザ・マイクロクラス)で測定した。   The particle diameter of the calcined powder was 30 to 100 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median value of the volume distribution was 190 nm and the maximum value was 500 nm. The primary particle size was measured with a laser diffraction type particle size distribution meter (trade name: Mastersizer Micro Class, manufactured by Malvern).

上記で得た酸化セリウム焼成粉末粒子1kgを、ジェットミルを用いて乾式粉砕を行って酸化セリウム粉砕粒子(以下、酸化セリウム粒子ともいう。)を得た。この粉砕粒子について走査型電子顕微鏡で観察したところ、一次粒子径と同等サイズの小さな粒子の他に、1〜3μmの大きな粉砕残り粒子と0.5〜1μmの粉砕残り粒子が混在していた。   1 kg of the calcined cerium oxide powder particles obtained above was dry-pulverized using a jet mill to obtain pulverized cerium oxide particles (hereinafter, also referred to as cerium oxide particles). Observation of the pulverized particles with a scanning electron microscope revealed that in addition to small particles having a size equivalent to the primary particle diameter, large pulverized residual particles of 1 to 3 μm and pulverized residual particles of 0.5 to 1 μm were mixed.

(酸化セリウムスラリーの作製)
実施例1〜7では上記作製の酸化セリウム粒子1kgと、分散剤としてポリアクリル酸アンモニウム塩水溶液(40重量%)23gと、脱イオン水8977gを混合し、撹拌しながら超音波分散を10分間施してスラリー原液を得た。実施例8,9ではポリアクル酸アンモニウム水溶液の代わりにメタクリル酸2−ヒドロキシエチル50gと脱イオン水8950gと上記作製の酸化セリウム粒子1kgを混合し、攪拌しながら超音波分散を10分間施してスラリー原液を得た。
(Preparation of cerium oxide slurry)
In Examples 1 to 7, 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight) as a dispersant, and 8977 g of deionized water were mixed, and subjected to ultrasonic dispersion for 10 minutes while stirring. Thus, a slurry stock solution was obtained. In Examples 8 and 9, instead of the aqueous solution of ammonium polyacrylate, 50 g of 2-hydroxyethyl methacrylate, 8950 g of deionized water, and 1 kg of the cerium oxide particles prepared above were mixed, and subjected to ultrasonic dispersion for 10 minutes with stirring to obtain a slurry stock solution. Got.

得られたスラリー原液を1ミクロンフィルターでろ過をし、さらに脱イオン水を加えて固形分5重量%の酸化セリウムスラリーを得た。   The obtained slurry stock solution was filtered through a 1-micron filter, and further deionized water was added to obtain a cerium oxide slurry having a solid content of 5% by weight.

実施例1〜7では、このスラリーpHは8.3であった。実施例8、9では4.5であった。また、このスラリーの酸化セリウム粒子のゼータ電位を測定したところ、実施例1〜7ではいずれも−62mV、実施例8、9ではいずれも+54mVであった。   In Examples 1 to 7, the slurry pH was 8.3. In Examples 8 and 9, it was 4.5. When the zeta potential of the cerium oxide particles in this slurry was measured, it was -62 mV in Examples 1 to 7, and +54 mV in Examples 8 and 9.

スラリーを適当な濃度に希釈してレーザ回折式粒度分布計で測定した結果、実施例1〜9のいずれのスラリーでも粒子径の中央値(平均粒径)が190nmであった。   The slurry was diluted to an appropriate concentration and measured by a laser diffraction type particle size distribution analyzer. As a result, the median particle diameter (average particle diameter) of all the slurries of Examples 1 to 9 was 190 nm.

(酸化セリウムスラリーへの添加剤の添加:研磨剤の調製)
上記の酸化セリウムスラリー(固形分:5重量%)と添加剤とを表1、2記載の配合で配合させ、総量が5000gとなるように脱イオン水を添加して研磨剤を調製した。なお、表1中のPEO−ポリプロピレンオキシド−PEO共重合体とは、ポリエチレンオキシド−ポリプロピレンオキシド−ポリエチレンオキシド共重合体を示す。

Figure 2004297035
Figure 2004297035
(研磨剤の表面張力測定)
最大泡圧法により、協和界面科学社製のBP-D3型を使用して実施例1から9の研磨剤の表面張力を求めた。測定結果を表3に記載する。実施例1から9の研磨剤すべてにおいて40dyn/cm以下の小さい値が得られた。 (Addition of additive to cerium oxide slurry: preparation of abrasive)
The above-mentioned cerium oxide slurry (solid content: 5% by weight) and additives were blended according to the formulations shown in Tables 1 and 2, and deionized water was added so that the total amount was 5000 g, thereby preparing an abrasive. The PEO-polypropylene oxide-PEO copolymer in Table 1 indicates a polyethylene oxide-polypropylene oxide-polyethylene oxide copolymer.
Figure 2004297035
Figure 2004297035
(Measurement of abrasive surface tension)
The surface tension of the abrasives of Examples 1 to 9 was determined by the maximum bubble pressure method using BP-D3 type manufactured by Kyowa Interface Science Co., Ltd. Table 3 shows the measurement results. In all of the abrasives of Examples 1 to 9, small values of 40 dyn / cm or less were obtained.

(研磨剤の研磨布上への滴下実験:接触角測定)
実施例1から9の研磨剤を2cm角に切り取ったポリウレタン素材(ロデール社製型番IC1400、臨界表面張力45dyn/cm)の研磨布上に滴下し、顕微鏡を用いて液滴の様子を観察した結果を表3に、判定結果を表4に記載する。全ての研磨剤で接触角が30°未満となり、全ての研磨剤で弾いている様子は観測されなかった。
(Experiment of dropping abrasive onto polishing cloth: measurement of contact angle)
The abrasives of Examples 1 to 9 were dropped on a 2 cm square polishing cloth made of a polyurethane material (Rodel, model number IC1400, critical surface tension 45 dyn / cm), and the state of the droplets was observed using a microscope. Are shown in Table 3 and the determination results are shown in Table 4. The contact angle was less than 30 ° for all the abrasives, and no flipping was observed for all the abrasives.

(研磨1:酸化珪素ベア膜の研磨)
基体であるφ200mmのシリコン(Si)基板上に、プラズマ−CVD法で1000nmの酸化珪素(SiO)被膜を成膜したベアウエハを作製した。
(Polishing 1: Polishing of silicon oxide bare film)
A bare wafer having a silicon oxide (SiO 2 ) film with a thickness of 1000 nm formed on a silicon (Si) substrate with a diameter of 200 mm as a base by a plasma-CVD method was manufactured.

研磨装置(荏原製作所株式会社製研磨装置:型番EPO111)の基板取り付け用の吸着パッドを貼り付けたホルダーに上記ベアウエハをセットした。   The bare wafer was set on a holder of a polishing apparatus (polishing apparatus manufactured by Ebara Corporation, model number: EPO111) to which a suction pad for attaching a substrate was attached.

上記研磨装置のφ600mmの研磨定盤に、多孔質ウレタン樹脂製の研磨布1(溝形状=k-grooveタイプ:ロデール社製、型番IC1400、臨界表面張力45dyn/cm)、または研磨布2(溝形状=パーフォレートタイプ:ロデール社製、型番IC1400、臨界表面張力43dyn/cm)を貼り付けた。さらに上記ホルダーを、被研磨膜である絶縁膜(酸化珪素被膜)面を下にして載せ、加工荷重を350gf/cm2(34.3kPa)に設定した。 A polishing pad 1 made of a porous urethane resin (groove shape: k-groove type: manufactured by Rodale, model number IC1400, critical surface tension 45 dyn / cm) or a polishing pad 2 (groove) Shape = Perforate type: manufactured by Rodale, model number IC1400, critical surface tension 43 dyn / cm). Further, the holder was placed with the surface of the insulating film (silicon oxide film) to be polished face down, and the processing load was set to 350 gf / cm 2 (34.3 kPa).

研磨定盤上に実施例1から9の研磨剤を200cc/minの速度で滴下しながら、研磨定盤及びウエハをそれぞれ50rpmで1分間回転させ、絶縁膜(酸化珪素膜)を研磨した。研磨後のウエハを純水で良く洗浄後、乾燥した。   The polishing plate and the wafer were each rotated at 50 rpm for 1 minute while the abrasives of Examples 1 to 9 were dropped at a rate of 200 cc / min on the polishing plate to polish the insulating film (silicon oxide film). The polished wafer was thoroughly washed with pure water and then dried.

研磨後、光学式干渉式膜厚計で酸化珪素膜の残膜厚を測定し、それぞれ研磨布1及び研磨布2の場合の研磨量を算出した。算出結果を表3に、判定結果を表4に併記する。   After polishing, the remaining film thickness of the silicon oxide film was measured by an optical interference type film thickness meter, and the polishing amount in the case of the polishing cloth 1 and the polishing cloth 2 was calculated. Table 3 shows the calculation results, and Table 4 shows the judgment results.

その結果、実施例1、4、6〜9では研磨布1を用いた場合と比較すると研磨布2を用いた場合の研磨速度の差が±20%未満の範囲に入っており、研磨布の違いで研磨速度の相違は認められなかった。   As a result, in Examples 1, 4, and 6 to 9, the difference in the polishing rate when using the polishing cloth 2 was within a range of less than ± 20% as compared with the case where the polishing cloth 1 was used. No difference in polishing rate was observed due to the difference.

(研磨2:パターン形成膜の研磨)
図2にパターン形成膜の研磨工程を縦断面該略図で示す。図2(a)に示すように、基体であるφ200mmシリコン(Si)1基板上に10nmの熱酸化膜2aとCVD法で100nmの窒化珪素膜3とを順次成膜し、フォトレジスト法でLine/Space 幅が0.5μm〜500μmのパターン(ただし、Line/Space=100/100μm及び100/300μmのパターンを含む。)を形成し、ドライエッチングで、シリコン1基板に深さが350nmの溝6を形成した後、その上にTEOS−プラズマCVD法で酸化珪素(SiO)膜5を600nm形成したパターンウエハを作製した。
(Polishing 2: polishing of pattern forming film)
FIG. 2 is a schematic longitudinal sectional view showing a polishing step of the pattern forming film. As shown in FIG. 2 (a), a 10 nm thermal oxide film 2a and a 100 nm silicon nitride film 3 are sequentially formed on a φ200 mm silicon (Si) substrate as a substrate by a photoresist method, and a line is formed by a photoresist method. / Space A pattern having a width of 0.5 μm to 500 μm (including a pattern of Line / Space = 100/100 μm and 100/300 μm) is formed, and a groove 6 having a depth of 350 nm is formed in the silicon 1 substrate by dry etching. Was formed, a pattern wafer having a silicon oxide (SiO 2 ) film 5 formed thereon with a thickness of 600 nm by a TEOS-plasma CVD method was manufactured.

上記研磨布2による酸化珪素ベア膜の研磨と同様にして、上記パターンウエハの絶縁膜(酸化珪素膜)5を研磨した。(図2(b)参照。)研磨後のウエハを純水で良く洗浄後、乾燥した。   The insulating film (silicon oxide film) 5 of the pattern wafer was polished in the same manner as the polishing of the silicon oxide bare film with the polishing cloth 2. (Refer to FIG. 2B.) The polished wafer was thoroughly washed with pure water and then dried.

乾燥後、Line/Space=100/100μm及び100/300μmのパターンについて凸(Line)部分と凹(Space)部分との酸化珪素膜5の膜厚を測定した。図2の(a)及び(b)に示すように、酸化珪素膜5の、凸部分の研磨前の膜厚をa(nm)、研磨後の膜厚をa(nm)、凹部分の研磨前の膜厚をb(nm)、研磨後の膜厚をb(nm)として、
凸部の研磨速度/凹部の研磨速度比 = (a−a)/(b−b)
を算出した。算出結果及び判定結果を表3、表4に併記する。
After drying, the thickness of the silicon oxide film 5 at the convex (Line) portion and the concave (Space) portion was measured for patterns of Line / Space = 100/100 μm and 100/300 μm. As shown in FIGS. 2A and 2B, the thickness of the silicon oxide film 5 before polishing is a 0 (nm), the thickness after polishing is a 1 (nm), The film thickness before polishing is b 0 (nm), and the film thickness after polishing is b 1 (nm),
Ratio of polishing speed of convex portion / polishing speed of concave portion = (a 0 −a 1 ) / (b 0 −b 1 )
Was calculated. The calculation results and the judgment results are also shown in Tables 3 and 4.

実施例1、2、3、5〜9では研磨速度比が所望の値である3以上の値が得られた。   In Examples 1, 2, 3, and 5 to 9, the polishing rate ratio was a desired value of 3 or more.

さらに上記と同条件で再度研磨し、Line=100μm部分の窒化珪素膜3の膜厚が80nm±10nmになるまで再削り込みを行った。   Further, polishing was performed again under the same conditions as above, and re-sharpening was performed until the thickness of the silicon nitride film 3 in the portion of Line = 100 μm became 80 nm ± 10 nm.

再削りこみ終了後に触針式段差計を用いて、図2(c)に示すように各パターンのLine/Spaceに生じた段差7を測定して平坦性を判定した。測定結果と判定結果を表3、表4に併記する。   After completion of the resharpening, the flatness was determined by measuring a step 7 generated in Line / Space of each pattern as shown in FIG. 2C using a stylus type step meter. The measurement results and the judgment results are shown in Tables 3 and 4.

触針式段差計を用いて段差7を測定したところ、実施例2、3、7〜9ではいずれの場合でも10nm未満の値を示して、極めて平坦性良好なことが示された。   When the step 7 was measured using a stylus-type step meter, in Examples 2, 3, and 7 to 9, the value was less than 10 nm in any case, indicating that the flatness was very good.

なお、表4及び後述の表7における判定の基準は以下の通りである。   The criteria for determination in Table 4 and Table 7 described below are as follows.

[パッド上接触角]
○:30°未満
×:30°以上
[酸化珪素膜研磨速度比:研磨布1の研磨速度/研磨布2の研磨速度]
○:±20%未満
×:±20%以上
[平坦性]
○:Line/Space=100/100μm及び100/300μmのいずれも10nm未満
△:いずれか一方が10nm未満
×:いずれも10nm以上
[凸部/凹部研磨速度比]
○:3以上
×:3未満

Figure 2004297035
Figure 2004297035
(比較例1〜3)
酸化セリウム粒子の作製と酸化セリウムスラリー(固形分:5重量%)の作製については実施例と同じ方法で行った。酸化セリウムスラリーと添加剤を表5記載の配合で配合させた以外は実施例と同様にして比較用研磨剤を得た。 [Contact angle on pad]
:: less than 30 ° ×: 30 ° or more [silicon oxide film polishing rate ratio: polishing rate of polishing cloth 1 / polishing rate of polishing cloth 2]
:: less than ± 20% ×: ± 20% or more [flatness]
:: Line / Space = 100/100 μm and 100/300 μm are both less than 10 nm Δ: either one is less than 10 nm ×: Both are 10 nm or more [Polish / recess polishing rate ratio]
○: 3 or more ×: less than 3
Figure 2004297035
Figure 2004297035
(Comparative Examples 1 to 3)
Preparation of cerium oxide particles and preparation of a cerium oxide slurry (solid content: 5% by weight) were performed in the same manner as in the example. A comparative abrasive was obtained in the same manner as in Example except that the cerium oxide slurry and the additives were blended according to the blending shown in Table 5.

上記で得られた比較用研磨剤を用いた以外は、実施例と同様にして、表面張力、接触角、研磨布による研磨速度の相違、平坦性及び凸部/凹部の研磨比をそれぞれ測定し、判定した。   Except for using the comparative abrasive obtained above, the surface tension, the contact angle, the difference in the polishing rate by the polishing cloth, the flatness, and the polishing ratio of the convex / concave portions were measured in the same manner as in the example. Was determined.

各測定結果と判定結果を表6、表7に記載する。

Figure 2004297035
Figure 2004297035
Figure 2004297035
その結果、比較例1〜3共に、表面張力は69dyn/cm以上の高い値が得られた。研磨布上に研磨剤の液滴を滴下した場合、接触角が30°以上の値を示し、弾いていることがわかった。また研磨布1を用いた場合と研磨布2を用いた場合の研磨速度の差が±20%以上であった。Line/Space=100/100μmのパターンでの段差がそれぞれ10nm以上となり、平坦性特性の不足が見られた。また、凸部研磨速度/凹部研磨速度の速度比は<3となり、凸部のみ選択的に研磨する特性が見られなかった。 Tables 6 and 7 show the measurement results and the judgment results.
Figure 2004297035
Figure 2004297035
Figure 2004297035
As a result, in all of Comparative Examples 1 to 3, high values of surface tension of 69 dyn / cm or more were obtained. When a droplet of the abrasive was dropped on the polishing cloth, the contact angle showed a value of 30 ° or more, indicating that it was flipping. The difference in polishing rate between the case where the polishing cloth 1 was used and the case where the polishing cloth 2 was used was ± 20% or more. The steps in the pattern of Line / Space = 100/100 μm were each 10 nm or more, and the lack of flatness characteristics was observed. Further, the ratio of the polishing rate of the convex portion / the polishing speed of the concave portion was <3, and the characteristic of selectively polishing only the convex portions was not observed.

本発明の研磨方法の一実施形態である、シャロー・トレンチ分離のプロセスを説明する縦断面該略図であり、(a)はシリコン表面の酸化珪素の、素子を埋め込む部分のみを窒化珪素膜でキャップして保護し、フォトレジスト法により、レジストを塗布し、感光、現像した工程。(b)は(a)にドライエッチングで素子分離部分のシリコンを除去した工程。(c)は(b)の除去した部分を含めてCVD法で酸化珪素膜を成膜して被覆した工程。(d)は(c)の被覆された凸部分のみの酸化珪素膜を除去した後、最終的には窒化珪素膜が露出するまで研磨で削り込んだ工程である。FIG. 4 is a schematic longitudinal sectional view illustrating a process for isolating a shallow trench, which is one embodiment of the polishing method of the present invention. FIG. And applying a resist by a photoresist method, exposing and developing. (B) is a step of removing silicon in the element isolation portion by dry etching in (a). (C) is a step of forming and covering a silicon oxide film by a CVD method including the portion removed in (b). (D) is a step of removing the silicon oxide film of only the protruding portion covered by (c), and finally polishing the silicon oxide film until the silicon nitride film is exposed. 本発明の実施例による、パターン形成膜の研磨工程を示す縦断面該略図であり、(a)は、シリコン基板上に熱酸化膜及び窒化珪素膜を成膜し、パターンを形成し、エッチングで溝を形成した後、その上に酸化珪素膜を形成したパターンウエハを作製した工程。(b)は、(a)を1分間研磨した工程。(c)は、(b)をLine=100μm部分の窒化珪素膜の膜厚が80nm±10nmになるまで再削り込みを行って段差が生じた工程を示す。FIG. 3 is a schematic longitudinal sectional view showing a polishing step of a pattern forming film according to an embodiment of the present invention, wherein (a) shows a method of forming a thermal oxide film and a silicon nitride film on a silicon substrate, forming a pattern, and etching. Forming a groove, and then forming a pattern wafer on which a silicon oxide film is formed. (B) is a step of polishing (a) for 1 minute. (C) shows a step in which (b) is re-cut down until the thickness of the silicon nitride film in the portion of Line = 100 μm becomes 80 nm ± 10 nm, and a step occurs.

符号の説明Explanation of reference numerals

1 シリコン
2 酸化珪素(SiO)膜
2a 熱酸化膜
3 窒化珪素膜
4 レジスト
5 酸化珪素(SiO)膜
6 溝
7 段差
酸化珪素膜凸部分の研磨前の膜厚
酸化珪素膜凸部分の研磨後の膜厚
酸化珪素膜凹部分の研磨前の膜厚
酸化珪素膜凹部分の研磨後の膜厚
Reference Signs List 1 silicon 2 silicon oxide (SiO 2 ) film 2a thermal oxide film 3 silicon nitride film 4 resist 5 silicon oxide (SiO 2 ) film 6 groove 7 step a 0 film thickness before polishing of silicon oxide film a 1 silicon oxide film Thickness of the convex portion after polishing b 0 Thickness of the silicon oxide film concave portion before polishing b Thickness of the 1 silicon oxide film concave portion after polishing

Claims (22)

酸化セリウム粒子、分散剤、少なくとも一種の添加剤及び水を含む研磨剤であって、表面張力が45dyn/cm以下であることを特徴とする研磨剤。   An abrasive containing cerium oxide particles, a dispersant, at least one additive and water, wherein the abrasive has a surface tension of 45 dyn / cm or less. 表面張力が、30〜40dyn/cmである請求項1記載の研磨剤。   The abrasive according to claim 1, wherein the surface tension is 30 to 40 dyn / cm. 研磨剤の表面張力の低下を引き起こす添加剤を含有する請求項1または2記載の研磨剤。   3. The polishing slurry according to claim 1, further comprising an additive which causes a decrease in the surface tension of the polishing slurry. 前記添加剤が非イオン系界面活性剤を含有する請求項3記載の研磨剤。   The polishing agent according to claim 3, wherein the additive contains a nonionic surfactant. 前記添加剤がアセチレン系ジオールのオキシエチレン付加体である請求項3または4記載の研磨剤。   The abrasive according to claim 3 or 4, wherein the additive is an oxyethylene adduct of an acetylene-based diol. さらに、添加剤として水溶性ポリビニル系重合体を含有する請求項1〜5のいずれか記載の研磨剤。   The abrasive according to claim 1, further comprising a water-soluble polyvinyl polymer as an additive. 水溶性ポリビニル系重合体の重量平均分子量が1000〜300万である請求項6記載の研磨剤。   The abrasive according to claim 6, wherein the weight-average molecular weight of the water-soluble polyvinyl polymer is 1,000 to 3,000,000. 水溶性ポリビニル系重合体が、ポロビニルピロリドン類、ポリアルキルアクリルアミド類、ポリジアルキルアクリルアミド類、ポリアクリルアミド、ポリアクリル酸アンモニウム塩類の群から選ばれる請求項6または7記載の研磨剤。   The abrasive according to claim 6 or 7, wherein the water-soluble polyvinyl polymer is selected from the group consisting of polyvinylpyrrolidones, polyalkylacrylamides, polydialkylacrylamides, polyacrylamide, and ammonium polyacrylate. pHが4〜10である請求項1〜8のいずれか記載の研磨剤。   The abrasive according to any one of claims 1 to 8, having a pH of 4 to 10. 酸化セリウム粒子の平均粒径が0.1〜0.4μmである請求項1〜9のいずれか記載の研磨剤。   The abrasive according to any one of claims 1 to 9, wherein the average particle size of the cerium oxide particles is 0.1 to 0.4 µm. 酸化セリウム粒子の粒径で1.0μm以上の粒子の体積分率が0.001%〜1.0%の範囲である請求項1〜10のいずれか記載の研磨剤。   The abrasive according to any one of claims 1 to 10, wherein a volume fraction of particles having a particle diameter of 1.0 m or more in cerium oxide particles is in a range of 0.001% to 1.0%. 分散剤がポリアクリル酸、そのアンモニウム塩及びポリアクリル酸アルキルから選ばれた少なくとも1種類である請求項1〜11のいずれか記載の研磨剤。   The abrasive according to any one of claims 1 to 11, wherein the dispersant is at least one selected from polyacrylic acid, its ammonium salt, and polyalkyl acrylate. 分散剤が、酸化セリウム粒子100重量部に対して0.2〜5.0重量部の範囲である請求項12記載の研磨剤。   13. The abrasive according to claim 12, wherein the dispersant is in a range of 0.2 to 5.0 parts by weight based on 100 parts by weight of the cerium oxide particles. 酸化セリウム粒子、分散剤、水のみで研磨剤が構成された場合の酸化セリウム粒子のゼータ電位が−30〜−100mVを示す請求項12または13記載の研磨剤。   14. The polishing slurry according to claim 12, wherein the zeta potential of the cerium oxide particles in the case where the polishing slurry is composed of only cerium oxide particles, a dispersant and water has a value of -30 to -100 mV. 分散剤がメタクリル酸もしくはアクリル酸の誘導体モノマである請求項1〜11のいずれか記載の研磨剤。   The abrasive according to any one of claims 1 to 11, wherein the dispersant is a derivative monomer of methacrylic acid or acrylic acid. 分散剤が、酸化セリウム粒子100重量部に対して2.0〜20重量部の範囲である請求項15記載の研磨剤。   The abrasive according to claim 15, wherein the dispersant is in a range of 2.0 to 20 parts by weight based on 100 parts by weight of the cerium oxide particles. 酸化セリウム粒子、分散剤、水のみで研磨剤が構成された場合の酸化セリウム粒子のゼータ電位が+30〜+100mVである請求項15または16記載の研磨剤。   17. The abrasive according to claim 15, wherein the zeta potential of the cerium oxide particles when the abrasive is composed of only cerium oxide particles, a dispersant, and water is +30 to +100 mV. 被研磨膜を形成した基体を研磨布に押しあて加圧し、請求項1〜17のいずれか記載の研磨剤を被研磨膜と研磨布との間に供給しながら、被研磨膜と研磨布とを相対的に動かして被研磨膜を研磨することを特徴とする研磨方法。   The substrate on which the film to be polished is formed is pressed against the polishing cloth and pressed, and while the polishing agent according to any one of claims 1 to 17 is supplied between the film to be polished and the polishing cloth, the film to be polished and the polishing cloth are And polishing the film to be polished by relatively moving. 研磨剤の表面張力が研磨布表面の臨界表面張力より小さい請求項18記載の研磨方法。   19. The polishing method according to claim 18, wherein the surface tension of the abrasive is smaller than the critical surface tension of the polishing cloth surface. 被研磨膜が半導体装置の、層間絶縁膜、BPSG膜またはシャロー・トレンチ分離用絶縁膜であり、被研磨膜の凸部分の研磨速度が凹部分の研磨速度の3倍以上である請求項18または19記載の研磨方法。   19. The polishing target film is an interlayer insulating film, a BPSG film or an insulating film for isolating a shallow trench of a semiconductor device, and a polishing rate of a convex portion of the polishing target film is at least three times a polishing speed of a concave portion. 20. The polishing method according to 19 above. 凸部の研磨速度が凹部の研磨速度の5倍以上10倍以内である請求項20記載の研磨方法。   21. The polishing method according to claim 20, wherein the polishing rate of the projection is not less than 5 times and not more than 10 times the polishing rate of the recess. 請求項1〜17のいずれか記載の研磨剤により研磨する工程、または請求項18〜21のいずれか記載の方法により研磨する工程を含むことを特徴とする電子部品の製造方法。   A method for manufacturing an electronic component, comprising a step of polishing with the abrasive according to any one of claims 1 to 17, or a step of polishing with the method of any one of claims 18 to 21.
JP2003368636A 2003-03-13 2003-10-29 Abrasive agent, polishing method, and manufacturing method of electronic component Pending JP2004297035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368636A JP2004297035A (en) 2003-03-13 2003-10-29 Abrasive agent, polishing method, and manufacturing method of electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003067685 2003-03-13
JP2003368636A JP2004297035A (en) 2003-03-13 2003-10-29 Abrasive agent, polishing method, and manufacturing method of electronic component

Publications (1)

Publication Number Publication Date
JP2004297035A true JP2004297035A (en) 2004-10-21

Family

ID=33421610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368636A Pending JP2004297035A (en) 2003-03-13 2003-10-29 Abrasive agent, polishing method, and manufacturing method of electronic component

Country Status (1)

Country Link
JP (1) JP2004297035A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144554A (en) * 2005-11-28 2007-06-14 Kao Corp Method for polishing substrate
JP2007227910A (en) * 2006-01-30 2007-09-06 Rohm & Haas Electronic Materials Cmp Holdings Inc Composition and method for chemical mechanical polishing of interlevel dielectric layer
JP2007246981A (en) * 2006-03-15 2007-09-27 Jsr Corp Electroless plating liquid
JP2007246978A (en) * 2006-03-15 2007-09-27 Jsr Corp Electroless plating liquid
JP2007246980A (en) * 2006-03-15 2007-09-27 Jsr Corp Electroless plating liquid
JP2007246979A (en) * 2006-03-15 2007-09-27 Jsr Corp Electroless plating liquid
WO2007111125A1 (en) * 2006-03-15 2007-10-04 Jsr Corporation Electroless plating liquid
JP2007305961A (en) * 2006-05-12 2007-11-22 Hynix Semiconductor Inc Chemical mechanical polishing slurry and its polishing method
JP2008041782A (en) * 2006-08-02 2008-02-21 Fujimi Inc Composition for polishing, and polishing method
JP2008041781A (en) * 2006-08-02 2008-02-21 Fujimi Inc Composition for polishing, and polishing method
JP2008147651A (en) * 2006-12-05 2008-06-26 Cheil Industries Inc Slurry composition for final polishing of silicon wafer, and method for final polishing of silicon wafer using the same
JP2008277723A (en) * 2007-03-30 2008-11-13 Fujifilm Corp Metal-polishing liquid and polishing method
JP2008543577A (en) * 2005-06-13 2008-12-04 バスフ エスイー Slurry composition for polishing color filters
JP2008302489A (en) * 2007-06-11 2008-12-18 Kao Corp Manufacturing method for hard disk substrate
JP2009510797A (en) * 2005-10-04 2009-03-12 キャボット マイクロエレクトロニクス コーポレイション Method for controlling removal of polysilicon
JP2009187984A (en) * 2008-02-01 2009-08-20 Fujimi Inc Polishing composition and polishing method using the same
JP2011171446A (en) * 2010-02-17 2011-09-01 Hitachi Chem Co Ltd Polishing liquid for cmp and polishing method using the same
JP2011223018A (en) * 2005-11-11 2011-11-04 Hitachi Chem Co Ltd Abrasive for silicon oxide, liquid additive and polishing method
JP2012020377A (en) * 2010-07-15 2012-02-02 Asahi Glass Co Ltd Polishing liquid and method of manufacturing glass substrate for magnetic disk
JP2012212082A (en) * 2011-03-31 2012-11-01 Hoya Corp Method for manufacturing glass substrate for mask blank, method for manufacturing mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
JP2015523716A (en) * 2012-05-23 2015-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for manufacturing semiconductor device and method for using chemical mechanical polishing composition
JP2018529219A (en) * 2015-07-13 2018-10-04 キャボット マイクロエレクトロニクス コーポレイション Method and composition for processing a dielectric substrate
JP2019116572A (en) * 2017-12-27 2019-07-18 花王株式会社 Polishing liquid composition for synthetic quartz glass substrate
JP2020076062A (en) * 2018-09-28 2020-05-21 株式会社フジミインコーポレーテッド Polishing composition, polishing method, and manufacturing method of substrate
JP2021100126A (en) * 2017-12-28 2021-07-01 花王株式会社 Polishing liquid composition for silicon oxide film
WO2022137897A1 (en) * 2020-12-23 2022-06-30 ニッタ・デュポン株式会社 Polishing composition and method for polishing silicon wafer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031195A1 (en) * 1997-12-18 1999-06-24 Hitachi Chemical Company, Ltd. Abrasive, method of polishing wafer, and method of producing semiconductor device
JP2001358100A (en) * 2000-06-14 2001-12-26 Hitachi Chem Co Ltd Cmp abrasive and polishing method of substrate
WO2002067309A1 (en) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Polishing compound and method for polishing substrate
JP2002256256A (en) * 2001-02-28 2002-09-11 Jsr Corp Aqueous dispersion for polishing chemical equipment
JP2002280334A (en) * 2001-03-15 2002-09-27 Hitachi Chem Co Ltd Cerium oxide polishing agent and polishing of substrate using the same
JP2003017447A (en) * 2001-06-28 2003-01-17 Hitachi Chem Co Ltd Cmp abrasives and method for polishing substrate
JP2003037092A (en) * 2002-06-04 2003-02-07 Hitachi Chem Co Ltd Method for polishing substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031195A1 (en) * 1997-12-18 1999-06-24 Hitachi Chemical Company, Ltd. Abrasive, method of polishing wafer, and method of producing semiconductor device
JP2001358100A (en) * 2000-06-14 2001-12-26 Hitachi Chem Co Ltd Cmp abrasive and polishing method of substrate
WO2002067309A1 (en) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Polishing compound and method for polishing substrate
JP2002256256A (en) * 2001-02-28 2002-09-11 Jsr Corp Aqueous dispersion for polishing chemical equipment
JP2002280334A (en) * 2001-03-15 2002-09-27 Hitachi Chem Co Ltd Cerium oxide polishing agent and polishing of substrate using the same
JP2003017447A (en) * 2001-06-28 2003-01-17 Hitachi Chem Co Ltd Cmp abrasives and method for polishing substrate
JP2003037092A (en) * 2002-06-04 2003-02-07 Hitachi Chem Co Ltd Method for polishing substrate

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543577A (en) * 2005-06-13 2008-12-04 バスフ エスイー Slurry composition for polishing color filters
JP2009510797A (en) * 2005-10-04 2009-03-12 キャボット マイクロエレクトロニクス コーポレイション Method for controlling removal of polysilicon
KR101243423B1 (en) 2005-11-11 2013-03-13 히타치가세이가부시끼가이샤 Polishing agent for silicon oxide, liquid additive, and method of polishing
CN102965025A (en) * 2005-11-11 2013-03-13 日立化成工业株式会社 Polishing agent for silicon oxide, liquid additive, and method of polishing
JP2011223018A (en) * 2005-11-11 2011-11-04 Hitachi Chem Co Ltd Abrasive for silicon oxide, liquid additive and polishing method
JP4872919B2 (en) * 2005-11-11 2012-02-08 日立化成工業株式会社 Polishing agent for silicon oxide, additive liquid and polishing method
JP2012044197A (en) * 2005-11-11 2012-03-01 Hitachi Chem Co Ltd Polishing agent for silicon oxide, additive liquid and method for polishing
JP4656650B2 (en) * 2005-11-28 2011-03-23 花王株式会社 Substrate polishing method
JP2007144554A (en) * 2005-11-28 2007-06-14 Kao Corp Method for polishing substrate
JP2007227910A (en) * 2006-01-30 2007-09-06 Rohm & Haas Electronic Materials Cmp Holdings Inc Composition and method for chemical mechanical polishing of interlevel dielectric layer
WO2007111125A1 (en) * 2006-03-15 2007-10-04 Jsr Corporation Electroless plating liquid
JP2007246981A (en) * 2006-03-15 2007-09-27 Jsr Corp Electroless plating liquid
JP2007246978A (en) * 2006-03-15 2007-09-27 Jsr Corp Electroless plating liquid
JP2007246979A (en) * 2006-03-15 2007-09-27 Jsr Corp Electroless plating liquid
JP2007246980A (en) * 2006-03-15 2007-09-27 Jsr Corp Electroless plating liquid
JP2007305961A (en) * 2006-05-12 2007-11-22 Hynix Semiconductor Inc Chemical mechanical polishing slurry and its polishing method
JP2008041781A (en) * 2006-08-02 2008-02-21 Fujimi Inc Composition for polishing, and polishing method
JP2008041782A (en) * 2006-08-02 2008-02-21 Fujimi Inc Composition for polishing, and polishing method
JP2008147651A (en) * 2006-12-05 2008-06-26 Cheil Industries Inc Slurry composition for final polishing of silicon wafer, and method for final polishing of silicon wafer using the same
JP2008277723A (en) * 2007-03-30 2008-11-13 Fujifilm Corp Metal-polishing liquid and polishing method
JP2008302489A (en) * 2007-06-11 2008-12-18 Kao Corp Manufacturing method for hard disk substrate
US8518297B2 (en) 2008-02-01 2013-08-27 Fujimi Incorporated Polishing composition and polishing method using the same
JP2009187984A (en) * 2008-02-01 2009-08-20 Fujimi Inc Polishing composition and polishing method using the same
KR101534859B1 (en) * 2008-02-01 2015-07-07 가부시키가이샤 후지미인코퍼레이티드 Polishing composition and polishing process using the same
JP2011171446A (en) * 2010-02-17 2011-09-01 Hitachi Chem Co Ltd Polishing liquid for cmp and polishing method using the same
JP2012020377A (en) * 2010-07-15 2012-02-02 Asahi Glass Co Ltd Polishing liquid and method of manufacturing glass substrate for magnetic disk
JP2012212082A (en) * 2011-03-31 2012-11-01 Hoya Corp Method for manufacturing glass substrate for mask blank, method for manufacturing mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
JP2015523716A (en) * 2012-05-23 2015-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for manufacturing semiconductor device and method for using chemical mechanical polishing composition
JP2018529219A (en) * 2015-07-13 2018-10-04 キャボット マイクロエレクトロニクス コーポレイション Method and composition for processing a dielectric substrate
JP2019116572A (en) * 2017-12-27 2019-07-18 花王株式会社 Polishing liquid composition for synthetic quartz glass substrate
JP2021100126A (en) * 2017-12-28 2021-07-01 花王株式会社 Polishing liquid composition for silicon oxide film
JP7133667B2 (en) 2017-12-28 2022-09-08 花王株式会社 Polishing liquid composition for silicon oxide film
US11795346B2 (en) 2017-12-28 2023-10-24 Kao Corporation Polishing liquid composition for silicon oxide film
JP2020076062A (en) * 2018-09-28 2020-05-21 株式会社フジミインコーポレーテッド Polishing composition, polishing method, and manufacturing method of substrate
JP7359615B2 (en) 2018-09-28 2023-10-11 株式会社フジミインコーポレーテッド Polishing composition, polishing method, and substrate manufacturing method
WO2022137897A1 (en) * 2020-12-23 2022-06-30 ニッタ・デュポン株式会社 Polishing composition and method for polishing silicon wafer

Similar Documents

Publication Publication Date Title
JP2004297035A (en) Abrasive agent, polishing method, and manufacturing method of electronic component
JP5110058B2 (en) CMP abrasive and polishing method
US8591612B2 (en) Cerium oxide slurry, cerium oxide polishing slurry and method for polishing substrate using the same
JP3649279B2 (en) Substrate polishing method
JP5287174B2 (en) Abrasive and polishing method
JP4952745B2 (en) CMP abrasive and substrate polishing method
JP4729834B2 (en) CMP abrasive, substrate polishing method and semiconductor device manufacturing method using the same, and additive for CMP abrasive
JP2006318952A (en) Cmp abrasive and method of polishing substrate
JP4972829B2 (en) CMP polishing agent and substrate polishing method
JP2008182179A (en) Additives for abrasives, abrasives, method for polishing substrate and electronic component
JPWO2011058816A1 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP2003347248A (en) Cmp polishing agent for semiconductor insulating film and method of polishing substrate
JP3725357B2 (en) Element isolation formation method
JP4062977B2 (en) Abrasive and substrate polishing method
JP2009266882A (en) Abrasive powder, polishing method of base using same, and manufacturing method of electronic component
JP2006179678A (en) Cmp abrasive for semiconductor insulating film and method for polishing substrate
JP2003158101A (en) Cmp abrasive and manufacturing method therefor
JP4407592B2 (en) Abrasive
JP4604727B2 (en) Additive for CMP abrasives
JP4501694B2 (en) Additive for CMP abrasives
JP2001358100A (en) Cmp abrasive and polishing method of substrate
JP4830194B2 (en) CMP polishing agent and substrate polishing method
JP4608925B2 (en) Additive for CMP abrasives
JP2003017447A (en) Cmp abrasives and method for polishing substrate
JP2001308043A (en) Cmp-polishing agent and polishing method for substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629