JP2009286717A - Method for producing benzoxazinone compound - Google Patents

Method for producing benzoxazinone compound Download PDF

Info

Publication number
JP2009286717A
JP2009286717A JP2008139849A JP2008139849A JP2009286717A JP 2009286717 A JP2009286717 A JP 2009286717A JP 2008139849 A JP2008139849 A JP 2008139849A JP 2008139849 A JP2008139849 A JP 2008139849A JP 2009286717 A JP2009286717 A JP 2009286717A
Authority
JP
Japan
Prior art keywords
group
formula
carbon atoms
reaction
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008139849A
Other languages
Japanese (ja)
Other versions
JP5380005B2 (en
Inventor
Teru Miyake
輝 三宅
Masayuki Hayashi
昌之 林
Masaya Yoshida
昌哉 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinkai Chemicals Co Ltd
Original Assignee
Kinkai Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinkai Chemicals Co Ltd filed Critical Kinkai Chemicals Co Ltd
Priority to JP2008139849A priority Critical patent/JP5380005B2/en
Publication of JP2009286717A publication Critical patent/JP2009286717A/en
Application granted granted Critical
Publication of JP5380005B2 publication Critical patent/JP5380005B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a benzoxazinone compound. <P>SOLUTION: The method for producing a benzoxazinone compound represented by formula (4) (wherein R<SP>1</SP>and R<SP>2</SP>are each hydrogen, a hydroxy group, a 1-3C alkyl group, a 1-3C alkoxy group, a 1-3C acyl group, a 1-3C acyloxy group, a 1-3C alkoxycarbonyl group, a halogen, a nitro group or a carboxy group, and X is a halogen) comprises reacting an anthranilic acid derivative with an aromatic dicarboxylic acid dihalogenide in an inert gas stream in an organic solvent to produce an amide compound and thereafter reacting the amide compound with a dehydrating agent. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ビスベンゾオキサジノン化合物に関する。   The present invention relates to a bisbenzoxazinone compound.

ビスベンゾオキサジノン化合物は、従来から各種医薬化合物の合成中間体として知られ、また紫外線吸収剤としても知られている。
これまでビスベンゾオキサジノン化合物の製造方法として、種々の方法が提案されている。例えば、特開昭58−194854号公報(特許文献1)には、アントラニル酸のアルカリ水溶液とジカルボン酸ジハロゲン化合物の有機溶媒溶液とを反応させる方法が提案されている。この方法は、原料であるアントラニル酸とジカルボン酸ジハロゲン化合物とを水、有機溶媒の混合溶媒中で反応させ、中間体であるアミド体を単離した後、無水酢酸等の脱水剤と反応させることによって、ビスベンゾオキサジノン化合物を得る方法である。この方法は、生成物の収率が高く、操作が容易であるが、反応溶媒に水を使用しているため、中間体であるアミド体の乾燥に非常に時間を要する。また反応で生成するハロゲン化水素を補足する為、水酸化ナトリウム、炭酸ナトリウムのようなアルカリ金属化合物を用いる。その結果、得られるビスベンゾオキサジノン化合物にはアルカリ金属塩が含まれ、これが不純物となり、紫外線吸収剤として熱可塑性樹脂中に含有させると樹脂が加水分解し易くなる場合がある。
Bisbenzoxazinone compounds are conventionally known as synthetic intermediates for various pharmaceutical compounds and are also known as ultraviolet absorbers.
Various methods have been proposed so far for producing bisbenzoxazinone compounds. For example, JP-A-58-194854 (Patent Document 1) proposes a method of reacting an alkaline aqueous solution of anthranilic acid with an organic solvent solution of a dicarboxylic acid dihalogen compound. In this method, anthranilic acid as a raw material and a dicarboxylic acid dihalogen compound are reacted in a mixed solvent of water and an organic solvent to isolate an amide as an intermediate, and then reacted with a dehydrating agent such as acetic anhydride. To obtain a bisbenzoxazinone compound. This method has a high product yield and is easy to operate. However, since water is used as the reaction solvent, it takes a very long time to dry the amide compound as an intermediate. In order to supplement the hydrogen halide produced by the reaction, an alkali metal compound such as sodium hydroxide or sodium carbonate is used. As a result, the obtained bisbenzoxazinone compound contains an alkali metal salt, which becomes an impurity, and if it is contained in a thermoplastic resin as an ultraviolet absorber, the resin may be easily hydrolyzed.

また、特開昭61−291575号公報(特許文献2)には、アントラニル酸とジカルボン酸ジハロゲン化物とを、水とアセトンの混合溶媒中、反応で生成する塩化水素を補足する為、炭酸ナトリウムのようなアルカリ金属の存在下で反応させ、次いでN,N−ジメチルホルムアミド溶媒中で五酸化リンを反応させて脱水閉環させる方法が提案されている。この方法も収率良く高純度でビスベンゾオキサジノン化合物を得ることができる。しかしながらこれも、アルカリ金属塩等が残存する傾向がある。
さらに、特開2003−155468号公報(特許文献3)にはアントラニル酸とジカルボン酸ジハロゲン化物とを、水とアセトンの混合溶媒中で炭酸ナトリウムのようなアルカリ金属の存在下で反応させ、次いでトルエン溶媒中で無水酢酸を反応させて脱水閉環させた後、水酸化ナトリウム水溶液で洗浄することにより酸価や塩素イオン濃度を低減する方法が提案されている。しかしながらこれも、溶媒に溶けにくいビスベンゾオキサジノン化合物中の塩化ナトリウムのようなアルカリ金属塩や洗浄に用いたアルカリ金属化合物が残存する。
Japanese Patent Application Laid-Open No. 61-291575 (Patent Document 2) discloses an anthranilic acid and a dicarboxylic acid dihalide in order to supplement hydrogen chloride produced by the reaction in a mixed solvent of water and acetone. There has been proposed a method in which the reaction is carried out in the presence of such an alkali metal and then phosphorus pentoxide is reacted in an N, N-dimethylformamide solvent to cause dehydration and cyclization. This method can also obtain a bisbenzoxazinone compound with high yield and high purity. However, this also tends to leave alkali metal salts and the like.
Further, JP-A-2003-155468 (Patent Document 3) reacts anthranilic acid and dicarboxylic acid dihalide in a mixed solvent of water and acetone in the presence of an alkali metal such as sodium carbonate, and then toluene. There has been proposed a method for reducing the acid value and chloride ion concentration by reacting acetic anhydride in a solvent to perform dehydration and cyclization and then washing with an aqueous sodium hydroxide solution. However, this also leaves an alkali metal salt such as sodium chloride in the bisbenzoxazinone compound that is hardly soluble in the solvent and an alkali metal compound used for washing.

特許文献1〜3のいずれの提案も、反応の脱ハロゲン化水素剤として炭酸ナトリウム、水酸化ナトリウム等のようなアルカリ金属化合物を用いるため、目的とするビスベンゾオキサジノン化合物中に塩化ナトリウム等の微量のハロゲン化アルカリ金属塩を含有する。ビスベンゾオキサジノン化合物を紫外線吸収剤として樹脂に添加する場合、残存するアルカリ金属により、樹脂の耐久性、特に耐湿熱性が著しく低下することが問題とされていた。
特開昭58−194854号公報 特開昭61−291575号公報 特開2003−155468号公報
In any of the proposals in Patent Documents 1 to 3, since an alkali metal compound such as sodium carbonate or sodium hydroxide is used as a dehydrohalogenating agent, sodium chloride or the like is added to the target bisbenzoxazinone compound. Contains trace amounts of alkali metal halides. When a bisbenzoxazinone compound is added to a resin as an ultraviolet absorber, it has been a problem that the durability of the resin, particularly the heat-and-moisture resistance, is significantly reduced by the remaining alkali metal.
JP 58-194854 A Japanese Patent Laid-Open No. 61-291575 JP 2003-155468 A

そこで本発明の目的は、脱ハロゲン化水素剤として水酸化ナトリウム、炭酸ナトリウム等のようなアルカリ金属化合物を用いることなく、アントラニル酸誘導体からビスベンゾオキサジノン化合物を製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a bisbenzoxazinone compound from an anthranilic acid derivative without using an alkali metal compound such as sodium hydroxide or sodium carbonate as a dehydrohalogenating agent. .

本発明者らは、上記問題点を解決するために鋭意検討した結果、下記反応式で表される、アントラニル酸誘導体(1)と芳香族ジカルボン酸ジハロゲン化物(2)との反応を、反応に関与しない有機溶媒中で行い、かつ、反応液中もしくは反応容器内に窒素などの不活性ガスを導入して、反応で生成するハロゲン化水素(式中HX)を除去すると、反応が円滑に進行し中間体のアミド化合物(3)が高収率で得られ、その後、得られたアミド化合物を脱水剤と反応させると、純度の高いビスベンゾオキサジノン化合物(4)を製造できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have reacted the reaction of the anthranilic acid derivative (1) and the aromatic dicarboxylic acid dihalide (2) represented by the following reaction formula. The reaction proceeds smoothly by removing the hydrogen halide (HX in the formula) generated in the reaction by introducing an inert gas such as nitrogen into the reaction solution or reaction vessel in an organic solvent that is not involved. The intermediate amide compound (3) was obtained in high yield, and then the obtained amide compound was reacted with a dehydrating agent, and it was found that a highly pure bisbenzoxazinone compound (4) could be produced. Completed the invention.

Figure 2009286717
Figure 2009286717

(R、R、Xは、前記式(1)〜(4)と同じである。)
即ち本発明は、下記式(1)で表されるアントラニル酸誘導体と下記式(2)で表される芳香族ジカルボン酸ジハロゲン化物とを、不活性ガス気流下、有機溶媒中で反応させ、下記式(3)で表されるアミド化合物を製造した後、
(R 1 , R 2 and X are the same as those in the above formulas (1) to (4).)
That is, the present invention reacts an anthranilic acid derivative represented by the following formula (1) with an aromatic dicarboxylic acid dihalide represented by the following formula (2) in an organic solvent under an inert gas stream, After producing the amide compound represented by the formula (3),

Figure 2009286717
Figure 2009286717

(但し、RおよびRはそれぞれ独立に、水素原子、水酸基、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のアシル基、炭素数1〜3のアシルオキシ基、炭素数1〜3のアルコキシカルボニル基、ハロゲン原子、ニトロ基、カルボキシル基を表す。Xはハロゲン原子を表す。)
得られた式(3)で表されるアミド化合物を脱水剤と反応させることからなる下記式(4)
(However, R 1 and R 2 are each independently a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an acyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. An acyloxy group, an alkoxycarbonyl group having 1 to 3 carbon atoms, a halogen atom, a nitro group, or a carboxyl group, and X represents a halogen atom.)
The following formula (4) comprising reacting the obtained amide compound represented by formula (3) with a dehydrating agent

Figure 2009286717
Figure 2009286717

(但し、RおよびRは式(1)〜(3)と同じである。)
で表されるビスベンゾオキサジノン化合物の製造方法である。
(However, R 1 and R 2 are the same as those in the formulas (1) to (3).)
The manufacturing method of the bisbenzoxazinone compound represented by these.

また本発明は、前記製造方法により得られる式(4)で表されるビスベンゾオキサジノン化合物を包含する。   Moreover, this invention includes the bisbenzoxazinone compound represented by Formula (4) obtained by the said manufacturing method.

本発明の製造方法によれば、上記反応式に示したように、アミド化合物(3)を製造する際に副生するハロゲン化水素の除去に、水酸化ナトリウム、炭酸ナトリウム等のようなアルカリ金属化合物を使用しないので、得られるビスベンゾオキサジノン化合物はアルカリ金属塩を実質的に含有することなく純度が高い。従って、得られたビスベンゾオキサジノン化合物を樹脂の紫外線吸収剤として用いても、アルカリ金属による樹脂の加水分解の促進作用は起こり難い。また本発明によれば、高い収率でビスベンゾオキサジノン化合物を製造することができる。   According to the production method of the present invention, as shown in the above reaction formula, an alkali metal such as sodium hydroxide or sodium carbonate is used to remove hydrogen halide by-produced when producing the amide compound (3). Since no compound is used, the resulting bisbenzoxazinone compound has high purity without substantially containing an alkali metal salt. Therefore, even if the obtained bisbenzoxazinone compound is used as an ultraviolet absorber for a resin, the action of promoting the hydrolysis of the resin by alkali metal hardly occurs. Moreover, according to this invention, a bisbenzoxazinone compound can be manufactured with a high yield.

<ビスベンゾオキサジノン化合物の製造方法>
本発明の製造方法は、アミド化合物(3)を得る工程1とアミド化合物を脱水し環化しビスベンゾオキサジノン化合物(4)を得る工程2からなる。
<Method for producing bisbenzoxazinone compound>
The production method of the present invention comprises Step 1 for obtaining an amide compound (3) and Step 2 for dehydrating and cyclizing the amide compound to obtain a bisbenzoxazinone compound (4).

〈工程1〉
工程1は、アントラニル酸誘導体(1)と芳香族ジカルボン酸ジハロゲン化物(2)とを、不活性ガスの気流下、有機溶媒中で反応させアミド化合物(3)を得る工程である。
(アントラニル酸誘導体)
アントラニル酸誘導体は、下記式(1)で表される。
<Process 1>
Step 1 is a step of obtaining an amide compound (3) by reacting an anthranilic acid derivative (1) and an aromatic dicarboxylic acid dihalide (2) in an organic solvent under an inert gas stream.
(Anthranilic acid derivative)
An anthranilic acid derivative is represented by the following formula (1).

Figure 2009286717
Figure 2009286717

式中、Rは、水素原子、水酸基、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のアシル基、炭素数1〜3のアシルオキシ基、炭素数1〜3のアルコキシカルボニル基、ハロゲン原子、ニトロ基、カルボキシル基を表す。 In the formula, R 1 is a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an acyl group having 1 to 3 carbon atoms, an acyloxy group having 1 to 3 carbon atoms, or a carbon number. 1-3 alkoxycarbonyl group, a halogen atom, a nitro group, and a carboxyl group are represented.

炭素数1〜3のアルキル基として、メチル基、エチル基、プロピル基などが挙げられる。炭素数1〜3のアルコキシ基として、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。炭素数1〜3のアシル基(R−CO−)としてアセチル基、アクリロイル基などが挙げられる。炭素数1〜3のアシルオキシ基(R−CO−O−)として、Rがメチル基、エチル基のものが挙げられる。炭素数1〜3のアルコキシカルボニル基(−CO−OR)として、Rがメチル基、エチル基のものが挙げられる。ハロゲン原子として、フッ素原子、塩素原子、臭素原子などが挙げられる。より好ましくは、Rは、水素原子である。具体的には、アントラニル酸が挙げられる。 Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, and a propyl group. Examples of the alkoxy group having 1 to 3 carbon atoms include a methoxy group, an ethoxy group, and a propoxy group. Examples of the acyl group having 1 to 3 carbon atoms (R—CO—) include an acetyl group and an acryloyl group. Examples of the acyloxy group having 1 to 3 carbon atoms (R—CO—O—) include those in which R is a methyl group or an ethyl group. Examples of the alkoxycarbonyl group having 1 to 3 carbon atoms (—CO—OR) include those in which R is a methyl group or an ethyl group. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. More preferably, R 1 is a hydrogen atom. Specifically, anthranilic acid is mentioned.

(芳香族ジカルボン酸ジハロゲン化物)
芳香族ジカルボン酸ジハロゲン化物は、下記式(2)で表される。
(Aromatic dicarboxylic acid dihalide)
The aromatic dicarboxylic acid dihalide is represented by the following formula (2).

Figure 2009286717
Figure 2009286717

式中、Xはハロゲン原子を表す。ハロゲン原子として、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、好ましくは塩素原子である。Rは、水素原子、水酸基、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のアシル基、炭素数1〜3のアシルオキシ基、炭素数1〜3のアルコキシカルボニル基、ハロゲン原子、ニトロ基、カルボキシル基を表す。これらの具体例は式(1)と同じである。より好ましくは、Rは、水素原子である。具体的には、テレフタル酸ジクロライドが挙げられる。
上記反応において、化合物(3)は芳香族ジカルボン酸ジハロゲン化物1モルに対し、アントラニル酸誘導体2モルが反応することにより得られるが、芳香族ジカルボン酸ジハロゲン化物1モルに対しアントラニル酸誘導体1モルが反応した下記式(5)で表わされる副生成物の生成を抑制するためにアントラニル酸誘導体を化学量論量より若干過剰に用いることが好ましい。すなわち反応に用いる芳香族ジカルボン酸ジハロゲン化物の量は、1モルのアントラニル酸誘導体に対し、好ましくは0.43〜0.5モル、より好ましくは0.47〜0.5モルである。
In the formula, X represents a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a chlorine atom is preferable. R 2 is a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an acyl group having 1 to 3 carbon atoms, an acyloxy group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. Represents an alkoxycarbonyl group, a halogen atom, a nitro group, or a carboxyl group. These specific examples are the same as those in the formula (1). More preferably, R 2 is a hydrogen atom. Specific examples include terephthalic acid dichloride.
In the above reaction, compound (3) is obtained by reacting 2 moles of anthranilic acid derivative with 1 mole of aromatic dicarboxylic acid dihalide, but 1 mole of anthranilic acid derivative with respect to 1 mole of aromatic dicarboxylic acid dihalide. In order to suppress the formation of the by-product represented by the following formula (5) which has reacted, it is preferable to use an anthranilic acid derivative slightly in excess of the stoichiometric amount. That is, the amount of the aromatic dicarboxylic acid dihalide used for the reaction is preferably 0.43 to 0.5 mol, more preferably 0.47 to 0.5 mol, relative to 1 mol of the anthranilic acid derivative.

Figure 2009286717
Figure 2009286717

(式中、R、R、Xは上記式(1)〜(4)と同じである) (Wherein R 1 , R 2 and X are the same as those in the above formulas (1) to (4)).

(有機溶媒)
有機溶媒は、原料のアントラニル酸誘導体(1)と芳香族ジカルボン酸ジハロゲン化物(2)が可溶かつ、反応に関与しない溶媒をいう。具体的にはアセトン、メチルイソブチルケトン(MIBK)、シクロヘキサノンなどのケトン類、トルエン、キシレンなどの芳香族炭化水素類、テトラヒドロフラン、ジオキサンなどのエーテル類、1,2−ジクロロエタン、1,1,1−トリクロロエタン、クロロベンゼン等のハロゲン化炭化水素類が好ましい。このなかでも特にケトン類が原料の溶解性、反応のしやすさの面から好ましい。
反応に用いる有機溶媒の量は特に限定されないが、アントラニル酸誘導体100重量部に対し、好ましくは350〜3500重量部、より好ましくは800〜1200重量部である。
(Organic solvent)
The organic solvent is a solvent in which the starting anthranilic acid derivative (1) and the aromatic dicarboxylic acid dihalide (2) are soluble and do not participate in the reaction. Specifically, ketones such as acetone, methyl isobutyl ketone (MIBK) and cyclohexanone, aromatic hydrocarbons such as toluene and xylene, ethers such as tetrahydrofuran and dioxane, 1,2-dichloroethane, 1,1,1- Halogenated hydrocarbons such as trichloroethane and chlorobenzene are preferred. Of these, ketones are particularly preferred from the viewpoints of solubility of raw materials and ease of reaction.
The amount of the organic solvent used for the reaction is not particularly limited, but is preferably 350 to 3500 parts by weight, more preferably 800 to 1200 parts by weight with respect to 100 parts by weight of the anthranilic acid derivative.

(不活性ガス)
本発明は、反応系内に不活性ガスを導入し、反応を不活性ガス気流下に進行させ、ハロゲン化水素を除去することを特徴とする。
本発明で用いる不活性ガスとしては、窒素、アルゴンなどが挙げられ、特に窒素が好ましい。反応に用いる不活性ガスの量は、アントラニル酸誘導体1モルに対して、好ましくは1〜50L/時間であり、これを超えると不活性ガスの気流により蒸散する量が多大となり、少ない場合は反応が極めて遅くなる。より好ましくは5〜10L/時間である。なお、不活性ガスは、有機溶媒中に吹き込んでも良いし、反応容器の気相中に吹き込んでも良い。
反応装置は不活性ガス導入部、ガス導出部および環流装置を有する、通常のスラリー状態の反応液を攪拌することが可能な物であればよい。ただし通気した不活性ガス中に含まれるハロゲン化水素を除去する設備が必要である。また反応温度は室温〜140℃とするのが好ましくこれ以上の温度になる着色する傾向が強くなる、より好ましくは50〜90℃である。また反応時間は不活性ガスの流量と反応温度により変化するが、0.5〜20時間とするのが好ましく、より好ましくは8〜12時間である。また式(3)で表されるアミド化合物は特に精製することなく次工程に用いることができる。
(Inert gas)
The present invention is characterized in that an inert gas is introduced into the reaction system, the reaction proceeds under an inert gas stream, and hydrogen halide is removed.
Examples of the inert gas used in the present invention include nitrogen and argon, and nitrogen is particularly preferable. The amount of the inert gas used for the reaction is preferably 1 to 50 L / hour with respect to 1 mol of the anthranilic acid derivative. If the amount exceeds this amount, the amount of transpiration due to the inert gas stream becomes large. Is extremely slow. More preferably, it is 5-10L / hour. Note that the inert gas may be blown into an organic solvent or may be blown into the gas phase of the reaction vessel.
The reaction apparatus may be anything that has an inert gas introduction section, a gas outlet section, and a reflux apparatus and can stir a normal slurry-like reaction liquid. However, a facility for removing hydrogen halide contained in the aerated inert gas is necessary. The reaction temperature is preferably from room temperature to 140 ° C, and the tendency to color at higher temperatures is increased, more preferably from 50 to 90 ° C. Moreover, although reaction time changes with the flow volume and reaction temperature of an inert gas, it is preferable to set it as 0.5 to 20 hours, More preferably, it is 8 to 12 hours. The amide compound represented by the formula (3) can be used in the next step without any particular purification.

(アミド化合物)
工程1では、下記式(3)で表されるアミド化合物が結晶として得られる。
(Amide compound)
In step 1, an amide compound represented by the following formula (3) is obtained as crystals.

Figure 2009286717
Figure 2009286717

式中、RおよびRは式(1)〜(3)と同じである。 In the formula, R 1 and R 2 are the same as those in the formulas (1) to (3).

〈工程2〉
工程2は、工程1で得られた式(3)で表されるアミド化合物を脱水剤と反応させ、環化させ下記式(4)
<Process 2>
In step 2, the amide compound represented by formula (3) obtained in step 1 is reacted with a dehydrating agent and cyclized to form the following formula (4).

Figure 2009286717
Figure 2009286717

で表されるビスベンゾオキサジノン化合物を得る工程である。式中、RおよびRは式(1)〜(3)と同じである。より好ましくは、RおよびRは、水素原子である。具体的には、2,2’−フェニレンビス(3,1−ベンズオキサジン−4−オン)が挙げられる。 Is a step of obtaining a bisbenzoxazinone compound represented by the formula: In the formula, R 1 and R 2 are the same as those in the formulas (1) to (3). More preferably, R 1 and R 2 are hydrogen atoms. Specifically, 2,2′-phenylenebis (3,1-benzoxazin-4-one) can be mentioned.

脱水剤として、無水酢酸、五酸化リン、三酸化硫黄などが挙げられ、取り扱い易さより無水酢酸が好ましい。脱水剤は、式(3)で表されるアミド化合物1当量に対して、少なくとも2当量以上必要であり、好ましくは5当量以上、より好ましくは20当量以上である。好ましい態様として溶媒として用いることもできる。
反応装置は、還流装置を有して、スラリー状態の反応液を攪拌することが可能な物であればよい。ただし排気口には反応時に生成した酸性ガスが一部出てくるので、これを除去する設備が必要である。また反応温度は用いる溶媒の沸点によって異なるが、80℃以上とするのが好ましく、より好ましくは120〜140℃である。また、脱水反応時に副生する酸性成分を取り除く為に水洗を行うことが好ましい。また反応時間は脱水剤の当量、種類により異なるが、1〜24時間とするのが好ましく、より好ましくは8〜16時間である。
Examples of the dehydrating agent include acetic anhydride, phosphorus pentoxide, sulfur trioxide and the like, and acetic anhydride is preferable from the viewpoint of ease of handling. The dehydrating agent is required to be at least 2 equivalents, preferably 5 equivalents or more, more preferably 20 equivalents or more, per 1 equivalent of the amide compound represented by the formula (3). It can also be used as a solvent as a preferred embodiment.
The reaction apparatus should just be a thing which has a recirculation | reflux apparatus and can stir the reaction liquid of a slurry state. However, some of the acid gas generated during the reaction comes out at the exhaust port, and equipment to remove it is necessary. Moreover, although reaction temperature changes with boiling points of the solvent to be used, it is preferable to set it as 80 degreeC or more, More preferably, it is 120-140 degreeC. Moreover, it is preferable to wash with water in order to remove acidic components by-produced during the dehydration reaction. The reaction time varies depending on the equivalent and type of the dehydrating agent, but is preferably 1 to 24 hours, and more preferably 8 to 16 hours.

以下に本発明の構成および効果をより具体的にするために実施例をあげるが、本発明がこれらの実施例に限定されるものではない。実施例においての評価は以下の方法で行った。   Examples are given below to make the configuration and effects of the present invention more specific, but the present invention is not limited to these Examples. Evaluation in Examples was performed by the following method.

(1)HPLC純度の測定
日立製作所製L6200システムにて下記の条件で行った
カラム:GLサイエンス社製 ODS−3 4.6mm×250mm
カラム温度:45℃
溶離液:0.02Mリン酸水溶液/アセトニトリル=7/3
流速 :1ml/min
測定波長:346nm
(1) Measurement of HPLC purity It was performed on Hitachi L6200 system under the following conditions Column: ODS-3 4.6 mm × 250 mm manufactured by GL Science
Column temperature: 45 ° C
Eluent: 0.02M phosphoric acid aqueous solution / acetonitrile = 7/3
Flow rate: 1 ml / min
Measurement wavelength: 346 nm

(2)融点の測定
SRS社製MPA100を使用して、JIS K0064に記載の方法で行った。
操作:
内径0.8〜1.2mm、壁の厚さ0.2〜0.3mm、長さ150mmで一端を閉じた硬質ガラス製の毛管に、試料を約3mmの高さになるように固く充填し測定装置に固定する。予想した融点の約10℃低い温度から加熱をはじめ、2℃/分の速度で昇温する。試料が収縮し、毛管内壁との間に明らかに隙間が生じるときを収縮点とし、さらに加熱を続け液中に残っている固体の試料が完全に液化するときを溶融終点とする。3個の試料について同じ操作を行ない、測定値の平均値をそれぞれ収縮点、溶融終点とし、収縮点から溶融終点までの温度幅を溶融範囲とする。
(2) Measurement of melting point Using MPA100 manufactured by SRS, the melting point was measured by the method described in JIS K0064.
operation:
A hard glass capillary with an inner diameter of 0.8 to 1.2 mm, a wall thickness of 0.2 to 0.3 mm, and a length of 150 mm and closed at one end is tightly filled to a height of about 3 mm. Secure to the measuring device. Heating starts at a temperature about 10 ° C. lower than the expected melting point, and the temperature is increased at a rate of 2 ° C./min. The contraction point is when the sample shrinks and a gap is clearly formed between the inner wall of the capillary and the end point of melting is when the solid sample remaining in the liquid is completely liquefied by further heating. The same operation is performed for the three samples, and the average value of the measured values is set as the shrinkage point and the melting end point, respectively, and the temperature range from the shrinkage point to the melting end point is set as the melting range.

〈実施例1〉2,2’−フェニレンビス(3,1−ベンズオキサジン−4−オン)の製造
(工程1:アミド化)
温度計、攪拌機、環流冷却器、滴下ロート、窒素ガス導入部、およびハロゲン化水素除去設備へ接続されたガス導出部を備えた、500ml4つ口フラスコ中で、アントラニル酸25gをメチルイソブチルケトン(MIBK)150gに溶解した。次に溶液の温度を55〜60℃の範囲とし、テレフタル酸ジクロライド18gをMIBK72gに溶解したものを30分間で滴下した。その後、反応フラスコの気相部に窒素を15ml/minで流しながら80〜85℃の範囲で12時間反応させた。反応後、溶液の温度を30℃以下まで冷却し、濾過し、得られた結晶をMIBKで洗浄した。
Example 1 Production of 2,2′-phenylenebis (3,1-benzoxazin-4-one) (Step 1: Amidation)
In a 500 ml four-necked flask equipped with a thermometer, a stirrer, a reflux condenser, a dropping funnel, a nitrogen gas inlet, and a gas outlet connected to a hydrogen halide removing facility, 25 g of anthranilic acid was converted to methyl isobutyl ketone (MIBK). ) Dissolved in 150 g. Next, the temperature of the solution was set in the range of 55 to 60 ° C., and 18 g of terephthalic acid dichloride dissolved in 72 g of MIBK was added dropwise over 30 minutes. Then, it was made to react at 80-85 degreeC for 12 hours, flowing nitrogen at 15 ml / min to the gaseous-phase part of a reaction flask. After the reaction, the temperature of the solution was cooled to 30 ° C. or lower, filtered, and the obtained crystal was washed with MIBK.

(工程2:脱水)
温度計、攪拌機、環流冷却器、滴下ロート、還流液抜き取り口および酸性ガス除去設備へ接続されたガス導出部を備えた、500ml4つ口フラスコに得られた結晶と無水酢酸300gを入れ、1時間に10g程度ずつ還流液を留出させながら12時間加熱還流した。温度は徐々に上昇し最終的に130℃を超えた。その後30℃以下まで冷却し、濾過した。
この結晶とメタノール120gを温度計、攪拌機、環流冷却器、滴下ロート、および酸性ガス除去設備へ接続されたガス導出部を備えた、500ml4つ口フラスコに入れ50〜60℃の範囲で30分間撹拌洗浄した。これにイオン交換水120gを滴下し、30℃以下まで冷却したのち濾過し、得られた結晶をメタノールで洗浄した。得られた結晶を60℃で乾燥し29gの微黄色結晶の2,2’−フェニレンビス(3,1−ベンズオキサジン−4−オン)を得た。
表1に、収率、融点、HPLC純度を示す。
(Process 2: Dehydration)
A 500 ml four-necked flask equipped with a thermometer, a stirrer, a reflux condenser, a dropping funnel, a reflux outlet and a gas outlet connected to an acid gas removing facility was charged with 300 g of the obtained crystals and acetic anhydride for 1 hour. The mixture was heated to reflux for 12 hours while distilling about 10 g of the reflux solution. The temperature gradually increased and eventually exceeded 130 ° C. Thereafter, the mixture was cooled to 30 ° C. or lower and filtered.
This crystal and 120 g of methanol were placed in a 500 ml four-necked flask equipped with a thermometer, a stirrer, a reflux condenser, a dropping funnel, and a gas outlet connected to an acid gas removal facility, and stirred at a temperature of 50 to 60 ° C. for 30 minutes. Washed. To this, 120 g of ion-exchanged water was added dropwise, cooled to 30 ° C. or lower, filtered, and the resulting crystals were washed with methanol. The obtained crystals were dried at 60 ° C. to obtain 29 g of 2,2′-phenylenebis (3,1-benzoxazin-4-one) as slightly yellow crystals.
Table 1 shows the yield, melting point, and HPLC purity.

〈実施例2〉2,2’−フェニレンビス(3,1−ベンズオキサジン−4−オン)の製造
(工程1:アミド化)
温度計、攪拌機、環流冷却器、滴下ロート、窒素ガス導入部、およびハロゲン化水素除去設備へ接続されたガス導出部を備えた、500ml4つ口フラスコ中で、アントラニル酸25gをメチルイソブチルケトン(MIBK)150gに溶解した。次に溶液の温度を55〜60℃の範囲とし、テレフタル酸ジクロライド18gをMIBK72gに溶解したものを30分間で滴下した。その後、反応フラスコの気相部に窒素を15ml/分で流しながら80〜85℃の範囲で12時間保温して反応を完結させた。
Example 2 Production of 2,2′-phenylenebis (3,1-benzoxazin-4-one) (Step 1: Amidation)
In a 500 ml four-necked flask equipped with a thermometer, a stirrer, a reflux condenser, a dropping funnel, a nitrogen gas inlet, and a gas outlet connected to a hydrogen halide removing facility, 25 g of anthranilic acid was converted to methyl isobutyl ketone (MIBK). ) Dissolved in 150 g. Next, the temperature of the solution was set in the range of 55 to 60 ° C., and 18 g of terephthalic acid dichloride dissolved in 72 g of MIBK was added dropwise over 30 minutes. Thereafter, the reaction was completed by maintaining the temperature in the range of 80 to 85 ° C. for 12 hours while flowing nitrogen at a rate of 15 ml / min through the gas phase of the reaction flask.

(工程2:脱水)
反応液に無水酢酸150gを加え、1時間に10〜20g程度ずつ還流液を留出させながら24時間加熱還流した。途中で無水酢酸を100gずつ2回追加した。温度は徐々に上昇し最終的に130℃を超えた。その後、30℃以下まで冷却し、濾過した。この結晶とメタノール120gを温度計、攪拌機、環流冷却器、滴下ロート、および酸性ガス除去設備へ接続されたガス導出部を備えた、500ml4つ口フラスコに入れ50〜60℃の範囲で30分間撹拌洗浄した。これにイオン交換水120gを滴下し、30℃以下まで冷却したのち濾過し、結晶をメタノールで洗浄した。得られた結晶を60℃で15時間乾燥し28.5gの微黄色結晶の2,2’−フェニレンビス(3,1−ベンズオキサジン−4−オン)を得た。
表1に、収率、融点、HPLC純度を示す。
(Process 2: Dehydration)
150 g of acetic anhydride was added to the reaction solution, and the mixture was heated to reflux for 24 hours while distilling the reflux solution at a rate of about 10 to 20 g per hour. On the way, 100 g of acetic anhydride was added twice. The temperature gradually increased and eventually exceeded 130 ° C. Then, it cooled to 30 degrees C or less, and filtered. This crystal and 120 g of methanol were placed in a 500 ml four-necked flask equipped with a thermometer, a stirrer, a reflux condenser, a dropping funnel, and a gas outlet connected to an acid gas removal facility, and stirred at a temperature of 50 to 60 ° C. for 30 minutes. Washed. To this, 120 g of ion-exchanged water was added dropwise, cooled to 30 ° C. or lower, filtered, and the crystals were washed with methanol. The obtained crystals were dried at 60 ° C. for 15 hours to obtain 28.5 g of slightly yellow crystal 2,2′-phenylenebis (3,1-benzoxazin-4-one).
Table 1 shows the yield, melting point, and HPLC purity.

<比較例1>不活性ガス通気を行わない2,2’−フェニレンビス(3,1−ベンズオキサジン−4−オン)の製造
工程1:アミド化において反応時に窒素の通気を行わなかった以外実施例1と同様に行なった。表1に、収率、融点、HPLC純度を示す。
<Comparative Example 1> Production of 2,2'-phenylenebis (3,1-benzoxazin-4-one) without carrying out inert gas flow Step 1: carried out except that nitrogen was not bubbled during the reaction in amidation Performed as in Example 1. Table 1 shows the yield, melting point, and HPLC purity.

Figure 2009286717
Figure 2009286717

本発明の製造方法は、医薬品、紫外線吸収剤としてのビスベンゾオキサジノン化合物の製造に利用することができる。   The production method of the present invention can be used for the production of bisbenzoxazinone compounds as pharmaceuticals and ultraviolet absorbers.

Claims (7)

下記式(1)で表されるアントラニル酸誘導体と下記式(2)で表される芳香族ジカルボン酸ジハロゲン化物とを、不活性ガス気流下、有機溶媒中で反応させ、下記式(3)で表されるアミド化合物を製造した後、
Figure 2009286717
(但し、RおよびRはそれぞれ独立に、水素原子、水酸基、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のアシル基、炭素数1〜3のアシルオキシ基、炭素数1〜3のアルコキシカルボニル基、ハロゲン原子、ニトロ基、カルボキシル基を表す。Xはハロゲン原子を表す。)
得られた式(3)で表されるアミド化合物を脱水剤と反応させることからなる下記式(4)
Figure 2009286717
(但し、RおよびRは式(1)〜(3)と同じである。)
で表されるビスベンゾオキサジノン化合物の製造方法。
An anthranilic acid derivative represented by the following formula (1) and an aromatic dicarboxylic acid dihalide represented by the following formula (2) are reacted in an organic solvent under an inert gas stream, and the following formula (3): After producing the represented amide compound,
Figure 2009286717
(However, R 1 and R 2 are each independently a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an acyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. An acyloxy group, an alkoxycarbonyl group having 1 to 3 carbon atoms, a halogen atom, a nitro group, or a carboxyl group, and X represents a halogen atom.)
The following formula (4) comprising reacting the obtained amide compound represented by formula (3) with a dehydrating agent
Figure 2009286717
(However, R 1 and R 2 are the same as those in the formulas (1) to (3).)
The manufacturing method of the bisbenzoxazinone compound represented by these.
有機溶媒は、ケトン類、芳香族炭化水素類、ハロゲン化炭化水素類およびエーテル類からなる群より選ばれる少なくとも一種である請求項1記載の製造方法。 The method according to claim 1, wherein the organic solvent is at least one selected from the group consisting of ketones, aromatic hydrocarbons, halogenated hydrocarbons, and ethers. 不活性ガスが窒素である請求項1記載の製造方法。 The production method according to claim 1, wherein the inert gas is nitrogen. 脱水剤が無水酢酸である請求項1記載の製造方法。 The process according to claim 1, wherein the dehydrating agent is acetic anhydride. 式(1)〜式(4)の、Rが、水素原子、Rが水素原子、Xが塩素原子である請求項1記載の製造方法。 The production method according to claim 1, wherein R 1 in formula (1) to formula (4) is a hydrogen atom, R 2 is a hydrogen atom, and X is a chlorine atom. 請求項1〜5に記載の製造方法によって得られる式(4)で表されるビスベンゾオキサジノン化合物。 The bisbenzoxazinone compound represented by Formula (4) obtained by the manufacturing method of Claims 1-5. 式(4)のRが水素原子、Rが水素原子である請求項6記載のビスベンゾオキサジノン化合物。 The bisbenzoxazinone compound according to claim 6, wherein R 1 in the formula (4) is a hydrogen atom and R 2 is a hydrogen atom.
JP2008139849A 2008-05-28 2008-05-28 Method for producing bisbenzoxazinone compound Expired - Fee Related JP5380005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008139849A JP5380005B2 (en) 2008-05-28 2008-05-28 Method for producing bisbenzoxazinone compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008139849A JP5380005B2 (en) 2008-05-28 2008-05-28 Method for producing bisbenzoxazinone compound

Publications (2)

Publication Number Publication Date
JP2009286717A true JP2009286717A (en) 2009-12-10
JP5380005B2 JP5380005B2 (en) 2014-01-08

Family

ID=41456291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008139849A Expired - Fee Related JP5380005B2 (en) 2008-05-28 2008-05-28 Method for producing bisbenzoxazinone compound

Country Status (1)

Country Link
JP (1) JP5380005B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064897A1 (en) * 2009-11-26 2011-06-03 帝人化成株式会社 Bis-benzoxazinone compound
JP2011207954A (en) * 2010-03-29 2011-10-20 Teijin Chem Ltd Polycarbonate resin composition and molded article thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437171B (en) * 2019-07-02 2021-11-09 江苏丹霞新材料有限公司 Preparation method of bis-benzoxazinone ultraviolet absorbent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194854A (en) * 1982-05-10 1983-11-12 Teijin Ltd Production of bisanthranylic acid derivative
JPS61291575A (en) * 1985-06-20 1986-12-22 Nisso Yuka Kogyo Kk Production of benzoxazines
GB2262097A (en) * 1991-12-06 1993-06-09 Basf Ag Manufacture of 4H-3,1-benzoxazin-4-ones
JP2000264879A (en) * 1999-03-18 2000-09-26 Nippon Paper Industries Co Ltd Production of bisbenzoxazinone
JP2003155374A (en) * 2001-11-20 2003-05-27 Takemoto Oil & Fat Co Ltd Ultraviolet light absorber for thermoplastic polymer
JP2009096794A (en) * 2007-09-27 2009-05-07 Fujifilm Corp Method for producing benzoxazinone-based compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194854A (en) * 1982-05-10 1983-11-12 Teijin Ltd Production of bisanthranylic acid derivative
JPS61291575A (en) * 1985-06-20 1986-12-22 Nisso Yuka Kogyo Kk Production of benzoxazines
GB2262097A (en) * 1991-12-06 1993-06-09 Basf Ag Manufacture of 4H-3,1-benzoxazin-4-ones
JP2000264879A (en) * 1999-03-18 2000-09-26 Nippon Paper Industries Co Ltd Production of bisbenzoxazinone
JP2003155374A (en) * 2001-11-20 2003-05-27 Takemoto Oil & Fat Co Ltd Ultraviolet light absorber for thermoplastic polymer
JP2009096794A (en) * 2007-09-27 2009-05-07 Fujifilm Corp Method for producing benzoxazinone-based compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013007414; Afinidad 55(475), 1998, 225-228 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064897A1 (en) * 2009-11-26 2011-06-03 帝人化成株式会社 Bis-benzoxazinone compound
US20120252941A1 (en) * 2009-11-26 2012-10-04 Shun Ibusuki Bisbenzoxazinone compound
JPWO2011064897A1 (en) * 2009-11-26 2013-04-11 帝人化成株式会社 Bisbenzoxazinone compounds
JP5749177B2 (en) * 2009-11-26 2015-07-15 帝人株式会社 Resin composition containing bisbenzoxazinone compound
JP2011207954A (en) * 2010-03-29 2011-10-20 Teijin Chem Ltd Polycarbonate resin composition and molded article thereof

Also Published As

Publication number Publication date
JP5380005B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5247436B2 (en) Method for producing methylene disulfonate compound
JP5102002B2 (en) Method for producing asenapine synthetic intermediate
KR101771997B1 (en) Method for producing a methylene disulfonate compound
JP2009035496A (en) METHOD FOR PRODUCING beta-NITROSTYRENE COMPOUND
JP5380005B2 (en) Method for producing bisbenzoxazinone compound
JP2013043882A (en) Method for producing 1,2-benzisothiazolin-3-one compound
WO2006090783A1 (en) Process for production of 4-fluoroisoquinoline-5-sulfonyl halide or salt thereof
MXPA04008109A (en) Method for preparing benzisoxazole methane sulfonyl chloride and its amidation to form zonisamide.
WO2019163731A1 (en) Production method for oxazolidinone compound
JP5008404B2 (en) Method for producing methylene disulfonate compound
JP5280115B2 (en) Method for producing p-phenylenebis (trimellitic acid monoester anhydride)
CN101605773B (en) Process for production of dibenzoxepin compound
JP5743474B2 (en) Process for producing 4-amino-5-chloro-2-ethoxy-N-[[4- (4-fluorobenzyl) -2-morpholinyl] methyl] benzamide citrate dihydrate
JP4963970B2 (en) Method for producing methylene disulfonate compound
JP6853086B2 (en) Aromatic compounds and methods for producing them
JP5870114B2 (en) Enantiomerically pure binaphthol derivative and method for producing the same (ENANTIOMERICALLY PURE BINAPHTOL DERIVATEIVES AND METHOD FOR PREPARING THE SAE)
CN110903245B (en) Key intermediate for synthesizing 1-alkyl-2-trifluoromethyl-5-amino-1H-imidazole and preparation method thereof
JP6853709B2 (en) Aromatic compounds and methods for producing them
JPH1036326A (en) Acid adduct salt of 3-ethynylaniline compound and purification of 3-ethynylaniline compound
JP2006193480A (en) Method for producing 1,3-dibenzyl-2-oxoimidazolidine-4,5-dicarboxylic acid
KR100484386B1 (en) Process for the preparation of alkyl 2 - [2,3,5 -trifluoro - 4 - (4 - methyl-1-piperazinyl)] benzoyl - 3(S)-(1 - hydroxyprop - 2 - ylamino) acrylate
JP2012136480A (en) New optically active macrocyclic compound, production method therefor, and optical purity determination reagent and optical purity determination method using the same
JP5164755B2 (en) Method for producing crystals of bis-acetylaminophenyl compound
JP5525216B2 (en) Method for producing trimellitic anhydride diester
JP2021127332A (en) Method for Producing 5-Bromo-2-alkylbenzoic Acid

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130501

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5380005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees