JP2009287456A - Failure diagnostic device of exhaust gas throttle valve - Google Patents

Failure diagnostic device of exhaust gas throttle valve Download PDF

Info

Publication number
JP2009287456A
JP2009287456A JP2008140487A JP2008140487A JP2009287456A JP 2009287456 A JP2009287456 A JP 2009287456A JP 2008140487 A JP2008140487 A JP 2008140487A JP 2008140487 A JP2008140487 A JP 2008140487A JP 2009287456 A JP2009287456 A JP 2009287456A
Authority
JP
Japan
Prior art keywords
throttle valve
exhaust
intake
failure
forced regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008140487A
Other languages
Japanese (ja)
Inventor
Susumu Suzuki
享 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2008140487A priority Critical patent/JP2009287456A/en
Publication of JP2009287456A publication Critical patent/JP2009287456A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a failure diagnostic device of an exhaust gas throttle valve capable of surely determining failure of the exhaust gas throttle valve. <P>SOLUTION: While limiting exhaust gas by the exhaust gas throttle valve when forcedly regenerating a DPF (diesel particulate filter), a target intake air quantity tgtQa is calculated for each control mode of forced regeneration by a target intake air quantity calculation part 71, the target intake air quantity tgtQa corresponding to the currently executing control mode is selected by a selection part 72, the intake throttle valve is fed back by an intake throttle control part 62 based on variance ΔQ between the selected target intake air quantity tgtQa and an actual intake air quantity Qa and an error of flow rate characteristics of the exhaust throttle valve is compensated. Based on a control state of the intake throttle valve at this time, whether the exhaust throttle valve is failed or not and failure content are determined by a failure diagnostic part 63. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は排気絞り弁の故障診断装置に係り、詳しくは、エンジンの排気流量を制限して排気通路に設けたDPF(ディーゼルパティキュレートフィルタ)を昇温する排気絞り弁の故障診断装置に関するものである。   The present invention relates to an exhaust throttle valve failure diagnosis device, and more particularly to an exhaust throttle valve failure diagnosis device that limits the exhaust flow rate of an engine and raises the temperature of a DPF (diesel particulate filter) provided in an exhaust passage. is there.

例えばディーゼルエンジン等のようにリーン空燃比下で燃焼を行う内燃機関では、排ガス中にHC、CO、NOx以外にパティキュレートが多く含まれており、このパティキュレートを処理するための後処理装置として、排ガス中のパティキュレートをDPFに捕集する排気浄化装置が実用化されている。このような排気浄化装置では、DPFに捕集したパティキュレートを焼却除去する必要があるため、パティキュレートフィルタの上流側に酸化触媒を配設し、この酸化触媒により排ガス中のNOから生成されたNO2を酸化剤として利用して、フィルタ上のパティキュレートを連続的に燃焼させる、所謂連続再生を実施するように構成されている。 For example, in an internal combustion engine that burns at a lean air-fuel ratio such as a diesel engine, the exhaust gas contains a large amount of particulates in addition to HC, CO, and NOx, and is used as a post-processing device for treating the particulates. An exhaust gas purification device that collects particulates in exhaust gas in a DPF has been put into practical use. In such an exhaust purification device, since it is necessary to incinerate and remove the particulates collected in the DPF, an oxidation catalyst is disposed upstream of the particulate filter, and the oxidation catalyst generates the NO from the exhaust gas. The so-called continuous regeneration is performed by continuously burning the particulates on the filter using NO 2 as an oxidizing agent.

連続再生によるパティキュレートの焼却除去は、DPF温度が所定値以上であれば通常の運転中でも自ずと行われるが、この条件が満たされない運転状態が継続すると、DPFでのパティキュレートの捕集量が許容量を越えて過堆積に陥ってしまう。そこで、過堆積に至る以前にDPFを積極的に昇温することによりパティキュレートを焼却除去してDPFの再生を図る強制再生が実施されており、例えばメイン噴射後の膨張行程でポスト噴射により供給した未燃燃料を上流側の酸化触媒上で燃焼させて、下流側に位置するDPFを昇温してパティキュレートの燃焼を図っている。   Particulate incineration removal by continuous regeneration is naturally performed even during normal operation if the DPF temperature is equal to or higher than a predetermined value. However, if the operation state in which this condition is not satisfied continues, the amount of particulates collected by the DPF is allowed. It will fall into over-deposition beyond capacity. Therefore, forced regeneration is performed to regenerate the DPF by incineration removal of the particulates by aggressively raising the temperature of the DPF before over-deposition occurs. For example, it is supplied by post injection in the expansion stroke after the main injection. The burned unburnt fuel is burned on the upstream side oxidation catalyst, and the DPF located on the downstream side is heated to burn the particulates.

以上のDPFによる機能が損なわれると、大気中へのパティキュレート排出等の不具合が生じるため、例えば特許文献1の記載の対策が提案されている。当該特許文献1の技術は、DPFの下流側に設けたスートセンサにより所定量以上のパティキュレートが検出されたときに、DPFの破損や機能故障が生じたとして故障判定を下すものである。
特開2007−315275号公報
If the function of the above DPF is impaired, problems such as particulate discharge to the atmosphere occur, and therefore, for example, a countermeasure described in Patent Document 1 has been proposed. The technique of Patent Document 1 makes a failure determination that a DPF breakage or a functional failure has occurred when a particulate amount of a predetermined amount or more is detected by a soot sensor provided on the downstream side of the DPF.
JP 2007-315275 A

ところで、上記DPFの強制再生時には、DPFの昇温促進を目的としてエンジンの排気通路に設けた排気絞り弁を閉弁制御する場合があり、排気制限による間接的な吸入空気量の制限、及びエンジン回転低下を補うための燃料噴射量の増加を利用して、DPFの昇温促進作用を得ている。
この種の排気絞り弁が故障すると、DPFの昇温促進による効率的な強制再生を望めなくなるばかりでなく、故障が排気絞り弁の閉固着の場合には、過度の排気制限によりエンジン破損等の重大な不具合が生じることから、排気絞り弁の故障を的確に診断して修理等の速やかな対処を行う必要がある。
By the way, at the time of forced regeneration of the DPF, there is a case where an exhaust throttle valve provided in the exhaust passage of the engine is closed for the purpose of accelerating the temperature rise of the DPF. The effect of promoting the temperature rise of the DPF is obtained by utilizing the increase in the fuel injection amount to compensate for the decrease in rotation.
If this type of exhaust throttle valve breaks down, not only can the efficient forced regeneration by promoting the temperature rise of the DPF not be desired, but if the failure is due to the exhaust throttle valve being closed and closed, excessive exhaust restriction will cause engine damage, etc. Since a serious malfunction occurs, it is necessary to accurately diagnose the malfunction of the exhaust throttle valve and take prompt measures such as repair.

ところが、従来からDPFの昇温状況を監視して異常を判定することは行われていたが、当該DPFの昇温には、上記ポスト噴射や排気絞り制御の他に、吸気絞り制御や点火時期リタード等の種々の制御が併用されているため、昇温異常の要因が何れの制御にあるかは特定できず、必然的に排気絞り弁の故障を直接的に判定できず迅速な対処が望めなかった。当然ながら、DPF自体の故障を判定する上記特許文献1の技術では、排気絞り弁を故障判定することはできず、何ら解決策とはなり得なかった。   However, it has been conventionally performed to determine the abnormality by monitoring the temperature rise state of the DPF. In addition to the post injection and the exhaust throttle control, the DPF temperature rise includes intake throttle control and ignition timing. Since various controls such as retard are used together, it is not possible to identify which control is the cause of the temperature rise abnormality, and it is inevitably impossible to directly determine the failure of the exhaust throttle valve, and prompt action can be expected. There wasn't. Naturally, the technique of the above-mentioned Patent Document 1 that determines the failure of the DPF itself cannot determine the failure of the exhaust throttle valve and cannot be a solution.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、排気絞り弁の故障を確実に判定することができる排気絞り弁の故障診断装置を提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide an exhaust throttle valve failure diagnosis device that can reliably determine an exhaust throttle valve failure. is there.

上記目的を達成するため、請求項1の発明は、エンジンの排気通路に排ガスに含まれるパティキュレートを捕集するフィルタを配設し、フィルタのパティキュレート捕集量が所定値に達したときに、強制再生制御手段により排気通路に配設した排気絞り弁を閉弁制御しながらエンジンの排気昇温によりフィルタを昇温する強制再生を実行して、フィルタに捕集されたパティキュレートを焼却除去するエンジンの排気浄化装置において、エンジンの吸気通路に配設されて、吸気通路を流通する吸入空気を調整可能な吸気絞り弁と、強制再生時において、エンジンの運転状態に基づき算出された強制再生時の目標吸入空気量と実際の吸入空気量との偏差を縮小するように、吸気絞り弁の開度をフィードバック制御する吸気絞り制御手段と、強制再生時において、吸気絞り制御手段による吸気絞り弁の制御状況に基づき、排気絞り弁の故障を判定する故障判定手段とを備えたものである。   In order to achieve the above object, according to the first aspect of the present invention, a filter for collecting particulates contained in the exhaust gas is disposed in the exhaust passage of the engine, and when the amount of particulate collection of the filter reaches a predetermined value. Executes forced regeneration to raise the temperature of the filter by increasing the exhaust temperature of the engine while controlling the exhaust throttle valve arranged in the exhaust passage by the forced regeneration control means, and incinerates and removes particulates collected by the filter. In an exhaust purification system for an engine, an intake throttle valve that is arranged in an intake passage of the engine and can adjust intake air flowing through the intake passage, and a forced regeneration calculated based on an operating state of the engine at the time of forced regeneration Intake throttle control means for feedback control of the opening of the intake throttle valve so as to reduce the deviation between the target intake air amount at the time and the actual intake air amount, During, based on the control status of the intake throttle valve by the intake throttle control means, in which a determining failure determining means the failure of the exhaust throttle valve.

従って、排気絞り弁による排気制限は間接的にエンジンの吸入空気量を制限することに繋がるため、何らかの要因により排気絞り弁の流量特性が所期の設定に対して誤差を生じていれば、その誤差に応じて吸入空気量が変動する。吸気絞り弁のフィードバック制御によりエンジンの実吸入吸気量が強制再生時の最適値として設定された目標吸入空気量に調整されることにより、結果として排気絞り弁の流量特性に生じた誤差が補償されて適切な排気制限が実現される。   Therefore, the exhaust restriction by the exhaust throttle valve indirectly limits the intake air amount of the engine, so if the flow characteristic of the exhaust throttle valve causes an error with respect to the intended setting for some reason, The amount of intake air varies depending on the error. The actual intake air intake amount of the engine is adjusted to the target intake air amount set as the optimum value during forced regeneration by feedback control of the intake throttle valve, and as a result, errors in the flow rate characteristics of the exhaust throttle valve are compensated. Appropriate exhaust restriction.

そして、このときの吸気絞り弁の制御状況は、排気絞り弁の流量特性に発生した誤差、ひいては誤差の発生要因となった排気絞り弁の故障内容を反映したものとなるため、吸気絞り弁の制御状況を表す指標として、例えば目標吸入空気量と実吸入空気量との偏差、或いは吸気絞り弁の操作量等を設定し、これらの指標に基づき排気絞り弁の故障を確実に判定可能となる。   The control status of the intake throttle valve at this time reflects an error that has occurred in the flow characteristics of the exhaust throttle valve, and thus the failure of the exhaust throttle valve that caused the error. As an index indicating the control status, for example, a deviation between the target intake air amount and the actual intake air amount, or an operation amount of the intake throttle valve is set, and it becomes possible to reliably determine the failure of the exhaust throttle valve based on these indexes. .

請求項2の発明は、請求項1において、故障判定手段が、強制再生の実行中において、目標吸入空気量と実吸入空気量との偏差が予め設定された開固着判定値以上のときに、排気絞り弁の開固着に起因する故障判定を下すものである。
従って、排気絞り弁が開固着して排気制限が行われないときには、吸気絞り弁が閉側に制御されても補償しきれないため、目標吸入空気量と実吸入空気量との偏差は0からかけ離れた大きな値となり、必然的に開固着判定値以上となる。よって、このような吸気絞り弁の制御状況では、排気絞り弁の開固着による故障と見なすことができ、開固着に起因する故障判定が下される。
According to a second aspect of the present invention, in the first aspect, when the failure determination means performs a forced regeneration and the deviation between the target intake air amount and the actual intake air amount is equal to or greater than a predetermined open adhesion determination value, This is to make a failure judgment due to the open throttle of the exhaust throttle valve.
Accordingly, when the exhaust throttle valve is open and stuck and exhaust restriction is not performed, even if the intake throttle valve is controlled to the closed side, it cannot be compensated for, so the deviation between the target intake air amount and the actual intake air amount is zero. It becomes a large value that is far away, and inevitably exceeds the open adhesion determination value. Therefore, in such a control state of the intake throttle valve, it can be regarded as a failure due to the open sticking of the exhaust throttle valve, and a failure determination due to the open sticking is made.

請求項3の発明は、請求項1において、強制再生前の吸気絞り弁の開度を原位置とした吸気絞り弁の操作量を判定する操作量判定手段をさらに備え、故障判定手段が、初回の強制再生の実行中において、操作量判定手段により判定された吸気絞り弁の操作量の絶対値が予め設定された個体差判定値以上のときに、排気絞り弁の個体差に起因する故障判定を下すものである。   The invention of claim 3 further comprises operation amount determination means for determining the operation amount of the intake throttle valve with the opening of the intake throttle valve before forced regeneration as the original position in claim 1, When the absolute value of the intake throttle valve operation amount determined by the operation amount determination means is equal to or greater than a preset individual difference determination value during the forced regeneration of the engine, the failure determination caused by the individual difference of the exhaust throttle valve Is something that

従って、製造誤差や車体への組付誤差に起因する個体差を排気絞り弁が有しているときには、個体差無しの場合に比較して、目標吸入空気量に対して実吸入空気量が不足または過剰となり、その偏差を縮小するように吸気絞り弁が制御される。結果として、原位置からの吸気絞り弁の操作量は正側または負側にある程度の大きさの値となり、必然的に操作量の絶対値が個体差判定値以上となる。よって、このような吸気絞り弁の制御状況では、排気絞り弁の個体差による故障と見なすことができ、個体差に起因する故障判定が下される。   Therefore, when the exhaust throttle valve has individual differences due to manufacturing errors or assembly errors to the vehicle body, the actual intake air amount is insufficient relative to the target intake air amount compared to the case where there is no individual difference. Alternatively, the intake throttle valve is controlled to be excessive and reduce the deviation. As a result, the operation amount of the intake throttle valve from the original position becomes a value of a certain amount on the positive side or the negative side, and the absolute value of the operation amount inevitably exceeds the individual difference determination value. Therefore, in such a control state of the intake throttle valve, it can be regarded as a failure due to an individual difference of the exhaust throttle valve, and a failure determination due to the individual difference is made.

請求項4の発明は、請求項1において、強制再生前の吸気絞り弁の開度を原位置とした吸気絞り弁の操作量を判定する操作量判定手段をさらに備え、故障判定手段が、強制再生の実行中において、操作量判定手段により判定された吸気絞り弁の開側への操作量が予め設定されたパティキュレート堆積判定値以上のときに、排気絞り弁のパティキュレート堆積に起因する故障判定を下すものである。   The invention of claim 4 further comprises operation amount determination means for determining the operation amount of the intake throttle valve with the opening of the intake throttle valve before forced regeneration as the original position in claim 1, wherein the failure determination means includes During regeneration, when the operation amount to the open side of the intake throttle valve determined by the operation amount determination means is equal to or greater than a predetermined particulate accumulation determination value, a failure caused by particulate accumulation of the exhaust throttle valve Judgment is made.

従って、排気絞り弁へのパティキュレートの堆積量はエンジン運転時間と共に次第に増大し、それに伴って強制再生時の排気絞り弁による排気制限は、同一制御量であってもより大きなものとなる。必然的にその流量特性の誤差を補償すべく、吸気絞り弁は次第に開側に制御され、原位置からの操作量が増大して何れかの時点でパティキュレート堆積判定値以上となる。よって、このような吸気絞り弁の制御状況では、排気絞り弁へのパティキュレートの堆積による故障と見なすことができ、パティキュレートの堆積に起因する故障判定が下される。   Therefore, the amount of particulates accumulated on the exhaust throttle valve gradually increases with the engine operation time, and accordingly, the exhaust restriction by the exhaust throttle valve during forced regeneration becomes larger even with the same control amount. Inevitably, in order to compensate for an error in the flow rate characteristic, the intake throttle valve is gradually controlled to the open side, and the operation amount from the original position increases to become equal to or higher than the particulate deposition determination value at any point in time. Therefore, in such a control state of the intake throttle valve, it can be regarded as a failure due to the accumulation of particulates on the exhaust throttle valve, and a failure determination due to the accumulation of particulates is made.

請求項5の発明は、請求項1において、強制再生前の吸気絞り弁の開度を原位置とした吸気絞り弁の操作量を判定する操作量判定手段をさらに備え、故障判定手段が、強制再生の実行中において、操作量判定手段により判定された吸気絞り弁の閉側への操作量が予め設定された腐食穴空き判定値以上のときに、排気絞り弁の腐食による穴空きに起因する故障判定を下すものである。   The invention of claim 5 further comprises operation amount determination means for determining the operation amount of the intake throttle valve with the opening of the intake throttle valve before forced regeneration as the original position in claim 1, wherein the failure determination means includes During regeneration, when the operation amount to the closing side of the intake throttle valve determined by the operation amount determination means is equal to or greater than a predetermined corrosion hole determination value, it is caused by a hole due to corrosion of the exhaust throttle valve. It makes a failure judgment.

従って、排気絞り弁に腐食による穴空きが生じて強制再生の実行毎に次第に拡大すると、それに伴って強制再生時の排気絞り弁による排気制限は、同一制御量であってもより小さなものとなる。必然的にその流量特性の誤差を補償すべく、吸気絞り弁は次第に閉側に制御され、原位置からの操作量が増大して何れかの時点で腐食穴空き判定値以上となる。よって、このような吸気絞り弁の制御状況では、排気絞り弁の腐食による穴空きの故障と見なすことができ、排気絞り弁の穴空きに起因する故障判定が下される。   Therefore, if the exhaust throttle valve is punctured due to corrosion and gradually increases each time forced regeneration is performed, the exhaust restriction by the exhaust throttle valve during forced regeneration becomes smaller even with the same control amount. . Inevitably, in order to compensate for an error in the flow rate characteristic, the intake throttle valve is gradually controlled to the closed side, and the manipulated variable from the original position increases to reach the corrosion perforated determination value at some point. Therefore, in such a control state of the intake throttle valve, it can be regarded as a hole failure due to corrosion of the exhaust throttle valve, and a failure determination due to the hole of the exhaust throttle valve is made.

請求項6の発明は、請求項1において、吸気絞り制御手段が、強制再生の終了時に排気絞り弁の閉弁制御の中止に対して吸気絞り弁のフィードバック制御の中止を所定時間遅延させ、故障判定手段が、所定時間内において、目標吸入空気量と実吸入空気量との偏差の絶対値が予め設定された閉固着判定値未満のときに、排気絞り弁の閉固着に起因する故障判定を下すものである。   According to a sixth aspect of the present invention, in the first aspect, the intake throttle control means delays the stop of the intake throttle valve feedback control for a predetermined time with respect to the stop of the exhaust throttle valve closing control at the end of the forced regeneration, thereby causing a failure. When the determination means is within a predetermined time and the absolute value of the deviation between the target intake air amount and the actual intake air amount is less than a preset closed sticking judgment value, the fault judgment due to the closed sticking of the exhaust throttle valve is determined. It is what

従って、排気絞り弁の閉弁制御を中止した後の所定時間内において、排気絞り弁が閉固着せずに正常に開弁されて排気制限が終了したときには吸入空気量が急増し、制御を継続中の吸気絞り弁が閉側に制御されても補償しきれないため、目標吸入空気量と実吸入空気量との偏差が閉固着判定値以上となるのに対し、排気絞り弁が閉固着して排気制限が終了しないときには、制御を継続中の吸気絞り弁により実吸入空気量と目標吸入空気量との偏差がほぼ0に保持され続け、必然的に閉固着判定値未満となる。よって、このような吸気絞り弁の制御状況では、排気絞り弁の閉固着による故障と見なすことができ、閉固着に起因する故障判定が下される。   Therefore, when the exhaust throttle valve is normally closed without closing and sticking within a predetermined time after the stop control of the exhaust throttle valve is stopped and the exhaust restriction is finished, the intake air amount rapidly increases and the control is continued. Even if the intake throttle valve inside is controlled to the closed side, it cannot be compensated for, so the deviation between the target intake air amount and the actual intake air amount exceeds the closed sticking judgment value, but the exhaust throttle valve sticks closed. When the exhaust restriction does not end, the deviation between the actual intake air amount and the target intake air amount is kept substantially zero by the intake throttle valve that is continuing control, and inevitably becomes less than the closed sticking determination value. Therefore, in such a control state of the intake throttle valve, it can be regarded as a failure due to the closed sticking of the exhaust throttle valve, and a failure determination due to the closed sticking is made.

請求項7の発明は、請求項3,4,6において、故障判定手段が、排気絞り弁の故障判定を下したときに、エンジンに対して燃料噴射量を減少させたリンプホームモードの実行を指令するものである。
従って、排気絞り弁の閉固着は、不必要に排気制限が行われてエンジン破損の虞があり、排気絞り弁が吸入空気量の不足方向の個体差を有している場合、或いは排気絞り弁にパティキュレートが堆積している場合も、不必要な排気制限によりエンジン破損の虞がある。このときに燃料噴射量を減少させたリンプホームモードが実行されてエンジン負荷が軽減されるため、破損等のより重大な故障が未然に回避される。
According to a seventh aspect of the present invention, in the third, fourth, and sixth aspects, when the failure determination means makes a failure determination of the exhaust throttle valve, execution of the limp home mode in which the fuel injection amount is decreased with respect to the engine is performed. It is a command.
Therefore, when the exhaust throttle valve is closed and stuck, there is a risk that the exhaust will be unnecessarily restricted and the engine may be damaged. If the exhaust throttle valve has individual differences in the direction of shortage of the intake air amount, or the exhaust throttle valve Even when particulates are accumulated on the surface, there is a risk of engine damage due to unnecessary exhaust restriction. At this time, the limp home mode in which the fuel injection amount is reduced is executed to reduce the engine load, so that a more serious failure such as breakage can be avoided in advance.

請求項8の発明は、請求項3,4,6,7において、故障判定手段が、排気絞り弁の故障判定を下したときに、エンジンに対して再始動の禁止を指令するものである。
従って、排気絞り弁の閉固着は、不必要に排気制限が行われてエンジン破損の虞があり、排気絞り弁が吸入空気量の不足方向の個体差を有している場合、或いは排気絞り弁にパティキュレートが堆積している場合も、不必要な排気制限によりエンジン破損の虞がある。このときにエンジンの再始動が禁止されるため、破損等のより重大な故障が未然に回避される。
According to an eighth aspect of the present invention, in the third, fourth, sixth, and seventh aspects, when the failure determination means makes a failure determination of the exhaust throttle valve, the engine is prohibited from being restarted.
Therefore, when the exhaust throttle valve is closed and stuck, there is a risk that the exhaust will be unnecessarily restricted and the engine may be damaged. If the exhaust throttle valve has individual differences in the direction of shortage of the intake air amount, or the exhaust throttle valve Even when particulates are accumulated on the surface, there is a risk of engine damage due to unnecessary exhaust restriction. At this time, restart of the engine is prohibited, so that a more serious failure such as breakage can be avoided in advance.

以上説明したように請求項1の発明のエンジンの排気浄化装置によれば、排気絞り弁の流量特性に生じた誤差を吸気絞り弁側の流量制御により補償し、このときの吸気絞り弁の制御状況に基づき排気絞り弁を故障判定することにより、排気絞り弁に発生した故障を確実に判定することができる。
請求項2の発明のエンジンの排気浄化装置によれば、請求項1に加えて、排気絞り弁の開固着に起因する故障を確実に判定することができる。
As described above, according to the exhaust purification device for an engine of the first aspect of the present invention, an error occurring in the flow characteristic of the exhaust throttle valve is compensated by the flow control on the intake throttle valve side, and the control of the intake throttle valve at this time is performed. By determining the failure of the exhaust throttle valve based on the situation, it is possible to reliably determine the failure that has occurred in the exhaust throttle valve.
According to the engine exhaust gas purification apparatus of the second aspect of the present invention, in addition to the first aspect, it is possible to reliably determine a failure caused by the open sticking of the exhaust throttle valve.

請求項3の発明のエンジンの排気浄化装置によれば、請求項1に加えて、排気絞り弁の個体差に起因する故障を確実に判定することができる。
請求項4の発明のエンジンの排気浄化装置によれば、請求項1に加えて、パティキュレートの堆積に起因する故障を確実に判定することができる。
請求項5の発明のエンジンの排気浄化装置によれば、請求項1に加えて、排気絞り弁の腐食による穴空きに起因する故障を確実に判定することができる。
According to the engine exhaust gas purification apparatus of the third aspect of the present invention, in addition to the first aspect, it is possible to reliably determine a failure caused by an individual difference of the exhaust throttle valve.
According to the exhaust emission control device for an engine of the fourth aspect of the invention, in addition to the first aspect, it is possible to reliably determine a failure caused by the accumulation of particulates.
According to the engine exhaust gas purification apparatus of the fifth aspect of the present invention, in addition to the first aspect, it is possible to reliably determine a failure caused by a hole due to corrosion of the exhaust throttle valve.

請求項6の発明のエンジンの排気浄化装置によれば、請求項1に加えて、排気絞り弁の閉固着に起因する故障を確実に判定することができる。
請求項7の発明のエンジンの排気浄化装置によれば、請求項3,4,6に加えて、排気絞り弁の故障判定時にリンプホームモードを実行することにより、エンジン破損等のより重大な故障を未然に回避することができる。
According to the engine exhaust gas purification apparatus of the sixth aspect of the present invention, in addition to the first aspect, it is possible to reliably determine a failure caused by the closed adhering of the exhaust throttle valve.
According to the engine exhaust gas purification apparatus of the seventh aspect of the invention, in addition to the third, fourth, and sixth aspects, by executing the limp home mode when determining the exhaust throttle valve failure, a more serious failure such as engine breakage Can be avoided in advance.

請求項8の発明のエンジンの排気浄化装置によれば、請求項3,4,6,7に加えて、排気絞り弁の故障判定時にエンジンの再始動を禁止することにより、エンジン破損等のより重大な故障を未然に回避することができる。   According to the engine exhaust gas purification apparatus of the eighth aspect of the invention, in addition to the third, fourth, sixth, and seventh aspects, by prohibiting the engine from restarting at the time of determining the exhaust throttle valve failure, Serious failure can be avoided in advance.

以下、本発明を具体化した排気絞り弁の故障診断装置の一実施形態を説明する。
図1は本実施形態の排気絞り弁の故障診断装置を示す全体構成図であり、エンジン1は直列6気筒ディーゼル機関として構成されている。エンジン1の各気筒には燃料噴射弁2が設けられ、各燃料噴射弁2は共通のコモンレール3から加圧燃料を供給され、機関の運転状態に応じたタイミングで開弁して各気筒の筒内に燃料を噴射する。
Hereinafter, an embodiment of a failure diagnosis device for an exhaust throttle valve embodying the present invention will be described.
FIG. 1 is an overall configuration diagram showing a failure diagnosis device for an exhaust throttle valve according to the present embodiment. The engine 1 is configured as an in-line 6-cylinder diesel engine. Each cylinder of the engine 1 is provided with a fuel injection valve 2, and each fuel injection valve 2 is supplied with pressurized fuel from a common common rail 3 and is opened at a timing according to the operating state of the engine. The fuel is injected into the inside.

エンジン1の吸気側には吸気マニホールド4が装着され、吸気マニホールド4に接続された吸気通路5には、上流側より吸入空気量Qaを検出するエアフローセンサ6、ターボチャージャ7のコンプレッサ7a、インタクーラ8、アクチュエータ9aにより開閉駆動される吸気絞り弁9が設けられている。また、エンジン1の排気側には排気マニホールド10が装着され、排気マニホールド10には上記コンプレッサ7aと同軸上に連結されたターボチャージャ7のタービン7bを介して排気通路11が接続されている。   An intake manifold 4 is mounted on the intake side of the engine 1. An intake passage 5 connected to the intake manifold 4 is provided with an air flow sensor 6 that detects an intake air amount Qa from the upstream side, a compressor 7 a of a turbocharger 7, and an intercooler 8. An intake throttle valve 9 that is opened and closed by an actuator 9a is provided. An exhaust manifold 10 is mounted on the exhaust side of the engine 1, and an exhaust passage 11 is connected to the exhaust manifold 10 via a turbine 7b of a turbocharger 7 connected coaxially with the compressor 7a.

エンジン1の運転中においてエアフローセンサ6を経て吸気通路5内に導入された吸気はターボチャージャ7のコンプレッサ7aにより加圧された後にインタクーラ8、吸気絞り弁9、吸気マニホールド4を経て各気筒に分配され、各気筒の吸気行程で筒内に導入される。筒内では所定のタイミングで燃料噴射弁2から燃料が噴射されて圧縮上死点近傍で着火・燃焼し、燃焼後の排ガスは排気マニホールド10を経てタービン7bを回転駆動した後に排気通路11を経て外部に排出される。   During operation of the engine 1, the intake air introduced into the intake passage 5 through the air flow sensor 6 is pressurized by the compressor 7 a of the turbocharger 7 and then distributed to each cylinder through the intercooler 8, the intake throttle valve 9, and the intake manifold 4. Then, it is introduced into the cylinder in the intake stroke of each cylinder. In the cylinder, fuel is injected from the fuel injection valve 2 at a predetermined timing and ignited and burned in the vicinity of the compression top dead center, and the exhaust gas after combustion rotates through the exhaust manifold 10 and then rotates the turbine 7b and then passes through the exhaust passage 11. It is discharged outside.

一方、吸気マニホールド4と排気マニホールド10とはEGR通路17により接続され、EGR通路17にはアクチュエータ18aにより開閉駆動されるEGR弁18及びEGRクーラ19が設けられている。エンジン1の運転中にはEGR弁18の開度に応じて排気マニホールド10側から吸気マニホールド4側に排ガスの一部がEGRガスとして還流される。   On the other hand, the intake manifold 4 and the exhaust manifold 10 are connected by an EGR passage 17, and an EGR valve 18 and an EGR cooler 19 that are opened and closed by an actuator 18 a are provided in the EGR passage 17. During operation of the engine 1, part of the exhaust gas is recirculated as EGR gas from the exhaust manifold 10 side to the intake manifold 4 side according to the opening degree of the EGR valve 18.

上記排気通路11は、上流側ケーシング31及び下流側ケーシング32をパイプ33a〜33cにより相互に接続して構成されている。上記ターボチャージャ7のタービン7bには第1パイプ33aを介して上流側ケーシング31が接続され、上流側ケーシング31は第2パイプ33bを介して下流側ケーシング32と接続されている。下流側ケーシング32は第3パイプ33cを介して消音器と接続され、消音器の後端は大気に開放されている。   The exhaust passage 11 is configured by connecting an upstream casing 31 and a downstream casing 32 to each other by pipes 33a to 33c. An upstream casing 31 is connected to the turbine 7b of the turbocharger 7 via a first pipe 33a, and the upstream casing 31 is connected to a downstream casing 32 via a second pipe 33b. The downstream casing 32 is connected to the silencer via the third pipe 33c, and the rear end of the silencer is open to the atmosphere.

上流側ケーシング31内の上流側には前段酸化触媒34が収容され、下流側にはウォールフロー式のDPF(ディーゼルパティキュレートフィルタ)35が収容されている。DPF35は排ガス中のパティキュレートを捕集する作用を奏し、エンジン1の排ガス温度が比較的高い運転状態では、前段酸化触媒34の酸化作用により排ガス中のNOからNO2が生成されて、NO2の酸化反応によりDPF35に捕集されたパティキュレートが連続的に焼却除去されることでDPF35の再生が図られる。 A upstream oxidation catalyst 34 is accommodated in the upstream side of the upstream casing 31, and a wall flow type DPF (diesel particulate filter) 35 is accommodated in the downstream side. The DPF 35 acts to collect particulates in the exhaust gas. When the exhaust gas temperature of the engine 1 is relatively high, NO 2 is generated from the NO in the exhaust gas by the oxidizing action of the pre-stage oxidation catalyst 34, and the NO 2 The particulates collected in the DPF 35 by the oxidation reaction are continuously incinerated and removed, whereby the DPF 35 is regenerated.

上流側ケーシング31内のDPF35の下流側には噴霧拡散室36が形成されている。噴霧拡散室36内にはフィン装置37が設置され、フィン装置37は、多数のフィン37aにより排ガスに旋回流を生起させるようになっている。
噴霧拡散室36内のフィン装置37の下流側には噴射ノズル38が設置され、噴射ノズル38は、図示しないタンクから圧送される尿素水を還元剤として噴霧拡散室36内に任意に噴射するようになっている。また、フィン装置37と噴射ノズル38との間には温度センサ39が設置され、温度センサ39により噴霧拡散室36内の排ガス温度Tnzlが検出される。
A spray diffusion chamber 36 is formed on the downstream side of the DPF 35 in the upstream casing 31. A fin device 37 is installed in the spray diffusion chamber 36, and the fin device 37 causes a swirl flow in the exhaust gas by a large number of fins 37a.
An injection nozzle 38 is installed on the downstream side of the fin device 37 in the spray diffusion chamber 36, and the injection nozzle 38 arbitrarily injects the urea water pumped from a tank (not shown) into the spray diffusion chamber 36 as a reducing agent. It has become. A temperature sensor 39 is installed between the fin device 37 and the injection nozzle 38, and the exhaust gas temperature Tnzl in the spray diffusion chamber 36 is detected by the temperature sensor 39.

下流側ケーシング32内の上流側にはSCR触媒40(選択還元型NOx触媒)が収容され、下流側には後段酸化触媒41が収容されており、SCR触媒40は排ガス中のNOxを浄化する作用を奏する。
一方、車室内には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えたECU(電子制御ユニット)51が設置されている。ECU51の入力側には、上記エアフローセンサ6、温度センサ39、エンジン回転速度Neを検出する回転速度センサ52、吸気マニホールド4に配設されて各気筒の筒内に供給される吸気O2濃度を検出する吸気O2センサ53、SCR触媒40の温度Tcatを検出する触媒温度センサ54、アクセル操作量Accを検出するアクセルセンサ55、SCR触媒40の下流側におけるNOx排出量を検出するNOxセンサ56、吸気絞り弁9の開度θを検出する開度センサ57等の各種センサ類が接続されている。また、ECU51の出力側には、上記吸気絞り弁9、排気絞り弁12、EGR弁18の各アクチュエータ9a,12a,18a、燃料噴射弁2、噴射ノズル38、運転席に設けられた警告ランプ58等の各種デバイス類が接続されている。
An SCR catalyst 40 (selective reduction type NOx catalyst) is accommodated on the upstream side in the downstream casing 32, and a post-stage oxidation catalyst 41 is accommodated on the downstream side. The SCR catalyst 40 acts to purify NOx in the exhaust gas. Play.
On the other hand, an input / output device (not shown), a storage device (ROM, RAM, etc.) used for storage of a control program, a control map, etc., a central processing unit (CPU), a timer counter, etc. Control unit) 51 is installed. On the input side of the ECU 51, the air flow sensor 6, the temperature sensor 39, the rotational speed sensor 52 that detects the engine rotational speed Ne, and the intake O 2 concentration that is provided in the cylinder of each cylinder are provided in the intake manifold 4. An intake O 2 sensor 53 to detect, a catalyst temperature sensor 54 to detect the temperature Tcat of the SCR catalyst 40, an accelerator sensor 55 to detect the accelerator operation amount Acc, a NOx sensor 56 to detect the NOx emission amount on the downstream side of the SCR catalyst 40, Various sensors such as an opening degree sensor 57 for detecting the opening degree θ of the intake throttle valve 9 are connected. Further, on the output side of the ECU 51, the intake throttle valve 9, the exhaust throttle valve 12, the actuators 9a, 12a, 18a of the EGR valve 18, the fuel injection valve 2, the injection nozzle 38, and a warning lamp 58 provided in the driver's seat. Etc. are connected.

例えばECU51は、エンジン回転速度Neやアクセル操作量Accから所定のマップに従って燃料噴射量Qを設定すると共に、この燃料噴射量Q及びエンジン回転速度Neから所定のマップに従って燃料噴射時期ITを設定し、これらの燃料噴射量Q及び燃料噴射時期ITに基づき燃料噴射弁2を駆動制御し、各気筒の筒内に燃料を噴射してエンジン1を運転する。   For example, the ECU 51 sets the fuel injection amount Q according to a predetermined map from the engine rotation speed Ne and the accelerator operation amount Acc, and sets the fuel injection timing IT according to a predetermined map from the fuel injection amount Q and the engine rotation speed Ne. The fuel injection valve 2 is driven and controlled based on the fuel injection amount Q and the fuel injection timing IT, and the engine 1 is operated by injecting fuel into the cylinder of each cylinder.

また、ECU51は、温度センサ39により検出される排ガス温度Tnzl等に基づき噴射ノズル38からの尿素水の噴射量を制御する。噴射された尿素水は排気熱及び排ガス中の水蒸気により加水分解されてアンモニア(NH)を生成し、このアンモニアによりSCR触媒40上では排ガス中のNOxが無害なNに還元されてNOxの浄化が行われる一方、このときの余剰アンモニアが後段酸化触媒41によりNOに酸化される。 The ECU 51 controls the injection amount of urea water from the injection nozzle 38 based on the exhaust gas temperature Tnzl detected by the temperature sensor 39. The injected urea water is hydrolyzed by exhaust heat and water vapor in the exhaust gas to generate ammonia (NH 3 ), and on this SCR catalyst 40, NOx in the exhaust gas is reduced to harmless N 2 on the SCR catalyst 40. While purification is performed, surplus ammonia at this time is oxidized to NO by the post-stage oxidation catalyst 41.

また、ECU51はDPF35の浄化機能を維持するために適宜強制再生を実行する(強制再生制御手段)。即ち、渋滞による低速走行や寒冷地による外気温の低下等に起因してDPF35が温度低下したときには、上記連続再生の作用が得られずにDPF35でのパティキュレートの捕集量が許容量を越えて過堆積に陥ってしまう。そこで、ECU51は、例えばDPF35の前後差圧から求めたパティキュレート捕集量が所定の再生開始判定値に達した時点で、DPF35を昇温してパティキュレートを強制的に焼却除去する強制再生を実行する。なお、強制再生でパティキュレート燃焼の際に生じるHC,COは後段酸化触媒41によりCO2に酸化される。 Further, the ECU 51 appropriately executes forced regeneration in order to maintain the purification function of the DPF 35 (forced regeneration control means). That is, when the temperature of the DPF 35 is lowered due to low speed traveling due to traffic jams or a decrease in the outside air temperature due to cold regions, the amount of particulates collected by the DPF 35 exceeds the allowable amount without obtaining the above-mentioned continuous regeneration action. Will fall into excessive deposition. Therefore, for example, when the particulate collection amount obtained from the differential pressure across the DPF 35 reaches a predetermined regeneration start determination value, the ECU 51 raises the DPF 35 to forcibly regenerate the particulates by incineration and removal. Execute. Note that HC and CO generated during particulate combustion by forced regeneration are oxidized to CO 2 by the post-stage oxidation catalyst 41.

強制再生は自動再生と手動再生とに大別され、通常時には車両走行中に自動再生が実行されてDPF35が昇温され、一方、低速走行の連続等により自動再生ではDPF35を十分に昇温できないときには、運転者に停車を促した上で、運転者の図示しないスタートボタンの操作に呼応してDPF35の昇温に最適条件の下でエンジン1を運転しながら手動再生が実行される。何れの強制再生も、メイン噴射後のポスト噴射、EGR制御、燃料噴射時期IT及び噴射圧力の制御、及び排気絞り弁12の閉弁制御等により実現されるが、自動再生と手動再生とでは制御内容が相違すると共に、何れの強制再生の場合も、DPF35の昇温過程(例えば、通常温度よりDPF35を昇温する予備昇温制御、予備昇温制御後に交互に実行されてDPF35を目標温度に保持する上昇制御及び下降制御等)に応じて制御内容が相違する。   Forced regeneration is broadly divided into automatic regeneration and manual regeneration. In normal operation, automatic regeneration is performed during vehicle travel to raise the temperature of the DPF 35. On the other hand, automatic regeneration due to continuous low speed travel or the like cannot sufficiently raise the DPF 35 sufficiently. In some cases, after the driver is prompted to stop, manual regeneration is performed while operating the engine 1 under the optimum conditions for increasing the temperature of the DPF 35 in response to the operation of a start button (not shown) by the driver. Any forced regeneration is realized by post-injection after main injection, EGR control, control of fuel injection timing IT and injection pressure, valve closing control of the exhaust throttle valve 12, etc., but it is controlled by automatic regeneration and manual regeneration. In addition to the difference in content, in any forced regeneration, the DPF 35 temperature rise process (for example, the preliminary temperature rise control for raising the DPF 35 from the normal temperature, and alternately executed after the preliminary temperature rise control to bring the DPF 35 to the target temperature) The contents of control differ depending on the ascending control and descending control to be held.

ところで、排気絞り弁12の流量特性にはある程度の誤差が存在しているため、想定している所期の排気絞り弁12の流量特性に対して実際の流量特性が食い違い、不適切な排気制限により強制再生時の所要時間が長引いてしまう等の不具合が発生する可能性がある。その対策として本実施形態では、排気絞り弁12による流量特性の誤差を吸気絞り弁9側の流量制御により補償する対策を講じており(吸気絞り制御手段)、以下、当該対策のためにECU51が吸気絞り弁9を対象として実行する制御について説明する。   However, since there is a certain amount of error in the flow rate characteristics of the exhaust throttle valve 12, the actual flow characteristics differ from the expected flow characteristics of the exhaust throttle valve 12, and an inappropriate exhaust restriction is caused. As a result, there is a possibility that a problem such as prolonging the time required for forced regeneration may occur. As a countermeasure, in the present embodiment, a countermeasure is taken to compensate for an error in the flow characteristic due to the exhaust throttle valve 12 by flow control on the intake throttle valve 9 side (intake throttle control means). Control executed for the intake throttle valve 9 will be described.

図2はECU51が実行する吸気絞り制御ルーチンを示すフローチャートであり、ECU51は当該ルーチンを所定の制御インターバルで実行している。
まず、ステップS2でDPF35の強制再生を実行中であるか否かを判定し、判定がNo(否定)のときにはステップS4で通常の吸気絞り弁9の制御を実行した後、一旦ルーチンを終了する。また、ステップS2の判定がYes(肯定)のときには、ステップS6に移行して強制再生の制御モードを判定する。制御モードは、上記のように自動再生及び手動再生の各昇温過程に対応して予め設定されており、ステップS6ではこれらの中から現在実行中の制御モードが判定される。次いでステップS8で流量特性補償制御を実行し、その後にルーチンを終了する。
FIG. 2 is a flowchart showing an intake throttle control routine executed by the ECU 51. The ECU 51 executes the routine at a predetermined control interval.
First, it is determined in step S2 whether or not forced regeneration of the DPF 35 is being executed. If the determination is No (No), control of the normal intake throttle valve 9 is executed in step S4, and then the routine is temporarily terminated. . When the determination in step S2 is Yes (positive), the process proceeds to step S6 to determine the forced regeneration control mode. As described above, the control mode is set in advance corresponding to each temperature increase process of automatic regeneration and manual regeneration, and in step S6, the currently executed control mode is determined. Next, in step S8, flow characteristic compensation control is executed, and then the routine ends.

流量特性補償制御は、排気絞り弁12の流量特性の誤差を補償すべく、吸気絞り弁9の開度をフィードバック制御するものであり、図3に流量特性補償制御のためにECU51が実行する処理手順を示す。この図に示すように、ECU51は、流量特性補償制御を実行するための構成として、指令値設定部61と吸気絞り制御部62とを備えている。指令値設定部61は、排気絞り弁12による流量特性の誤差を補償するために必要な吸気絞り弁9の制御に関する指令値を算出する機能を果たし、吸気絞り制御部62は、吸気絞り弁9のアクチュエータ9aを駆動制御する機能を果たす。   The flow rate characteristic compensation control performs feedback control of the opening degree of the intake throttle valve 9 in order to compensate for an error in the flow rate characteristic of the exhaust throttle valve 12, and the processing executed by the ECU 51 for the flow rate characteristic compensation control is shown in FIG. Show the procedure. As shown in this figure, the ECU 51 includes a command value setting unit 61 and an intake throttle control unit 62 as a configuration for executing the flow rate characteristic compensation control. The command value setting unit 61 performs a function of calculating a command value related to the control of the intake throttle valve 9 necessary to compensate for an error in the flow rate characteristic due to the exhaust throttle valve 12, and the intake throttle control unit 62 The actuator 9a is driven and controlled.

まず、指令値設定部61について述べる。目標吸気量算出部71では、エンジン回転速度Ne及び燃料噴射量Qに基づき、強制再生の制御モード毎に設定されたマップに従って目標吸入空気量tgtQaがそれぞれ算出される。強制再生では各制御モードで想定しているDPF35の昇温状況を達成するための最適な吸入空気量が存在し、この最適な吸入空気量を目標吸入空気量tgtQaとして導き出すように各マップ特性が設定されており、これらのマップから現在のエンジン1の運転状態を前提とした目標吸入空気量tgtQaが制御モード毎に算出される。   First, the command value setting unit 61 will be described. The target intake air amount calculation unit 71 calculates the target intake air amount tgtQa based on the engine speed Ne and the fuel injection amount Q according to a map set for each forced regeneration control mode. In forced regeneration, there is an optimum intake air amount for achieving the temperature rise state of the DPF 35 assumed in each control mode, and each map characteristic is derived so as to derive this optimum intake air amount as the target intake air amount tgtQa. From these maps, the target intake air amount tgtQa based on the current operating state of the engine 1 is calculated for each control mode.

目標吸入空気量算出部71により算出された各制御モードの目標吸入空気量tgtQaは選択部72に入力され、選択部72では現在実行中の制御モードに対応する目標吸入空気量tgtQaが選択される。選択された目標吸入空気量tgtQaは、エアフローセンサ6により検出された実吸入空気量Qaと共に偏差算出部73に入力され、双方の偏差ΔQが算出される。   The target intake air amount tgtQa of each control mode calculated by the target intake air amount calculation unit 71 is input to the selection unit 72, and the selection unit 72 selects the target intake air amount tgtQa corresponding to the currently executed control mode. . The selected target intake air amount tgtQa is input to the deviation calculating unit 73 together with the actual intake air amount Qa detected by the air flow sensor 6, and the deviation ΔQ of both is calculated.

以上が指令値設定部61で実行される処理であり、算出された偏差ΔQは吸気絞り制御部62に入力される。吸気絞り制御部62では、入力された偏差ΔQに基づくPID制御により吸気絞り弁9の制御量が算出され、算出された制御量に基づき吸気絞り弁9の開度θがフィードバック制御される。
以上の流量特性補償制御により、強制再生中には何れの制御モードでも常にエンジン1の実吸入空気量Qaが目標吸入空気量tgtQaに調整される。排気絞り弁12による排気制限は間接的にエンジン1の吸入空気量Qaを制限することに繋がるため、仮に排気絞り弁12の流量特性に誤差がなければ目標吸入空気量tgtQaが達成されるはずであり、一方、排気絞り弁12の流量特性に誤差が生じていれば、その誤差に応じて吸入空気量Qaが変動する。従って、流量特性補償制御により実吸入空気量Qaが目標吸入空気量tgtQaに調整されることにより、結果として排気絞り弁12の流量特性に生じた誤差を補償でき、排気絞り弁12の流量特性に誤差が生じていない場合と同様の適切な排気制限を実現でき、もって安定した強制再生を実現することができる。
The above is the process executed by the command value setting unit 61, and the calculated deviation ΔQ is input to the intake throttle control unit 62. In the intake throttle control unit 62, the control amount of the intake throttle valve 9 is calculated by PID control based on the input deviation ΔQ, and the opening degree θ of the intake throttle valve 9 is feedback controlled based on the calculated control amount.
With the above flow characteristic compensation control, the actual intake air amount Qa of the engine 1 is always adjusted to the target intake air amount tgtQa in any control mode during forced regeneration. Exhaust restriction by the exhaust throttle valve 12 indirectly restricts the intake air amount Qa of the engine 1, so that the target intake air amount tgtQa should be achieved if there is no error in the flow characteristic of the exhaust throttle valve 12. On the other hand, if there is an error in the flow characteristics of the exhaust throttle valve 12, the intake air amount Qa varies according to the error. Therefore, by adjusting the actual intake air amount Qa to the target intake air amount tgtQa by the flow rate characteristic compensation control, it is possible to compensate for an error that has occurred in the flow rate characteristic of the exhaust throttle valve 12 as a result. An appropriate exhaust restriction similar to that in the case where no error has occurred can be realized, and stable forced regeneration can be realized.

一方、このように排気絞り弁12が有する流量特性の誤差は流量特性補償制御により補償されるため、そのまま稼働を継続することもできる。但し、流量特性の誤差は種々の要因により発生し、例えば排気絞り弁12の製造誤差や車体への組付誤差に起因等の個体差により流量特性の誤差が発生している場合には、排気絞り弁12の交換や車体への再組付・調整等を実施すべきであり、また、パティキュレートの堆積に伴う経年変化に起因して流量特性の誤差が発生している場合には、排気絞り弁12の分解清掃等を実施すべきであり、このような対処を実行するには、排気絞り弁12を故障診断して運転者に警告する必要がある。   On the other hand, since the error in the flow rate characteristic of the exhaust throttle valve 12 is compensated by the flow rate characteristic compensation control, the operation can be continued as it is. However, an error in the flow characteristic occurs due to various factors. For example, if an error in the flow characteristic occurs due to an individual difference such as a manufacturing error of the exhaust throttle valve 12 or an assembly error to the vehicle body, Replacement of the throttle valve 12, reassembly / adjustment to the vehicle body, etc. should be carried out, and if there is an error in the flow characteristics due to aging due to accumulation of particulates, exhaust The throttle valve 12 should be disassembled and cleaned, and in order to perform such measures, it is necessary to diagnose the exhaust throttle valve 12 and warn the driver.

また、例えば排気絞り弁21が開固着した場合には、流量特性補償制御では完全な補償が困難であるため十分な排気昇温を望めず、排気絞り弁12が閉固着した場合には、流量特性補償制御では対処できずにエンジン負荷の急増による破損等の虞が生じる。よって、これらの問題を回避するためにも、排気絞り弁12の故障診断は必要である。
そこで、ECU51は、排気絞り弁21の故障の有無及び故障内容を診断し、診断結果に基づき運転者に対して警告等を行う故障診断部63を備えており、以下、当該故障診断部63により実行される故障診断について説明する。
Further, for example, when the exhaust throttle valve 21 is fixed open, complete compensation is difficult in the flow characteristic compensation control, so that sufficient exhaust gas temperature cannot be expected, and when the exhaust throttle valve 12 is fixed closed, the flow rate The characteristic compensation control cannot cope with this, and there is a risk of damage due to a sudden increase in engine load. Therefore, in order to avoid these problems, failure diagnosis of the exhaust throttle valve 12 is necessary.
Therefore, the ECU 51 includes a failure diagnosis unit 63 that diagnoses the presence or absence and details of the failure of the exhaust throttle valve 21 and warns the driver based on the diagnosis result. The fault diagnosis to be executed will be described.

図4はECU51が実行する故障診断ルーチンを示すフローチャートであり、ECU51は当該ルーチンを所定の制御インターバルで実行している。
まず、ステップS12でDPF35の強制再生が終了したか否かを判定し、未だ強制再生を実行中のときにはNoの判定を下してステップS14に移行する。ステップS14では、目標吸入空気量tgtQaと実吸入空気量Qaとの偏差ΔQが予め設定された開固着判定値ΔQ1以上であるか否かを判定する。当該判定処理は、排気絞り弁12の開固着(開弁状態で弁が固着したときの本来の開固着のみならず、エア漏れ等に起因する開弁状態での動作不良も含むものとする)を故障として判定するものである(故障判定手段)。図5は排気絞り弁12に開固着が生じたときの排気制限状況を示すタイムチャートであり、図中に実線で示すように、排気絞り弁12が開固着せずに正常に閉弁されて排気制限が行われたときには、実吸入空気量Qaが急減して流量特性補償制御で設定される目標吸入空気量tgtQaに略一致する。
FIG. 4 is a flowchart showing a failure diagnosis routine executed by the ECU 51. The ECU 51 executes the routine at a predetermined control interval.
First, it is determined in step S12 whether or not forced regeneration of the DPF 35 has been completed. If forced regeneration is still being executed, a determination of No is made and the process proceeds to step S14. In step S14, it is determined whether or not the deviation ΔQ between the target intake air amount tgtQa and the actual intake air amount Qa is equal to or larger than a preset open adhesion determination value ΔQ1. The determination process includes failure of the exhaust throttle valve 12 to be stuck open (including not only the original open sticking when the valve is stuck in the valve open state but also the malfunction in the valve open state due to air leakage or the like). (Failure determination means). FIG. 5 is a time chart showing the exhaust restriction state when the exhaust throttle valve 12 is stuck open. As shown by the solid line in the figure, the exhaust throttle valve 12 is normally closed without being stuck open. When exhaust restriction is performed, the actual intake air amount Qa rapidly decreases and substantially coincides with the target intake air amount tgtQa set in the flow rate characteristic compensation control.

これに対して図中に破線で示すように、排気絞り弁12が開固着して排気制限が行われないときには、実吸入空気量Qaが全く減少しない若しくは僅かに減少するだけとなる。これに呼応して流量特性補償制御により吸気絞り弁9が閉側に制御されても、実吸入空気量Qaを増加させるべきハッチングの領域を補償しきれないため、目標吸入空気量tgtQaと実吸入空気量Qaとの偏差ΔQは0からかけ離れた大きな値となり、必然的に開固着判定値ΔQ1以上となる。   On the other hand, as shown by the broken line in the figure, when the exhaust throttle valve 12 is fixed open and exhaust restriction is not performed, the actual intake air amount Qa does not decrease at all or only decreases slightly. In response to this, even if the intake throttle valve 9 is controlled to the closed side by the flow characteristic compensation control, the hatching region where the actual intake air amount Qa should be increased cannot be compensated for, so the target intake air amount tgtQa and the actual intake air The deviation ΔQ from the air amount Qa is a large value far from 0, and is necessarily equal to or larger than the open adhesion determination value ΔQ1.

このような排気絞り弁12の開固着が発生せず偏差ΔQが開固着判定値ΔQ1未満のときには、ECU51はステップS14でNoの判定を下してステップS16に移行する。
ステップS16では、吸気絞り弁9の操作量Δθの絶対値が予め設定された個体差判定値Δθ1以上であるか否かを判定する。操作量Δθとは、強制再生前の吸気絞り弁9の開度θを原位置とした開度θの変化量を意味する。本実施形態では、全開位置と全閉位置との間に原位置が設定され、この原位置を中心として流量特性補償制御では吸気絞り弁9が開側及び閉側の両方向に制御され、説明の便宜上、吸気絞り弁9の開側への操作量Δθを正の値とし、吸気絞り弁9の閉側への操作量Δθを負の値とする。操作量Δθは開度センサ57により検出された吸気絞り弁9の開度θに基づき算出され、算出された操作量Δθに基づきステップS16の判定が行われる(操作量判定手段)。
When the exhaust throttle valve 12 is not openly stuck and the deviation ΔQ is less than the open sticking determination value ΔQ1, the ECU 51 makes a determination of No in step S14 and proceeds to step S16.
In step S16, it is determined whether or not the absolute value of the operation amount Δθ of the intake throttle valve 9 is equal to or greater than a preset individual difference determination value Δθ1. The manipulated variable Δθ means a change amount of the opening θ with the opening θ of the intake throttle valve 9 before forced regeneration as the original position. In the present embodiment, the original position is set between the fully open position and the fully closed position, and the intake throttle valve 9 is controlled in both the open side and the close side in the flow characteristic compensation control around this original position. For convenience, the operation amount Δθ to the opening side of the intake throttle valve 9 is set to a positive value, and the operation amount Δθ to the closing side of the intake throttle valve 9 is set to a negative value. The operation amount Δθ is calculated based on the opening θ of the intake throttle valve 9 detected by the opening sensor 57, and the determination in step S16 is performed based on the calculated operation amount Δθ (operation amount determination means).

ステップS16の判定処理は、新品の排気絞り弁12が有する個体差を故障として判定するものである(故障判定手段)。図6は排気絞り弁12が個体差を有するときの排気制限状況を示すタイムチャートであり、製造誤差や車体への組付誤差に起因する許容できない個体差を排気絞り弁12が有している場合には、図中に実線で示す個体差無しの場合に比較して、破線で示すように目標吸入空気量tgtQaに対して実吸入空気量Qaが不足または過剰となり、ハッチングの領域を補償すべく、偏差ΔQを縮小するように吸気絞り弁9の開度θが制御される。結果として吸気絞り弁9の操作量Δθは正側または負側にある程度の大きさの値となり、必然的に操作量Δθの絶対値は個体差判定値Δθ1以上となる。   The determination process of step S16 determines an individual difference of the new exhaust throttle valve 12 as a failure (failure determination means). FIG. 6 is a time chart showing the exhaust restriction status when the exhaust throttle valve 12 has individual differences. The exhaust throttle valve 12 has unacceptable individual differences due to manufacturing errors and assembly errors to the vehicle body. In this case, the actual intake air amount Qa is insufficient or excessive with respect to the target intake air amount tgtQa as shown by the broken line as compared with the case where there is no individual difference indicated by the solid line in the figure, and the hatching region is compensated. Therefore, the opening degree θ of the intake throttle valve 9 is controlled so as to reduce the deviation ΔQ. As a result, the operation amount Δθ of the intake throttle valve 9 has a value of a certain amount on the positive side or the negative side, and the absolute value of the operation amount Δθ necessarily becomes the individual difference determination value Δθ1 or more.

このような排気絞り弁12の個体差が発生せず操作量Δθの絶対値が個体差判定値Δθ1未満のときには、ECU51はステップS16でNoの判定を下してステップS18に移行する。なお、新品の排気絞り弁12で既に個体差は発生しているため、ステップS16の判定処理は新車の車両が運行開始した初回の強制再生時にのみ実行され、2回目以降の強制再生時には無条件で個体差による故障無しを意味するNoの判定が下される。   When such an individual difference of the exhaust throttle valve 12 does not occur and the absolute value of the operation amount Δθ is less than the individual difference determination value Δθ1, the ECU 51 makes a determination of No in step S16 and proceeds to step S18. Since individual differences have already occurred in the new exhaust throttle valve 12, the determination process in step S16 is executed only at the first forced regeneration when the new vehicle starts operation, and is unconditional at the second and subsequent forced regenerations. No is determined to mean no failure due to individual differences.

ステップS18では、上記吸気絞り弁9の操作量Δθが予め正側(開側)の値として設定されたパティキュレート堆積判定値Δθ2以上であるか否かを判定する。当該判定処理は、パティキュレートの堆積に伴う排気絞り弁12の流量特性の変化(流量減少方向)を故障として判定するものである(故障判定手段)。図7は排気絞り弁12にパティキュレートが堆積したときの各強制再生時の排気制限状況を示すタイムチャートであり、エンジン運転時間と共に排気絞り弁12へのパティキュレートの堆積量は次第に増大し、それに伴って強制再生時の排気絞り弁12による排気制限は、同一制御量であってもより大きなものとなり、目標吸入空気量tgtQaに対して実吸入空気量Qaが次第に不足する。必然的にハッチングの領域を補償すべく、強制再生時の実行毎に吸気絞り弁9は次第に開側に制御され、その操作量Δθは正側に増大して何れかの時点でパティキュレート堆積判定値Δθ2以上となる。   In step S18, it is determined whether or not the operation amount Δθ of the intake throttle valve 9 is equal to or greater than the particulate accumulation determination value Δθ2 set in advance as a positive side (open side) value. The determination process determines a change in the flow characteristic (flow reduction direction) of the exhaust throttle valve 12 accompanying the accumulation of particulates as a failure (failure determination means). FIG. 7 is a time chart showing the exhaust restriction status at each forced regeneration when particulates accumulate on the exhaust throttle valve 12, and the amount of particulates deposited on the exhaust throttle valve 12 gradually increases with the engine operation time. Accordingly, the exhaust restriction by the exhaust throttle valve 12 during forced regeneration becomes larger even with the same control amount, and the actual intake air amount Qa gradually becomes insufficient with respect to the target intake air amount tgtQa. In order to inevitably compensate for the hatching region, the intake throttle valve 9 is gradually controlled to open side every time the forced regeneration is executed, and the operation amount Δθ increases to the positive side, and the particulate accumulation determination is performed at any time. The value Δθ2 or more.

このような排気絞り弁12へのパティキュレートの堆積が未だ進行しておらず、吸気絞り弁9の操作量Δθがパティキュレート堆積判定値Δθ2未満のときには、ECU51はステップS18でNoの判定を下してステップS20に移行する。
ステップS20では、上記吸気絞り弁9の操作量Δθが予め負側(閉側)の値として設定された腐食穴空き判定値Δθ3未満であるか否かを判定する。当該判定処理は、排気絞り弁12の腐食による穴空きに伴う排気絞り弁12の流量特性の変化(流量増加方向)を故障として判定するものである(故障判定手段)。図8は排気絞り弁12に腐食による穴空きが生じたときの各強制再生時の排気制限状況を示すタイムチャートであり、腐食の進行により穴は次第に拡大し、それに伴って強制再生時の排気絞り弁12による排気制限は、同一制御量であってもより小さなものとなり、目標吸入空気量tgtQaに対して実吸入空気量Qaが次第に過剰となる。必然的にハッチングの領域を補償すべく、強制再生時の実行毎に吸気絞り弁9は次第に閉側に制御され、その操作量Δθは負側に増大して何れかの時点で腐食穴空き判定値Δθ3未満となる。
When the accumulation of particulates on the exhaust throttle valve 12 has not yet progressed, and the operation amount Δθ of the intake throttle valve 9 is less than the particulate accumulation determination value Δθ2, the ECU 51 makes a No determination in step S18. Then, the process proceeds to step S20.
In step S20, it is determined whether or not the operation amount Δθ of the intake throttle valve 9 is less than the corrosion perforation determination value Δθ3 set in advance as a negative (closed) value. The determination process is to determine a change in the flow characteristic (flow increasing direction) of the exhaust throttle valve 12 due to a hole due to corrosion of the exhaust throttle valve 12 as a failure (failure determination means). FIG. 8 is a time chart showing the exhaust restriction status at each forced regeneration when the exhaust throttle valve 12 is punctured due to corrosion, and the holes gradually expand with the progress of corrosion, and the exhaust at the forced regeneration is accompanied accordingly. The exhaust restriction by the throttle valve 12 becomes smaller even with the same control amount, and the actual intake air amount Qa gradually becomes excessive with respect to the target intake air amount tgtQa. Inevitably, in order to compensate for the hatching area, the intake throttle valve 9 is gradually controlled to the closed side every time the forced regeneration is executed, and the operation amount Δθ increases to the negative side, and the corrosion hole is determined at any time. The value is less than Δθ3.

このような腐食による穴空きがない、若しくは穴空きが生じていたとしても未だ小さく、吸気絞り弁9の操作量Δθが腐食穴空き判定値Δθ3以上のときには、ECU51はステップS20でNoの判定を下して一旦ルーチンを終了する。
一方、DPF35の強制再生が終了して上記ステップS12の判定がYesになると、ECU51はステップS22に移行する。ステップS22では、目標吸入空気量tgtQaと実吸入空気量Qaとの偏差ΔQの絶対値が閉固着判定値ΔQ2未満であるか否かを判定する。強制再生の終了に伴って、排気絞り弁12は閉弁制御を中止されて全開に復帰し、吸気絞り弁9は流量特性補償制御を中止されて強制再生前の原位置に復帰するが、ステップS22の判定処理を実行するために流量特性補償制御では、排気絞り弁12に対する閉弁制御の中止に対して吸気絞り弁9に対するフィードバック制御の中止を所定時間だけ遅延させており、この所定時間内でステップS22の判定処理が実行される。
When there is no hole due to such corrosion, or even if there is a hole, the ECU 51 determines No in step S20 when the operation amount Δθ of the intake throttle valve 9 is equal to or greater than the corrosion hole determination value Δθ3. To finish the routine.
On the other hand, when the forced regeneration of the DPF 35 ends and the determination in step S12 is Yes, the ECU 51 proceeds to step S22. In step S22, it is determined whether or not the absolute value of the deviation ΔQ between the target intake air amount tgtQa and the actual intake air amount Qa is less than the closed sticking determination value ΔQ2. As the forced regeneration is finished, the exhaust throttle valve 12 is stopped from the valve closing control and returned to full open, and the intake throttle valve 9 is stopped from the flow characteristic compensation control and returned to the original position before the forced regeneration. In the flow characteristic compensation control in order to execute the determination process of S22, the stop of the feedback control for the intake throttle valve 9 is delayed by a predetermined time with respect to the stop of the valve closing control for the exhaust throttle valve 12, and within this predetermined time. In step S22, the determination process is executed.

当該判定処理は、排気絞り弁12の閉固着を故障として判定するものである(故障判定手段)。図9は排気絞り弁12に閉固着が生じたときの排気制限状況を示すタイムチャートであり、図中に実線で示すように、排気絞り弁12が閉固着せずに正常に開弁されて排気制限が終了したときには吸入空気量Qaが急増し、継続中の流量特性補償制御により吸気絞り弁9が閉側に制御されても、実吸入空気量Qaを減少させるべきハッチングの領域を補償しきれないため、目標吸入空気量tgtQaと実吸入空気量Qaとの偏差ΔQの絶対値は閉固着判定値ΔQ2以上となる。   The determination process determines that the exhaust throttle valve 12 is stuck closed as a failure (failure determination means). FIG. 9 is a time chart showing the exhaust restriction state when the exhaust throttle valve 12 is closed and stuck, and as shown by the solid line in the figure, the exhaust throttle valve 12 is normally opened without being closed and stuck. When the exhaust restriction is finished, the intake air amount Qa rapidly increases, and even if the intake throttle valve 9 is controlled to be closed by the ongoing flow characteristic compensation control, the hatching region where the actual intake air amount Qa should be reduced is compensated. Therefore, the absolute value of the deviation ΔQ between the target intake air amount tgtQa and the actual intake air amount Qa is equal to or greater than the closed sticking determination value ΔQ2.

これに対して排気絞り弁12が閉固着して排気制限が終了しないときには、破線で示すように実吸入空気量Qaが減少し続け、たとえ排気絞り弁12の流量特性に誤差があったとしても(図は誤差無しのQa=tgtQaの場合を示す)、継続中の流量特性補償制御により実吸入空気量Qaと目標吸入空気量tgtQaとの偏差ΔQの絶対値はほぼ0に保持され続け、必然的に閉固着判定値ΔQ2未満となる。   On the other hand, when the exhaust throttle valve 12 is closed and stuck and exhaust restriction does not end, the actual intake air amount Qa continues to decrease as shown by the broken line, even if there is an error in the flow rate characteristic of the exhaust throttle valve 12. (The figure shows the case of Qa = tgtQa with no error.) The absolute value of the deviation ΔQ between the actual intake air amount Qa and the target intake air amount tgtQa is kept at almost 0 by the ongoing flow rate characteristic compensation control, and inevitably Therefore, it becomes less than the closed sticking determination value ΔQ2.

このような排気絞り弁12の閉固着が発生せず偏差ΔQの絶対値が閉固着判定値ΔQ2以上のときには、ECU51はステップS22でNoの判定を下してルーチンを終了する。
一方、排気絞り弁12の開固着として上記ステップS14でYesの判定を下したときには、ステップS24に移行する。ステップS24では排気絞り弁12の開固着を示す診断データを保存し、続くステップS26で警告ランプ58を点灯させた後にルーチンを終了する。
When the exhaust throttle valve 12 is not closed and the absolute value of the deviation ΔQ is equal to or larger than the closed fixation determination value ΔQ2, the ECU 51 determines No in step S22 and ends the routine.
On the other hand, when the exhaust throttle valve 12 is stuck open and a Yes determination is made in step S14, the process proceeds to step S24. In step S24, diagnostic data indicating that the exhaust throttle valve 12 is stuck open is stored, and after the warning lamp 58 is turned on in the subsequent step S26, the routine is terminated.

また、排気絞り弁12の個体差として上記ステップS16でYesの判定を下したときには、ステップS28で排気絞り弁12の個体差を示す診断データを保存し、上記ステップS26に移行する。
また、排気絞り弁12へのパティキュレートの堆積として上記ステップS18でYesの判定を下したときには、ステップS30で排気絞り弁12へのパティキュレートの堆積を示す診断データを保存し、上記ステップS26に移行する。
If YES is determined in step S16 as the individual difference of the exhaust throttle valve 12, diagnostic data indicating the individual difference of the exhaust throttle valve 12 is stored in step S28, and the process proceeds to step S26.
Further, when Yes is determined in step S18 as the accumulation of particulates on the exhaust throttle valve 12, diagnostic data indicating the accumulation of particulates on the exhaust throttle valve 12 is stored in step S30, and the above step S26 is performed. Transition.

また、排気絞り弁12に腐食による穴空きが生じたとして上記ステップS20でYesの判定を下したときには、ステップS32で排気絞り弁12の腐食による穴空きを示す診断データを保存し、上記ステップS26に移行する。
また、排気絞り弁12の閉固着として上記ステップS22でYesの判定を下したときには、ステップS34で排気絞り弁12の閉固着を示す診断データを保存し、上記ステップS26に移行する。
Further, if the exhaust throttle valve 12 is found to have a hole due to corrosion, a determination of Yes is made in step S20, the diagnostic data indicating the hole due to corrosion of the exhaust throttle valve 12 is saved in step S32, and step S26 described above. Migrate to
If the determination in step S22 is Yes for the closed tightness of the exhaust throttle valve 12, diagnostic data indicating the closed tightness of the exhaust throttle valve 12 is stored in step S34, and the process proceeds to step S26.

以上のECU51の故障診断処理により、排気絞り弁12に故障が発生したときには、故障内容を示す診断データがECU51内に保存されると共に、警告ランプ58の点灯により運転者への警告が行われる。従って、故障発生を認識した運転者により車両が速やかに整備工場に持ち込まれて適切な対処が行われると共に、修理作業者はサービスツールでECU51から読み出した診断データに基づき、排気絞り弁12の故障内容を速やか且つ正確に把握できる。例えば従来技術ではDPF35の昇温異常が発生したとしても、その要因がDPF35の昇温時に実行される種々の制御の内の何れにあるかも特定できなかったが、本実施形態によれば、要因が排気絞り弁12の故障にあることは勿論、その故障内容まで特定できる。結果として修理作業者は、故障内容を突き止めるための余分な作業を省略して、直ちに故障内容に則した修理を開始することができる。   When a failure occurs in the exhaust throttle valve 12 by the above-described failure diagnosis processing of the ECU 51, diagnostic data indicating the failure content is stored in the ECU 51, and a warning is given to the driver by turning on the warning lamp 58. Therefore, the driver who has recognized the occurrence of the failure promptly brings the vehicle to the maintenance shop and takes an appropriate countermeasure, and the repair operator can check the failure of the exhaust throttle valve 12 based on the diagnostic data read from the ECU 51 by the service tool. The contents can be grasped promptly and accurately. For example, in the conventional technology, even if a temperature increase abnormality of the DPF 35 occurs, it has not been possible to specify which of the various controls executed when the DPF 35 is heated. Of course, the exhaust throttle valve 12 is in failure, and the failure content can be specified. As a result, the repair worker can omit the extra work for finding out the content of the failure and immediately start repairing according to the content of the failure.

例えば、排気絞り弁12の開固着に対しては、排気絞り弁12の交換やエアラインの点検・修理で対処し、排気絞り弁12の個体差に対しては、排気絞り弁12の交換や車体への再組付・調整で対処し、排気絞り弁12へのパティキュレートの堆積に対しては、排気絞り弁12の分解清掃で対処し、排気絞り弁12の腐食による穴空き及び排気絞り弁12の閉固着に対しては、排気絞り弁12の交換で対処することになるが、それぞれの故障内容に則した点検・修理を直ちに開始することができる。   For example, the exhaust throttle valve 12 can be fixed open by replacing the exhaust throttle valve 12 or checking and repairing the air line. For individual differences in the exhaust throttle valve 12, the exhaust throttle valve 12 can be replaced. It is dealt with by reassembling and adjusting to the vehicle body, and the accumulation of particulates on the exhaust throttle valve 12 is dealt with by disassembling and cleaning the exhaust throttle valve 12. Although the valve 12 is closed and fixed, it can be dealt with by exchanging the exhaust throttle valve 12. However, the inspection / repair according to the contents of each failure can be started immediately.

また、排気絞り弁12の故障内容を特定することは修理作業の面だけでなく、故障内容から車両走行に対する影響度を推し量ることができるため、故障内容に応じて故障発生から修理までの車両走行中の制御を最適化できる。
具体的には、排気絞り弁12の閉固着は、強制再生中以外にも不必要に排気制限が行われてエンジン破損の虞があることから、最も重大な故障と見なせる。そこで、上記ステップS22で排気絞り弁12の閉固着が判定されたときには、例えば、エンジン1の燃料噴射量を減少補正してリンプホームモードに切り換えると共に、一旦エンジン1を停止させた後は再始動を禁止する(運転者には事前に再始動禁止を予告する)。これにより、たとえ排気絞り弁12を閉固着させたまま走行してもエンジン負荷が軽減されると共に、エンジン停止後は再始動が防止されるため、エンジン破損等のより重大な故障を未然に回避することができる。
In addition, specifying the details of the failure of the exhaust throttle valve 12 is not only a matter of repair work, but the degree of influence on the vehicle travel can be estimated from the content of the failure, so that the vehicle travels from the occurrence of the failure to the repair according to the content of the failure. The inside control can be optimized.
Specifically, the closed adhering of the exhaust throttle valve 12 can be regarded as the most serious failure because exhaust restriction is unnecessarily performed other than during forced regeneration, and the engine may be damaged. Therefore, when it is determined in step S22 that the exhaust throttle valve 12 is closed and stuck, for example, the fuel injection amount of the engine 1 is corrected to decrease and switched to the limp home mode, and the engine 1 is once stopped and then restarted. (The driver is notified in advance of the prohibition of restart). As a result, even if the vehicle is driven with the exhaust throttle valve 12 closed and fixed, the engine load is reduced, and restarting after the engine is stopped is prevented, so that more serious failures such as engine breakage can be avoided in advance. can do.

また、排気絞り弁12へのパティキュレートの堆積、及び排気絞り弁12の閉側の個体差でも、閉固着ほどではないが不必要な排気制限が行われ、流量特性補償制御では補償しきれない可能性がある。そこで、上記ステップS16で正側の操作量Δθの発生により排気絞り弁12の個体差が判定されたとき、或いはステップS18でパティキュレートの堆積が判定されたときには、排気絞り弁12の閉固着と同じくリンプホームモードへの切換を行うと共に、必要に応じて再始動禁止を行うようにすれば、エンジン破損を未然に回避することができる。   Further, the accumulation of particulates on the exhaust throttle valve 12 and individual differences on the closed side of the exhaust throttle valve 12 cause unnecessary exhaust restriction, which is not as close as the closed fixation, and cannot be compensated by the flow characteristic compensation control. there is a possibility. Therefore, when the individual difference of the exhaust throttle valve 12 is determined due to the generation of the positive operation amount Δθ in step S16, or when the accumulation of particulates is determined in step S18, the exhaust throttle valve 12 is closed. Similarly, if switching to limp home mode is performed and prohibition of restart is performed as necessary, engine damage can be avoided in advance.

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば、上記実施形態では直列6気筒ディーゼルエンジンの排気浄化装置に具体化したが、パティキュレート捕集用のDPF35を備え、排気通路11に配設した排気絞り弁12を閉弁制御しながらDPF35の強制再生を実行する排気浄化装置であれば、エンジン形式や強制再生の制御内容等はこれに限定されるものではなく任意に変更可能である。   This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the exhaust purification device of an in-line 6-cylinder diesel engine is embodied. However, the DPF 35 is provided with a particulate collection DPF 35, and the exhaust throttle valve 12 disposed in the exhaust passage 11 is controlled to be closed. As long as it is an exhaust emission control device that performs forced regeneration, the engine type, control content of forced regeneration, and the like are not limited to this, and can be arbitrarily changed.

実施形態の排気絞り弁の故障診断装置を示す全体構成図である。1 is an overall configuration diagram illustrating a failure diagnosis device for an exhaust throttle valve according to an embodiment. ECUが実行する吸気絞り制御ルーチンを示すフローチャートである。It is a flowchart which shows the intake throttle control routine which ECU performs. 流量特性補償制御のためにECUが実行する処理手順を示すブロック図である。It is a block diagram which shows the process sequence which ECU performs for flow characteristic compensation control. ECUが実行する故障診断ルーチンを示すフローチャートである。It is a flowchart which shows the failure diagnosis routine which ECU performs. 排気絞り弁に開固着が生じたときの排気制限状況を示すタイムチャートである。It is a time chart which shows the exhaust restriction condition when open sticking arises in an exhaust throttle valve. 排気絞り弁が個体差を有するときの排気制限状況を示すタイムチャートである。It is a time chart which shows the exhaust restriction condition when an exhaust throttle valve has an individual difference. 排気絞り弁にパティキュレートが堆積したときの各強制再生時の排気制限状況を示すタイムチャートである。It is a time chart which shows the exhaust restriction condition at the time of each forced regeneration when particulates accumulate on an exhaust throttle valve. 排気絞り弁に腐食による穴空きが生じたときの各強制再生時の排気制限状況を示すタイムチャートである。It is a time chart which shows the exhaust restriction condition at the time of each forced regeneration when the hole by corrosion arises in the exhaust throttle valve. 排気絞り弁に閉固着が生じたときの排気制限状況を示すタイムチャートである。It is a time chart which shows the exhaust restriction condition when closed sticking arises in an exhaust throttle valve.

符号の説明Explanation of symbols

1 エンジン
5 吸気通路
9 吸気絞り弁
11 排気通路
12 排気絞り弁
35 DPF(フィルタ)
51 ECU(強制再生制御手段)
61 目標吸入空気量算出部(吸気絞り制御手段)
62 吸気絞り制御部(吸気絞り制御手段)
63 故障診断部(故障判定手段、操作量判定手段)
1 Engine 5 Intake Passage 9 Intake Throttle Valve 11 Exhaust Passage 12 Exhaust Throttle Valve 35 DPF (Filter)
51 ECU (Forced regeneration control means)
61 Target intake air amount calculation unit (intake throttle control means)
62 Intake throttle control unit (Intake throttle control means)
63 Failure diagnosis unit (failure determination means, operation amount determination means)

Claims (8)

エンジンの排気通路に排ガスに含まれるパティキュレートを捕集するフィルタを配設し、該フィルタのパティキュレート捕集量が所定値に達したときに、強制再生制御手段により上記排気通路に配設した排気絞り弁を閉弁制御しながら上記エンジンの排気昇温により上記フィルタを昇温する強制再生を実行して、該フィルタに捕集されたパティキュレートを焼却除去するエンジンの排気浄化装置において、
上記エンジンの吸気通路に配設されて、該吸気通路を流通する吸入空気を調整可能な吸気絞り弁と、
上記強制再生時において、上記エンジンの運転状態に基づき算出された上記強制再生時の目標吸入空気量と実際の吸入空気量との偏差を縮小するように、上記吸気絞り弁の開度をフィードバック制御する吸気絞り制御手段と、
上記強制再生時において、上記吸気絞り制御手段による吸気絞り弁の制御状況に基づき、上記排気絞り弁の故障を判定する故障判定手段と
を備えたことを特徴とする排気絞り弁の故障診断装置。
A filter for collecting particulates contained in the exhaust gas is disposed in the exhaust passage of the engine, and when the particulate collection amount of the filter reaches a predetermined value, it is disposed in the exhaust passage by the forced regeneration control means. In an exhaust purification system for an engine that performs forced regeneration to raise the temperature of the filter by raising the exhaust temperature of the engine while closing the exhaust throttle valve, and incinerating and removing the particulates collected by the filter,
An intake throttle valve which is disposed in the intake passage of the engine and can adjust intake air flowing through the intake passage;
During the forced regeneration, feedback control of the opening of the intake throttle valve is performed so as to reduce the deviation between the target intake air amount and the actual intake air amount calculated based on the operating state of the engine. Intake throttle control means for
An exhaust throttle valve failure diagnosis device comprising: failure determination means for determining a failure of the exhaust throttle valve based on a control state of the intake throttle valve by the intake throttle control means during the forced regeneration.
上記故障判定手段は、上記強制再生の実行中において、上記目標吸入空気量と実吸入空気量との偏差が予め設定された開固着判定値以上のときに、上記排気絞り弁の開固着に起因する故障判定を下すことを特徴とする請求項1記載の排気絞り弁の故障診断装置。   The failure determination means is caused by the open adhering of the exhaust throttle valve when a deviation between the target intake air amount and the actual intake air amount is equal to or larger than a predetermined open adhering determination value during execution of the forced regeneration. The failure diagnosis device for an exhaust throttle valve according to claim 1, wherein the failure determination is performed. 上記強制再生前の上記吸気絞り弁の開度を原位置とした該吸気絞り弁の操作量を判定する操作量判定手段をさらに備え、
上記故障判定手段は、初回の強制再生の実行中において、上記操作量判定手段により判定された吸気絞り弁の操作量の絶対値が予め設定された個体差判定値以上のときに、上記排気絞り弁の個体差に起因する故障判定を下すことを特徴とする請求項1記載の排気絞り弁の故障診断装置。
An operation amount determination means for determining an operation amount of the intake throttle valve with an opening of the intake throttle valve before the forced regeneration as an original position;
The failure determination means, when the first forced regeneration is being executed, when the absolute value of the operation amount of the intake throttle valve determined by the operation amount determination means is equal to or greater than a preset individual difference determination value, The failure diagnosis device for an exhaust throttle valve according to claim 1, wherein a failure determination due to an individual difference of the valve is made.
上記強制再生前の上記吸気絞り弁の開度を原位置とした該吸気絞り弁の操作量を判定する操作量判定手段をさらに備え、
上記故障判定手段は、上記強制再生の実行中において、上記操作量判定手段により判定された吸気絞り弁の開側への操作量が予め設定されたパティキュレート堆積判定値以上のときに、上記排気絞り弁のパティキュレート堆積に起因する故障判定を下すことを特徴とする請求項1記載の排気絞り弁の故障診断装置。
An operation amount determination means for determining an operation amount of the intake throttle valve with an opening of the intake throttle valve before the forced regeneration as an original position;
The failure determination unit is configured to execute the exhaust when the operation amount to the open side of the intake throttle valve determined by the operation amount determination unit is equal to or greater than a predetermined particulate accumulation determination value during execution of the forced regeneration. The failure diagnosis device for an exhaust throttle valve according to claim 1, wherein a failure determination due to particulate accumulation of the throttle valve is made.
上記強制再生前の上記吸気絞り弁の開度を原位置とした該吸気絞り弁の操作量を判定する操作量判定手段をさらに備え、
上記故障判定手段は、上記強制再生の実行中において、上記操作量判定手段により判定された吸気絞り弁の閉側への操作量が予め設定された腐食穴空き判定値以上のときに、上記排気絞り弁の腐食による穴空きに起因する故障判定を下すことを特徴とする請求項1記載の排気絞り弁の故障診断装置。
An operation amount determination means for determining an operation amount of the intake throttle valve with an opening of the intake throttle valve before the forced regeneration as an original position;
The failure determination means is configured to execute the exhaust when the operation amount to the closing side of the intake throttle valve determined by the operation amount determination means is equal to or greater than a predetermined corrosion perforation determination value during execution of the forced regeneration. The failure diagnosis device for an exhaust throttle valve according to claim 1, wherein a failure determination caused by a hole due to corrosion of the throttle valve is made.
上記吸気絞り制御手段は、上記強制再生の終了時に上記排気絞り弁の閉弁制御の中止に対して上記吸気絞り弁のフィードバック制御の中止を所定時間遅延させ、
上記故障判定手段は、上記所定時間内において、上記目標吸入空気量と実吸入空気量との偏差の絶対値が予め設定された閉固着判定値未満のときに、上記排気絞り弁の閉固着に起因する故障判定を下すことを特徴とする請求項1記載の排気絞り弁の故障診断装置。
The intake throttle control means delays the stop of the feedback control of the intake throttle valve for a predetermined time with respect to the stop of the closing control of the exhaust throttle valve at the end of the forced regeneration,
The failure determination means is configured to close the exhaust throttle valve when the absolute value of the deviation between the target intake air amount and the actual intake air amount is less than a preset close adhesion determination value within the predetermined time. 2. The exhaust throttle valve failure diagnosis apparatus according to claim 1, wherein the failure determination is caused.
上記故障判定手段は、上記排気絞り弁の故障判定を下したときに、上記エンジンに対して燃料噴射量を減少させたリンプホームモードの実行を指令することを特徴とする請求項3,4,6の何れかに記載の排気絞り弁の故障診断装置。   The failure determination means commands the engine to execute a limp home mode in which the fuel injection amount is reduced when a failure determination of the exhaust throttle valve is made. 6. The failure diagnosis device for an exhaust throttle valve according to any one of claims 6 to 10. 上記故障判定手段は、上記排気絞り弁の故障判定を下したときに、上記エンジンに対して再始動の禁止を指令することを特徴とする請求項3,4,6,7の何れかに記載の排気絞り弁の故障診断装置。   The said failure determination means commands the prohibition of restart to the engine when the failure determination of the exhaust throttle valve is made. Trouble diagnosis device for exhaust throttle valve.
JP2008140487A 2008-05-29 2008-05-29 Failure diagnostic device of exhaust gas throttle valve Withdrawn JP2009287456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140487A JP2009287456A (en) 2008-05-29 2008-05-29 Failure diagnostic device of exhaust gas throttle valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008140487A JP2009287456A (en) 2008-05-29 2008-05-29 Failure diagnostic device of exhaust gas throttle valve

Publications (1)

Publication Number Publication Date
JP2009287456A true JP2009287456A (en) 2009-12-10

Family

ID=41456918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008140487A Withdrawn JP2009287456A (en) 2008-05-29 2008-05-29 Failure diagnostic device of exhaust gas throttle valve

Country Status (1)

Country Link
JP (1) JP2009287456A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108549A1 (en) * 2010-03-01 2011-09-09 株式会社小松製作所 Internal combustion engine air supply control device and air supply control method
WO2011108366A1 (en) * 2010-03-05 2011-09-09 ヤンマー株式会社 Engine device
JP2013227983A (en) * 2013-06-26 2013-11-07 Yanmar Co Ltd Engine device
JP2013241936A (en) * 2013-06-26 2013-12-05 Yanmar Co Ltd Engine device
JP2018040284A (en) * 2016-09-07 2018-03-15 いすゞ自動車株式会社 Control device and control method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274351B1 (en) 2010-03-01 2013-06-13 가부시키가이샤 고마쓰 세이사쿠쇼 Internal combustion engine air supply control device and air supply control method
WO2011108549A1 (en) * 2010-03-01 2011-09-09 株式会社小松製作所 Internal combustion engine air supply control device and air supply control method
US9388771B2 (en) 2010-03-01 2016-07-12 Komatsu Ltd. Intake controller and method of intake controlling for internal combustion engine
CN102782293A (en) * 2010-03-01 2012-11-14 株式会社小松制作所 Internal combustion engine air supply control device and air supply control method
JPWO2011108549A1 (en) * 2010-03-01 2013-06-27 株式会社小松製作所 Air supply control device and air supply control method for internal combustion engine
JP5118265B2 (en) * 2010-03-01 2013-01-16 株式会社小松製作所 Air supply control device and air supply control method for internal combustion engine
CN102782293B (en) * 2010-03-01 2014-06-25 株式会社小松制作所 Internal combustion engine air supply control device and air supply control method
CN102859163A (en) * 2010-03-05 2013-01-02 洋马株式会社 Engine device
WO2011108366A1 (en) * 2010-03-05 2011-09-09 ヤンマー株式会社 Engine device
US9222428B2 (en) 2010-03-05 2015-12-29 Yanmar Co., Ltd. Engine device
JP2011185109A (en) * 2010-03-05 2011-09-22 Yanmar Co Ltd Engine device
JP2013241936A (en) * 2013-06-26 2013-12-05 Yanmar Co Ltd Engine device
JP2013227983A (en) * 2013-06-26 2013-11-07 Yanmar Co Ltd Engine device
JP2018040284A (en) * 2016-09-07 2018-03-15 いすゞ自動車株式会社 Control device and control method

Similar Documents

Publication Publication Date Title
JP5573391B2 (en) Exhaust gas purification system
JP3933172B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP5720230B2 (en) Particulate filter system
JP5155979B2 (en) diesel engine
JP3979437B1 (en) Exhaust gas purification system control method and exhaust gas purification system
US20100024395A1 (en) Control method of exhaust emission purification system and exhaust emission purification system
JP2008274835A (en) Deterioration diagnosis device for oxidation catalyst
US9051859B2 (en) Exhaust gas purification device and control method for exhaust gas purification device
WO2020045091A1 (en) Dpf regeneration control device and dpf regeneration control method
EP3090155B1 (en) Exhaust gas control device for internal combustion engine mounted on vehicle
EP2581569B1 (en) Dpf system
JP2006316746A (en) Exhaust emission control device for internal combustion engine
JP4371045B2 (en) Exhaust gas purification device for internal combustion engine
JP4211611B2 (en) Exhaust gas purification device for internal combustion engine
JP2009287456A (en) Failure diagnostic device of exhaust gas throttle valve
JP5931328B2 (en) Engine exhaust gas purification device and purification method
JP2005325812A (en) Failure determining device for filter
JP5228829B2 (en) Exhaust gas purification system and exhaust gas purification method
JP2008232073A (en) Exhaust emission purifier
JP5516888B2 (en) Exhaust gas purification device for internal combustion engine
JP2010169032A (en) Engine control device
JP2019073980A (en) Exhaust emission control device for internal combustion engine
JP2006274980A (en) Exhaust emission control device
JP2005016395A (en) Emission control system for internal combustion engine
JP5640028B2 (en) diesel engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802