JP2009288054A - Health state measuring device - Google Patents

Health state measuring device Download PDF

Info

Publication number
JP2009288054A
JP2009288054A JP2008140584A JP2008140584A JP2009288054A JP 2009288054 A JP2009288054 A JP 2009288054A JP 2008140584 A JP2008140584 A JP 2008140584A JP 2008140584 A JP2008140584 A JP 2008140584A JP 2009288054 A JP2009288054 A JP 2009288054A
Authority
JP
Japan
Prior art keywords
human body
unit
calibration
gas
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008140584A
Other languages
Japanese (ja)
Inventor
昌生 ▲ルイ▼
Masao Rui
Akemi Takeshita
朱美 竹下
Yoshinori Takezaki
義則 竹崎
Hiroshi Hashimoto
博 橋本
Satoko Noguchi
聡子 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2008140584A priority Critical patent/JP2009288054A/en
Publication of JP2009288054A publication Critical patent/JP2009288054A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a health state measuring device capable of calibrating a gas sensor by measuring gas in atmosphere without being affected by a human body, and to provide a calibration method of the health state measuring device. <P>SOLUTION: The health state measuring device is placed in a toilet and has a gas sensor for measuring the gas concentration of organism-related gas occurring in evacuation. The health state measuring device comprises: a human body detection section for detecting the presence or absence of a human body; and a calibration section utilizing atmosphere for calibrating the gas sensor based on information on the human body detection section. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、健康状態を判断するための腸内状態を非接触で推定することのできる健康状態測定装置に関する。    The present invention relates to a health condition measuring apparatus capable of estimating an intestinal condition for judging a health condition in a non-contact manner.

排便時に併発するガス(以下排泄ガスと呼ぶ)を検出し、その検出結果に基づいて、人間の健康状態を判断する技術が知られている。例えば、特許文献1には、ガスセンサを用いて放屁に含まれる有臭ガスを検出し、そのガスセンサからの信号値を直接或いは匂い分析などの適当な処理を行って表示することが開示されている。また、例えば、特許文献2には、脱臭体に吸着された臭気成分を酸化させてその酸化電流から臭気成分濃度を測定する技術が開示されている。  2. Description of the Related Art There is known a technique for detecting a gas (hereinafter referred to as excretion gas) that occurs at the time of defecation and determining a human health state based on the detection result. For example, Patent Document 1 discloses that a gas sensor is used to detect odorous gas contained in the release, and a signal value from the gas sensor is displayed directly or by performing appropriate processing such as odor analysis. . For example, Patent Document 2 discloses a technique for oxidizing an odor component adsorbed on a deodorizing body and measuring the odor component concentration from the oxidation current.

特許文献3は、腸内状態報知装置およびその方法に関する本出願人の発明である。この装置では、排泄ガス中の水素ガスをガスセンサで測定し、ガスセンサから出力された信号値に対応した腸内状態情報を腸内健康度判定用付属情報から抽出してユーザに報知するものである。腸内状態情報としては、腸内に存在する種々の菌の総数、ビフィズス菌の数、悪玉菌の数、腸内菌の総数に占めるビフィズス菌数の割合、又は、腸内菌の総数に占める悪玉菌数の割合等を採用している。   Patent Document 3 is the applicant's invention relating to an intestinal state notification device and method. In this apparatus, hydrogen gas in excreted gas is measured by a gas sensor, and intestinal state information corresponding to the signal value output from the gas sensor is extracted from the intestinal health degree determination auxiliary information and notified to the user. . Intestinal state information includes the total number of various bacteria present in the intestine, the number of bifidobacteria, the number of bad bacteria, the ratio of the number of bifidobacteria in the total number of enteric bacteria, or the total number of enteric bacteria The ratio of bad bacteria is used.

また、本出願人の発明である特許文献4では、排泄ガスの測定結果を腸内状態指標、例えば腸内細菌バランスに換算して使用者に報知する技術が開示されている。
特許文献5では、二酸化炭素ガスセンサを常時作動して大気濃度を監視し、測定値がもっとも低くなる最低信号時刻を校正時刻として決定し、その時刻における炭酸ガスセンサの信号値を基準濃度対応測定値として補正する技術が開示されている。本技術は、最低大気濃度の毎日の出現時刻がほぼ同じであることを前提としたものである。また、特許文献6は、同様に二酸化炭素ガスセンサを常時作動して大気濃度を測定し、得られた一定期間中のセンサ出力信号値からヒストグラムを作成し、作成されたヒストグラム中の複数のピークを二酸化炭素ガス低濃度側から探索して最初のピーク値を抽出してそれを基準濃度対応値とする校正方法が開示されている。本技術は、最低大気濃度がある一定以上の時間帯にわたって出現することを前提としたものである。
また、硫化水素や水素など、大気中に実質的に存在しない(濃度がゼロ)ガスを測定するガスセンサの場合、大気雰囲気でゼロ校正する方法が一般的に知られている。
Moreover, in patent document 4 which is an invention of the present applicant, a technique for converting a measurement result of excretion gas into an intestinal state index, for example, an intestinal bacterial balance, and notifying a user is disclosed.
In Patent Document 5, the carbon dioxide gas sensor is constantly operated to monitor the atmospheric concentration, the lowest signal time at which the measured value is lowest is determined as the calibration time, and the signal value of the carbon dioxide sensor at that time is used as the reference concentration corresponding measured value. Techniques for correcting are disclosed. This technology is based on the assumption that the daily appearance time of the lowest atmospheric concentration is almost the same. Similarly, Patent Document 6 similarly operates the carbon dioxide gas sensor to measure the atmospheric concentration, creates a histogram from the obtained sensor output signal value during a certain period, and displays a plurality of peaks in the created histogram. A calibration method is disclosed in which the first peak value is extracted by searching from the low concentration side of the carbon dioxide gas and used as a reference concentration corresponding value. This technology is based on the premise that the minimum atmospheric concentration appears over a certain period of time.
In the case of a gas sensor that measures a gas that does not substantially exist in the atmosphere (concentration is zero), such as hydrogen sulfide or hydrogen, a method of zero calibration in an atmospheric atmosphere is generally known.

特開平9−43182号公報。JP-A-9-43182. 特開平8−211048号公報。JP-A-8-211048. 特開2005−315836号公報。Japanese Patent Laying-Open No. 2005-315836. 特開2007−89857号公報。JP 2007-89857 A. 特許第3183387号公報。Japanese Patent No. 3183387. 特許第3483432号公報。Japanese Patent No. 3483432.

本発明は人体の影響を受けずに大気雰囲気中のガスを測定することでガスセンサを校正することができる健康状態測定装置および健康状態測定装置の校正方法を提供することを目的とする。   An object of the present invention is to provide a health condition measuring apparatus and a health condition measuring apparatus calibration method that can calibrate a gas sensor by measuring a gas in an air atmosphere without being affected by a human body.

上記課題を解決するため本発明は、便器に載置され、排便時に併発される生体関連ガスのガス濃度を測定するガスセンサを備える健康状態測定装置であって、人体存在の有無を検知する人体検知部と、前記人体検知部の情報に基いて前記ガスセンサを校正する大気利用の校正部を備えることを特徴とする。
好適な一実施形態に係る本発明の健康状態測定装置は、前記ガスセンサは二酸化炭素ガスセンサであることを特徴とする。
好適な一実施形態に係る本発明の健康状態測定装置は、前記人体検知部が最後に人体を検知してから所定経過時間後に前記校正部を駆動する制御部を備えることを特徴とする。
また、本発明の健康状態測定装置の校正方法は、便器に載置され、排便時に併発される生体関連ガスのガス濃度を測定するガスセンサと、人体存在の有無を検知する人体検知部とを備える健康状態測定装置の校正方法であって、前記人体検知部の情報に基いて大気を利用して前記ガスセンサを校正することを特徴とする。
In order to solve the above-mentioned problems, the present invention is a health condition measuring apparatus that includes a gas sensor that is placed on a toilet and measures a gas concentration of a living body-related gas that is generated at the time of defecation, and detects the presence or absence of a human body. And an atmospheric calibration unit that calibrates the gas sensor based on information from the human body detection unit.
In the health condition measuring apparatus of the present invention according to a preferred embodiment, the gas sensor is a carbon dioxide gas sensor.
A health condition measuring apparatus according to a preferred embodiment of the present invention includes a control unit that drives the calibration unit after a predetermined time has elapsed since the human body detection unit last detected a human body.
Moreover, the calibration method of the health condition measuring apparatus of the present invention includes a gas sensor that is placed on a toilet and measures the gas concentration of a living body-related gas that is co-occurred during defecation, and a human body detection unit that detects the presence or absence of a human body. A calibration method for a health condition measuring apparatus, wherein the gas sensor is calibrated using air based on information of the human body detection unit.

人体検知情報に基いて、校正のための大気濃度測定を行ない、その結果によって、人の影響を受けずにガスセンサを校正するので、標準ガスを必要とせず便利である。 Based on the human body detection information, the atmospheric concentration is measured for calibration, and the gas sensor is calibrated without being influenced by humans according to the result. Therefore, the standard gas is not required, which is convenient.

本発明を実施するための最良の形態を説明するのに先立って、本発明の作用効果について説明する。   Prior to describing the best mode for carrying out the present invention, the function and effect of the present invention will be described.

本発明の健康状態測定装置は、便器に載置され、排便時に併発される生体関連ガスのガス濃度を測定するガスセンサを備える健康状態測定装置であって、人体存在の有無を検知する人体検知部と、前記人体検知部の情報に基いて前記ガスセンサを校正する大気利用の校正部を備えることを特徴とする。 The health condition measuring apparatus of the present invention is a health condition measuring apparatus that includes a gas sensor that is mounted on a toilet and measures the gas concentration of a living body-related gas that is simultaneously generated during defecation, and detects a human body presence or absence And an atmospheric calibration unit that calibrates the gas sensor based on information from the human body detection unit.

本発明の生体関連ガスとは、人の営みによって発生または消費するガス成分のことを指す。人の営みで発生するガスの例として二酸化炭素、水素、アンモニア、硫化水素、また消費するガスの例として酸素、などが挙げられる。また、本発明において、大気利用のガスセンサ校正とは、大気に存在する対象ガスの濃度が一定(ゼロのケースを含む、本発明ではこの濃度を基準大気濃度値という))であることを利用し、標準ガスの代わりに大気を測定し、その結果を以てガスセンサを校正するガスセンサの校正手法を指す。大気校正はガスセンサ周辺の大気に存在する対象ガスの濃度が一定であることを前提とするが、生体関連ガスは、局地的には人間などの生命活動によって変動する。
本発明によれば、健康状態測定装置にを備えている人体検知部の人体検知情報に基いて、人がいない時に大気濃度を測定し、その結果をもってガスセンサを校正することで、人の存在による大気中のガス濃度への影響を受けることなく、大気利用の校正を可能にしたので、標準ガスを用いずにガスセンサを校正することができる。
好適な一実施形態に係る本発明の健康状態測定装置、前記ガスセンサは二酸化炭素ガスセンサであるを特徴とする。排泄ガス中の二酸化炭素ガスは体調や腸内状態を反映することが本発明者らによって明らかにされており、それを測定することで健康状態を推定することができる。一方、生体関連ガスの中でも二酸化炭素ガスは大気中に安定した濃度で存在しているので、その濃度を基準にした二酸化炭素ガスセンサの大気校正が可能である。しかし、人の呼気にも二酸化炭素ガスが高濃度に含まれていることから、特にトイレ空間などの実質的に閉ざされている空間においては、人の存在によって大気中の濃度が大きく上昇する。本発明によれば、人体検知部の情報に基いて人の居ない時に大気濃度を測定することで、人の影響を受けずに大気校正を実施することができるので、標準の二酸化炭素ガスを使用せずに健康状態測定装置のガスセンサを校正することができるので便利である。
また、好適な一実施形態に係る本発明の健康状態測定装置は、前記人体検知部が最後に人体を検知してから所定経過時間後に前記校正部を駆動する制御部を備えることを特徴とする。本発明によれば、人が存在せず、さらに人が去ってから一定時間経過後大気を利用してガスセンサを校正することができるので、特に人の存在による大気ガス濃度への影響が人の居なくなった後もしばらく続くようなケースにおいて有効である。
本発明の健康状態測定の校正方法は、便器に載置され、排便時に併発される生体関連ガスのガス濃度を測定するガスセンサと、人体存在の有無を検知する人体検知部とを備える健康状態測定装置の校正方法であって、前記人体検知部の情報に基いて大気を利用して前記ガスセンサを校正することを特徴とする。
本発明によれば、健康状態測定装置にを備えている人体検知部の人体検知情報に基いて、人がいない時に大気濃度を測定し、その結果をもってガスセンサを校正する方法が提供されるので、人の存在による大気中のガス濃度への影響を受けることなく、標準ガスを用いずにガスセンサを校正することができる。
The living body related gas of the present invention refers to a gas component generated or consumed by human activities. Examples of gases generated by human activities include carbon dioxide, hydrogen, ammonia, hydrogen sulfide, and examples of consumed gases include oxygen. Further, in the present invention, calibration of the gas sensor using the atmosphere uses that the concentration of the target gas existing in the atmosphere is constant (including the case of zero, in the present invention, this concentration is referred to as a reference atmospheric concentration value). This refers to a gas sensor calibration method in which the atmosphere is measured instead of standard gas, and the gas sensor is calibrated based on the measurement result. Atmospheric calibration is based on the premise that the concentration of the target gas existing in the atmosphere around the gas sensor is constant, but the living body-related gas locally fluctuates due to life activities such as humans.
According to the present invention, based on the human body detection information of the human body detection unit provided in the health condition measuring device, the atmospheric concentration is measured when there is no person, and the gas sensor is calibrated with the result, thereby depending on the presence of the person. Since calibration of use of the atmosphere is possible without being affected by the gas concentration in the atmosphere, the gas sensor can be calibrated without using the standard gas.
The health condition measuring apparatus of the present invention according to a preferred embodiment, wherein the gas sensor is a carbon dioxide gas sensor. It has been clarified by the present inventors that the carbon dioxide gas in the excreted gas reflects the physical condition and the intestinal state, and the health state can be estimated by measuring it. On the other hand, since carbon dioxide gas is present in the atmosphere at a stable concentration among living body related gases, atmospheric calibration of the carbon dioxide gas sensor based on the concentration is possible. However, since carbon dioxide gas is also contained in human breath at a high concentration, the concentration in the air greatly increases due to the presence of a person, particularly in a substantially closed space such as a toilet space. According to the present invention, it is possible to perform atmospheric calibration without being affected by humans by measuring the atmospheric concentration based on the information of the human body detection unit when no one is present. This is convenient because the gas sensor of the health condition measuring apparatus can be calibrated without using it.
The health condition measuring apparatus of the present invention according to a preferred embodiment includes a control unit that drives the calibration unit after a predetermined elapsed time since the human body detection unit last detected a human body. . According to the present invention, since the person does not exist and the gas sensor can be calibrated using the atmosphere after a certain period of time has passed since the person left, the influence of the presence of the person on the atmospheric gas concentration is particularly affected. It is effective in the case of continuing for a while after being absent.
A health condition measurement calibration method according to the present invention includes a gas sensor that measures a gas concentration of a living body-related gas that is placed on a toilet and is co-occurred during defecation, and a human body detection unit that detects the presence or absence of a human body. An apparatus calibration method, wherein the gas sensor is calibrated using air based on information of the human body detection unit.
According to the present invention, based on the human body detection information of the human body detection unit provided in the health condition measuring device, a method for measuring the air concentration when there is no person and calibrating the gas sensor based on the result is provided. The gas sensor can be calibrated without using the standard gas without being affected by the gas concentration in the atmosphere due to the presence of a person.

以下に添付図面に基づいて本発明の実施形態を具体的に説明する。まず、第1の実施例を図1から図3に基いて説明する。 Embodiments of the present invention will be specifically described below with reference to the accompanying drawings. First, a first embodiment will be described with reference to FIGS.

図1は、本発明の健康状態測定装置を搭載した人体洗浄装置組込タイプ洋式便器の一例を示す(部分透視)外観図である。 FIG. 1 is an external view (partial perspective view) showing an example of a Western-style toilet with a built-in human body cleaning device equipped with the health condition measuring device of the present invention.

便器1の便座2と便鉢3周縁の頂部との間に設けたスペースを利用して脱臭ファン用排気通路4が設置されている。脱臭ファン用排気通路4内には、脱臭ファン5、およびガスセンサ7が取り付けられている。赤外センサを利用した人体検知部7は便座後部に設置されている。 The exhaust passage 4 for a deodorizing fan is installed using the space provided between the toilet seat 2 of the toilet bowl 1 and the top of the toilet bowl 3 periphery. A deodorizing fan 5 and a gas sensor 7 are attached in the exhaust passage 4 for the deodorizing fan. A human body detection unit 7 using an infrared sensor is installed at the rear of the toilet seat.

また、制御部8、演算部9および校正部16は一体化して便座2の後部内に組み込まれ、さらに、演算部9により算出された結果である腸内状態指標データを表示する表示部10が、人体洗浄装置の操作パネル11に組み込まれている。ガスセンサ7および校正部16と制御部8とのデータ交換は結線により、また演算部9と表示部10とのデータ交換は赤外線により行っている。 In addition, the control unit 8, the calculation unit 9, and the calibration unit 16 are integrated and incorporated in the rear part of the toilet seat 2, and a display unit 10 that displays intestinal state index data that is a result calculated by the calculation unit 9 is provided. It is incorporated in the operation panel 11 of the human body washing apparatus. Data exchange between the gas sensor 7 and the calibration unit 16 and the control unit 8 is performed by connection, and data exchange between the calculation unit 9 and the display unit 10 is performed by infrared rays.

図2は本発明の健康状態測定装置の第1実施例を示す概念図である。脱臭ファン用排気通路4内に、風上側から順に脱臭ファン5、脱臭カートリッジ6、ガスセンサ7が配置されている。人体検知部17がおよび校正部16が制御部8と結線で繋がっている。 FIG. 2 is a conceptual diagram showing a first embodiment of the health condition measuring apparatus of the present invention. A deodorizing fan 5, a deodorizing cartridge 6, and a gas sensor 7 are arranged in this order from the windward side in the exhaust passage 4 for the deodorizing fan. The human body detection unit 17 and the calibration unit 16 are connected to the control unit 8 by connection.

装置が排泄ガスを測定する測定モードにある場合、制御部8が測定開始信号をガスセンサ7に送信しガスセンサが作動し始めると、脱臭ファンによって搬送されてきたガスのガス濃度に応じた出力信号が得られる。ガスセンサ7で得られたセンサ出力信号が演算部9に送られ、時系列的に記憶される。また、制御部8の測定終了信号によってガスセンサの作動が終了し、センサ出力の信号の記録が終了する。続いて、演算部9では後述の方法にしたがって記憶されたセンサの出力信号からガス濃度を求め、さらに腸内状態指標を推算し、得られた腸内状態指標が表示部10で表示される When the apparatus is in a measurement mode for measuring excretion gas, when the control unit 8 transmits a measurement start signal to the gas sensor 7 and the gas sensor starts to operate, an output signal corresponding to the gas concentration of the gas conveyed by the deodorizing fan is generated. can get. The sensor output signal obtained by the gas sensor 7 is sent to the calculation unit 9 and stored in time series. Further, the operation of the gas sensor is ended by the measurement end signal of the control unit 8, and the recording of the sensor output signal is ended. Subsequently, the calculation unit 9 obtains the gas concentration from the sensor output signal stored in accordance with a method described later, further estimates the intestinal state index, and the obtained intestinal state index is displayed on the display unit 10.

また、装置がガスセンサを校正する校正モードにある場合、校正部16が人体検知部17から人体検知情報を受信し、その結果に基いて校正を実施する。すなわち、大気濃度を測定し、得られた大気濃度測定値と予め記憶されている基準大気濃度値と比較して、校正部のガス濃度演算用データを書き換える。以下校正部16について詳細に説明する。
校正部16は人体検知情報受信部、大気濃度測定部、データ記憶部、校正値選択部、校正実施部を備える。なお、大気濃度測定部の大気濃度測定実施期間または実施タイミング、および校正実施部の実施タイミングは、校正部の初期設定項目として事前に設定されており、また、装置に備えている入力部から変更可能である。
大気濃度測定実施期間にはいったら、人体検知情報受信部は人体検知部17から送られてきた人体検知情報を読み取り、校正するための大気測定の実施可否を判定する。続いて、大気濃度測定部は人体検知情報受信部の判定結果に基いて、後述の手順にしたがって、制御部を通してガスセンサを作動させ、大気濃度測定を実施する。得られた大気濃度測定の結果は大気濃度測定値としてデータ記憶部は、時系列的に記憶される。
校正実施の時刻(本実施例では毎週木曜日の0時10分)になったら、校正値選択部は、校正部16の記憶部に記憶された直近一定期間(本実施例では直近3日間)の大気濃度測定値データから、最低の大気濃度測定値を校正用大気濃度測定値として選択する。次に、校正実施部は、校正用大気濃度測定値に対応するガスセンサ出力から算出された大気濃度値が予め決定された基準大気濃度値と一致するよう、演算部のガス濃度演算用データを書き換えて、校正動作を完了する。

次に本実施例における校正部16の大気濃度測定の動作をより具体的に説明する。ガスセンサは二酸化炭素センサである。本実施例では週1回の頻度で木曜日の0時10分にガスセンサを校正し、校正用の大気濃度測定値を取得するための大気濃度測定の実施期間はその直前の3日間、すなわち月曜日の0時から水曜日の24時までとした。大気濃度測定の実施期間中では予め設定された時刻になったら大気濃度の測定を実施する。
図3は、本実施例における校正部の動作を示す概念図である。大気濃度の測定時刻になったら、人体検知情報受信部が人体検知部17からの人体検知情報を受信し、その情報に基いて、大気濃度測定の実施可否を判定する。人体検知情報は「人体存在あり」の場合、その時刻における大気濃度測定は実施せず、大気状態に戻る。一方、人体検知情報は「人体存在なし」の場合、大気濃度測定部が制御部8を通してガスセンサを作動させ、大気濃度測定を実施する。大気濃度測定は1秒間隔で連続10回実施し、得られた10回の測定データから、最大値と最小値を除いた8回のデータの平均値をこの時刻における大気濃度測定値としてデータ記憶部に記憶する。連続複数回測定を実施するのは、ノイズなどのイレギュラー情報を除去するためである。大気濃度測定完了後、センサをOFF状態にする。続いて、校正実施の時刻判定を行い、校正実施の時刻と判定されたら、前述方法で校正値を選択して校正を実施し、待機状態に戻る。
本実施例では校正実施の頻度を週1回としたが、ガスおよびガスセンサの種類に応じて校正実施を例えば、一日に1回、または1ヶ月に1回の頻度で実施してもよい。また、大気濃度測定期間を校正実施時刻の直前3日間としたが、校正実施の頻度に応じて変更してよい。さらに、外部入力によってこれらを変更することができるようにしてもよい。
次に第2の実施例を説明する。本実施例の健康状態測定装置の構成は図1から図2に示す実施例1の構成と同様であり、ガスセンサは硫化水素である。
When the apparatus is in a calibration mode for calibrating the gas sensor, the calibration unit 16 receives human body detection information from the human body detection unit 17, and performs calibration based on the result. That is, the atmospheric concentration is measured, and the obtained atmospheric concentration measurement value is compared with the reference atmospheric concentration value stored in advance, and the gas concentration calculation data in the calibration unit is rewritten. Hereinafter, the calibration unit 16 will be described in detail.
The calibration unit 16 includes a human body detection information reception unit, an atmospheric concentration measurement unit, a data storage unit, a calibration value selection unit, and a calibration execution unit. Note that the atmospheric concentration measurement implementation period or execution timing of the atmospheric concentration measurement unit and the execution timing of the calibration execution unit are preset as initial setting items of the calibration unit, and can be changed from the input unit provided in the device. Is possible.
During the atmospheric concentration measurement implementation period, the human body detection information receiving unit reads the human body detection information sent from the human body detection unit 17 and determines whether or not to perform atmospheric measurement for calibration. Subsequently, based on the determination result of the human body detection information receiving unit, the atmospheric concentration measurement unit operates the gas sensor through the control unit according to the procedure described later, and performs atmospheric concentration measurement. The data storage unit stores the obtained atmospheric concentration measurement result as an atmospheric concentration measurement value in time series.
When the time for performing calibration (0:10 every Thursday in the present embodiment) is reached, the calibration value selection unit performs the latest fixed period (the last three days in the present example) stored in the storage unit of the calibration unit 16. From the atmospheric concentration measurement value data, the lowest atmospheric concentration measurement value is selected as the calibration atmospheric concentration measurement value. Next, the calibration execution unit rewrites the gas concentration calculation data in the calculation unit so that the atmospheric concentration value calculated from the gas sensor output corresponding to the calibration atmospheric concentration measurement value matches the predetermined reference atmospheric concentration value. To complete the calibration operation.

Next, the operation of the atmospheric concentration measurement of the calibration unit 16 in the present embodiment will be described more specifically. The gas sensor is a carbon dioxide sensor. In this embodiment, the gas sensor is calibrated once a week at 0:10 on Thursday, and the atmospheric concentration measurement period for obtaining the atmospheric concentration measurement value for calibration is the last three days, that is, Monday. From 0 o'clock to 24 o'clock on Wednesday. During the atmospheric concentration measurement period, the atmospheric concentration is measured at a preset time.
FIG. 3 is a conceptual diagram showing the operation of the calibration unit in the present embodiment. When the measurement time of the atmospheric concentration is reached, the human body detection information receiving unit receives the human body detection information from the human body detection unit 17 and determines whether or not the atmospheric concentration measurement can be performed based on the information. When the human body detection information is “There is a human body”, the atmospheric concentration measurement at that time is not performed, and the state returns to the atmospheric state. On the other hand, when the human body detection information is “no human body exists”, the atmospheric concentration measurement unit operates the gas sensor through the control unit 8 to measure the atmospheric concentration. Atmospheric concentration measurement is carried out 10 times continuously at 1 second intervals, and the average value of 8 times data obtained by removing the maximum and minimum values from the obtained 10 measurement data is stored as the atmospheric concentration measurement value at this time. Store in the department. The reason why the measurement is performed continuously plural times is to remove irregular information such as noise. After the atmospheric concentration measurement is completed, turn off the sensor. Subsequently, the calibration execution time is determined. When it is determined that the calibration execution time is reached, the calibration value is selected by the above-described method, the calibration is performed, and the process returns to the standby state.
In this embodiment, the calibration is performed once a week. However, the calibration may be performed once a day or once a month according to the type of gas and gas sensor. In addition, although the atmospheric concentration measurement period is three days immediately before the calibration execution time, it may be changed according to the frequency of calibration execution. Further, these may be changed by an external input.
Next, a second embodiment will be described. The configuration of the health condition measuring apparatus of the present embodiment is the same as that of the first embodiment shown in FIGS. 1 to 2, and the gas sensor is hydrogen sulfide.

本実施例の人体検知部17は赤外線センサからなる人体検知センサの外に、最後に人体を検知してからの経過時間を積算し、積算された経過時間情報に基いて校正部を駆動する駆動部を備える。駆動部と人体検知センサが一体になって図1に示す便座後部に設置されている。また、校正部16は人体検知情報受信部、大気濃度測定部、および校正実施部からなる。
図4は、本実施例における人体検知部および校正部の動作を示す概念図である。人体検知部17は人体検知センサを常時作動させ、最後に人体を検知してからの経過時間を積算し、記憶する。ガスセンサの校正を実施予定の時間帯(本実施例では毎日午前1時〜午前5時)に入ってから、人体検知部17の駆動部が記憶されている最後に人体を検知してからの経過時間情報をチェックし、最後に人体を検知してからの経過時間tが予め決めてある所定値T(例えば30分)に達したかを判定する。最後に人体を検知してからの経過時間が所定時間に達した、すなわちt>=Tと判断された場合、駆動部が校正部16に大気濃度測定実施開始の信号を送る。
校正部16は人体検知部17からの大気濃度測定実施開始の信号を受信したら、大気濃度測定部が制御部8を通してガスセンサを作動させ、大気濃度測定を実施する。大気濃度測定は1秒間隔で連続10回実施し、得られた10回の測定データから、最大値と最小値を除いた8回のデータの平均値をこの時刻における大気濃度測定値としてデータ記憶部に記憶する。連続複数回測定を実施するのは、ノイズなどのイレギュラー情報を除去するためである。大気濃度測定完了後、センサをOFF状態にし、待機状態に戻る。
The human body detection unit 17 of the present embodiment integrates the elapsed time since the last detection of the human body in addition to the human body detection sensor consisting of an infrared sensor, and drives the calibration unit based on the accumulated elapsed time information. A part. The drive unit and the human body detection sensor are integrally installed at the rear portion of the toilet seat shown in FIG. The calibration unit 16 includes a human body detection information reception unit, an atmospheric concentration measurement unit, and a calibration execution unit.
FIG. 4 is a conceptual diagram showing operations of the human body detection unit and the calibration unit in the present embodiment. The human body detection unit 17 always operates the human body detection sensor, accumulates and stores the elapsed time since the last human body was detected. Since the time when the calibration of the gas sensor is scheduled to be performed (in the present embodiment, from 1 am to 5 am every day), the drive unit of the human body detection unit 17 has been stored and the time since the last detection of the human body The time information is checked, and it is determined whether the elapsed time t from the last detection of the human body has reached a predetermined value T (for example, 30 minutes). When the elapsed time since the last detection of the human body has reached a predetermined time, that is, when it is determined that t> = T, the drive unit sends a signal for starting the atmospheric concentration measurement to the calibration unit 16.
When the calibration unit 16 receives the signal for starting the atmospheric concentration measurement from the human body detection unit 17, the atmospheric concentration measurement unit operates the gas sensor through the control unit 8 to perform the atmospheric concentration measurement. Atmospheric concentration measurement is carried out 10 times continuously at 1 second intervals, and the average value of 8 times data obtained by removing the maximum and minimum values from the obtained 10 measurement data is stored as the atmospheric concentration measurement value at this time. Store in the department. The reason why the measurement is performed continuously plural times is to remove irregular information such as noise. After completing the atmospheric concentration measurement, turn the sensor OFF and return to the standby state.

次に、校正実施部は、得られた大気濃度測定値を、基準大気濃度値と比較し、変動幅(両者の差)が予め決定されている閾値を越えていないかを判定する。変動幅が閾値を越えていないと判定された場合、大気濃度測定値に対応するガスセンサ出力から算出された大気濃度値が予め決定された基準大気濃度値と一致するよう、演算部のガス濃度演算用データを書き換えて、校正動作を完了する。
本実施例では人の存在による大気濃度への影響が離室後も残り、影響がなくなるまで一定の時間がかかる可能性を考慮しているので、より確実に人の影響を受けない大気濃度測定値を得られることができる。また、変動幅に上限を設けることによって、突発的な要因による大気濃度測定値の急変にも対応できる。
続いて第3実施例を説明する。
本実施例の健康状態測定装置の構成は図1から図2に示す実施例1の構成と同様であり、ガスセンサは二酸化炭素ガスセンサである。
本実施例の人体検知部17は赤外線センサからなる人体検知センサの外に、最後に人体を検知してからの経過時間を積算し、積算された経過時間情報に基いて校正部を駆動する駆動部を備える。また、校正部16は人体検知情報受信部、大気濃度測定部、データ記憶部、校正値選択部、校正実施部を備える。
本実施例では、週1回の頻度で木曜日の0分にガスセンサの校正を実施し、校正用の大気濃度測定値を取得するための大気濃度測定の実施期間はその直前の3日間、すなわち月曜日の0時から水曜日の24時までとした。大気濃度測定の実施期間中では校正部が人体検知部からの駆動信号を受けて大気濃度を測定する。
人体検知部17は実施例2と同様、人体検知センサを常時作動させ、最後に人体を検知してからの経過時間を積算し、記憶する。大気濃度測定の実施期間に入ってから、人体検知部17の駆動部が記憶されている最後に人体を検知してからの経過時間情報をチェックし、予め決めてある所定値(例えば30分)に達したかを判定する。最後に人体を検知してからの経過時間が所定時間に達したと判断された場合、駆動部が校正部16の大気濃度測定部に大気濃度測定実施開始の信号を送る。
図5は本実施例における校正部の動作を示す概念図である。人体検知部17からの大気濃度測定実施開始の信号を受信したら、大気濃度測定部が制御部8を通してガスセンサを作動させ、大気濃度測定を実施する。大気濃度測定は、人体検知部からの人体検知信号受信まで60秒間隔で連続実施し、得られた測定データをデータ記憶部に記憶する。ここで人体検知信号とは人体検知部で人体の存在を検知し、その結果を校正部に送信した信号のことである。一方、人体検知信号を受信したら、直ちに校正のための大気濃度測定動作を終了し、測定モードに切り替え、測定終了後または一定時間経過後センサをOFF状態にし、待機状態に戻る。
図6は本実施例の大気濃度測定実施期間中、ある1日の大気濃度測定を実施したタイミングを例示する図である。人が頻繁にいる時間帯では測定がほとんど行われず、人体があまり検出されない時間帯に大気濃度測定が集中的に実施されたことがわかる。
大気濃度測定期間後、校正値選択部は、校正実施時刻の判定を行い、実施時刻(本実施例では毎週木曜日の0時10分)と判定されたら、記憶部に記憶された直近3日間の大気濃度測定値データから、最低の大気濃度測定値を校正用大気濃度測定値として選択する。最後に、校正実施部は、校正用大気濃度測定値に対応するガスセンサ出力から算出された大気濃度値が予め決定された基準大気濃度値と一致するよう、演算部のガス濃度演算用データを書き換えて、校正動作を完了する。
本実施例では人の存在による大気濃度への影響が離室後も残り、影響がなくなるまで一定の時間がかかる可能性を考慮しているので、より確実に人の影響を受けない大気濃度測定値を得られることができる。また、一定期間にわたって測定された大気濃度値から最低測定値を選択するようにしているので、特に二酸化炭素のような大気濃度が人によって大きく影響を受けるガスの場合、確実に基準値に近い大気濃度の測定値で校正することができる。
Next, the calibration execution unit compares the obtained atmospheric concentration measurement value with the reference atmospheric concentration value, and determines whether the fluctuation range (difference between the two) exceeds a predetermined threshold value. When it is determined that the fluctuation range does not exceed the threshold value, the gas concentration calculation of the calculation unit is performed so that the atmospheric concentration value calculated from the gas sensor output corresponding to the atmospheric concentration measurement value matches the predetermined reference atmospheric concentration value. Rewrite the data and complete the calibration operation.
This example considers the possibility that the presence of people will affect the air concentration even after leaving the room and it may take a certain amount of time before the influence disappears. A value can be obtained. In addition, by setting an upper limit on the fluctuation range, it is possible to cope with sudden changes in atmospheric concentration measurement values due to sudden factors.
Subsequently, a third embodiment will be described.
The configuration of the health condition measuring apparatus of the present embodiment is the same as the configuration of the first embodiment shown in FIGS. 1 to 2, and the gas sensor is a carbon dioxide gas sensor.
The human body detection unit 17 of the present embodiment integrates the elapsed time since the last detection of the human body in addition to the human body detection sensor consisting of an infrared sensor, and drives the calibration unit based on the accumulated elapsed time information. A part. The calibration unit 16 includes a human body detection information reception unit, an atmospheric concentration measurement unit, a data storage unit, a calibration value selection unit, and a calibration execution unit.
In this embodiment, the calibration of the gas sensor is performed at a frequency of once a week at 0 minutes on Thursday, and the atmospheric concentration measurement period for obtaining the calibration atmospheric concentration measurement value is the last three days, that is, Monday. From 0 o'clock to 24:00 on Wednesday. During the atmospheric concentration measurement period, the calibration unit receives the driving signal from the human body detection unit and measures the atmospheric concentration.
As in the second embodiment, the human body detection unit 17 always operates the human body detection sensor, accumulates and stores the elapsed time since the last human body was detected. After entering the period of measurement of the atmospheric concentration, the elapsed time information from the last time the human body detecting unit 17 stores the human body is checked, and a predetermined value (for example, 30 minutes) determined in advance is checked. It is determined whether it has reached. When it is determined that the elapsed time since the last detection of the human body has reached a predetermined time, the driving unit sends a signal for starting the atmospheric concentration measurement to the atmospheric concentration measuring unit of the calibration unit 16.
FIG. 5 is a conceptual diagram showing the operation of the calibration unit in the present embodiment. When the atmospheric concentration measurement execution start signal is received from the human body detection unit 17, the atmospheric concentration measurement unit operates the gas sensor through the control unit 8 to perform the atmospheric concentration measurement. The atmospheric concentration measurement is continuously performed at 60-second intervals until the human body detection signal is received from the human body detection unit, and the obtained measurement data is stored in the data storage unit. Here, the human body detection signal is a signal obtained by detecting the presence of a human body by the human body detection unit and transmitting the result to the calibration unit. On the other hand, when the human body detection signal is received, the atmospheric concentration measurement operation for calibration is immediately terminated, the mode is switched to the measurement mode, the sensor is turned off after the measurement is completed or after a certain period of time, and the standby state is returned.
FIG. 6 is a diagram illustrating the timing at which the atmospheric concentration measurement was performed on a certain day during the atmospheric concentration measurement period of this example. It can be seen that the measurement is hardly performed in the time zone where the person is frequent, and that the air concentration measurement is concentrated in the time zone where the human body is not detected so much.
After the atmospheric concentration measurement period, the calibration value selection unit determines the calibration execution time, and if it is determined as the execution time (0:10 every Thursday in this embodiment), the calibration value selection unit stores the last three days stored in the storage unit. From the atmospheric concentration measurement value data, the lowest atmospheric concentration measurement value is selected as the calibration atmospheric concentration measurement value. Finally, the calibration execution unit rewrites the gas concentration calculation data of the calculation unit so that the atmospheric concentration value calculated from the gas sensor output corresponding to the calibration atmospheric concentration measurement value matches the predetermined reference atmospheric concentration value. To complete the calibration operation.
This example considers the possibility that the presence of people will affect the air concentration even after leaving the room and it may take a certain amount of time before the influence disappears. A value can be obtained. In addition, since the lowest measured value is selected from the atmospheric concentration values measured over a certain period of time, especially in the case of a gas whose atmospheric concentration is greatly affected by people, such as carbon dioxide, it is surely close to the reference value. It can be calibrated with the measured concentration.

次に、第4実施例を説明する。
本実施例の装置配置、人体検知部および校正部の構成が前記実施例3と同様であり、ガスセンサの校正は週1回の頻度で木曜日の0分10分に実施し、校正用の大気濃度測定値を取得するための大気濃度測定の実施期間はその直前の3日間、すなわち月曜日の0時から水曜日の24時までとした。大気濃度測定の実施期間中では校正部が人体検知部からの駆動信号を受けて大気濃度を測定する。
図7は第4実施例の人体検知部と校正部の動作を示す図である。
人体検知部17は人体検知センサを常時作動させ、最後に人体を検知してからの経過時間を積算し、記憶する。ガスセンサの校正を実施する予定の時刻(本実施例では月曜日から水曜日の0:00、1:00、……23:00)になったから、人体検知部17の駆動部が記憶されている最後に人体を検知してからの経過時間情報をチェックし、最後に人体を検知してからの経過時間tが予め決めてある所定値T(例えば30分)に達したかを判定する。最後に人体を検知してからの経過時間が所定時間に達したと判断された場合、駆動部が校正部16の大気濃度測定部に大気濃度測定実施開始の信号を送る。
校正部16が人体検知部17からの大気濃度測定実施開始の信号を受信したら、大気濃度測定部が制御部8を通してガスセンサを作動させ、大気濃度測定を実施する。大気濃度測定は1秒間隔で連続10回実施し、得られた10回の測定データから、最大値と最小値を除いた8回のデータの平均値をこの時刻における大気濃度測定値としてデータ記憶部に記憶する。連続複数回測定を実施するのは、ノイズなどのイレギュラー情報を除去するためである。大気濃度測定完了後、センサをOFF状態にする。続いて、校正実施の時刻判定を行い、校正実施の時刻と判定されたら、実施例1で述べた方法で校正値を選択して校正を実施し、待機状態に戻る。
図8はある1日にわたって、本実施例の校正部の大気濃度測定を実施したタイミングを示す図である。人が頻繁にいる時間帯では測定がほとんど行われず、人体があまり検出されない時間帯に大気濃度測定が集中的に実施されたことがわかる。

以上本発明の健康状態測定装置を校正部の構成および校正方法を中心に説明した。続いて、本発明の健康状態測定装置の演算部9におけるガスセンサ出力からガス濃度、さらにガス濃度から腸内状態指標を推定する方法について説明する。本実施例ではガスとして二酸化炭素、腸内指標の例として便pHを用いた。
演算部9は第一演算部と第二演算部からなる。まず、第一演算部によってガスセンサの出力からガス濃度を演算する手順について説明する。
図9は排便時に発生したガス中の二酸化炭素ガス濃度をガスセンサ7で測定した時の出力例を示すグラフである。横軸の時間(秒)は排便所要時間を表し、t1は排便開始時、t2は排便終了時である。最高出力は排便量が最も多いタイミングに対応するため、このときの出力値(最大ピーク値Vp)を利用すれば、より正確なpH値を推定することができる。
上記Vp値をガスセンサ7の出力として、第一演算部では便器対応データを利用して、最大ピーク値Vpに対応する二酸化炭素ガス濃度Cpを算出する。
次に、算出された二酸化炭素ガス濃度Cpから腸内状態指標の便pHを算出する手順を説明する。
Next, a fourth embodiment will be described.
The apparatus arrangement, the human body detection unit, and the calibration unit in this example are the same as those in Example 3. The gas sensor is calibrated once a week at 0:10 on Thursday, and the atmospheric concentration for calibration is used. The period of the atmospheric concentration measurement for obtaining the measured value was set to the last three days, that is, from 0:00 on Monday to 24:00 on Wednesday. During the atmospheric concentration measurement period, the calibration unit receives the driving signal from the human body detection unit and measures the atmospheric concentration.
FIG. 7 is a diagram illustrating operations of the human body detection unit and the calibration unit according to the fourth embodiment.
The human body detection unit 17 always operates the human body detection sensor, accumulates and stores the elapsed time since the last human body was detected. Since the time at which the calibration of the gas sensor is scheduled (from Monday to Wednesday in this embodiment, 0:00, 12:00, 23:00), the drive unit of the human body detection unit 17 is stored last. The elapsed time information after detecting the human body is checked, and it is determined whether the elapsed time t since the last human body detection has reached a predetermined value T (for example, 30 minutes). When it is determined that the elapsed time since the last detection of the human body has reached a predetermined time, the driving unit sends a signal for starting the atmospheric concentration measurement to the atmospheric concentration measuring unit of the calibration unit 16.
When the calibration unit 16 receives the signal for starting the atmospheric concentration measurement from the human body detecting unit 17, the atmospheric concentration measuring unit operates the gas sensor through the control unit 8 to perform the atmospheric concentration measurement. Atmospheric concentration measurement is carried out 10 times continuously at 1 second intervals, and the average value of 8 times data obtained by removing the maximum and minimum values from the obtained 10 measurement data is stored as the atmospheric concentration measurement value at this time. Store in the department. The reason why the measurement is performed continuously plural times is to remove irregular information such as noise. After the atmospheric concentration measurement is completed, turn off the sensor. Subsequently, the calibration execution time is determined. When the calibration execution time is determined, the calibration value is selected by the method described in the first embodiment, the calibration is performed, and the process returns to the standby state.
FIG. 8 is a diagram showing the timing when the atmospheric concentration measurement of the calibration unit of the present embodiment was performed over a certain day. It can be seen that the measurement is hardly performed in the time zone where the person is frequent, and that the air concentration measurement is concentrated in the time zone where the human body is not detected so much.

The health condition measuring apparatus of the present invention has been described above with a focus on the configuration of the calibration unit and the calibration method. Next, a method for estimating the gas concentration from the gas sensor output in the computing unit 9 of the health condition measuring apparatus of the present invention and further estimating the intestinal state index from the gas concentration will be described. In this example, carbon dioxide was used as the gas, and fecal pH was used as an example of the intestinal index.
The calculation unit 9 includes a first calculation unit and a second calculation unit. First, a procedure for calculating the gas concentration from the output of the gas sensor by the first calculation unit will be described.
FIG. 9 is a graph showing an output example when the gas sensor 7 measures the carbon dioxide gas concentration in the gas generated during defecation. The time (seconds) on the horizontal axis represents the time required for defecation, t1 is the start of defecation, and t2 is the end of defecation. Since the maximum output corresponds to the timing when the amount of defecation is the largest, the more accurate pH value can be estimated by using the output value (maximum peak value Vp) at this time.
Using the Vp value as the output of the gas sensor 7, the first calculation unit calculates the carbon dioxide gas concentration Cp corresponding to the maximum peak value Vp by using the toilet correspondence data.
Next, a procedure for calculating the fecal pH of the intestinal state index from the calculated carbon dioxide gas concentration Cp will be described.

図10は排便時に発生したガス中の二酸化炭素ガス濃度(容量%で表示)の最大値と、そのときに採取した便中の酢酸濃度(μmol/g)との相関を示す実測データである。このように二酸化炭素ガス濃度と酢酸濃度との間に相関性があることの理由が明確ではないが、便のpH値は含まれるカルボン酸の濃度によって左右され、このカルボン酸の一定割合が体内で水と二酸化炭素に分解されているためと推測される。 FIG. 10 is actual measurement data showing the correlation between the maximum value of the carbon dioxide gas concentration (expressed in volume%) in the gas generated during defecation and the acetic acid concentration (μmol / g) in the stool collected at that time. The reason why there is a correlation between the carbon dioxide gas concentration and the acetic acid concentration is not clear, but the pH value of feces depends on the concentration of the carboxylic acid contained, and a certain percentage of this carboxylic acid is in the body. It is presumed that it is decomposed into water and carbon dioxide.

したがって、カルボン酸のうちの大部分を占める酢酸の濃度も上記二酸化炭素ガス濃度と相関があることになる。また、図11は便中の酢酸濃度と便中のpH値との相関を示す実測データであり、他に含まれる酸や塩基の影響を受けてデータは多少乱れるものの、ほぼ、直線的な関係を示している。
第一演算部で二酸化炭素ガスセンサの出力からガス濃度への演算が終わると、得られた二酸化炭素ガス濃度値が第二演算部に送信される。第二演算部では、図10に示す相関データに基く二酸化炭素ガス濃度と酢酸濃度との対応表、および図11に示す相関データに基く酢酸濃度と便pHとの対応表が記憶されており、記憶された対応表にしたがって二酸化炭素ガス濃度から酢酸濃度、さらに酢酸濃度から便pHを推定する。
最後に、本発明の健康状態測定装置を使用した腸内状態測定方法の手順を例示して説明する。
図12は、本発明の健康状態測定装置洋式便器に付設された衛生洗浄便座装置に内蔵)を使用した健康状態測定方法の手順を示す一例である。使用者(以後、「ユーザ」と呼ぶ。)の動作を左側に、便座装置が行う処理(健康状態測定装置の処理を含む)を右側に別けて表示した。
Therefore, the concentration of acetic acid occupying most of the carboxylic acid is also correlated with the carbon dioxide gas concentration. FIG. 11 shows measured data indicating the correlation between the acetic acid concentration in the stool and the pH value in the stool. Although the data is somewhat disturbed by the influence of other acids and bases contained therein, the data is almost linear. Is shown.
When the calculation from the output of the carbon dioxide gas sensor to the gas concentration is completed in the first calculation unit, the obtained carbon dioxide gas concentration value is transmitted to the second calculation unit. In the second calculation unit, a correspondence table between the carbon dioxide gas concentration and the acetic acid concentration based on the correlation data shown in FIG. 10 and a correspondence table between the acetic acid concentration and the fecal pH based on the correlation data shown in FIG. 11 are stored. According to the stored correspondence table, acetic acid concentration is estimated from the carbon dioxide gas concentration, and fecal pH is estimated from the acetic acid concentration.
Finally, the procedure of the intestinal state measuring method using the health state measuring apparatus of the present invention will be exemplified and described.
FIG. 12 is an example showing a procedure of a health condition measuring method using a health condition measuring apparatus of the present invention (built in a sanitary washing toilet seat apparatus attached to a western toilet). The operation of the user (hereinafter referred to as “user”) is displayed on the left side, and the process performed by the toilet seat device (including the process of the health condition measuring apparatus) is displayed separately on the right side.

本図の流れの通り、ユーザはトイレ内に入室し排便をして退室するのであるが、このトイレには本発明の健康状態測定装置が取り付けてあるため、退室する前には自分の腸内のpH推定値を表示部10に表示されることで、その日の体調を知り、あるいは継続的に測定していた場合は経時的な体調の変化を知ることができる。 As shown in the flow of this figure, the user enters the toilet, defecates, and then exits, but since the health condition measuring device of the present invention is attached to this toilet, By displaying the estimated pH value on the display unit 10, it is possible to know the physical condition of the day, or to know the change in physical condition over time when continuously measured.

まずユーザが入室すると人体検知部17の人体検知センサによって入室が検知され、制御部8によって二酸化炭素ガスセンサ7が起動される。人体検知センサを使わない場合には、ユーザが健康状態測定装置の電源を手動で入れてもよい。 First, when the user enters the room, the human body detection sensor of the human body detection unit 17 detects the room entry, and the control unit 8 activates the carbon dioxide gas sensor 7. When the human body detection sensor is not used, the user may manually turn on the health condition measuring device.

ユーザが着座すると着座センサが着座を検知し、制御部8によって脱臭ファン5および二酸化炭素ガスセンサ7が作動を開始する。ここで稼動開始時のセンサの時刻をt1とし、その時刻に対応する二酸化炭素ガスセンサ7の出力値をV1と呼ぶ。なお、ガスセンサの始動は着座センサを使わずにユーザがセンサの始動スイッチを押してもよい。 When the user is seated, the seating sensor detects the seating, and the control unit 8 starts the operation of the deodorizing fan 5 and the carbon dioxide gas sensor 7. Here, the time of the sensor at the start of operation is set to t1, and the output value of the carbon dioxide gas sensor 7 corresponding to the time is called V1. Note that the gas sensor may be started without the use of a seating sensor by the user pressing the sensor start switch.

ユーザが排便を開始し終了するまで、二酸化炭素ガスセンサ7は一定時間tx、たとえば1秒おきにデータVxを検出し、それらを制御部8に書き込む。 Until the user starts and finishes defecation, the carbon dioxide gas sensor 7 detects the data Vx for a certain time tx, for example, every second, and writes them in the control unit 8.

排便終了後、ユーザが人体洗浄を開始する。このとき、洗浄ボタンと連動させて二酸化炭素ガスセンサ7の記録を終了させる。排便終了時の時間t2と二酸化炭素ガスセンサ7のそのときの検知データV2が記憶される。なお、排便前または排便中に洗浄ボタンが使われるケースもあることを考慮する場合は、洗浄ボタンと連動させずにユーザが手動で記憶終了させる形式としてもよい。 After defecation ends, the user starts washing the human body. At this time, the recording of the carbon dioxide gas sensor 7 is terminated in conjunction with the cleaning button. The time t2 at the end of the defecation and the detection data V2 at that time of the carbon dioxide gas sensor 7 are stored. When considering that the washing button may be used before or during defecation, the user may manually terminate the storage without interlocking with the washing button.

次に、演算部9の第一演算部ではt1〜t2の範囲で二酸化炭素ガス出力の最大値Vmaxを検索する。そしてVmaxの値そのもの、またはVmaxから二酸化炭素ガス出力の最小値を引いた値を排泄ガス対応の二酸化炭素ガスセンサの出力値(最大値Vp)として記録する。そしてVp値から二酸化炭素ガス最大濃度Cpを算出する。 Next, the first calculation unit of the calculation unit 9 searches for the maximum value Vmax of the carbon dioxide gas output in the range of t1 to t2. The value of Vmax itself or a value obtained by subtracting the minimum value of carbon dioxide gas output from Vmax is recorded as the output value (maximum value Vp) of the carbon dioxide gas sensor corresponding to excretion gas. Then, the carbon dioxide gas maximum concentration Cp is calculated from the Vp value.

続いて演算部9の第二演算部では酢酸濃度を推定し、続いて酢酸濃度からpH値を推定する。同定したpH値は第二演算部9に書き込み、さらに同定結果をユーザに表示部10等により報知する。 Subsequently, the second calculation unit of the calculation unit 9 estimates the acetic acid concentration, and then estimates the pH value from the acetic acid concentration. The identified pH value is written in the second calculation unit 9, and the identification result is notified to the user by the display unit 10 or the like.

ユーザが離座すると、それを着座センサが感知し脱臭ファン5が停止する。そしてユーザが退室すると人体検知センサによって退室が検知されその信号が制御部8送られ二酸化炭素ガスセンサ7の電源が切られる。 When the user leaves the seat, the seating sensor senses it and the deodorizing fan 5 stops. Then, when the user leaves the room, the human body detection sensor detects the room leaving, and the signal is sent to the control unit 8 to turn off the carbon dioxide gas sensor 7.

尚、本実施例では二酸化炭素ガスセンサを使用したが、水素ガスセンサや硫化水素センサなどを使用しても、それに対応した換算方法を使用することで、同じように腸内状態指標を測定することができる。
Although the carbon dioxide gas sensor is used in this embodiment, the intestinal state index can be measured in the same manner by using a conversion method corresponding to the hydrogen gas sensor or the hydrogen sulfide sensor. it can.

本発明の健康状態測定装置を搭載した衛生洗浄便座装置を付設した洋式便器の一例を示す(部分透視)外観図1 is an external view (partial perspective) showing an example of a Western-style toilet equipped with a sanitary washing toilet seat device equipped with the health condition measuring device of the present invention. 本発明の健康状態測定装置を示す概念図The conceptual diagram which shows the health condition measuring apparatus of this invention 第1実施例の校正部の動作を示す概念図The conceptual diagram which shows operation | movement of the calibration part of 1st Example. 第2実施例の人体検知部および校正部の動作を示す概念図The conceptual diagram which shows operation | movement of the human body detection part of 2nd Example, and a calibration part 第3実施例における校正部の動作を示す概念図The conceptual diagram which shows operation | movement of the calibration part in 3rd Example. 第3実施例の大気濃度測定を実施したタイミングを例示する図The figure which illustrates the timing which carried out atmospheric concentration measurement of the 3rd example 第4実施例の人体検知部および校正部の動作を示す概念図The conceptual diagram which shows operation | movement of the human body detection part of 4th Example, and a calibration part 第4実施例の大気濃度測定を実施したタイミングを例示する図The figure which illustrates the timing which carried out atmospheric concentration measurement of the 4th example 排便時に発生したガス中の二酸化炭素ガス濃度を測定した出力例を示す図The figure which shows the output example which measured the carbon dioxide gas concentration in the gas generated at the time of defecation 排便ガスの二酸化炭素ガス濃度をと便中酢酸濃度との相関関係を示す図Figure showing the correlation between the concentration of carbon dioxide gas in defecation gas and the concentration of acetic acid in stool 便中酢酸濃度と便pH値との相関関係を示す図Figure showing the correlation between fecal acetic acid concentration and fecal pH value 本発明の健康状態測定装置(人体洗浄装置組込タイプ洋式便器に搭載)を使用した健康状態測定方法の手順の一例を示す図The figure which shows an example of the procedure of the health condition measuring method using the health condition measuring apparatus (installed in the human body washing apparatus built-in type Western style toilet) of this invention

符号の説明Explanation of symbols

1…便器、2…便座、3…便鉢、4…脱臭ファン用排気通路、5…脱臭ファン、7…ガスセンサ、8…制御部、9…演算部、10…表示部、11…操作パネル、16…校正部、17…人体検知部。 DESCRIPTION OF SYMBOLS 1 ... Toilet bowl, 2 ... Toilet seat, 3 ... Toilet bowl, 4 ... Deodorizing fan exhaust passage, 5 ... Deodorizing fan, 7 ... Gas sensor, 8 ... Control part, 9 ... Calculation part, 10 ... Display part, 11 ... Operation panel, 16 ... Calibration unit, 17 ... Human body detection unit.

Claims (4)

便器に載置され、排便時に併発される生体関連ガスのガス濃度を測定するガスセンサを備える健康状態測定装置であって、
人体存在の有無を検知する人体検知部と、
前記人体検知部の情報に基いて前記ガスセンサを校正する大気利用の校正部を備えることを特徴とする健康状態測定装置。
A health condition measurement device comprising a gas sensor that is placed on a toilet bowl and measures the gas concentration of a living body-related gas that is generated at the time of defecation,
A human body detection unit for detecting the presence or absence of a human body,
A health condition measuring apparatus comprising an atmospheric calibration unit that calibrates the gas sensor based on information from the human body detection unit.
前記ガスセンサは二酸化炭素ガスセンサであることを特徴とする請求項1記載の健康状態測定装置。 The health condition measuring apparatus according to claim 1, wherein the gas sensor is a carbon dioxide gas sensor. 前記人体検知部が最後に人体を検知してから所定経過時間後に前記校正部を駆動する駆動部を備えることを特徴とする請求項1または2に記載の健康状態測定装置。 The health condition measuring apparatus according to claim 1, further comprising a drive unit that drives the calibration unit after a predetermined elapsed time since the human body detection unit last detected a human body. 便器に載置され、排便時に併発される生体関連ガスのガス濃度を測定するガスセンサと、人体存在の有無を検知する人体検知部とを備える健康状態測定装置の校正方法であって、
前記人体検知部の情報に基いて大気を利用して前記ガスセンサを校正することを特徴とする健康状態測定装置の校正方法。
A calibration method for a health condition measurement apparatus comprising a gas sensor that is placed on a toilet and measures a gas concentration of a living body-related gas that is generated at the time of defecation, and a human body detection unit that detects the presence or absence of a human body,
A calibration method for a health condition measuring apparatus, wherein the gas sensor is calibrated using air based on information of the human body detection unit.
JP2008140584A 2008-05-29 2008-05-29 Health state measuring device Pending JP2009288054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140584A JP2009288054A (en) 2008-05-29 2008-05-29 Health state measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008140584A JP2009288054A (en) 2008-05-29 2008-05-29 Health state measuring device

Publications (1)

Publication Number Publication Date
JP2009288054A true JP2009288054A (en) 2009-12-10

Family

ID=41457408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008140584A Pending JP2009288054A (en) 2008-05-29 2008-05-29 Health state measuring device

Country Status (1)

Country Link
JP (1) JP2009288054A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519469B1 (en) * 2013-07-03 2015-05-12 정성길 A health monitoring pillow
JP2016142585A (en) * 2015-01-30 2016-08-08 Toto株式会社 Biological information measurement system
JP2016142584A (en) * 2015-01-30 2016-08-08 Toto株式会社 Biological information measurement system
JP2016142586A (en) * 2015-01-30 2016-08-08 Toto株式会社 Biological information measurement system
CN105842286A (en) * 2015-01-30 2016-08-10 Toto株式会社 Biological information measurement system
JP2016145807A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211048A (en) * 1995-02-02 1996-08-20 Matsushita Electric Ind Co Ltd Health measuring apparatus
JPH0943182A (en) * 1995-08-04 1997-02-14 Hitachi Ltd Organism monitoring device
JP2000046779A (en) * 1998-07-24 2000-02-18 Ngk Spark Plug Co Ltd Gas sensor controller
JP3183387B2 (en) * 1996-06-07 2001-07-09 矢崎総業株式会社 Correction method of signal baseline value of carbon dioxide measurement unit and carbon dioxide measurement unit
JP3483432B2 (en) * 1997-06-18 2004-01-06 株式会社山武 Reference value generator
JP2005315836A (en) * 2004-04-02 2005-11-10 Toto Ltd Apparatus and method for reporting state within intestine
JP2007089857A (en) * 2005-09-29 2007-04-12 Toto Ltd Apparatus and method for informing intestinal condition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211048A (en) * 1995-02-02 1996-08-20 Matsushita Electric Ind Co Ltd Health measuring apparatus
JPH0943182A (en) * 1995-08-04 1997-02-14 Hitachi Ltd Organism monitoring device
JP3183387B2 (en) * 1996-06-07 2001-07-09 矢崎総業株式会社 Correction method of signal baseline value of carbon dioxide measurement unit and carbon dioxide measurement unit
JP3483432B2 (en) * 1997-06-18 2004-01-06 株式会社山武 Reference value generator
JP2000046779A (en) * 1998-07-24 2000-02-18 Ngk Spark Plug Co Ltd Gas sensor controller
JP2005315836A (en) * 2004-04-02 2005-11-10 Toto Ltd Apparatus and method for reporting state within intestine
JP2007089857A (en) * 2005-09-29 2007-04-12 Toto Ltd Apparatus and method for informing intestinal condition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519469B1 (en) * 2013-07-03 2015-05-12 정성길 A health monitoring pillow
JP2016142585A (en) * 2015-01-30 2016-08-08 Toto株式会社 Biological information measurement system
JP2016142584A (en) * 2015-01-30 2016-08-08 Toto株式会社 Biological information measurement system
JP2016142586A (en) * 2015-01-30 2016-08-08 Toto株式会社 Biological information measurement system
CN105842286A (en) * 2015-01-30 2016-08-10 Toto株式会社 Biological information measurement system
JP2016145807A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system

Similar Documents

Publication Publication Date Title
JP6899084B2 (en) Biological information measurement system
JP2009250922A (en) Health condition measuring instrument
JP2009288054A (en) Health state measuring device
KR101929916B1 (en) Biological information measurement system
JP5136285B2 (en) Intestinal state measuring device and measuring method
JP2010230359A (en) Bioinformation measuring device
JP2010175432A (en) Health condition measurement apparatus
US20160223552A1 (en) Biological information measurement system
JP6701507B2 (en) Biological information measurement system
WO2016121247A1 (en) Biological information measurement system
JP2017096890A (en) Biological information measurement system
JP6770677B2 (en) Biological information measurement system
JP5019267B2 (en) Health condition measuring device and health condition measuring method
JP5168135B2 (en) Biological improvement effect analysis system and biological improvement effect analysis method
JP4849036B2 (en) Health condition measuring apparatus and measuring method
JP4915339B2 (en) Health condition measuring apparatus and measuring method
JP2010002252A (en) Health condition measuring instrument
JP2009075088A (en) Health condition measuring device and measuring method
JP4894185B2 (en) Lighting system
JP6674623B2 (en) Biological information measurement system
JP2009271038A (en) Device for measuring health condition
JP6390849B2 (en) Biological information measurement system
JP2008036416A (en) Body motion judgment device
JP6425089B2 (en) Biological information measurement system
JP4992694B2 (en) Health condition measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110404

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20120604

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121005

Free format text: JAPANESE INTERMEDIATE CODE: A02