JP2009286685A - Double-glazed glass - Google Patents

Double-glazed glass Download PDF

Info

Publication number
JP2009286685A
JP2009286685A JP2008144300A JP2008144300A JP2009286685A JP 2009286685 A JP2009286685 A JP 2009286685A JP 2008144300 A JP2008144300 A JP 2008144300A JP 2008144300 A JP2008144300 A JP 2008144300A JP 2009286685 A JP2009286685 A JP 2009286685A
Authority
JP
Japan
Prior art keywords
porous body
transparent porous
strain
glass
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008144300A
Other languages
Japanese (ja)
Other versions
JP5115885B2 (en
Inventor
Masamichi Ipponmatsu
正道 一本松
Kazuki Nakanishi
和樹 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Renaissance Energy Investment Co Ltd
Original Assignee
Kyoto University
Renaissance Energy Investment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Renaissance Energy Investment Co Ltd filed Critical Kyoto University
Priority to JP2008144300A priority Critical patent/JP5115885B2/en
Publication of JP2009286685A publication Critical patent/JP2009286685A/en
Application granted granted Critical
Publication of JP5115885B2 publication Critical patent/JP5115885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide double-glazed glass which has such a laminated structure that a flat plate-like transparent porous body is held between two glass sheets in which the improvement of both of heat insulating property and visible light transmissivity required for double-glazed glass is expected and which has enhanced fracture resistance to deformation by external pressure. <P>SOLUTION: The transparent porous body 3 has a compression limit strain larger than the tensile limit strain, and a compression strain is previously imparted to the transparent porous body 3. Specifically, a first compression strain is previously imparted to the transparent porous body 3 in a thickness direction by pressure added to the transparent porous body 3 in the thickness direction from the two glass sheets 2, and the transparent porous body 3 is held by the two glass sheets 2 in a state that expansion of the transparent porous body 3 in a direction parallel to the surface of the glass sheet 2 is suppressed. Thereby, a second compression strain is previously imparted to the transparent porous body 3 in the direction parallel to the surface of the glass sheet 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複層ガラスに関し、特に、可視光を透過する平板状の透明多孔体が2枚の板ガラス間に挟まれた積層構造を有する複層ガラスに関する。   The present invention relates to a multilayer glass, and more particularly to a multilayer glass having a laminated structure in which a flat transparent porous body that transmits visible light is sandwiched between two sheet glasses.

住宅やビル等の建物の壁部、床部、天井部等を高断熱化する場合、住宅金融公庫の高断熱住宅の規格では、100〜200mm程度の厚さのロックウールが壁や天井等に対して規定されており、熱貫流率が約0.2〜0.5W/(m・K)の断熱性能を有する。これに対して、窓のガラス部は高性能の複層断熱ガラス(代表的空気層の厚み60mm)でも、熱貫流率が1.6〜3.0W/(m・K)と約1桁程度大きいため、換気によるものを除く外部との熱の出入りはその半分以上が窓のガラス部を通過している。従って、ガラス部の遮熱性を高めることは建物を高断熱化して省エネルギ化を図る上で非常に重要である。 When the walls, floors, ceilings, etc. of buildings such as houses and buildings are highly insulated, rock wool with a thickness of about 100 to 200 mm is applied to the walls, ceilings, etc. It has a heat insulation performance of about 0.2 to 0.5 W / (m 2 · K). On the other hand, even if the glass part of the window is a high-performance multi-layer insulation glass (typical air layer thickness 60 mm), the thermal conductivity is 1.6 to 3.0 W / (m 2 · K), which is about one digit. Because it is so large, more than half of the heat that goes in and out, except for ventilation, passes through the glass part of the window. Therefore, increasing the heat shielding property of the glass part is very important for achieving high heat insulation and energy saving.

一般に、複層断熱ガラスは、2枚の板ガラス間に空気の対流が生じ難い範囲の密閉空気層を形成し断熱層としている。複層断熱ガラスを高断熱化するために、密閉空気層を空気より熱伝導性の低いアルゴンガス等を封入した複層断熱ガラスや、密閉空気層を真空排気した真空複層ガラスがある(例えば、下記特許文献1〜3参照)。また、アルゴンガス等の封入や真空排気により密閉空気層の気密性を確保する必要から、大面積の複層断熱ガラスの作製が困難なため、密閉空気層の空気量を低減する目的として、密閉空気層にシリカ微粒子が鎖状に繋がったエアロゾルを封入して高断熱化を図った複層断熱ガラスがある(例えば、下記特許文献4参照)。また、2枚の板ガラス間の中空層にシリカエアロゲル等の透明多孔質断熱層を設けた複層ガラスがある(例えば、下記特許文献5参照)。   In general, the double-layer heat insulating glass forms a sealed air layer in a range in which air convection hardly occurs between two sheet glasses to form a heat insulating layer. In order to increase the thermal insulation of the multilayer insulation glass, there is a multilayer insulation glass in which a sealed air layer is filled with argon gas having a lower thermal conductivity than air or a vacuum multilayer glass in which the sealed air layer is evacuated (for example, , See Patent Documents 1 to 3 below). In addition, since it is difficult to produce a large-area double-layer insulation glass because it is necessary to ensure the airtightness of the sealed air layer by sealing with argon gas or evacuating, sealing is performed for the purpose of reducing the amount of air in the sealed air layer. There is a multilayer heat insulating glass in which an aerosol in which silica fine particles are connected in a chain shape is enclosed in an air layer to achieve high heat insulation (for example, see Patent Document 4 below). In addition, there is a multi-layer glass in which a transparent porous heat insulating layer such as silica airgel is provided in a hollow layer between two plate glasses (see, for example, Patent Document 5 below).

特開平11−199277号公報JP 11-199277 A 特開平11−092181号公報Japanese Patent Laid-Open No. 11-092181 特開平11−079795号公報Japanese Patent Application Laid-Open No. 11-079795 特開平11−071141号公報Japanese Patent Laid-Open No. 11-071141 特開2006−282465号公報JP 2006-282465 A 国際公開第2005/110919号パンフレットInternational Publication No. 2005/110919 Pamphlet Kazuyoshi Kanamori,etal.,“New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Mechanical Properties”,Advanced Meterials,2007,19,pp.1589−1593Kazuyoshi Kanamori, et al. "New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Mechanical Properties", Advanced Metals, 2007, 19, p. 1589-1593 “Physical Properties:Silica Aerogels”、[online]、Lawrence Berkeley National Laboratory、[ 平成20年4月4日検索]、インターネット<URL:http://eande.lbl.gov/ECS/aerogels/sa-physical.html>“Physical Properties: Silica Aerogels”, [online], Lawrence Berkeley National Laboratory, [Search April 4, 2008], Internet <URL: http://eande.lbl.gov/ECS/aerogels/sa-physicals/sa-physicals html>

しかしながら、従来の真空複層ガラスでは、2枚の板ガラス間に外側から密閉空気層に加わる大気圧を支えるために2枚の板ガラス間に多くの支持部材を挿入した複雑な構造となり、板ガラスやサッシ部分の構造を頑強なものとする必要から重量化が避けられない。   However, the conventional vacuum double-glazed glass has a complicated structure in which many supporting members are inserted between the two glass sheets to support the atmospheric pressure applied to the sealed air layer from the outside between the two glass sheets. Weight increase is inevitable because the structure of the part needs to be robust.

また、密閉空気層にエアロゾルを封入した複層断熱ガラスでは、粒子間に粒子径より大きな空隙が多く残存し、空気の対流が効果的に抑制されないため、一般的な複層ガラスより断熱化が図れるものの、飛躍的な断熱性能の改善は期待できない。また、粒子間に存在する空隙によって入射光が散乱するため、断熱層の可視光透過性が低下するという問題がある。   In addition, in multi-layer insulation glass in which aerosol is sealed in a sealed air layer, many voids larger than the particle size remain between the particles, and air convection is not effectively suppressed. Although it can be achieved, a dramatic improvement in thermal insulation performance cannot be expected. Moreover, since incident light is scattered by the space | gap which exists between particle | grains, there exists a problem that the visible light transmittance | permeability of a heat insulation layer falls.

また、2枚の板ガラス間の中空層にシリカエアロゲル等の透明多孔質断熱層を設けた複層ガラスの場合では、透明多孔質断熱層の可視光透過性を確保するには、屈折率の変化の周期が光の波長の1/5〜1/10程度になると急に散乱が大きくなるので、中心細孔径が数nm〜100nmで、当該細孔より孔径の大きい貫通孔や隙間や継ぎ目のない平板状の多孔体であることが望ましい。尚、上記特許文献5に開示されている複層ガラスの透明多孔質断熱層が、平板状の多孔体であるか否かはその開示内容からは不明である。また、平板状の多孔体に隙間や継ぎ目が多く存在するとその部分で光が乱反射するため透視性が損なわれるとともに隙間や継ぎ目が容易に目視できるため外観上も問題となる。従って、細孔のみの平板状の透明多孔体を用いることにより、密閉空気層にエアロゾルを封入した複層断熱ガラスと比較して、複層ガラスに要求される断熱性と可視光透過性の両性能の向上が期待される。   In addition, in the case of double-layer glass in which a transparent porous heat insulating layer such as silica aerogel is provided in the hollow layer between two plate glasses, in order to ensure the visible light transmittance of the transparent porous heat insulating layer, the refractive index change Since the scattering suddenly increases when the period of the light becomes about 1/5 to 1/10 of the wavelength of the light, the central pore diameter is several nm to 100 nm, and there are no through holes, gaps, or joints having a larger pore diameter than the pores. A flat porous body is desirable. Whether the transparent porous heat insulation layer of the multilayer glass disclosed in Patent Document 5 is a flat porous body is not clear from the disclosure. In addition, if there are many gaps and joints in the flat porous body, light is irregularly reflected at the portions, so that the transparency is impaired and the gaps and joints can be easily visually observed, which causes a problem in appearance. Therefore, by using a flat transparent porous body with only pores, both the heat insulating properties and the visible light transmittance required for the multi-layer glass compared to the multi-layer heat insulating glass in which the aerosol is sealed in the sealed air layer. Expected to improve performance.

ここで、セラミックスやガラス材料の一般的性質として、圧縮限界歪に比べ引っ張り限界歪が極めて小さいという問題がある。これらの材料が引っ張り歪によって破壊しやすい理由として、引っ張り応力を掛けた場合に、表面の小さな傷(イナシャルクラック)に応力が集中し、クラックの進展とともに応力集中係数が大きくなって急速に破壊が進行するためと考えられる。これに対して、圧縮歪の場合には当該応力集中のメカニズムが働かないため、圧縮歪によって破壊しやすいという問題はない。従って、シリカエアロゲル等の透明多孔体は、セラミックスやガラス材料の一種であることから、引っ張り歪によって破壊しやすい特質を有している。このため、シリカエアロゲル等の透明多孔体が複層ガラスに使用された場合、強風等の外圧によってガラス面が湾曲した場合、透明多孔体もガラス面と同様に湾曲が生じ、その湾曲面に沿って引っ張り歪が生じる。シリカエアロゲル等の透明多孔体は、容易に引っ張り限界歪を超える引っ張り歪が生じることにより亀裂が生じ、当該亀裂面で光が乱反射するため、可視光透過性及び透視性が損なわれることになる。従って、シリカエアロゲル等の透明多孔体が引っ張り応力に対して破壊しやすいという欠点を改善できれば、高い断熱性と可視光透過性を具備する複層ガラスを提供できるようになる。   Here, as a general property of ceramics and glass materials, there is a problem that the tensile limit strain is extremely small compared to the compression limit strain. The reason why these materials are easily broken by tensile strain is that when tensile stress is applied, stress concentrates on small scratches (initial cracks) on the surface, and the stress concentration factor increases with the progress of cracks, resulting in rapid failure. This is thought to be due to progress. On the other hand, since the stress concentration mechanism does not work in the case of compressive strain, there is no problem that it is easily broken by the compressive strain. Therefore, since a transparent porous body such as silica airgel is a kind of ceramics or glass material, it has a characteristic that it is easily broken by tensile strain. For this reason, when a transparent porous body such as silica airgel is used for a double-glazed glass, when the glass surface is curved by an external pressure such as strong wind, the transparent porous body is also curved in the same manner as the glass surface, and along the curved surface. Tensile strain occurs. A transparent porous body such as silica airgel easily cracks due to tensile strain exceeding the tensile limit strain, and light is irregularly reflected on the crack surface, so that visible light transmission and transparency are impaired. Therefore, if a transparent porous body such as silica airgel can be easily broken against a tensile stress, a multilayer glass having high heat insulation and visible light transmission can be provided.

本発明は、上述の問題点に鑑みてなされたものであり、その目的は、複層ガラスに要求される断熱性と可視光透過性の両性能の向上が期待される2枚の板ガラス間に平板状の透明多孔体が挟まれた積層構造を有する複層ガラスであって外圧による変形に対する破壊耐性を強化した複層ガラスを提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object thereof is between two sheet glasses that are expected to improve both the heat insulating properties and the visible light transmission performance required for a double-layer glass. An object of the present invention is to provide a double-glazed glass having a laminated structure in which a flat transparent porous body is sandwiched, and having enhanced fracture resistance against deformation caused by external pressure.

上記目的を達成するための本発明に係る複層ガラスは、可視光を透過する平板状の透明多孔体が2枚の板ガラス間に挟まれた積層構造を有する複層ガラスであって、前記透明多孔体が引っ張り限界歪より大きい圧縮限界歪を有し、前記透明多孔体に対して予め圧縮歪が付与されていることを第1の特徴とする。   The multilayer glass according to the present invention for achieving the above object is a multilayer glass having a laminated structure in which a flat transparent porous body that transmits visible light is sandwiched between two sheet glasses, The first feature is that the porous body has a compression limit strain larger than the tensile limit strain, and a compressive strain is applied to the transparent porous body in advance.

上記第1の特徴の複層ガラスによれば、透明多孔体の圧縮限界歪が大きいため、外圧による変形が生じて予め付与された圧縮歪に変形による圧縮歪が付加されても、圧縮限界歪以下であれば、透明多孔体は当該合成圧縮歪によって破壊されることはない。一方、透明多孔体の引っ張り限界歪は圧縮限界歪より小さいが、予め付与された圧縮歪と変形によって生じる引っ張り歪が相殺された合成歪では、引っ張り歪が大幅に軽減されるか、或いは、圧縮歪となるため、予め付与する圧縮歪を調整して、当該合成歪を引っ張り限界歪以下に設定することで、変形によって生じる引っ張り歪により透明多孔体が破壊されるのを未然に防止することが可能となる。   According to the multilayer glass of the first feature, since the compression limit strain of the transparent porous body is large, even if the compression strain due to the deformation is added to the compression strain applied in advance due to the deformation due to the external pressure, the compression limit strain is generated. The transparent porous body is not destroyed by the synthetic compression strain as long as it is below. On the other hand, the tensile limit strain of the transparent porous material is smaller than the compression limit strain. However, in the composite strain in which the tensile strain generated by the preliminarily applied compressive strain and deformation is offset, the tensile strain is greatly reduced or the compression strain is reduced. Therefore, it is possible to prevent the transparent porous body from being destroyed by the tensile strain generated by the deformation by adjusting the compression strain to be applied in advance and setting the synthetic strain to be equal to or lower than the tensile limit strain. It becomes possible.

以上の結果、セラミックスやガラス材料と同様に引っ張り歪によって破壊しやすい特質を有しているが、可視光透過性及び断熱性の両特性において優れた特性を示すシリカエアロゲルやメチル化シリカキセロゲル等の無機或いは有機無機ハイブリッド非晶質ゲル、或いは、その他同様の特性を有する透明多孔体材料を、複層ガラスの透明多孔体として使用することが可能となり、力学強度特性、可視光透過性、及び、断熱性に優れた複層ガラスを提供できるようになる。   As a result of the above, as with ceramics and glass materials, it has the property of being easily broken by tensile strain, but silica aerogel, methylated silica xerogel, etc. that exhibit excellent properties in both visible light transmission and thermal insulation properties It becomes possible to use an inorganic or organic-inorganic hybrid amorphous gel or other transparent porous material having similar characteristics as a transparent porous material of a multi-layer glass, mechanical strength characteristics, visible light permeability, and A multilayer glass excellent in heat insulation can be provided.

尚、本明細書では、圧縮歪、引っ張り歪、圧縮限界歪、及び、引っ張り限界歪は、以下のように定義して使用している。圧縮歪は、圧縮応力の方向における圧縮による長さの変化(ΔL)を圧縮前の物体の長さ(L)で除した比率(ΔL/L)で表され、引っ張り歪は、引っ張り応力の方向における引っ張りによる長さの変化(ΔL)を引っ張り前の物体の長さ(L)で除した比率(ΔL/L)で表される。圧縮歪は負の引っ張り歪と等価であり、圧縮歪と引っ張り歪は互いに符号が逆転する関係にある。また、圧縮限界歪は、物体が破壊に至る限界の圧縮歪で、引っ張り限界歪は、物体が破壊に至る限界の引っ張り歪である。   In this specification, compression strain, tensile strain, compression limit strain, and tensile limit strain are defined and used as follows. The compressive strain is represented by a ratio (ΔL / L) obtained by dividing the change in length (ΔL) due to compression in the direction of compressive stress by the length (L) of the object before compression, and the tensile strain is the direction of tensile stress. Is expressed by a ratio (ΔL / L) obtained by dividing the change in length (ΔL) due to pulling by the length (L) of the object before pulling. The compressive strain is equivalent to a negative tensile strain, and the compressive strain and the tensile strain have a relationship in which signs are reversed. The compression limit strain is a limit compression strain that causes an object to break, and the tensile limit strain is a limit strain that causes an object to break.

更に、上記第1の特徴の複層ガラスは、前記2枚の板ガラスに加わる外圧による変形によって前記透明多孔体に生じると予測される引っ張り歪の最大値以上の圧縮歪が、前記予測される引っ張り歪の方向に付与されるように、前記透明多孔体に対して予め圧縮歪が付与されていることを第2の特徴とする。   Further, the multilayer glass having the first characteristic has a compressive strain that is greater than or equal to a maximum tensile strain predicted to be generated in the transparent porous body due to deformation caused by an external pressure applied to the two plate glasses. A second feature is that a compressive strain is applied in advance to the transparent porous body so as to be applied in the direction of strain.

上記第2の特徴の複層ガラスによれば、外圧による変形によって透明多孔体に生じると予測される引っ張り歪の方向に予め付与する圧縮歪が、その引っ張り歪の予測最大値以上であるので、当該最大位置以内の引っ張り歪が発生しても、当該引っ張り歪の方向に引っ張り歪が発生することが回避されるため、透明多孔体の引っ張り限界歪が如何に小さくても、変形によって生じる引っ張り歪により透明多孔体が破壊されるのを未然に防止することが可能となる。   According to the multilayer glass of the second feature, the compressive strain applied in advance in the direction of the tensile strain that is predicted to be generated in the transparent porous body by deformation due to external pressure is equal to or greater than the predicted maximum value of the tensile strain. Even if a tensile strain within the maximum position occurs, it is avoided that the tensile strain is generated in the direction of the tensile strain. Therefore, the tensile strain generated by the deformation is no matter how small the tensile limit strain of the transparent porous body is. This makes it possible to prevent the transparent porous body from being destroyed.

更に、上記第1または第2の特徴の複層ガラスは、前記2枚の板ガラスから前記透明多孔体に対して前記透明多孔体の厚み方向に加えられる圧力によって、前記透明多孔体に対して前記厚み方向に予め第1の圧縮歪が付与され、前記透明多孔体が前記2枚の板ガラスの表面に平行な方向へ拡張するのを抑止された状態で、前記透明多孔体が前記2枚の板ガラスによって挟持されていることで、前記透明多孔体に対して前記2枚の板ガラスの表面に平行な方向に第2の圧縮歪が予め付与されていることを第3の特徴とする。   Furthermore, the multi-layer glass of the first or second feature is the above-mentioned transparent porous body with respect to the transparent porous body by pressure applied in the thickness direction of the transparent porous body from the two plate glasses to the transparent porous body. In a state in which the first compressive strain is applied in the thickness direction in advance and the transparent porous body is prevented from expanding in a direction parallel to the surfaces of the two sheet glasses, the transparent porous body is the two sheet glasses. As a third feature, the second compressive strain is preliminarily applied to the transparent porous body in a direction parallel to the surfaces of the two sheet glasses.

上記第3の特徴の複層ガラスによれば、透明多孔体の厚み方向に加えられる圧力によって、透明多孔体に対して厚み方向に第1の圧縮歪、2枚の板ガラスの表面に平行な方向へ第2の圧縮歪を予め付与することができる。つまり、透明多孔体には全方向において圧縮歪が予め付与されることになる。複層ガラスの2枚の板ガラスの一方の外側面から強風等の強い圧力を受けると、2枚の板ガラスが他方側に向って湾曲する変形が生じる。この変形によって透明多孔体にも同様の湾曲が生じ、その湾曲面に沿って2枚の板ガラスの表面に平行な方向に引っ張り歪が生じる。従って、2枚の板ガラスの表面に平行な方向に予め付与された圧縮歪と湾曲面に沿って生じる引っ張り歪が相殺するため、引っ張り歪による破壊耐性が改善される。また、透明多孔体には全方向において圧縮歪が予め付与されているので、2枚の板ガラスの表面に平行な方向以外の方向に生じる引っ張り歪に対しても、上記同様に破壊耐性が改善されることになる。   According to the multilayer glass of the third feature, the first compressive strain in the thickness direction with respect to the transparent porous body by the pressure applied in the thickness direction of the transparent porous body, the direction parallel to the surfaces of the two plate glasses The second compression strain can be applied in advance. That is, the transparent porous body is preliminarily imparted with compressive strain in all directions. When a strong pressure such as strong wind is applied from one outer surface of the two glass sheets of the multilayer glass, the two glass sheets are deformed to bend toward the other side. Due to this deformation, the same curvature is generated in the transparent porous body, and tensile strain is generated in the direction parallel to the surfaces of the two glass sheets along the curved surface. Therefore, since the compressive strain previously applied in the direction parallel to the surfaces of the two glass sheets cancels out the tensile strain generated along the curved surface, the fracture resistance due to the tensile strain is improved. In addition, since the compressive strain is preliminarily applied to the transparent porous body in all directions, the fracture resistance is also improved in the same manner as described above against tensile strain generated in a direction other than the direction parallel to the surfaces of the two sheet glasses. Will be.

更に、上記第3の特徴の複層ガラスは、前記2枚の板ガラスを前記透明多孔体の厚み方向に挟持する窓枠によって、前記2枚の板ガラスを前記透明多孔体の厚み方向に締め付けることにより、或いは、前記透明多孔体内の気相を減圧することにより、前記2枚の板ガラスの両側から加わる大気圧によって、前記透明多孔体に対して前記第1の圧縮歪が予め付与され、前記透明多孔体が前記2枚の板ガラスの表面に平行な方向へ拡張するのを抑止されることで、前記透明多孔体に対して前記第2の圧縮歪が予め付与されていることを第4の特徴とする。   Furthermore, the multilayer glass of the third feature is obtained by tightening the two plate glasses in the thickness direction of the transparent porous body by a window frame sandwiching the two plate glasses in the thickness direction of the transparent porous body. Alternatively, by reducing the gas phase in the transparent porous body, the first compressive strain is preliminarily applied to the transparent porous body by the atmospheric pressure applied from both sides of the two plate glasses, and the transparent porous body A fourth feature is that the second compressive strain is preliminarily applied to the transparent porous body by preventing the body from expanding in a direction parallel to the surfaces of the two plate glasses. To do.

上記第4の特徴の複層ガラスによれば、透明多孔体に対して第1及び第2の圧縮歪を具体的に予め付与することができるため、上記第3の特徴の複層ガラスの作用効果を確実に奏することができる。   According to the multilayer glass of the fourth feature, the first and second compressive strains can be specifically applied to the transparent porous body in advance, so that the action of the multilayer glass of the third feature is performed. An effect can be produced reliably.

更に、上記第3または第4の特徴の複層ガラスは、前記透明多孔体に固有の圧縮限界歪が3.5%より大きく、前記第1の圧縮歪が3.5%以上、前記透明多孔体に固有の圧縮限界歪未満であることを第5の特徴とする。   Further, the multilayer glass having the third or fourth feature has a compression limit strain inherent to the transparent porous body of greater than 3.5%, the first compression strain of 3.5% or more, and the transparent porous glass. The fifth feature is that the compression strain is less than the compression limit inherent in the body.

上記第5の特徴の複層ガラスによれば、例えば、透明多孔体としてメチル化シリカキセロゲルやシリカエアロゲル等の使用を想定した場合、これらの透明多孔体の材料としてのポアッソン比が0.2程度であるので、2枚の板ガラスの表面に平行な方向に第2の圧縮歪は0.7%以上、圧縮限界歪の0.2倍未満となる。ビル用の窓ガラスの限界変形は曲率半径5m程度に設計されているので、板ガラスの最大寸法を2mと想定し、板ガラスの当該最大寸法の両端間が2mの長さに拘束されているとすると、上記限界変形の湾曲が生じた場合は、上記2mの長さの板ガラスは、約2.0136mに伸張し、0.68%程度の引っ張り歪が生じることになる。ここで、板ガラスと透明多孔体が摩擦力をもって接触し、両者が接触面において完全に密着して相対的に動かない場合には、透明多孔体板に対し、ガラスの表面に平行な方向に板ガラスと同じく0.68%程度の引っ張り歪が生じることになる。従って、上記想定内の引っ張り歪は第2の圧縮歪によって相殺されて引っ張り歪として発現しないため、引っ張り限界歪を超えて透明多孔体に亀裂等が生じて破壊するのが未然に防止される。   According to the multilayer glass of the fifth feature, for example, assuming use of methylated silica xerogel or silica airgel as the transparent porous body, the Poisson's ratio as a material of these transparent porous bodies is about 0.2. Therefore, the second compression strain is 0.7% or more and less than 0.2 times the compression limit strain in the direction parallel to the surfaces of the two sheet glasses. Since the limit deformation of window glass for buildings is designed to have a radius of curvature of about 5 m, it is assumed that the maximum dimension of the plate glass is 2 m, and the distance between both ends of the maximum dimension of the plate glass is restricted to a length of 2 m. When the limit deformation curve occurs, the 2 m long plate glass stretches to about 2.0136 m, and a tensile strain of about 0.68% occurs. Here, in the case where the plate glass and the transparent porous body are brought into contact with each other with frictional force, and the two are completely in contact with each other and do not move relatively, the plate glass is oriented in a direction parallel to the glass surface with respect to the transparent porous plate. As with the case, a tensile strain of about 0.68% is generated. Accordingly, the tensile strain within the above assumption is offset by the second compressive strain and does not appear as tensile strain, so that the transparent porous body is prevented from being broken due to cracks or the like exceeding the tensile limit strain.

一方、板ガラスと透明多孔体が摩擦力をもって接触していない場合は、上記ビル用の窓ガラスの限界変形の湾曲によって透明多孔体に生じる歪は、透明多孔体の湾曲にのみ起因して発生するため、湾曲面の凸部側で引っ張り歪となり、凹部側で圧縮歪となる。透明多孔体の厚みが10mm程度とすると、曲率半径5mの湾曲に対して、2枚の板ガラスの表面に平行な方向に生じる最大の引っ張り歪は0.1%程度となる。従って、板ガラスと透明多孔体が摩擦力をもって接触する場合に比べて、引っ張り歪が大幅に緩和されるので、上記想定内の引っ張り歪は第2の圧縮歪によって相殺されて引っ張り歪として発現しないため、引っ張り限界歪を超えて透明多孔体に亀裂等が生じて破壊するのが未然に防止される。   On the other hand, when the plate glass and the transparent porous body are not in contact with each other with frictional force, the strain generated in the transparent porous body due to the limit deformation curve of the window glass for buildings is generated only due to the curvature of the transparent porous body. For this reason, tensile strain occurs on the convex side of the curved surface, and compressive strain occurs on the concave side. When the thickness of the transparent porous body is about 10 mm, the maximum tensile strain generated in the direction parallel to the surfaces of the two plate glasses is about 0.1% with respect to the curvature having a curvature radius of 5 m. Therefore, since the tensile strain is greatly relieved compared with the case where the plate glass and the transparent porous body are brought into contact with each other with a frictional force, the tensile strain within the above assumption is offset by the second compression strain and does not appear as a tensile strain. Further, it is possible to prevent the transparent porous body from cracking and breaking beyond the tensile limit strain.

更に、上記何れかの特徴の複層ガラスは、前記透明多孔体が、無機或いは有機無機ハイブリッド非晶質ゲルであることを第6の特徴とする。尚、上記第6の特徴の複層ガラスにおいて、特に、前記透明多孔体が、骨格構造にケイ素と酸素を含むことが好ましく、更には、前記透明多孔体が、メチル化シリカキセロゲルであることが好ましい。   Furthermore, the multilayer glass having any one of the above characteristics is characterized in that the transparent porous body is an inorganic or organic-inorganic hybrid amorphous gel. In the multi-layer glass having the sixth feature, it is particularly preferable that the transparent porous body contains silicon and oxygen in a skeleton structure, and further, the transparent porous body is a methylated silica xerogel. preferable.

上記第6の特徴の複層ガラスによれば、可視光透過性、断熱性を兼ね備えた平板状の透明多孔体が実現できるため、当該透明多孔体を使用して予め圧縮歪を付与することで、外圧による変形に対する破壊耐性を強化した可視光透過性、透視性、断熱性を兼ね備えた複層ガラスが実現できる。特に、メチル化シリカキセロゲルは、中心細孔径が数nm〜60nm程度の細孔のみを有する均質な透明多孔体であって、可視光透過性と断熱性を兼ね備えた複層ガラスの中間層として理想的な材料である。例えば、厚み10mmの十分に注意深く生産されたメチル化キセロゲルは可視光透過率80%以上、ヘイズ率2%以下と通常のビル用複層ガラスとして十分な光学特性を持つとともに、熱伝導率も10mW/mK以下という低い値を持っている。また、メチル化シリカキセロゲルは、80%以上の非常に大きな圧縮限界歪を実現できることが分かっているので、複層ガラスの開口面積が大きくなって、変形によって透明多孔体に生じると予測される引っ張り歪の最大値が更に大きくなっても、それに対応可能な十分大きい圧縮歪を予め付与できることになる。   According to the double-glazed glass of the sixth feature, a flat transparent porous body having visible light permeability and heat insulation can be realized. By applying a compressive strain in advance using the transparent porous body, In addition, it is possible to realize a multi-layer glass having both visible light transparency, transparency, and heat insulation properties, which have enhanced fracture resistance against deformation caused by external pressure. In particular, methylated silica xerogel is a homogeneous transparent porous body having only pores with a central pore diameter of several nanometers to about 60 nm, and is ideal as an intermediate layer of a multilayer glass having both visible light permeability and heat insulation properties. Material. For example, a methylated xerogel with a thickness of 10 mm, which has been produced with great care, has a visible light transmittance of 80% or more and a haze ratio of 2% or less, sufficient optical properties as a normal double-layer glass for buildings, and a thermal conductivity of 10 mW. It has a low value of less than / mK. In addition, since methylated silica xerogel has been found to be able to realize a very large compression limit strain of 80% or more, the opening area of the multi-layer glass becomes large, and the tensile strength expected to be generated in the transparent porous body by deformation is expected. Even if the maximum value of the strain is further increased, a sufficiently large compression strain that can cope with the maximum value can be applied in advance.

本発明に係る複層ガラスの実施の形態につき、図面に基づいて説明する。   An embodiment of a multilayer glass according to the present invention will be described with reference to the drawings.

〈第1実施形態〉
図1に示すように、本発明の第1実施形態に係る複層ガラス1は、2枚の板ガラス2と、2枚の板ガラス2に挟持された平板状の透明多孔体3、ストッパ4、及び、窓枠5を備えて構成されている。尚、図1は、2枚の板ガラス2の表面と垂直な断面における複層ガラス1の概略の構造を示す断面図である。尚、以下の説明において、説明の理解の簡単化のために、透明多孔体3の厚み方向(つまり、2枚の板ガラス2と透明多孔体3の積層方向)をZ方向と称し、板ガラス2の表面に平行な板ガラス2の長辺方向で、Z方向と直交する方向をX方向と称し、板ガラス2の表面に平行な板ガラス2の短辺方向で、Z及びX両方向と直交する方向をY方向と称する。従って、図1の断面図は、Z方向とX方向に平行なXZ断面、或いは、Z方向とY方向に平行なYZ断面を示している。
<First Embodiment>
As shown in FIG. 1, the multilayer glass 1 according to the first embodiment of the present invention includes two plate glasses 2, a flat transparent porous body 3 sandwiched between two plate glasses 2, a stopper 4, and The window frame 5 is provided. FIG. 1 is a cross-sectional view showing a schematic structure of the multi-layer glass 1 in a cross section perpendicular to the surfaces of the two plate glasses 2. In the following description, for the sake of easy understanding of the description, the thickness direction of the transparent porous body 3 (that is, the stacking direction of the two plate glasses 2 and the transparent porous body 3) is referred to as the Z direction. The long side direction of the plate glass 2 parallel to the surface and the direction orthogonal to the Z direction is referred to as the X direction, and the short side direction of the plate glass 2 parallel to the surface of the plate glass 2 and the direction orthogonal to both the Z and X directions is the Y direction. Called. Therefore, the cross-sectional view of FIG. 1 shows an XZ cross section parallel to the Z direction and the X direction, or a YZ cross section parallel to the Z direction and the Y direction.

本実施形態では、透明多孔体3は、中心細孔径が数nm〜60nm程度の細孔のみを有するメチル化シリカキセロゲルを使用する。メチル化シリカキセロゲルは、中心細孔径が数nm〜60nm程度の細孔のみを有することで、10mm程度の厚みにおいて、可視光透過率80%以上、ヘイズ率2%以下と、通常のビル用複層ガラスとして十分な光学特性と、熱伝導率も10mW/mK以下という低い値の断熱特性を兼備するものが得られる。しかし、透明多孔体3は光学特性及び断熱特性は上記数値例に限定されるものではなく、製品としての複層ガラス1の仕様に依存して適切な特性のものが使用できる。   In the present embodiment, the transparent porous body 3 uses a methylated silica xerogel having only pores having a central pore diameter of about several nm to 60 nm. The methylated silica xerogel has only pores having a central pore diameter of several nanometers to 60 nm, and has a visible light transmittance of 80% or more and a haze ratio of 2% or less at a thickness of about 10 mm. What has sufficient optical characteristics as a layer glass and a low thermal insulation characteristic of 10 mW / mK or less is also obtained. However, the transparent porous body 3 is not limited to the above numerical examples in terms of optical characteristics and heat insulation characteristics, and those having appropriate characteristics can be used depending on the specifications of the multilayer glass 1 as a product.

メチル化シリカキセロゲルは、ケイ素と酸素を有する骨格構造にメチル基が固定した構造の有機無機ハイブリッド非晶質ゲルである。キセロゲルは、学術的には「溶媒が除去されたゲル」であり、溶媒を除去するための乾燥法に依存しない広い概念で定義されている。一方、エアロゲルは、乾燥法に超臨界乾燥を用いた低密度ゲルとして定義されている。そこで、本明細書では、キセロゲルという用語は、エアロゲルを含む広い概念として使用するため、メチル化シリカキセロゲルには、メチル化シリカエアロゲルが含まれる。メチル化シリカエアロゲルを含むメチル化シリカキセロゲルは、例えば、上記特許文献6或いは上記非特許文献1に開示されている公知の製造方法を用いて作製される。メチル化シリカキセロゲルに使用する乾燥法として、蒸発乾燥等の超臨界乾燥以外の乾燥法を用いても、メチル化シリカエアロゲルと同様の可視光透過性及び力学強度特性が得られている。本実施形態では、これらのメチル化シリカキセロゲルを使用する。メチル化シリカキセロゲルの力学強度特性の一例として、上記非特許文献1の第2図に、圧縮応力と圧縮歪の関係を示す特性曲線が開示されており、圧縮強度が約10MPa、圧縮限界歪として60%〜80%程度の特性を想定する。尚、メチル化シリカキセロゲルの引っ張り強度及び引っ張り限界歪は、従来のシリカエアロゲル等と同様に極めて低いという欠点を有している。   Methylated silica xerogel is an organic-inorganic hybrid amorphous gel having a structure in which a methyl group is fixed to a skeleton structure having silicon and oxygen. Xerogel is academically a “gel from which a solvent has been removed” and is defined by a broad concept that does not depend on a drying method for removing the solvent. On the other hand, an airgel is defined as a low density gel using supercritical drying as a drying method. Therefore, in this specification, since the term xerogel is used as a broad concept including aerogel, methylated silica xerogel includes methylated silica aerogel. The methylated silica xerogel including the methylated silica aerogel is produced using, for example, a known production method disclosed in Patent Document 6 or Non-Patent Document 1. Even if a drying method other than supercritical drying such as evaporation drying is used as the drying method used for the methylated silica xerogel, visible light transmittance and mechanical strength characteristics similar to those of the methylated silica airgel are obtained. In this embodiment, these methylated silica xerogels are used. As an example of the mechanical strength characteristics of methylated silica xerogel, FIG. 2 of Non-Patent Document 1 discloses a characteristic curve showing the relationship between compressive stress and compressive strain. A characteristic of about 60% to 80% is assumed. Incidentally, the tensile strength and tensile limit strain of methylated silica xerogel have the disadvantage that they are extremely low like conventional silica airgel and the like.

尚、本実施形態で使用するメチル化シリカキセロゲルは、上述の通り、上記特許文献6或いは上記非特許文献1に開示されている公知の製造方法を用いて作製されるものを想定しており、気孔率(空隙率)として80〜90%程度を想定しているため、従来のシリカエアロゲル等と同様に、ヤング率は、高密度シリカ(例えば、板ガラス2)と比較して4桁程度低い値となる。上記非特許文献1の第2図に示されるように、メチル化シリカキセロゲルの圧縮応力・圧縮歪特性は非線形であるが、圧縮歪が0〜30%程度の範囲内では略線形な特性を示しており、その場合のヤング率は、概ね従来のシリカエアロゲル等と同程度である。尚、従来のシリカエアロゲルの物理特性については、上記非特許文献2のURLに開示されている。   As described above, the methylated silica xerogel used in the present embodiment is assumed to be produced using a known production method disclosed in Patent Document 6 or Non-Patent Document 1, Since the porosity (porosity) is assumed to be about 80 to 90%, the Young's modulus is about four orders of magnitude lower than that of high-density silica (for example, plate glass 2) as in the conventional silica airgel and the like. It becomes. As shown in FIG. 2 of Non-Patent Document 1, methylated silica xerogel has a nonlinear compressive stress / compressive strain characteristic, but exhibits a substantially linear characteristic within a range of about 0 to 30% compressive strain. In this case, the Young's modulus is approximately the same as that of a conventional silica airgel or the like. The physical properties of the conventional silica airgel are disclosed in the URL of Non-Patent Document 2 above.

尚、板ガラス2及び透明多孔体3の縦横の寸法及び厚さは、光学特性及び断熱特性と同様に、製品としての複層ガラス1の仕様に依存して適切な寸法を選択すれば良い。   The vertical and horizontal dimensions and thicknesses of the plate glass 2 and the transparent porous body 3 may be selected appropriately depending on the specifications of the multi-layer glass 1 as a product, similarly to the optical characteristics and the heat insulation characteristics.

ストッパ4は、透明多孔体3が厚み方向(Z方向)に2枚の板ガラス2によって両側から締め付けられ圧縮された場合に、透明多孔体3が板ガラス2の表面に平行な方向(X及びY方向)に伸張するのを抑制するためのものである。尚、また、ストッパ4の材料は、透明多孔体3のX及びY方向への伸張を抑制する必要から透明多孔体3より十分大きいヤング率を有する材料が好ましく、例えば、合成樹脂、ガラス、木材、金属等が使用可能である。   When the transparent porous body 3 is clamped and compressed from both sides by two sheet glasses 2 in the thickness direction (Z direction), the stopper 4 is in a direction parallel to the surface of the sheet glass 2 (X and Y directions). ) To prevent stretching. The material of the stopper 4 is preferably a material having a Young's modulus sufficiently larger than that of the transparent porous body 3 because it is necessary to suppress the expansion of the transparent porous body 3 in the X and Y directions. For example, synthetic resin, glass, wood Metal, etc. can be used.

ストッパ4は、透明多孔体3のX及びY方向に面した端面の外周部において、2枚の板ガラス2の一方側の内側面2aに固定されており、2枚の板ガラス2の他方側の内側面2bに向って突出している。他方側の板ガラス2の内側面2bと対向するストッパ4の先端部に、Oリング等のガスケット6を介装するための凹部4aが形成され、他方側の板ガラス2の内側面2bとストッパ4の先端部との間にガスケット6が設けられている。   The stopper 4 is fixed to the inner side surface 2a on one side of the two sheet glasses 2 at the outer peripheral portion of the end surface facing the X and Y directions of the transparent porous body 3, and the inner side on the other side of the two sheet glasses 2 It protrudes toward the side surface 2b. A concave portion 4 a for interposing a gasket 6 such as an O-ring is formed at the tip of the stopper 4 facing the inner side surface 2 b of the other side glass plate 2, and the inner side surface 2 b of the other side glass plate 2 and the stopper 4 A gasket 6 is provided between the tip portion.

透明多孔体3が、2枚の板ガラス2によって両側から締め付けられ圧縮された場合に、ストッパ4が無い場合には、X及びY方向(つまり、板ガラス2の表面に平行な全方向)に向って伸張するが、ストッパ4によってその伸張が抑止される。この結果、透明多孔体3には、Z方向に、2枚の板ガラス2からの締め付けによる圧縮歪SCzが、X及びY方向に、Z方向の圧縮歪SCzに透明多孔体3のポアッソン比を乗じた圧縮歪SCxyが生じることになる。つまり、透明多孔体3には、全方向に圧縮応力が発生する。尚、メチル化シリカキセロゲルのポアッソン比は、上記非特許文献1の実験結果を参照すると、製造方法の細部の違いによって、0.2或いは0.12(一部のサンプル)となる。   When the transparent porous body 3 is clamped and compressed from both sides by the two glass sheets 2, if there is no stopper 4, it is directed in the X and Y directions (that is, in all directions parallel to the surface of the glass sheet 2). Although it extends, the stopper 4 prevents the extension. As a result, the transparent porous body 3 is multiplied by the compressive strain SCz due to tightening from the two glass sheets 2 in the Z direction, and the compressive strain SCz in the Z direction is multiplied by the Poisson ratio of the transparent porous body 3 in the X and Y directions. Compression distortion SCxy will occur. That is, compressive stress is generated in the transparent porous body 3 in all directions. Note that the Poisson's ratio of methylated silica xerogel is 0.2 or 0.12 (partial sample) depending on the details of the manufacturing method, referring to the experimental results of Non-Patent Document 1.

窓枠5は、透明多孔体3を両側から締め付けている状態の2枚の板ガラス2の間隔を固定するためのもので、各板ガラス2の外周部のZ方向外側面2c、2dをZ方向に挟み込む構造となっている。従って、図1に示す状態の複層ガラス1では、透明多孔体3には、全方向に予め圧縮歪が付与されている。窓枠5の材料としては、透明多孔体3のZ方向の圧縮歪を固定する必要から透明多孔体3より十分大きいヤング率を有する材料が好ましく、例えば、合成樹脂、ガラス、木材、金属等、種々のものが使用可能であるが、金属等の板ガラス2との熱膨張率の差が大きい材料を使用する場合には、熱膨張或いは熱収縮後において適正な圧縮歪が確保されるように予め大き目の圧縮歪を付与する必要がある。但し、アルミ材の場合でも、アルミの熱膨張率が0.23×10−4/Kであるので、周囲温度が設計温度から50℃変化しても圧縮歪の変動は0.1%程度であり、過度な圧縮歪を付与する必要はない。 The window frame 5 is for fixing the space | interval of the 2 sheet glass 2 of the state which clamped the transparent porous body 3 from both sides, and Z direction outer side surface 2c, 2d of the outer peripheral part of each sheet glass 2 is set to Z direction. The structure is sandwiched. Therefore, in the multilayer glass 1 in the state shown in FIG. 1, the transparent porous body 3 is preliminarily imparted with compressive strain in all directions. The material of the window frame 5 is preferably a material having a Young's modulus sufficiently larger than that of the transparent porous body 3 because it is necessary to fix the compressive strain in the Z direction of the transparent porous body 3, for example, synthetic resin, glass, wood, metal, etc. Various materials can be used, but in the case of using a material having a large difference in coefficient of thermal expansion from that of the plate glass 2 such as metal, in advance, an appropriate compressive strain is ensured after thermal expansion or thermal contraction. It is necessary to apply a large compression strain. However, even in the case of an aluminum material, since the thermal expansion coefficient of aluminum is 0.23 × 10 −4 / K, even if the ambient temperature changes by 50 ° C. from the design temperature, the variation in compressive strain is about 0.1%. There is no need to apply excessive compression strain.

次に、図1に示す複層ガラス1の組立方法について、図2を参照して簡単に説明する。図2(a)及び(b)は、夫々図1と同じ断面における透明多孔体3に対する圧縮歪付与前と付与後の複層ガラス1の断面構造を示す図である。図2(a)に示すように、2枚の板ガラス2の一方を固定して、他方に対してZ方向外側(図中上側)から圧力Fを加えて、透明多孔体3をZ方向に押し込む。この結果、図2(b)に示すように、圧縮歪付与前に厚さTであった透明多孔体3が、厚さ(T−ΔT)に変化すると、透明多孔体3を両側から締め付けている状態の2枚の板ガラス2の外周部に、窓枠5をX及びY方向外側から嵌め込み、各板ガラス2の外周部のZ方向外側面2c、2dをZ方向に挟み込んで、透明多孔体3の厚さ(T−ΔT)を固定する。ここで、板ガラス2と透明多孔体3では、ヤング率に大きな差があり、透明多孔体3のヤング率が板ガラス2より4桁程度小さいので、板ガラス2の外周部を窓枠5で固定するだけで、透明多孔体3の全面をZ方向に締め付けることができる。以上により、透明多孔体3には、Z方向に圧縮歪SCz(第1の圧縮歪に相当)が、X及びY方向に圧縮歪SCxy(第2の圧縮歪に相当)が予め付与されることになる。   Next, a method for assembling the multilayer glass 1 shown in FIG. 1 will be briefly described with reference to FIG. 2 (a) and 2 (b) are views showing the cross-sectional structure of the multilayer glass 1 before and after applying compressive strain to the transparent porous body 3 in the same cross section as FIG. As shown in FIG. 2 (a), one of the two glass plates 2 is fixed, and pressure F is applied to the other side from the Z direction outer side (upper side in the figure) to push the transparent porous body 3 in the Z direction. . As a result, as shown in FIG. 2 (b), when the transparent porous body 3 having a thickness T before compression strain is changed to a thickness (T−ΔT), the transparent porous body 3 is tightened from both sides. The window frame 5 is fitted from the outside in the X and Y directions to the outer periphery of the two sheet glasses 2 in the state of being sandwiched, and the Z direction outer surfaces 2c and 2d of the outer periphery of each sheet glass 2 are sandwiched in the Z direction. The thickness (T−ΔT) is fixed. Here, there is a large difference in Young's modulus between the plate glass 2 and the transparent porous body 3, and the Young's modulus of the transparent porous body 3 is about four orders of magnitude smaller than that of the plate glass 2, so only the outer periphery of the plate glass 2 is fixed by the window frame 5. Thus, the entire surface of the transparent porous body 3 can be tightened in the Z direction. As described above, the transparent porous body 3 is preliminarily provided with the compressive strain SCz (corresponding to the first compressive strain) in the Z direction and the compressive strain SCxy (corresponding to the second compressive strain) in the X and Y directions. become.

図2に示す場合、Z方向の圧縮歪SCzは、以下の数1で与えられる。また、Z方向の圧縮歪SCzによって、ストッパ4によってX及びY方向の伸張ΔLx、ΔLyが抑止されなければ、ポアッソン比をRpとして、伸張ΔLx、ΔLyと圧縮歪SCzとポアッソン比Rpの関係は、以下の数2のようになる。ここで、Lx、Lyは圧縮前のX及びY方向の透明多孔体3の長さである。   In the case shown in FIG. 2, the compressive strain SCz in the Z direction is given by the following equation (1). In addition, if the expansions ΔLx, ΔLy in the X and Y directions are not suppressed by the stopper 4 due to the compression strain SCz in the Z direction, the relationship between the expansions ΔLx, ΔLy, the compression strain SCz, and the Poisson ratio Rp is assumed to be Rp. The following formula 2 is obtained. Here, Lx and Ly are the lengths of the transparent porous body 3 in the X and Y directions before compression.

(数1)
SCz=ΔT/T
(数2)
Rp=(ΔL/L)/(ΔT/T)
ΔL/L=ΔLx/Lx=ΔLy/Ly
(Equation 1)
SCz = ΔT / T
(Equation 2)
Rp = (ΔL / L) / (ΔT / T)
ΔL / L = ΔLx / Lx = ΔLy / Ly

従って、X及びY方向に発生する圧縮歪SCxyは、ΔL/Lが小さい場合には、近似的に以下の数3で与えられることになる。   Therefore, the compression distortion SCxy generated in the X and Y directions is approximately given by the following formula 3 when ΔL / L is small.

(数3)
SCxy=ΔL/(ΔL+L)≒ΔL/L=Rp・SCz
(Equation 3)
SCxy = ΔL / (ΔL + L) ≈ΔL / L = Rp · SCz

次に、図1に示す複層ガラス1の透明多孔体3に予め付与する圧縮歪の大きさについて説明する。ここで、複層ガラス1に要求される力学的性能として、以下を想定する。つまり、板ガラス2のX方向の長さを2mとした場合に、外圧によって曲率半径5mの湾曲が生じた場合に、透明多孔体3に生じる引っ張り歪が、予め付与する圧縮歪によって相殺されて、透明多孔体3に引っ張り歪による破壊が生じないことを要件とする。   Next, the magnitude | size of the compressive strain previously provided to the transparent porous body 3 of the multilayer glass 1 shown in FIG. 1 is demonstrated. Here, the following is assumed as the mechanical performance required for the multilayer glass 1. That is, when the length of the plate glass 2 in the X direction is 2 m, the tensile strain generated in the transparent porous body 3 when the curvature with a curvature radius of 5 m is generated by the external pressure is offset by the compression strain applied in advance, It is a requirement that the transparent porous body 3 does not break due to tensile strain.

複層ガラス1の窓枠5のX及びY方向の位置が固定され、板ガラス2のX及びY方向の両端が窓枠5に固定されていると、板ガラス2のX方向の両端間の間隔は2mに拘束される。この状態で、板ガラス2に曲率半径5mの湾曲が生じると、図3に模式的に示すように、その湾曲面に沿った板ガラス2の長さは、約2.0136mに伸長する。つまり、板ガラス2には、湾曲面に沿って約0.68%の引っ張り歪が生じる。同様に、2枚の板ガラス2に挟まれた透明多孔体3にも曲率半径5mの湾曲が生じる。   When the position of the window frame 5 of the multilayer glass 1 in the X and Y directions is fixed, and both ends of the plate glass 2 in the X and Y directions are fixed to the window frame 5, the distance between both ends of the plate glass 2 in the X direction is Restrained to 2m. In this state, when the plate glass 2 is curved with a curvature radius of 5 m, the length of the plate glass 2 along the curved surface extends to about 2.0136 m as schematically shown in FIG. That is, about 0.68% tensile strain is generated in the glass plate 2 along the curved surface. Similarly, the transparent porous body 3 sandwiched between two plate glasses 2 is also curved with a curvature radius of 5 m.

板ガラス2の内側面2a、2bと透明多孔体3の間の摩擦力によって、透明多孔体3の動きが、板ガラス2の内側面2a、2bに完全に拘束されている場合は、透明多孔体3には、板ガラス2の湾曲面に沿って、板ガラス2と同じ引っ張り歪が生じる。つまり、湾曲状態のX方向に約0.68%の引っ張り歪STxが生じる。尚、湾曲状態のY方向にも、板ガラス2のY方向の長さに応じた引っ張り歪STyが生じるが、Y方向の長さの方がX方向の長さより短いので、引っ張り歪STyは引っ張り歪STxより小さい。   When the movement of the transparent porous body 3 is completely restrained by the inner side surfaces 2a, 2b of the plate glass 2 by the frictional force between the inner side surfaces 2a, 2b of the plate glass 2 and the transparent porous body 3, the transparent porous body 3 The same tensile strain as that of the plate glass 2 occurs along the curved surface of the plate glass 2. That is, a tensile strain STx of about 0.68% is generated in the curved X direction. The tensile strain STy corresponding to the length of the glass sheet 2 in the Y direction is also generated in the curved Y direction. However, since the length in the Y direction is shorter than the length in the X direction, the tensile strain STy is the tensile strain. It is smaller than STx.

本実施形態では、この引っ張り歪STx、STyをX及びY方向に予め付与した圧縮歪SCxyで相殺するために、圧縮歪SCxyを引っ張り歪STx、STy以上の値、例えば0.7%に設定する。ここで、ポアッソン比Rpが0.2の場合を想定すると、上記数3より、Z方向に予め付与すべき圧縮歪SCzは、3.5%となる。本実施形態で使用するメチル化シリカキセロゲルは、上述の通り、圧縮限界歪が80%と非常に大きな値を示すので、3.5%の圧縮歪SCzで破壊することはない。ここで、熱膨張または収縮によってZ方向に予め付与した圧縮歪SCzが0.1%変化しても、X及びY方向に予め付与した圧縮歪SCxyは、0.02%の変化にしかならないので、約0.68%の引っ張り歪STxに対して十分である。   In the present embodiment, in order to cancel the tensile strains STx and STy with the compression strain SCxy previously applied in the X and Y directions, the compression strain SCxy is set to a value equal to or greater than the tensile strains STx and STy, for example, 0.7%. . Here, assuming a case where the Poisson's ratio Rp is 0.2, the compression strain SCz to be applied in advance in the Z direction is 3.5% from the above equation (3). The methylated silica xerogel used in the present embodiment has a very large compression limit strain of 80% as described above, and therefore does not break at a compression strain SCz of 3.5%. Here, even if the compression strain SCz previously applied in the Z direction changes by 0.1% due to thermal expansion or contraction, the compression strain SCxy previously applied in the X and Y directions only changes by 0.02%. This is sufficient for a tensile strain STx of about 0.68%.

板ガラス2の内側面2a、2bと透明多孔体3の間の摩擦力がなく、透明多孔体3の動きが、板ガラス2の内側面2a、2bに拘束されない場合は、湾曲した透明多孔体に生じる歪は、板ガラス2の内側面2a、2bからの拘束を受けないため、湾曲面の凸部側で引っ張り歪となり、凹部側で圧縮歪となる。透明多孔体3の厚みが10mm程度とすると、曲率半径5mの湾曲に対して、2枚の板ガラス2の表面に平行な方向に生じる最大の引っ張り歪は0.1%程度となる。当該引っ張り歪は、透明多孔体3の動きが板ガラス2の内側面2a、2bに完全に拘束されている場合の引っ張り歪STx(0.68%)と比較して小さな値となっている。実際に、板ガラス2の内側面2a、2bと透明多孔体3の間の接触状態は、透明多孔体3の動きが板ガラス2の内側面2a、2bに完全に拘束されている状態、透明多孔体3の動きが板ガラス2の内側面2a、2bに拘束されていない状態、或いは、その中間状態の何れかであるので、予測される最大の引っ張り歪としては、透明多孔体3の動きが板ガラス2の内側面2a、2bに完全に拘束されている場合を想定すれば十分である。   When there is no frictional force between the inner side surfaces 2a, 2b of the plate glass 2 and the transparent porous body 3, and the movement of the transparent porous body 3 is not restrained by the inner side surfaces 2a, 2b of the plate glass 2, it occurs in the curved transparent porous body. Since the strain is not constrained from the inner side surfaces 2a and 2b of the plate glass 2, it becomes tensile strain on the convex portion side of the curved surface and compressive strain on the concave portion side. When the thickness of the transparent porous body 3 is about 10 mm, the maximum tensile strain generated in the direction parallel to the surfaces of the two sheet glasses 2 is about 0.1% with respect to the curvature having a curvature radius of 5 m. The tensile strain is a small value compared to the tensile strain STx (0.68%) when the movement of the transparent porous body 3 is completely restrained by the inner side surfaces 2a and 2b of the plate glass 2. Actually, the contact state between the inner side surfaces 2a and 2b of the plate glass 2 and the transparent porous body 3 is such that the movement of the transparent porous body 3 is completely restricted by the inner side surfaces 2a and 2b of the plate glass 2. 3 is in a state where it is not constrained by the inner side surfaces 2a and 2b of the plate glass 2 or in an intermediate state thereof, the movement of the transparent porous body 3 is the maximum tensile strain to be predicted. It is sufficient to assume a case where the inner surfaces 2a and 2b are completely restrained.

尚、板ガラス2のX及びY方向の長さが2mより長くなると、その長さに応じてZ方向に予め付与すべき圧縮歪SCzを大きくする必要が生じる。また、板ガラス2のX及びY方向の長さが2mより短くなると、その長さに応じてZ方向に予め付与すべき圧縮歪SCzを小さくすることができる。しかし、板ガラス2のX及びY方向の長さが短くなると、透明多孔体3の動きが板ガラス2の内側面2a、2bに拘束されていない状態における2枚の板ガラス2の表面に平行な方向に生じる最大の引っ張り歪の方が、透明多孔体3の動きが板ガラス2の内側面2a、2bに完全に拘束されている場合の引っ張り歪STx、STyより大きくなる場合があるので、何れか大きい方の引っ張り歪を予測される最大の引っ張り歪として扱うことになる。   If the length of the glass sheet 2 in the X and Y directions is longer than 2 m, it is necessary to increase the compression strain SCz to be applied in advance in the Z direction according to the length. Moreover, if the length of the plate glass 2 in the X and Y directions is shorter than 2 m, the compressive strain SCz to be applied in advance in the Z direction can be reduced according to the length. However, when the length of the plate glass 2 in the X and Y directions is shortened, the movement of the transparent porous body 3 is parallel to the surfaces of the two plate glasses 2 in a state where the movement of the transparent porous body 3 is not constrained by the inner side surfaces 2a and 2b of the plate glass 2. The maximum tensile strain that is generated may be greater than the tensile strains STx and STy when the movement of the transparent porous body 3 is completely restrained by the inner side surfaces 2a and 2b of the plate glass 2, so whichever is greater Will be treated as the maximum expected tensile strain.

〈第2実施形態〉
次に、本発明の第2実施形態に係る複層ガラス7について説明する。図4に示すように、本発明の第2実施形態に係る複層ガラス7は、2枚の板ガラス2と、2枚の板ガラス2に挟持された平板状の透明多孔体3、ストッパ4、スペーサー部材8、封止材9、及び、窓枠5を備えて構成されている。尚、図4は、2枚の板ガラス2の表面と垂直な断面(XZ断面またはYZ断面)における複層ガラス1の概略の構造を示す断面図である。尚、図4において、図1の第1実施形態に係る複層ガラス1と共通する部位については共通の符号を付して説明する。
Second Embodiment
Next, the multi-layer glass 7 according to the second embodiment of the present invention will be described. As shown in FIG. 4, the multilayer glass 7 according to the second embodiment of the present invention includes two sheet glasses 2, a flat transparent porous body 3 sandwiched between the two sheet glasses 2, a stopper 4, and a spacer. A member 8, a sealing material 9, and a window frame 5 are provided. FIG. 4 is a cross-sectional view showing a schematic structure of the multilayer glass 1 in a cross section (XZ cross section or YZ cross section) perpendicular to the surfaces of the two sheet glasses 2. In FIG. 4, portions common to the multi-layer glass 1 according to the first embodiment of FIG.

第2実施形態に係る複層ガラス7と第1実施形態に係る複層ガラス1との相違点は、複層ガラス7の組立方法と、透明多孔体3に対してZ方向に予め付与する圧縮歪SCzの掛け方、及び、スペーサー部材8と封止材9を備えている点の3つであり、これらの相違点は、相互に関連している。2枚の板ガラス2とストッパ4と窓枠5については、第1実施形態に係る複層ガラス1と同じであるので、重複する説明は割愛する。   The difference between the multilayer glass 7 according to the second embodiment and the multilayer glass 1 according to the first embodiment is that an assembly method of the multilayer glass 7 and compression applied in advance in the Z direction to the transparent porous body 3. The strain SCz is applied and the spacer member 8 and the sealing material 9 are provided, and these differences are related to each other. Since the two glass sheets 2, the stopper 4, and the window frame 5 are the same as the multi-layer glass 1 according to the first embodiment, the overlapping description is omitted.

スペーサー部材8は、ストッパ4と窓枠5の間の2枚の板ガラス2間に設けられ、2枚の板ガラス2の内側面2a、2bとスペーサー部材8の間には、気密封止用の封止材9が設けられている。スペーサー部材8と封止材9により、2枚の板ガラス2とスペーサー部材8で囲まれた内部空間を気密封止するため、スペーサー部材8は気密な材料である必要があり、例えば、合成樹脂、ガラス、金属等が利用可能である。封止材9は、2枚の板ガラス2の内側面2a、2bとスペーサー部材8の間を気密封止可能な材料の中から適宜選択すればよく、例えば、ガラスフリット、エポキシ樹脂等の樹脂接着封止剤、ブチルゴム等が利用可能である。   The spacer member 8 is provided between the two sheet glasses 2 between the stopper 4 and the window frame 5, and is hermetically sealed between the inner surfaces 2 a and 2 b of the two sheet glasses 2 and the spacer member 8. A stop material 9 is provided. In order to hermetically seal the internal space surrounded by the two plate glasses 2 and the spacer member 8 by the spacer member 8 and the sealing material 9, the spacer member 8 needs to be an airtight material, for example, synthetic resin, Glass, metal, etc. can be used. The sealing material 9 may be appropriately selected from materials that can be hermetically sealed between the inner side surfaces 2a and 2b of the two glass sheets 2 and the spacer member 8, for example, resin adhesion such as glass frit and epoxy resin. Sealants, butyl rubber, etc. can be used.

次に、図4に示す複層ガラス7の組立方法について、図5を参照して簡単に説明する。図5(a)及び(b)は、夫々図4と同じ断面における窓枠5を取り付ける前の透明多孔体3に対する圧縮歪付与前と付与後の複層ガラス7の断面構造を示す図である。図5(a)に示すように、2枚の板ガラス2とスペーサー部材8で囲まれた内部空間を真空引きして透明多孔体3の気相部分を減圧する。当該気相部分の内圧と2枚の板ガラス2の外側の大気圧の差により、2枚の板ガラス2の両側から圧力Fを加えて、透明多孔体3をZ方向に押し込む。この結果、図2(b)に示すように、圧縮歪付与前に厚さTであった透明多孔体3が、厚さ(T−ΔT)に変化すると、封止材9を硬化させて、2枚の板ガラス2とスペーサー部材8で囲まれた内部空間を気密封止する。これにより、圧力Fの印加状態が維持される。引き続き、透明多孔体3が両側から大気圧で締め付けている状態の2枚の板ガラス2の外周部に、窓枠5をX及びY方向外側から嵌め込み、各板ガラス2の外周部のZ方向外側面2c、2dをZ方向に挟み込んで、透明多孔体3の厚さ(T−ΔT)を固定することで、図4に示す複層ガラス7が得られる。   Next, a method for assembling the multilayer glass 7 shown in FIG. 4 will be briefly described with reference to FIG. FIGS. 5A and 5B are views showing the cross-sectional structures of the multilayer glass 7 before and after applying compressive strain to the transparent porous body 3 before attaching the window frame 5 in the same cross section as FIG. . As shown in FIG. 5A, the internal space surrounded by the two glass sheets 2 and the spacer member 8 is evacuated to decompress the gas phase portion of the transparent porous body 3. The transparent porous body 3 is pushed in the Z direction by applying a pressure F from both sides of the two glass sheets 2 due to the difference between the internal pressure of the gas phase portion and the atmospheric pressure outside the two glass sheets 2. As a result, as shown in FIG. 2 (b), when the transparent porous body 3 having the thickness T before the compression strain is changed to the thickness (T−ΔT), the sealing material 9 is cured, The internal space surrounded by the two plate glasses 2 and the spacer member 8 is hermetically sealed. Thereby, the application state of the pressure F is maintained. Subsequently, the window frame 5 is fitted from the outside in the X and Y directions to the outer periphery of the two sheet glasses 2 in a state where the transparent porous body 3 is tightened from both sides at atmospheric pressure, and the Z direction outer side surface of each outer periphery of each sheet glass 2 By sandwiching 2c and 2d in the Z direction and fixing the thickness (T-ΔT) of the transparent porous body 3, a multilayer glass 7 shown in FIG. 4 is obtained.

以上の組立方法により組み立てられた複層ガラス7は、第1実施形態の場合と同様に、透明多孔体3に対して、Z方向に数1で与えられる圧縮歪SCz(第1の圧縮歪に相当)が、X及びY方向に数3で与えられる圧縮歪SCxy(第2の圧縮歪に相当)が予め付与されることになる。   As in the case of the first embodiment, the multilayer glass 7 assembled by the above assembling method is subjected to the compressive strain SCz (the first compressive strain is given to the transparent porous body 3 by Equation 1 in the Z direction). Is equivalent to the compression strain SCxy (corresponding to the second compression strain) given by Equation 3 in the X and Y directions.

2枚の板ガラス2とスペーサー部材8で囲まれた内部空間の真空度は、数1で与えられる圧縮歪SCzが付与される圧縮応力Fcと釣り合う圧力Fとなるように設定すればよい。圧縮応力Fcは、使用する透明多孔体3の圧縮歪SCzと圧縮応力Fc間の特性に導出される。また、大気圧は気象条件によって変動するため、気圧低下によって圧力Fが減少するのを見越して透明多孔体3の気相部分を減圧すれば良い。尚、複層ガラス1に要求される力学的性能として、第1実施形態の場合と同様の要件を想定した場合、Z方向に予め3.5%以上の圧縮歪SCzを付与するのに、上記真空度としては、0.5ata(≒0.049MPaA)程度で十分である。   The degree of vacuum in the internal space surrounded by the two plate glasses 2 and the spacer member 8 may be set so that the pressure F is balanced with the compressive stress Fc to which the compressive strain SCz given by Equation 1 is applied. The compressive stress Fc is derived from the characteristics between the compressive strain SCz and the compressive stress Fc of the transparent porous body 3 to be used. Moreover, since atmospheric pressure fluctuates according to weather conditions, the gas phase portion of the transparent porous body 3 may be depressurized in anticipation that the pressure F decreases due to a decrease in atmospheric pressure. Assuming the same requirements as in the case of the first embodiment as the mechanical performance required for the multi-layer glass 1, the above-described method is used to apply a compressive strain SCz of 3.5% or more in the Z direction in advance. A degree of vacuum of about 0.5 ata (≈0.049 MPaA) is sufficient.

以下に、別の実施形態につき説明する。
〈1〉上記第1及び第2実施形態では、ストッパ4は、図1及び図4に示すように、透明多孔体3のX及びY方向に面した端面の外周部において、2枚の板ガラス2の一方側の内側面2aに固定され、2枚の板ガラス2の他方側の内側面2bに向って突出し、板ガラス2の内側面2bとストッパ4の先端部との間にガスケット6を備えた構造としたが、ストッパ4の構造は、図1及び図4に示す構造に限定されるものではない。
Hereinafter, another embodiment will be described.
<1> In the first and second embodiments described above, the stopper 4 includes two sheet glasses 2 at the outer peripheral portion of the end surface facing the X and Y directions of the transparent porous body 3 as shown in FIGS. 1 and 4. A structure having a gasket 6 between the inner side surface 2b of the glass sheet 2 and the tip of the stopper 4, which is fixed to the inner side surface 2a of the two glass sheets 2 and protrudes toward the inner side surface 2b of the other side of the two glass sheets 2. However, the structure of the stopper 4 is not limited to the structure shown in FIGS.

ストッパ4は、透明多孔体3にZ方向の圧縮歪SCzが付与された場合に、X及びY方向に伸張するのを抑制できる構造であれば、その目的は達成されるので、ストッパ4の部材は必ずしも必要ではない。例えば、板ガラス2の内側面2a、2bと透明多孔体3の間の摩擦力によって、透明多孔体3の動きが板ガラス2の内側面2a、2bに完全に拘束されている場合は、図1及び図4に示すようなストッパ4の部材は不要である。また、板ガラス2の内側面2a、2bと透明多孔体3の間の摩擦力が、ストッパとして機能するには小さすぎる場合に、例えば、図6に示すように、板ガラス2の内側面2a、2bと透明多孔体3の間の摩擦力を高めるように、内側面2a、2bの外周部を粗面(矢符S)に加工しても構わない。更に、2枚の板ガラス2と透明多孔体3の端部を揃えることで、窓枠5を圧縮歪SCzの付与後におけるストッパとして兼用することもできる。   If the stopper 4 has a structure capable of suppressing expansion in the X and Y directions when the transparent porous body 3 is applied with a compressive strain SCz in the Z direction, the purpose thereof is achieved. Is not necessarily required. For example, when the movement of the transparent porous body 3 is completely restrained by the inner side surfaces 2a and 2b of the plate glass 2 by the frictional force between the inner side surfaces 2a and 2b of the plate glass 2 and the transparent porous body 3, FIG. The member of the stopper 4 as shown in FIG. 4 is unnecessary. Further, when the frictional force between the inner side surfaces 2a, 2b of the plate glass 2 and the transparent porous body 3 is too small to function as a stopper, for example, as shown in FIG. 6, the inner side surfaces 2a, 2b of the plate glass 2 The outer peripheral portions of the inner side surfaces 2a and 2b may be processed into rough surfaces (arrows S) so as to increase the frictional force between the transparent porous body 3 and the transparent porous body 3. Furthermore, by aligning the end portions of the two plate glasses 2 and the transparent porous body 3, the window frame 5 can also be used as a stopper after the compression strain SCz is applied.

また、図1及び図4に示すストッパにおいて、2枚の板ガラス2とストッパ4で囲まれた透明多孔体3の気相部分を気密封止する必要がなければ、ガスケット6は設けなくても構わない。   Further, in the stopper shown in FIGS. 1 and 4, if it is not necessary to hermetically seal the gas phase portion of the transparent porous body 3 surrounded by the two glass sheets 2 and the stopper 4, the gasket 6 may not be provided. Absent.

〈2〉上記第2実施形態では、ストッパ4とスペーサー部材8の両方を備えた構造としたが、スペーサー部材8と封止材9を設けずに、ストッパ4の先端部と他方側の板ガラス2の内側面2bの間に設けていたガスケット6だけで気密封止するようにしても構わない。更には、当該ガスケット6に代えて、封止材9を設けて、圧縮歪SCzの付与後にストッパ4の先端部と他方側の板ガラス2の内側面2b間の封止材9を硬化させるようにしても構わない。   <2> In the second embodiment, the stopper 4 and the spacer member 8 are both provided. However, the spacer member 8 and the sealing material 9 are not provided, and the front end portion of the stopper 4 and the plate glass 2 on the other side. The gasket 6 may be hermetically sealed only with the gasket 6 provided between the inner side surfaces 2b. Furthermore, instead of the gasket 6, a sealing material 9 is provided so that the sealing material 9 between the front end portion of the stopper 4 and the inner side surface 2 b of the other plate glass 2 is cured after the compression strain SCz is applied. It doesn't matter.

〈3〉上記実施形態では、透明多孔体3にZ方向の圧縮歪SCzを予め付与するための圧力Fの掛け方として、窓枠5により2枚の板ガラス2をZ方向に締め付ける方法(第1実施形態)と、透明多孔体3の気相部分を減圧して、当該気相部分の内圧と2枚の板ガラス2の外側の大気圧の差により2枚の板ガラス2をZ方向に締め付ける方法(第2実施形態)を夫々説明したが、上記第1及び第2実施形態の締め付け方法を組み合わせるのも好ましい実施の形態である。即ち、上記第1及び第2実施形態の締め付け方法を組み合わせると、2枚の板ガラス2をZ方向に締め付けた後に、気圧が低下しても窓枠5により初期の締め付け状態が維持できる。   <3> In the above embodiment, as a method of applying the pressure F for preliminarily applying the compressive strain SCz in the Z direction to the transparent porous body 3, a method of tightening two plate glasses 2 in the Z direction by the window frame 5 (first Embodiment) and a method in which the gas phase portion of the transparent porous body 3 is depressurized and the two plate glasses 2 are tightened in the Z direction by the difference between the internal pressure of the gas phase portion and the atmospheric pressure outside the two plate glasses 2 ( Although the second embodiment has been described, it is also a preferred embodiment to combine the fastening methods of the first and second embodiments. That is, when the fastening methods of the first and second embodiments are combined, the initial fastening state can be maintained by the window frame 5 even if the atmospheric pressure decreases after the two glass sheets 2 are fastened in the Z direction.

〈4〉上記第2実施形態では、透明多孔体3の気相部分を0.5ata程度に減圧したが、更に減圧して断熱性を向上させても構わない。この場合、Z方向の圧縮歪SCzが更に増加することになるが、圧縮限界歪以下であれば問題ない。上記第2実施形態では、透明多孔体3に圧縮強度が約10MPaのメチル化シリカキセロゲルを使用しているので、透明多孔体3の気相部分を高真空状態にしてもZ方向に掛かる圧力Fはせいぜい大気圧であるので全く問題ない。   <4> In the second embodiment, the gas phase portion of the transparent porous body 3 is depressurized to about 0.5 ata, but it may be further depressurized to improve heat insulation. In this case, the compression strain SCz in the Z direction further increases, but there is no problem as long as it is below the compression limit strain. In the second embodiment, since the methylated silica xerogel having a compressive strength of about 10 MPa is used for the transparent porous body 3, the pressure F applied in the Z direction even when the gas phase portion of the transparent porous body 3 is in a high vacuum state. No problem at all because it is at most atmospheric pressure.

〈5〉上記第1及び第2実施形態では、透明多孔体3に、圧縮強度が約10MPa、圧縮限界歪として60%〜80%程度の特性を有するメチル化シリカキセロゲルを使用することを想定したが、透明多孔体3は、メチル化シリカキセロゲルに限定されるものではない。製品としての複層ガラス1の仕様に応じてZ方向に予め付与される圧縮歪SCzが圧縮限界歪未満となる限りにおいて、メチル化シリカキセロゲルより圧縮限界歪の小さい透明多孔体材料を用いても構わない。   <5> In the first and second embodiments, it is assumed that the transparent porous body 3 uses a methylated silica xerogel having a compressive strength of about 10 MPa and a compression limit strain of about 60% to 80%. However, the transparent porous body 3 is not limited to methylated silica xerogel. A transparent porous material having a compression limit strain smaller than that of methylated silica xerogel may be used as long as the compression strain SCz applied in the Z direction in advance according to the specifications of the multilayer glass 1 as a product is less than the compression limit strain. I do not care.

例えば、板ガラス2のX方向の長さを1mとした場合には、外圧によって曲率半径5mの湾曲が生じた場合の湾曲面に沿った板ガラス2の長さは、約1.0017mに伸長する。つまり、板ガラス2には、X方向の湾曲面に沿って約0.17%の引っ張り歪が生じる。従って、透明多孔体3には、板ガラス2の湾曲面に沿って、板ガラス2と同じ約0.17%の引っ張り歪STxが生じる。ポアッソン比Rpが0.2の透明多孔体3では、Z方向に予め付与する圧縮歪SCzは0.85%以上で良いことになる。従って、圧縮限界歪が1%程度の透明多孔体3でも使用できることが分かる。従来のシリカエアロゲル(ケイ素と酸素からなる骨格構造を備えた無機非晶質ゲル)は、圧縮限界歪が1%程度であるので、板ガラス2のX及びY方向の長さが1m程度であれば、透明多孔体3として利用可能である。   For example, when the length of the plate glass 2 in the X direction is 1 m, the length of the plate glass 2 along the curved surface when the curvature of the curvature radius is 5 m is generated by the external pressure is extended to about 1.0017 m. In other words, the plate glass 2 is subjected to a tensile strain of about 0.17% along the curved surface in the X direction. Therefore, the transparent porous body 3 has a tensile strain STx of about 0.17% that is the same as that of the plate glass 2 along the curved surface of the plate glass 2. In the transparent porous body 3 having a Poisson's ratio Rp of 0.2, the compressive strain SCz applied in advance in the Z direction may be 0.85% or more. Therefore, it can be seen that even the transparent porous body 3 having a compression limit strain of about 1% can be used. Conventional silica aerogels (inorganic amorphous gels having a skeleton structure composed of silicon and oxygen) have a compression limit strain of about 1%. Therefore, if the length of the plate glass 2 in the X and Y directions is about 1 m. The transparent porous body 3 can be used.

また、圧縮限界歪が1%程度の透明多孔体3であっても、板ガラス2の内側面2a、2bと透明多孔体3の間の摩擦力がなく、透明多孔体3の動きが、板ガラス2の内側面2a、2bに拘束されない場合は、上述の通り、透明多孔体3に対して湾曲状態のX及びY方向に生じる引っ張り歪STx、STyが大幅に低減するので、板ガラス2のX及びY方向の長さが2m程度の場合でも、引っ張り歪STx、STyが0.1%程度であるので、ポアッソン比Rpが0.2の透明多孔体3では、Z方向に予め付与する圧縮歪SCzは0.5%以上で良いことになる。従って、従来のシリカエアロゲルのような圧縮限界歪が1%程度の透明多孔体3でも使用できることが分かる。また、板ガラス2の内側面2a、2bと透明多孔体3の間の摩擦力が生じる場合であっても、透明多孔体3の板ガラス2の内側面2a、2bとの接触面を有機高分子等で被膜して摩擦力を低減する処理をすることで、実質的に透明多孔体3の圧縮限界歪を高めることが可能となる。   Even if the transparent porous body 3 has a compression limit strain of about 1%, there is no frictional force between the inner side surfaces 2a, 2b of the plate glass 2 and the transparent porous body 3, and the movement of the transparent porous body 3 is caused by the movement of the plate glass 2. If the inner side surfaces 2a and 2b are not restrained, the tensile strains STx and STy generated in the X and Y directions in the curved state with respect to the transparent porous body 3 are greatly reduced as described above. Even when the length in the direction is about 2 m, since the tensile strains STx and STy are about 0.1%, in the transparent porous body 3 having a Poisson's ratio Rp of 0.2, the compressive strain SCz applied in advance in the Z direction is 0.5% or more is good. Therefore, it can be seen that even a transparent porous body 3 having a compression limit strain of about 1% like a conventional silica airgel can be used. Further, even when a frictional force is generated between the inner side surfaces 2a, 2b of the plate glass 2 and the transparent porous body 3, the contact surface between the inner side surfaces 2a, 2b of the plate glass 2 of the transparent porous body 3 is made of an organic polymer or the like. By carrying out the process of reducing the frictional force by coating with, it becomes possible to substantially increase the compression limit strain of the transparent porous body 3.

また、透明多孔体3の材料として、ケイ素と酸素を有する骨格構造に限定されるものではない。例えば、チタニアやアルミナのように光吸収のないエアロゲルは、原理的には、透明多孔体3の材料として利用できる。   Further, the material of the transparent porous body 3 is not limited to the skeleton structure having silicon and oxygen. For example, an airgel that does not absorb light, such as titania or alumina, can be used as a material for the transparent porous body 3 in principle.

〈6〉上記第1及び第2実施形態では、透明多孔体3に対して、湾曲状態のX及びY方向に予め付与する圧縮歪SCxyとして、湾曲状態のX及びY方向に生じると予測される引っ張り歪STx、STyの最大値以上の値を付与する場合を説明したが、圧縮歪SCxyは、引っ張り歪STx、STy未満であっても、圧縮歪SCxyと相殺後に生じている引っ張り歪が、引っ張り限界歪未満であれば十分である。従って、湾曲状態のX及びY方向に予め付与する圧縮歪SCxyとして、湾曲状態のX及びY方向に生じると予測される引っ張り歪STx、STyの最大値以上の値を付与しなくても、透明多孔体3の引っ張り限界歪を正確に把握できれば、外圧による湾曲等の変形によって生じる引っ張り歪によって透明多孔体3が破壊されるのを、本発明の原理によって防止できる。   <6> In the first and second embodiments described above, the compressive strain SCxy preliminarily applied to the transparent porous body 3 in the curved X and Y directions is predicted to occur in the curved X and Y directions. Although the case where a value equal to or greater than the maximum value of the tensile strains STx and STy has been described, even if the compression strain SCxy is less than the tensile strains STx and STy, the tensile strain generated after canceling out the compression strain SCxy is a tensile strain. Less than the limit strain is sufficient. Therefore, even if the compressive strain SCxy previously applied in the X and Y directions in the curved state is not applied with a value greater than the maximum value of the tensile strains STx and STy expected to occur in the X and Y directions in the curved state, If the tensile limit strain of the porous body 3 can be accurately grasped, the transparent porous body 3 can be prevented from being broken by the tensile strain caused by deformation such as bending due to external pressure by the principle of the present invention.

〈7〉上記第1及び第2実施形態では、透明多孔体3の気相成分について、特に明示しなかったが、当該気相成分として、空気等以外に、希ガスを使用するのも好ましい。透明多孔体3の気相部分には通常空気が入っている。しかしながら、空気の主成分である窒素や酸素及び水は多原子分子であるため分子全体の運動エネルギのほかに、振動回転のエネルギを持っており熱伝導率が高い。よって、透明多孔体3の気相成分として希ガスを用いることで、透明多孔体3の気相成分による熱伝導を低減でき、断熱性能の向上が図れる。また、透明多孔体3の気相成分としてはできるだけ分子量の大きなAr(アルゴン)等の希ガスが望ましい。   <7> In the first and second embodiments, the gas phase component of the transparent porous body 3 is not particularly specified. However, it is also preferable to use a rare gas other than air or the like as the gas phase component. Air is usually contained in the gas phase portion of the transparent porous body 3. However, since nitrogen, oxygen, and water, which are the main components of air, are polyatomic molecules, they have vibration and rotation energy in addition to the kinetic energy of the whole molecule, and have high thermal conductivity. Therefore, by using a rare gas as the gas phase component of the transparent porous body 3, heat conduction due to the gas phase component of the transparent porous body 3 can be reduced, and the heat insulation performance can be improved. The gas phase component of the transparent porous body 3 is preferably a rare gas such as Ar (argon) having a molecular weight as large as possible.

尚、上記第1実施形態において、透明多孔体3の気相成分に希ガスを使用する場合には、透明多孔体3の気相部分を減圧するか否かに拘らず、気密封止する必要があるので、図1に示す構造において、他方側の板ガラス2の内側面2bとストッパ4の先端部との間にガスケット6を設けるのが好ましい。   In the first embodiment, when a rare gas is used as the gas phase component of the transparent porous body 3, it is necessary to hermetically seal regardless of whether or not the gas phase portion of the transparent porous body 3 is decompressed. Therefore, in the structure shown in FIG. 1, it is preferable to provide a gasket 6 between the inner side surface 2 b of the other glass plate 2 and the tip of the stopper 4.

本発明に係る高断熱複層ガラスは、住宅やビル等の建物の壁等に設ける複層ガラスとして利用可能である。   The highly heat insulating double glazing according to the present invention can be used as double glazing provided on the wall of a building such as a house or a building.

本発明に係る複層ガラスの第1実施形態における概略構造を模式的に示す断面図Sectional drawing which shows typically the schematic structure in 1st Embodiment of the multilayer glass concerning this invention 図1に示す複層ガラスの透明多孔体に対する圧縮歪付与前と付与後の複層ガラスの断面構造を模式的に示す断面図Sectional drawing which shows typically the cross-sectional structure of the multilayer glass before and after the compressive strain provision with respect to the transparent porous body of the multilayer glass shown in FIG. 図1に示す複層ガラスの板ガラスに生じる引っ張り歪を説明する図The figure explaining the tensile distortion which arises in the plate glass of the multilayer glass shown in FIG. 本発明に係る複層ガラスの第2実施形態における概略構造を模式的に示す断面図Sectional drawing which shows typically the schematic structure in 2nd Embodiment of the multilayer glass concerning this invention 図4に示す複層ガラスの透明多孔体に対する圧縮歪付与前と付与後の複層ガラスの窓枠を取り付ける前の断面構造を模式的に示す断面図Sectional drawing which shows typically the cross-sectional structure before attaching the window frame of the multilayer glass before and after the compressive strain provision with respect to the transparent porous body of the multilayer glass shown in FIG. 本発明に係る複層ガラスのストッパ部材を設けない他の実施形態における概略構造を模式的に示す断面図Sectional drawing which shows typically schematic structure in other embodiment which does not provide the stopper member of the multilayer glass which concerns on this invention

符号の説明Explanation of symbols

1、7: 複層ガラス
2: 板ガラス
2a、2b: 板ガラスの内側面
2c、2d: 板ガラスの外側面外周部
3: 透明多孔体
4: ストッパ
4a: ストッパの凹部
5: 窓枠
6: ガスケット
8: スペーサー部材
9: 封止材
F: 圧縮歪をZ方向に予め付与するための圧力
S: 粗面
DESCRIPTION OF SYMBOLS 1, 7: Multi-layer glass 2: Plate glass 2a, 2b: Inner side surface 2c, 2d of plate glass Outer peripheral part of plate glass 3: Transparent porous body 4: Stopper 4a: Recessed portion of stopper 5: Window frame 6: Gasket 8: Spacer member 9: Sealing material F: Pressure for pre-applying compressive strain in the Z direction S: Rough surface

Claims (9)

可視光を透過する平板状の透明多孔体が2枚の板ガラス間に挟まれた積層構造を有する複層ガラスであって、
前記透明多孔体が引っ張り限界歪より大きい圧縮限界歪を有し、
前記透明多孔体に対して予め圧縮歪が付与されていることを特徴とする複層ガラス。
A multi-layer glass having a laminated structure in which a flat transparent porous body that transmits visible light is sandwiched between two plate glasses,
The transparent porous body has a compression limit strain larger than a tensile limit strain,
A multilayer glass characterized in that a compressive strain is applied in advance to the transparent porous body.
前記2枚の板ガラスに加わる外圧による変形によって前記透明多孔体に生じると予測される引っ張り歪の最大値以上の圧縮歪が、前記予測される引っ張り歪の方向に付与されるように、前記透明多孔体に対して予め圧縮歪が付与されていることを特徴とする請求項1に記載の複層ガラス。   The transparent porous material is applied so that a compressive strain equal to or greater than the maximum tensile strain expected to be generated in the transparent porous body due to deformation due to external pressure applied to the two plate glasses is applied in the direction of the predicted tensile strain. 2. The multilayer glass according to claim 1, wherein a compression strain is applied to the body in advance. 前記2枚の板ガラスから前記透明多孔体に対して前記透明多孔体の厚み方向に加えられる圧力によって、前記透明多孔体に対して前記厚み方向に予め第1の圧縮歪が付与され、
前記透明多孔体が前記2枚の板ガラスの表面に平行な方向へ拡張するのを抑止された状態で、前記透明多孔体が前記2枚の板ガラスによって挟持されていることで、前記透明多孔体に対して前記2枚の板ガラスの表面に平行な方向に第2の圧縮歪が予め付与されていることを特徴とする請求項1または2に記載の複層ガラス。
By the pressure applied to the transparent porous body in the thickness direction of the transparent porous body from the two plate glasses, a first compressive strain is previously applied to the transparent porous body in the thickness direction,
The transparent porous body is sandwiched between the two plate glasses in a state in which the transparent porous body is prevented from expanding in a direction parallel to the surfaces of the two plate glasses. 3. The multilayer glass according to claim 1, wherein a second compressive strain is applied in advance in a direction parallel to the surfaces of the two sheet glasses.
前記2枚の板ガラスを前記透明多孔体の厚み方向に挟持する窓枠によって、前記2枚の板ガラスを前記透明多孔体の厚み方向に締め付けることにより、前記透明多孔体に対して前記第1の圧縮歪が予め付与され、
前記透明多孔体が前記2枚の板ガラスの表面に平行な方向へ拡張するのを抑止されることで、前記透明多孔体に対して前記第2の圧縮歪が予め付与されていることを特徴とする請求項3に記載の複層ガラス。
By tightening the two plate glasses in the thickness direction of the transparent porous body by a window frame sandwiching the two plate glasses in the thickness direction of the transparent porous body, the first compression is performed on the transparent porous body. Distortion is applied in advance,
The second compressive strain is preliminarily applied to the transparent porous body by preventing the transparent porous body from expanding in a direction parallel to the surfaces of the two plate glasses. The multilayer glass according to claim 3.
前記透明多孔体内の気相を減圧することにより、前記2枚の板ガラスの両側から加わる大気圧によって、前記透明多孔体に対して前記第1の圧縮歪が予め付与され、
前記透明多孔体が前記2枚の板ガラスの表面に平行な方向へ拡張するのを抑止されることで、前記透明多孔体に対して前記第2の圧縮歪が予め付与されていることを特徴とする請求項3に記載の複層ガラス。
By depressurizing the gas phase in the transparent porous body, the first compressive strain is preliminarily applied to the transparent porous body by the atmospheric pressure applied from both sides of the two sheet glasses,
The second compressive strain is preliminarily applied to the transparent porous body by preventing the transparent porous body from expanding in a direction parallel to the surfaces of the two plate glasses. The multilayer glass according to claim 3.
前記透明多孔体に固有の圧縮限界歪が3.5%より大きく、
前記第1の圧縮歪が3.5%以上、前記透明多孔体に固有の圧縮限界歪未満であることを特徴とする請求項3〜5の何れか1項に記載の複層ガラス。
The compression limit strain inherent to the transparent porous body is greater than 3.5%,
6. The multilayer glass according to claim 3, wherein the first compression strain is 3.5% or more and less than the compression limit strain inherent to the transparent porous body.
前記透明多孔体が、無機或いは有機無機ハイブリッド非晶質ゲルであることを特徴とする請求項1〜6の何れか1項に記載の複層ガラス。   The multilayer glass according to any one of claims 1 to 6, wherein the transparent porous body is an inorganic or organic-inorganic hybrid amorphous gel. 前記透明多孔体が、骨格構造にケイ素と酸素を含むことを特徴とする請求項7に記載の複層ガラス。   The multilayer glass according to claim 7, wherein the transparent porous body contains silicon and oxygen in a skeleton structure. 前記透明多孔体が、メチル化シリカキセロゲルであることを特徴とする請求項8に記載の複層ガラス。
The multilayer glass according to claim 8, wherein the transparent porous body is a methylated silica xerogel.
JP2008144300A 2008-06-02 2008-06-02 Double glazing Active JP5115885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144300A JP5115885B2 (en) 2008-06-02 2008-06-02 Double glazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144300A JP5115885B2 (en) 2008-06-02 2008-06-02 Double glazing

Publications (2)

Publication Number Publication Date
JP2009286685A true JP2009286685A (en) 2009-12-10
JP5115885B2 JP5115885B2 (en) 2013-01-09

Family

ID=41456265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144300A Active JP5115885B2 (en) 2008-06-02 2008-06-02 Double glazing

Country Status (1)

Country Link
JP (1) JP5115885B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012078739A2 (en) * 2010-12-09 2012-06-14 Cabot Corporation Insulated units and methods for producing them
CN104912447A (en) * 2012-08-28 2015-09-16 青岛科瑞新型环保材料有限公司 Transparent aerogel vacuum glass
CN106316160A (en) * 2015-06-26 2017-01-11 天津市百泰玻璃有限公司 High-safety vacuum glass
CN108357662A (en) * 2017-01-26 2018-08-03 空中客车运营有限公司 Deformable shim and installation arrange
JP2022080676A (en) * 2020-11-18 2022-05-30 株式会社豊田中央研究所 Sunlight utilizing adsorption type heat pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283050A (en) * 1995-04-13 1996-10-29 Bridgestone Corp Glass laminated body
JPH10324579A (en) * 1997-05-22 1998-12-08 Kobe Steel Ltd Heat insulating transparent porous material, its production and producing device
JP2003267719A (en) * 2002-03-15 2003-09-25 Nippon Steel Corp Porous body, base body having porous body film, and their manufacturing method
JP2006282465A (en) * 2005-04-01 2006-10-19 Daiwa House Ind Co Ltd Double layer glass and glass block

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283050A (en) * 1995-04-13 1996-10-29 Bridgestone Corp Glass laminated body
JPH10324579A (en) * 1997-05-22 1998-12-08 Kobe Steel Ltd Heat insulating transparent porous material, its production and producing device
JP2003267719A (en) * 2002-03-15 2003-09-25 Nippon Steel Corp Porous body, base body having porous body film, and their manufacturing method
JP2006282465A (en) * 2005-04-01 2006-10-19 Daiwa House Ind Co Ltd Double layer glass and glass block

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012078739A2 (en) * 2010-12-09 2012-06-14 Cabot Corporation Insulated units and methods for producing them
WO2012078739A3 (en) * 2010-12-09 2012-08-16 Cabot Corporation Insulated units and methods for producing them
CN104912447A (en) * 2012-08-28 2015-09-16 青岛科瑞新型环保材料有限公司 Transparent aerogel vacuum glass
CN106316160A (en) * 2015-06-26 2017-01-11 天津市百泰玻璃有限公司 High-safety vacuum glass
CN108357662A (en) * 2017-01-26 2018-08-03 空中客车运营有限公司 Deformable shim and installation arrange
CN108357662B (en) * 2017-01-26 2023-03-14 空中客车运营有限公司 Deformable shim and mounting arrangement
JP2022080676A (en) * 2020-11-18 2022-05-30 株式会社豊田中央研究所 Sunlight utilizing adsorption type heat pump

Also Published As

Publication number Publication date
JP5115885B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5115885B2 (en) Double glazing
Baetens et al. Aerogel insulation for building applications: A state-of-the-art review
Liang et al. Thermal performance and service life of vacuum insulation panels with aerogel composite cores
US8679598B2 (en) Vacuum insulated glass (VIG) unit including nano-composite pillars, and/or methods of making the same
US20150315779A1 (en) Construction Panels
Jelle et al. Aerogel insulation for building applications
WO2008085541A3 (en) Carbon nanotube glazing technology
US20220089503A1 (en) Ceramic foams, methods of making same, and uses thereof
Ghoshal et al. Advance glazing system–energy efficiency approach for buildings a review
CN1649803A (en) Light-transmitting glass panel
KR20140035884A (en) Spacer, connector and insulating glazing
Buratti et al. Nanogel windows
US20220275164A1 (en) Thermally insulating aerogel vacuum composite panel and preparation method thereof
US10808452B2 (en) Double glazed window of polycarbonate layer
Kucukpinar et al. Development of transparent and opaque vacuum insulation panels for energy efficient buildings
CN105696916A (en) Hollow glass with pasting film insides
DK2138667T3 (en) Triple insulating pane
JP4119435B2 (en) High thermal insulation double glazing
TW201741123A (en) Insulating film
JP5747717B2 (en) Sound insulation heat insulation double glazing
CN202117507U (en) Hollow glass of automobile
CN219864708U (en) Improved hollow glass mounting structure
JP2015209734A (en) Sound insulation panel
CN202866564U (en) Hollow glass
WO2023138044A1 (en) Flexible micro support pillar for vacuum insulating glass and vacuum insulating glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R150 Certificate of patent or registration of utility model

Ref document number: 5115885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250