JP2009286166A - Vessel shape designing method aiming at reduction of increase of in-wave resistance, marine vessel, and program - Google Patents

Vessel shape designing method aiming at reduction of increase of in-wave resistance, marine vessel, and program Download PDF

Info

Publication number
JP2009286166A
JP2009286166A JP2008137874A JP2008137874A JP2009286166A JP 2009286166 A JP2009286166 A JP 2009286166A JP 2008137874 A JP2008137874 A JP 2008137874A JP 2008137874 A JP2008137874 A JP 2008137874A JP 2009286166 A JP2009286166 A JP 2009286166A
Authority
JP
Japan
Prior art keywords
coefficient
resistance increase
value
resistance
increase coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008137874A
Other languages
Japanese (ja)
Other versions
JP5540303B2 (en
Inventor
Masaru Tsujimoto
辻本  勝
Mariko Kuroda
麻利子 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Maritime Research Institute
Original Assignee
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Maritime Research Institute filed Critical National Maritime Research Institute
Priority to JP2008137874A priority Critical patent/JP5540303B2/en
Publication of JP2009286166A publication Critical patent/JP2009286166A/en
Application granted granted Critical
Publication of JP5540303B2 publication Critical patent/JP5540303B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a marine vessel designing method capable of optimizing the reduction of increase of in-wave resistance, a marine vessel and a program. <P>SOLUTION: The marine vessel designing method includes a mutual relation setting step 1801, in which the relation of bluntness coefficient and resistance increase coefficient is set based on reflected wave; a resistance increase coefficient value calculation step 1803, in which a bluntness coefficient value calculated from a vessel shape is applied to the setting of the mutual relation step 1801 to obtain a resistance increase coefficient value; a correction step 1804, in which the bluntness coefficient value is corrected by changing the vessel shape; a corrected resistance increase coefficient calculation step 1806, in which the corrected bluntness coefficient value is applied to the setting of the mutual relation step 1801 to obtain a corrected resistance increase coefficient value; and a selection step 1808, in which the obtained corrected resistance increase coefficient value is compared with the resistance increase coefficient value obtained in the resistance increase coefficient value calculation step 1803 to select the vessel shape which indicates the bluntness coefficient value having a smaller resistance increase coefficient value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、たとえば波浪中抵抗増加低減を図った船舶の形状設計方法及び船舶並びにプログラムに関する。   The present invention relates to a ship shape design method, a ship, and a program, for example, in which the resistance increase in waves is reduced.

実海域における船速低下を精確に推定するためには、船速低下が生じる主要因の一つである波浪中抵抗増加を精度良く推定する必要がある。   In order to accurately estimate the decrease in ship speed in the actual sea area, it is necessary to accurately estimate the increase in resistance in waves, which is one of the main factors that cause a decrease in ship speed.

波浪中抵抗増加の一般的な計算方法では、船体運動に基づく抵抗増加成分に、反射波に基づく抵抗増加成分を付加する方法がとられる。このうち、反射波に基づく抵抗成分は、低速肥大船を対象に推定式が提案されている。この推定式は一律に、ブラントネス係数(ファクター)が小さいほど、反射波に基づく抵抗成分が低減されるという仮説に基づくものである。また、従来からこの仮説に沿った複数の特許文献が存在している。   In a general calculation method for increasing resistance in waves, a method of adding a resistance increasing component based on reflected waves to a resistance increasing component based on ship motion is employed. Of these, an estimation formula has been proposed for the resistance component based on the reflected wave for low-speed enlarged ships. This estimation formula is based on the hypothesis that the resistance component based on the reflected wave is reduced as the bluntness coefficient (factor) is reduced. Conventionally, there are a plurality of patent documents in line with this hypothesis.

たとえば特許文献1では、主船体と一体若しくは付加物として取り付け可能な反射波低減構造物12を設け、反射波低減構造物12が図4に示されるように元の水線面形状よりも尖らせて(ブラントネス係数を小さくし)波浪中抵抗増加を低減しようとする技術的思想が開示されている。   For example, in Patent Document 1, a reflected wave reducing structure 12 that can be attached to the main hull as a unitary body or as an additional object is provided, and the reflected wave reducing structure 12 is sharpened from the original water line surface shape as shown in FIG. The technical idea of reducing the increase in wave resistance (by reducing the bluntness coefficient) is disclosed.

また、特許文献2では、満水喫水線バルブ10と該満水喫水線バルブ10と船首フレア30との間に水平断面がくさび形の波きり部材20を設けて、図4などに示されるように船舶1の船首部を尖らせて(ブラントネス係数を小さくし)波浪中抵抗増加を低減しようとする技術的思想が開示されている。   In Patent Document 2, a full water draft valve 10 and a corrugated member 20 having a wedge-shaped horizontal cross section are provided between the full water draft valve 10 and the bow flare 30, and as shown in FIG. A technical idea for sharpening the bow (reducing the bluntness coefficient) and reducing the increase in resistance in waves is disclosed.

さらに特許文献3では、大型肥大船の船首部形状を図1などで示されるような標準船型T2から最適形状化T1のように変更し(ブラントネス係数を小さくし)波浪中での抵抗増加を低減しようとする技術的思想が開示されている。   Furthermore, in Patent Document 3, the bow shape of a large-sized enlarged ship is changed from the standard hull form T2 as shown in Fig. 1 to the optimally shaped T1 (bluntness coefficient is reduced) to reduce resistance increase in waves. The technical idea to be disclosed is disclosed.

また、特許文献4では、船首バルブに凸状3次元形状のバウキャップを装着し、図12に示すように船首バルブ部を太らせる技術的思想が開示されている。しかし、ここで開示される技術思想は造波抵抗の低減という目的のためであり、波浪中抵抗低減を目的とするものではない上、装着も喫水線近傍よりも遙かに下に位置する船首バルブに装着しているものである。
特開2004−314943号公報 特開2007−069835号公報 特開平09−136686号公報 特開2006−051915号公報
Patent Document 4 discloses a technical idea in which a convex three-dimensional bow cap is attached to a bow valve and the bow valve portion is thickened as shown in FIG. However, the technical idea disclosed here is for the purpose of reducing the wave-making resistance, not for reducing the resistance in the waves, and the bow valve mounted is located far below the waterline. It is what is attached to.
Japanese Patent Laid-Open No. 2004-314943 JP 2007-069835 A JP 09-136686 A JP 2006-051915 A

このように、これまでの技術では、波浪中抵抗低減の目的で、ブラントネス係数を高い方向に再設定する思想はこれらの従来例に全く開示されていなく、船首装着物も総て船首部を尖らせブラントネス係数を小さくするものばかりであった。   As described above, in the conventional techniques, the idea of resetting the bluntness coefficient to a high direction for the purpose of reducing the resistance in the waves is not disclosed at all in these conventional examples, and the bowed parts are all sharpened. The only thing that made the bluntness coefficient small.

しかし、近年の大型コンテナ船のような痩型船の場合は、過去にブラントネス係数(ファクター)と抵抗増加係数の関係を実証した例が無く、ブラントネス係数(ファクター)を小さくすることで波浪中抵抗低減を図るという推定式の適用範囲外となり、短波長域での波浪中抵抗増加の推定精度が低下するおそれがあった。これらの従来技術のいずれにおいても、痩型船の場合は効果的に適用できないことが予測された。これは、これまで、ブラントネス係数(ファクター)を下げることこそが波浪中抵抗低減を図る方策だとの前提に無批判に立ってきたためである。   However, in the case of dredgers such as large container ships in recent years, there has been no example of demonstrating the relationship between the bluntness coefficient (factor) and the resistance increase coefficient in the past, and resistance in waves by reducing the bluntness coefficient (factor). There is a risk that the estimation accuracy of an increase in resistance in waves in the short wavelength region may be reduced because the estimation formula for reducing the frequency falls outside the applicable range. Neither of these prior arts was predicted to be effectively applicable to dredgers. This is because until now it has been criticized on the premise that lowering the bluntness coefficient is a measure to reduce drag in the waves.

しかしながら、本願発明者らは、船舶特に船首形状によっては、ブラントネス係数を一律小さくすることが必ずしも波浪中抵抗低減に繋がらない場合があることを発見・着眼した。そこで、船舶の形状と波浪中抵抗低減との関係につき各種実験・考察を重ねることで、最適化を図るにはどうすればよいかの検討を続けてきたところ、船舶の形状によってはブラントネス係数を下げることで却って波浪中抵抗が増大してしまうような数値範囲が存在することが、本発明者の実験により明らかになった。本願はこれらの検討・研究の結果生み出されたものである。   However, the inventors of the present application have discovered and focused on the fact that, depending on the ship, particularly the bow shape, making the bluntness coefficient uniform may not necessarily reduce the resistance in waves. Therefore, we have been investigating how to optimize the relationship between the ship shape and the reduction of resistance in the waves, and we have continued to study how to optimize it. On the other hand, it has been clarified by experiments of the present inventor that there is a numerical range in which the resistance in waves increases. This application was created as a result of these examinations and studies.

したがって、本発明は、上述の従来技術では見過ごされていた、船舶形状に応じた波浪中抵抗増加低減を最適化するという新たな課題に向かいあうものである。つまり本願は、従来技術ではなし得なかった解決手段を与えるためになされたもので、特に船舶の形状によっては、ブラントネス係数を下げることで却って波浪中抵抗が増大してしまう範囲に対しても有効に波浪中抵抗の低減を図り、波浪中抵抗増加低減を最適化することが可能な船舶の形状設計方法及び船舶並びにプログラムを提供することを目的とする。   Therefore, the present invention faces a new problem of optimizing the increase in wave resistance according to the shape of the ship, which has been overlooked in the above-described prior art. In other words, this application was made in order to provide a solution that could not be achieved by the prior art, and in particular, depending on the shape of the ship, it is also effective for the range where the resistance in waves increases by lowering the bluntness coefficient. It is another object of the present invention to provide a ship shape design method, ship, and program capable of reducing the resistance in waves and optimizing the increase in resistance in waves.

かかる目的を達成するために、本発明の請求項1に係る波浪中抵抗増加低減を図った船舶の形状設計方法は、船体の次式で定義される反射波に基づく抵抗増加係数KAW
AW=B・α・(1+α2)
:ブラントネス係数
α:喫水影響項
1+α2 :速度影響項
とブラントネス係数Bの関係において、
ブラントネス係数Bが0.04〜0.187となる船体形状を、該ブラントネス係数Bが0.12〜0.32の範囲になるように再設定し、抵抗増加係数KAWを低く抑えたことを特徴として構成される。
In order to achieve such an object, a ship shape designing method according to claim 1 of the present invention for reducing the increase in resistance in waves is a resistance increase coefficient K AW based on a reflected wave defined by the following equation of the hull.
K AW = B f・ α 1・ (1 + α 2 )
B f : Bluntness coefficient α 1 : Drafting effect term
1 + α 2 : In the relationship between the velocity effect term and the brandtness coefficient B f
Burantonesu factor B f is a hull shape which is 0.04 to 0.187, the Burantonesu factor B f is reset to be in the range of 0.12 to 0.32, with reduced resistance increase coefficient K AW low It is configured as a feature.

かかる構成を備えることにより、ブラントネス係数(向波)Bが0.04〜0.187程度の形状の場合、これまでの技術常識とは逆にブラントネス係数Bを少し大きくし、すなわち船首部形状を肥大させることで、反射波に基づく抵抗増加の低減がより効果的かつ適切に達成される。すなわち、これまでは一律に、反射波に基づく抵抗増加を低減させるためのブラントネス係数(向波)Bを小さくする方向の設計のみが行われていたところ、これでは船首形状によっては却って反射波に基づく抵抗が増加してしまっていた。本願発明では、種々の研究・実験に基づいて、ブラントネス係数(向波)Bが0.04〜0.187程度の形状の場合には、船首部形状を肥大させる、すなわちブラントネス係数Bを少し大きくすることでより反射波に基づく抵抗増加の低減が図れることを突き止めた結果、ブラントネス係数B再設定値を0.12〜0.32の範囲にすることで、抵抗増加低減が最適化されることを割り出したものである。 By providing such a configuration, when Burantonesu coefficient (Konami) B f is in the form of about 0.04 to 0.187, a little larger Burantonesu factor B f on the contrary to the common general knowledge, i.e. bow By enlarging the shape, a reduction in resistance increase based on the reflected wave is achieved more effectively and appropriately. That is, the past uniformly, when only the direction of the design to reduce the Burantonesu coefficient (Konami) B f in order to reduce the resistance increase based on the reflected wave has been performed, rather reflected wave by bow shape in which The resistance based on has increased. In the present invention, based on various studies and experiments, when the bluntness coefficient (direction wave) Bf is a shape of about 0.04 to 0.187, the bow shape is enlarged, that is, the bluntness coefficient Bf is As a result of finding out that the resistance increase based on the reflected wave can be further reduced by increasing the value a little, the resistance increase reduction is optimized by setting the bluntness coefficient Bf reset value in the range of 0.12 to 0.32. It is the one that has been determined.

これによって、反射波に基づく抵抗増加の推定精度が向上し、特に大型船で重要となる短波長域での抵抗増加推定法の修正に基づいた設計が適切に達成されることになる。   As a result, the estimation accuracy of the resistance increase based on the reflected wave is improved, and the design based on the correction of the resistance increase estimation method particularly in a short wavelength region which is important in a large ship is appropriately achieved.

また、上記目的を達成するべく、本願の請求項2に係る波浪中抵抗増加低減を図った船舶の形状設計方法は、ブラントネス係数Bと反射波に基づく抵抗増加係数KAWの関係を設定する相互関係設定ステップと、船体形状から算出されるブラントネス係数B値を前記相互関係ステップの設定に当てはめ抵抗増加係数KAW値を求める抵抗増加係数KAW値算出ステップと、前記船体形状を変え前記ブラントネス係数B値を修正する修正ステップと、この修正ステップで修正された修正ブラントネス係数B値を前記相互関係ステップの設定に当てはめ修正抵抗増加係数KAW値を求める修正抵抗増加係数KAW値算出ステップと、この修正抵抗増加係数KAW値算出ステップで求められた修正抵抗増加係数KAW値と前記抵抗増加係数KAW値算出ステップで求められた前記抵抗増加係数KAW値を比較し、抵抗増加係数KAW値が小さい方のブラントネス係数B値を示す船体形状を選択する選択ステップを備えて構成されることもできる。 Further, in order to achieve the above object, the ship shape designing method according to claim 2 of the present application for reducing the increase in resistance in waves sets the relationship between the bluntness coefficient Bf and the resistance increase coefficient K AW based on the reflected wave. A correlation setting step, a resistance increase coefficient K AW value calculating step for obtaining a resistance increase coefficient K AW value by applying a bluntness coefficient B f value calculated from the hull shape to the setting of the correlation step, and changing the hull shape a correction step for correcting the Burantonesu coefficient B f value, the modified modified Burantonesu coefficient B f value the correlation fitting setting step obtains the corrected resistance increase coefficient K AW value correction resistance increase coefficient K AW value in this correction step a calculation step, and modifying the resistance increase coefficient K AW value obtained by this correction resistance increase coefficient K AW value calculating step said resistor Configured with a selection step of pressurizing the coefficient by comparing the K AW value calculating said resistance increase factor K AW value obtained in step, selecting a hull showing the Burantonesu coefficient B f value of the resistance increase factor K Write AW value is smaller Can also be done.

この場合、特に、相互関係設定ステップで設定される関係は、
(図中、KAW:抵抗増加係数(無次元)、B:ブラントネス係数(無次元)、F:フルード数(無次元))
もしくは
(図中、ρ:流体密度(kg/m) 、g:重力加速度(m/s)、ζa:波の振幅(m)、B:船幅(m)、KAW:抵抗増加係数(無次元)、B:ブラントネス係数(無次元)、F:フルード数(無次元))
もしくは
(図中記号は同上)
もしくは
(図中記号は同上)
もしくは
(表中、F:フルード数(無次元)、ρ:流体密度(kg/m

g:重力加速度(m/s)、 ζa:波の振幅(m)、B:船幅(m)、
:ブラントネス係数(無次元)、KAW:抵抗増加係数(無次元))
もしくは
(表中記号は同上)
を含む図表で表されるものとし、この各々の図表において0.3以下のブラントネス係数B値及びこれに関係した抵抗増加係数KAW値、もしくは0.3・船幅(m)以下のB・B値(m)及びこれに関係した0.5ρ・g・ζa・B・KAW値(kN)も表示するように構成してもよい。
In this case, in particular, the relationship set in the correlation setting step is
(In the figure, K AW : resistance increase coefficient (non-dimensional), B f : bluntness coefficient (non-dimensional), F n : fluid number (non-dimensional))
Or
(In the figure, ρ: fluid density (kg / m 3 ), g: gravitational acceleration (m / s 2 ), ζa: wave amplitude (m), B: ship width (m), K AW : resistance increase coefficient ( dimensionless), B f: Burantonesu coefficient (dimensionless), F n: Froude number (dimensionless))
Or
(The symbols in the figure are the same as above.)
Or
(The symbols in the figure are the same as above.)
Or
(In the table, F n : Fluid number (dimensionless), ρ: Fluid density (kg / m 3 )
,
g: gravitational acceleration (m / s 2 ), ζa: wave amplitude (m), B: ship width (m),
B f : Brandtness coefficient (non-dimensional), K AW : Resistance increase coefficient (non-dimensional))
Or
(The symbols in the table are the same as above.)
In each of these charts, the Brantness coefficient B f value of 0.3 or less and the resistance increase coefficient K AW value related thereto or B of 0.3 · ship width (m) or less. The B f value (m) and the related 0.5ρ · g · ζ a 2 · B · K AW value (kN) may also be displayed.

これらのように構成することにより、相互関係設定ステップでブラントネス係数Bと反射波に基づく抵抗増加係数KAWとの関係が設定されたあとで、船体形状を様々変えることで修正ブラントネス係数B値を得て、選択ステップで抵抗増加係数KAW値が小さい方のブラントネス係数B値を示す船体形状を選択することになる。さらにこの場合、ブラントネス係数B値を修正すべき範囲・数値が具体的に明確化される。このため、反射波による抵抗増加がより小さくなるような船舶形状を得ることができる。したがって、反射波に基づく抵抗増加の推定精度が向上し、特に大型船で重要となる短波長域での抵抗増加推定法の修正が適切に達成されることになる。 By configuring as described above, after the relationship between the bluntness coefficient B f and the resistance increase coefficient K AW based on the reflected wave is set in the correlation setting step, the modified bluntness coefficient B f is changed by variously changing the hull shape. to obtain a value, it will select the hull showing the Burantonesu coefficient B f value of the smaller resistance increase coefficient K AW values in the selection step. Further, in this case, the range / numerical value in which the bluntness coefficient Bf value should be corrected is clarified specifically. For this reason, it is possible to obtain a ship shape in which the increase in resistance due to the reflected wave becomes smaller. Therefore, the estimation accuracy of the resistance increase based on the reflected wave is improved, and the correction of the resistance increase estimation method in a short wavelength region which is particularly important for a large ship is appropriately achieved.

また、上記目的を達成するべく、本願の請求項4に係る波浪中抵抗増加低減を図った船舶は、ブラントネス係数Bが0.04〜0.187の船体の少なくとも喫水線近傍より上部に、ブラントネス係数Bが0.12〜0.32となる船首装着物を装着し波浪中抵抗を低減したことを特徴として構成される。 Further, in order to achieve the above-mentioned object, a ship aiming at increasing and reducing resistance in waves according to claim 4 of the present application has a bluntness at least above the vicinity of the waterline of the hull having a bluntness coefficient Bf of 0.04 to 0.187. It is characterized by the fact that a bow attachment with a coefficient Bf of 0.12 to 0.32 is attached to reduce the resistance in waves.

このように構成することにより、ブラントネス係数(向波)Bが0.04〜0.187程度の形状の場合、これまでの技術常識とは逆にブラントネス係数Bを少し大きくし、すなわち船首部形状を肥大させることで、反射波に基づく抵抗増加の低減がより効果的かつ適正に達成される、という本願特有の着眼に基づいた結果、具体的にブラントネス係数B再設定値を0.12〜0.32の範囲にする船首装着物を船体に装着することにより、船舶全体として反射波に基づく抵抗増加低減が図れ、既存の船舶にも適用できる。 With this configuration, when the shape of the bluntness coefficient (direction wave) Bf is about 0.04 to 0.187, the bluntness coefficient Bf is slightly increased contrary to the conventional technical common sense. As a result of based on the particular point of view that the reduction of the increase in resistance based on the reflected wave is achieved more effectively and appropriately by enlarging the shape of the part, specifically, the bluntness coefficient B f reset value is set to 0. By attaching the bow attachment to the hull in the range of 12 to 0.32, the resistance increase based on the reflected wave can be reduced as a whole ship, and it can also be applied to existing ships.

また、上記目的を達成するべく、本願の請求項5に係る波浪中抵抗増加低減を図った船舶は、ブラントネス係数Bが、0.04〜0.187の痩型船の船首部形状の少なくとも喫水線近傍より上部部分を肥大させ、ブラントネス係数Bを0.12〜0.32としたことを特徴として構成される。 Further, in order to achieve the above object, a ship which attained Waves resistance increase reduced according to Claim 5 of the present application, Burantonesu coefficient B f is at least of the bow shape of痩型ship 0.04 to 0.187 The upper part is enlarged from the vicinity of the water line, and the bluntness coefficient Bf is set to 0.12 to 0.32.

このように構成することにより、具体的にブラントネス係数B再設定値を0.12〜0.32の範囲にする船首装着物を船体に装着することの代替として、船首形状、少なくとも喫水線近傍より上部部分を船首形状自体を肥大化させることでも、同様の効果、即ち、船舶全体として反射波に基づく抵抗増加低減が図れ、新造船にも設計段階から適用ができる。 By constructing in this way, as an alternative to mounting a bow attachment to the hull that specifically sets the bluntness coefficient B f reset value in the range of 0.12 to 0.32, the bow shape, at least from the vicinity of the waterline By enlarging the bow shape itself of the upper part, the same effect, that is, the increase in resistance based on the reflected wave can be reduced as a whole ship, and it can be applied to a new ship from the design stage.

また、上記目的を達成するべく、本願の請求項6に係るプログラムは、コンピュータを、ブラントネス係数Bと反射波に基づく抵抗増加係数KAWとの関係を設定して抵抗増加係数記憶手段に記憶させる相互関係設定手段と、船体形状から算出されるブラントネス係数B値を前記抵抗増加係数記憶手段から読み出した前記相互関係設定に係る情報に当てはめることにより抵抗増加係数KAW値を求める抵抗増加係数KAW値算出手段と、前記船体形状を変え前記ブラントネス係数B値を修正する修正手段と、この修正手段で修正された修正ブラントネス係数B値を前記抵抗増加係数記憶手段から読み出した前記相互関係設定に係る情報に当てはめることにより修正抵抗増加係数KAW値を求める修正抵抗増加係数KAW値算出手段と、この修正抵抗増加係数KAW値算出手段で求められた修正抵抗増加係数KAW値と前記抵抗増加係数KAW値算出手段で求められた前記抵抗増加係数KAW値を比較し、抵抗増加係数KAW値が小さい方のブラントネス係数B値を示す船体形状を選択する選択手段として機能させるように構成される。 In order to achieve the above object, a program according to claim 6 of the present application sets a relationship between the bluntness coefficient Bf and the resistance increase coefficient K AW based on the reflected wave and stores it in the resistance increase coefficient storage means. And a resistance increase coefficient for obtaining a resistance increase coefficient K AW value by applying the correlation setting means to be calculated and a bluntness coefficient B f value calculated from the hull shape to the information relating to the correlation setting read from the resistance increase coefficient storage means and K AW value calculating means, the mutual and correction means, the modified modified Burantonesu coefficient B f value in this correction means read from the resistance increase coefficient storage means for modifying the Burantonesu coefficient B f value changing the hull Fixed resistance increase coefficient K AW value calculation for obtaining the correction resistance increase coefficient K AW values by fitting the information relating to the relationship set Compared with the step, the resistance increase coefficient K AW value obtained by modifying the resistance increase coefficient K AW value obtained by this correction resistance increase coefficient K AW value calculating means and the resistance increase coefficient K AW value calculating means, the resistance configured to function as a selecting means for selecting a hull showing the Burantonesu coefficient B f values towards increasing the coefficient K AW value is small.

ここで、抵抗増加係数記憶手段とは、ブラントネス係数Bと反射波に基づく抵抗増加係数KAWとの間に定義されもしくは推定される一定の関係に関する情報を記憶するためのRAM(ランダム・アクセス・メモリ)或いはROM(リード・オンリ・メモリ)もしくはその他の記憶装置によって実現される。 Here, the resistance increase coefficient storage means is a RAM (random access) for storing information relating to a certain relationship defined or estimated between the bluntness coefficient B f and the resistance increase coefficient K AW based on the reflected wave. It is realized by a memory) or a ROM (read only memory) or other storage device.

ここで、相互関係設定手段とは、ブラントネス係数Bと反射波に基づく抵抗増加係数KAWとの間に成立する一定の推定される関係を、たとえば実験データのプロット値から読み取って定義し、これを上記の抵抗増加係数記憶手段に出力・記憶させるアルゴリズムを有するサブルーチンもしくはサブプログラム、或いはこれらを記憶媒体に記憶させたものによって実現される。 Here, the correlation setting means defines a certain estimated relationship established between the bluntness coefficient B f and the resistance increase coefficient K AW based on the reflected wave, for example, by reading from a plot value of experimental data, This is realized by a subroutine or subprogram having an algorithm for outputting and storing this in the resistance increase coefficient storage means, or by storing these in a storage medium.

ここで、抵抗増加係数KAW値算出手段とは、仮設定される船体形状からブラントネス係数B値を算出し、抵抗増加係数記憶手段から相互関係設定情報を読み出し、この算出されたB値を当該相互関係設定情報に当てはめて抵抗増加係数KAW値を求めるアルゴリズムを有するサブルーチンもしくはサブプログラム、或いはこれらを記憶媒体に記憶させたものによって実現される。 Here, the resistance increase coefficient K AW value calculating means calculates the bluntness coefficient B f value from the temporarily set hull shape, reads the correlation setting information from the resistance increase coefficient storage means, and calculates the calculated B f value. Is applied to the correlation setting information, and is realized by a subroutine or subprogram having an algorithm for obtaining the resistance increase coefficient K AW value, or by storing these in a storage medium.

ここで、修正手段とは、船体形状をいろいろと変えることでブラントネス係数B値を修正し、修正ブラントネス係数B値を得るようなアルゴリズムを有するサブルーチンもしくはサブプログラム、或いはこれらを記憶媒体に記憶させたものによって実現される。 Here, the correction means modifies the Burantonesu coefficient B f value by changing the hull variously, subroutine or subprogram with an algorithm so as to obtain a modified Burantonesu coefficient B f value, or storing them in a storage medium Realized by what

ここで、修正抵抗増加係数KAW値算出手段とは、上記得られた修正ブラントネス係数B値を上述の相互関係設定情報に当てはめることで修正抵抗増加係数KAW値を算出するようなアルゴリズムを有するサブルーチンもしくはサブプログラム、或いはこれらを記憶媒体に記憶させたものによって実現される。 Here, the corrected resistance increase coefficient K AW value calculating means is an algorithm that calculates the corrected resistance increase coefficient K AW value by applying the corrected bluntness coefficient B f value obtained above to the above-described correlation setting information. This is realized by a subroutine or a subprogram that is included, or by storing these in a storage medium.

ここで、選択手段とは、上記で得られた修正抵抗増加係数KAW値と上述の抵抗増加係数KAW値を比較し、抵抗増加係数KAW値が小さい方のブラントネス係数B値に対応する船体形状を選択し当該選択された船体形状を一定の出力部に出力するようなアルゴリズムを有するサブルーチンもしくはサブプログラム、或いはこれらを記憶媒体に記憶させたものによって実現される。 Here, the selection means compares the corrected resistance increase coefficient K AW value obtained above with the above resistance increase coefficient K AW value, and corresponds to the bluntness coefficient B f value with the smaller resistance increase coefficient K AW value. This is realized by a subroutine or subprogram having an algorithm for selecting a hull shape to be selected and outputting the selected hull shape to a certain output unit, or by storing these in a storage medium.

上記のように構成されることにより、抵抗増加係数記憶手段、相互関係設定手段、抵抗増加係数KAW値算出手段、修正手段、修正抵抗増加係数KAW値算出手段、選択手段の各々がサブルーチンもしくはサブプログラムとして実現され、これらをたとえば汎用のPC(パーソナル・コンピュータ)に搭載させて実行させることで、汎用コンピュータであってもこれらサブルーチンもしくはサブプログラムによってそれぞれの機能を達成させることができる。 By configuring as described above, each of the resistance increase coefficient storage means, the correlation setting means, the resistance increase coefficient K AW value calculation means, the correction means, the corrected resistance increase coefficient K AW value calculation means, and the selection means is a subroutine or These functions are realized as subprograms, which are executed on a general-purpose PC (personal computer), for example, so that each function can be achieved by these subroutines or subprograms even in a general-purpose computer.

本発明に係る波浪中抵抗増加低減を図った船舶の形状設計方法によれば、ブラントネス係数Bが0.04〜0.187となる船体形状を、該ブラントネス係数Bが0.12〜0.32の範囲になるように再設定し、抵抗増加係数KAWを低く抑えているため、0.04〜0.187程度の形状の場合であっても反射波に基づく抵抗増加の低減がより効果的かつ適切に達成される。 According to the shape design method of the ship which attained Waves resistance increase reduced according to the present invention, the hull shape Burantonesu factor B f is from 0.04 to 0.187, the Burantonesu factor B f is from 0.12 to 0 reconfigure to be in the range of .32, since kept low resistance increase coefficient K AW, even if the shape of approximately from 0.04 to 0.187 and more to reduce the resistance increase based on the reflected wave Effectively and properly achieved.

本発明に係る波浪中抵抗増加低減を図った船舶の形状設計方法によれば、船体形状を様々変えることで修正ブラントネス係数B値を得て、抵抗増加係数KAW値が小さい方のブラントネス係数B値を示す船体形状が選択されるから、反射波に基づく抵抗増加の低減がより効果的かつ適切に達成される。 According to the shape design method of the ship which attained Waves resistance increase reduced according to the present invention, to obtain a modified Burantonesu coefficient B f value by changing various hull shapes, Burantonesu coefficient of resistance increase factor K Write AW value is smaller Since the hull shape showing the Bf value is selected, a reduction in resistance increase based on the reflected wave is achieved more effectively and appropriately.

また、これに加え本発明に係る波浪中抵抗増加低減を図った船舶の形状設計方法によれば、図10乃至図13(但し、図10及び図12中、KAW:抵抗増加係数(無次元)、B:ブラントネス係数(無次元)、F:フルード数(無次元)、図11及び図13中、ρ:流体密度(kg/m) 、g:重力加速度(m/s)、ζa:波の振幅(m)、B:船幅(m)、KAW:抵抗増加係数(無次元)、B:ブラントネス係数(無次元)、F:フルード数(無次元))に示されるようにブラントネス係数B値を修正すべき範囲・数値が具体的に明確化されるから、反射波による抵抗増加がより小さくなるような船舶形状を得ることができる。したがって、反射波に基づく抵抗増加の推定精度が向上し、特に大型船で重要となる短波長域での抵抗増加推定法の修正が適切に達成されることになる。 In addition to this, according to the shape design method for a ship that aims to reduce the resistance increase in waves according to the present invention, FIG. 10 to FIG. 13 (however, in FIG. 10 and FIG. 12, K AW : resistance increase coefficient (dimensionless) ), B f : Brandtness coefficient (non-dimensional), F n : Froude number (non-dimensional), FIG. 11 and FIG. 13, ρ: Fluid density (kg / m 3 ), g: Gravitational acceleration (m / s 2 ) , Ζa: wave amplitude (m), B: ship width (m), K AW : resistance increase coefficient (non-dimensional), B f : bluntness coefficient (non-dimensional), F n : Froude number (non-dimensional)) As shown in the figure, the range / numerical value for which the bluntness coefficient Bf value is to be corrected is specifically clarified, so that it is possible to obtain a ship shape in which the increase in resistance due to the reflected wave becomes smaller. Therefore, the estimation accuracy of the resistance increase based on the reflected wave is improved, and the correction of the resistance increase estimation method in a short wavelength region which is particularly important for a large ship is appropriately achieved.

本発明に係る波浪中抵抗増加低減を図った船舶によれば、ブラントネス係数Bが0.04〜0.187程度の形状の場合、これまでの技術常識とは逆にブラントネス係数Bを少し大きくするので、具体的にブラントネス係数B再設定値を0.12〜0.32の範囲にする船首装着物を船体に装着することにより、船舶全体として反射波に基づく抵抗増加低減が適切に達成されることになる。さらに、かかる抵抗増加推定法の修正に基づいた設計を船首装着物として実現するので、新造船のみならず、既存の船首船型を持つ船舶にも追加することもできる。 According to the ship which attained Waves resistance increase reduced according to the present invention, when Burantonesu factor B f is in the form of about 0.04 to 0.187, the Burantonesu factor B f on the contrary to the common general knowledge little Therefore, it is possible to appropriately reduce the resistance increase based on the reflected wave as a whole by attaching the bow attachment to the hull that specifically sets the bluntness coefficient B f reset value in the range of 0.12 to 0.32. Will be achieved. Furthermore, since the design based on the correction of the resistance increase estimation method is realized as a bow attachment, it can be added not only to a newly built ship but also to a ship having an existing bow type.

本発明に係る波浪中抵抗増加低減を図った船舶によれば、ブラントネス係数B再設定値を0.12〜0.32の範囲にする船首装着物を船体に装着することの代替として、船首形状、少なくとも喫水線近傍より上部部分を船首形状自体を肥大化させるので、船舶全体として反射波に基づく抵抗増加低減が適切に達成されることになる。 According to the ship aiming at increasing and decreasing the resistance in waves according to the present invention, as an alternative to attaching a bow attachment with a bluntness coefficient Bf reset value in the range of 0.12 to 0.32, to the hull. Since the bow shape itself is enlarged in the shape, at least the upper part from the vicinity of the waterline, the resistance increase based on the reflected wave can be appropriately achieved as a whole ship.

さらに、かかる抵抗増加推定法の修正に基づいた設計が適切に達成されることになり、特に、新規に造船する場合に上記形状を設計段階から採用することができる。   Furthermore, the design based on the correction of the resistance increase estimation method is appropriately achieved. In particular, the above shape can be adopted from the design stage when building a new ship.

この場合、喫水線近傍の上部下部を含めてかかる肥大化をするようにしても効果は同様に達成される。   In this case, the effect is similarly achieved even if the enlargement is performed including the upper and lower portions in the vicinity of the water line.

本発明に係るプログラムによれば、抵抗増加係数記憶手段、相互関係設定手段、抵抗増加係数KAW値算出手段、修正手段、修正抵抗増加係数KAW値算出手段、選択手段の各々がサブルーチンもしくはサブプログラムとして実現され、これらをたとえば汎用のPC(パーソナル・コンピュータ)に搭載させて実行させることができるので、専用機によらずとも波浪中抵抗増加低減を図った船舶の形状設計がプログラムによる自動処理によって実現される。また、プログラムのみを搭載すれば当該機能を汎用機でも実現でき、利便性が高まる。さらに変更を施す場合でもプログラムの該当箇所のデータもしくはアルゴリズムのみに変更を加えればよいことから、装着機械と独立させた保守性が高まる。 According to the program of the present invention, each of the resistance increase coefficient storage means, the correlation setting means, the resistance increase coefficient K AW value calculation means, the correction means, the corrected resistance increase coefficient K AW value calculation means, and the selection means is a subroutine or a sub. Realized as programs and can be executed by installing them on a general-purpose PC (personal computer), for example, so that the shape design of the ship that reduces resistance in waves can be automatically processed by the program without using a dedicated machine It is realized by. If only the program is installed, the function can be realized even with a general-purpose machine, and convenience is enhanced. Further, even when a change is made, it is only necessary to change the data or algorithm of the corresponding part of the program, so that maintainability independent of the mounting machine is improved.

以下、図面を参照して本発明を実施するための最良の形態について説明する。なお、以下では、本発明の目的の達成のために説明に必要な範囲を模式的に示し、本発明の該当部分の説明に必要な範囲を主に説明することとし、説明を省略する箇所については公知技術によるものとする。
(発明にいたる技術的な調査・検討事項)
本発明にいたる技術的な調査・検討事項として、波浪中抵抗増加低減を図った船舶の形状設計方法に係る本願発明の形態について説明する。
A まず、計算手法について説明する。
(1)規則波中抵抗増加
規則波中抵抗増加(RAW)は、運動に基づく抵抗増加(RAWm)と反射波に基づく抵抗増加(RAWr)に分けて[数1]式によって求められる。
The best mode for carrying out the present invention will be described below with reference to the drawings. In the following, the scope necessary for explanation for achieving the object of the present invention will be schematically shown, and the scope necessary for explanation of the relevant part of the present invention will be mainly explained, and the explanation will be omitted. Are according to known techniques.
(Technical investigations and considerations leading to the invention)
As a technical investigation / examination matter leading to the present invention, an embodiment of the present invention related to a ship shape design method for increasing and decreasing resistance in waves will be described.
A First, the calculation method will be described.
(1) in regular waves resistance increases regularly wave in the resistance increase (R AW) is determined by divided into resistance increase based on the motion (R AWM) and resistance increase based on the reflected wave (R AWR) [Expression 1] .

・・・・・・・・・・・・(1)
このうち、反射波に基づく抵抗増加は、ブラントネス係数(B)、喫水影響項(α)、速度影響項(1+α)により[数2]式で求められるとされる。
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (1)
Among these, the increase in resistance based on the reflected wave is determined by the equation [2] from the bluntness coefficient (B f ), the draft effect term (α 1 ), and the velocity effect term (1 + α 2 ).

・・・・・・・・・・・(2)
ここで、
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2)
here,

・・・・・・・・・・・(3) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (3)

・・・・・・・・・・・(4) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (4)

・・・・・・・・・・・(5)
、Kは、それぞれ第1種1次変形ベッセル関数、第2種1次変形ベッセル関数、I、IIは図1に示す積分範囲、ρ;流体密度、g;重力加速度、ζa;入射波振幅、B;船幅、dl;水線面に沿った微小線素、k;波数、d;喫水、F;フルード数、α;船と波との出会い角、βw;船体水線面の傾斜角、である。
なお、上記の[数1]〜[数5]は、公知技術である、「藤井 斉、高橋 雄:肥大船の波浪中抵抗増加推定法に関する実験的研究、日本造船学会論文集、第137号、昭和50年」から引用したものである。
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (5)
I 1 and K 1 are the first type primary deformation Bessel function and the second type primary deformation Bessel function, respectively, I and II are the integration ranges shown in FIG. 1, ρ: fluid density, g: gravitational acceleration, ζa: incidence Wave amplitude, B: Ship width, dl: Microline element along the water surface, k: Wave number, d: Drafting, F n ; Froude number, α: Angle of encounter between ship and wave, βw: Hull water surface Of the inclination angle.
In addition, the above [Equation 1] to [Equation 5] are well-known techniques such as “Sai Fujii, Yutaka Takahashi: Experimental research on estimation method of resistance increase in waves of a hypertrophic ship, Japan Shipbuilding Society papers, No.137. , "Showa 50".

(2)規則波中抵抗増加の実用的修正
波浪中抵抗増加の推定精度を向上させるために、特に大型船で重要となる短波長域での抵抗増加推定法の修正を行う。
(2) Practical correction of resistance increase in regular waves In order to improve the estimation accuracy of resistance increase in waves, the resistance increase estimation method in the short wavelength region, which is particularly important for large ships, will be corrected.

短波長域では船体運動は小さいことから、反射波に基づく抵抗増加が主要となる。模型実験による調査を行い、従来の推定式の修正を以下の方針で行う。
(i) 反射波に基づく抵抗増加の修正を行う。
(ii) 斜波中への適用を行う。
Since the hull motion is small in the short wavelength region, the resistance increase based on the reflected wave is the main factor. We will conduct a model experiment and modify the conventional estimation formula according to the following policy.
(i) The resistance increase based on the reflected wave is corrected.
(ii) Apply to oblique waves.

実験は、本出願人の400m水槽(模型船長6.3m)、海洋構造物試験水槽(模型船長3m)、中水槽(直立壁模型)で実施した。
(i) 反射波に基づく抵抗増加の修正
1) 喫水影響項
直立壁模型の実験により、無次元周波数はkdとする。
The experiment was conducted in the applicant's 400 m tank (model ship length 6.3 m), offshore structure test tank (model ship length 3 m), and middle tank (upright wall model).
(i) Correction of resistance increase based on reflected waves
1) Drafting influence term The dimensionless frequency is k ed by the experiment of the upright wall model.

・・・・・・・・・・・(6) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (6)

・・・・・・・・・・・(7) (7)

・・・・・・・・・・・(8)
ここで、ω;入射波の円周波数、U;船速、である。
2) 速度影響項
速度影響項(1+α)は、(9)式と仮定する。
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (8)
Here, ω: circular frequency of incident wave, U: ship speed.
2) Speed influence term The speed influence term (1 + α 2 ) is assumed to be Eq. (9).

・・・・・・・・・・・(9)
ここで、この速度影響項(1+α)は、正面規則波中で運動が小さい波長船長比(λ/Lpp=0.3)での実験値から、計算により求まる運動に基づく抵抗増加(RAWm)を引き、(10)式により求める。
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (9)
Here, this velocity influence term (1 + α 2 ) is an increase in resistance (R based on the motion obtained by calculation from the experimental value at the wavelength ship length ratio (λ / L pp = 0.3) where the motion is small in the regular front wave. AWm ) is subtracted and calculated by equation (10).

・・・・・・・・・・・(10)
コンテナ船(船長300m)、自動車運搬船(船長190m)、撤積船(船長217m)の模型による波浪中抵抗増加実験を行い、速度影響係数(C)をそれぞれ求めた結果を図2〜5に示す。この結果から、実際に船舶が運航している速度域では、α=Cで良く近似できることから、m=1を採用する。
(ii) 斜波への拡張
上記で求めた速度影響係数は、正面向波規則波中での値であるが、斜波中でも同様の手順により速度影響係数を求めることができる。そこで、コンテナ船、自動車運搬船の斜波中で実験を行って速度影響係数を求め、これを斜波中で算出されるブラントネス係数で整理すれば、図6に示すとおりとなる。
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (10)
2 to 5 show the results of the velocity influence coefficient (C 2 ) obtained by conducting an experiment of increasing resistance in waves using models of a container ship (captain 300 m), a car carrier (captain 190 m), and a demolition ship (captain 217 m). . From this result, in the speed range where the ship actually operates, it can be approximated well by α 2 = C 2 F 2 , so m = 1 is adopted.
(ii) Extension to oblique wave Although the velocity influence coefficient obtained above is a value in a regular wave heading, the velocity influence coefficient can be obtained by the same procedure even in the oblique wave. Accordingly, if the velocity influence coefficient is obtained by conducting experiments in the oblique waves of the container ship and the car carrier ship, and this is arranged by the bluntness coefficient calculated in the oblique waves, the result is as shown in FIG.

これから、通常船型の場合、斜波中においても速度影響係数を(11)式により実用的に推定することが可能であることが分かる。   From this, it can be seen that in the case of a normal hull form, the velocity influence coefficient can be practically estimated by equation (11) even during oblique waves.

・・・・・・・・・・・(11) (11)

・・・・・・・・・・・(12)
ここで、C、Cはブラントネス係数Bによらない定数
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (12)
Here, C a and C b are constants not depending on the Bluntness coefficient B f.

以上の(i),(ii)の修正を行い、表1に示すコンテナ船に対して、規則波中抵抗増加を求めた結果を図7〜9に示す。図7〜9においては、λ;波長、Lpp;船長である。この結果から、実用的修正は、速度を変えた場合や斜波中での実験値を精度良く推定していることがわかる。   FIGS. 7 to 9 show the results obtained by correcting the above (i) and (ii) and obtaining an increase in resistance during regular waves for the container ship shown in Table 1. 7-9, it is (lambda); wavelength, Lpp; captain. From this result, it can be seen that the practical correction accurately estimates the experimental value when the speed is changed or in the oblique wave.

上記の本発明の趣旨に基づく修正を加えると、ブラントネス係数Bと反射波に基づく抵抗増加係数KAWの関係は、図10乃至図13(但し、図10及び図12中、KAW:抵抗増加係数(無次元)、B:ブラントネス係数(無次元)、F:フルード数(無次元)、図11及び図13中、ρ:流体密度(kg/m) 、g:重力加速度(m/s)、ζa:波の振幅(m)、B:船幅(m)、KAW:抵抗増加係数(無次元)、B:ブラントネス係数(無次元)、F:フルード数(無次元))のようになる。なお、図11は図10の、図13は図12の、それぞれ横軸をブラントネス係数Bの定数倍した値を、縦軸を反射波に基づく抵抗増加係数KAWの定数倍した値を、それぞれとっている。なお、図10乃至図13の表現は一例であり、今回得られた知見に基づくブラントネス係数Bと反射波に基づく抵抗増加係数KAWの関係の表現方法は、自在に変更が可能である。また、これらの図10乃至図13をブラントネス係数Bと抵抗増加係数KAWの関係を数値表として表現することも可能である。この場合、数値的には、数値表の性格上とびとびの値として表現される。更に、図11と図13の定数倍の値も一例であり、選ばれる定数も使用目的に応じて適宜変更できるものである。
(第1の実施形態)
次に、本発明の第1の実施形態として、波浪中抵抗増加低減を図った船舶に係る本願発明の形態について説明する。以下では、本発明の目的の達成のために説明に必要な範囲を模式的に示し、本発明の本質的部分の説明に必要な範囲を主に説明することとし、説明を省略する箇所については公知技術によるものとする。
When the modification based on the above-mentioned gist of the present invention is added, the relationship between the bluntness coefficient B f and the resistance increase coefficient K AW based on the reflected wave is shown in FIGS. 10 to 13 (K AW : resistance in FIGS. 10 and 12). Increase coefficient (dimensionless), B f : Bluntness coefficient (dimensionless), F n : Froude number (dimensionless), ρ: fluid density (kg / m 3 ), g: gravity acceleration ( m / s 2 ), ζa: wave amplitude (m), B: ship width (m), K AW : resistance increase coefficient (non-dimensional), B f : bluntness coefficient (non-dimensional), F n : fluid number ( Dimensionless)). Incidentally, in FIG. 11 10, 13 of FIG. 12, a constant multiple values of Burantonesu factor B f on the horizontal axis, respectively, a constant multiplied by the value of the resistance increase coefficient K AW based on the vertical axis in the reflected wave, Each is taken. Incidentally, the representation of FIGS. 10 to 13 is only an example, method of expressing the relationship of the resistance increase factor K AW of the Burantonesu coefficient B f based on this findings obtained based on the reflected wave, it is possible to freely change. In addition, these FIG. 10 to FIG. 13 can also represent the relationship between the bluntness coefficient B f and the resistance increase coefficient K AW as a numerical table. In this case, numerically, it is expressed as a discrete value due to the nature of the numerical table. Further, the value of the constant multiple in FIGS. 11 and 13 is also an example, and the selected constant can be appropriately changed according to the purpose of use.
(First embodiment)
Next, as a first embodiment of the present invention, a description will be given of an embodiment of the present invention related to a ship that aims to increase and decrease resistance in waves. In the following, the scope necessary for explanation for achieving the object of the present invention will be schematically shown, and the scope necessary for explanation of the essential part of the present invention will be mainly explained, and the explanation will be omitted. According to a known technique.

図14は、本実施形態に係る波浪中抵抗増加低減を図った船舶の船舶形状の水平断面を概念的に示す図であり、図15及び図16は同船舶の垂直断面を概念的に示す図である。   FIG. 14 is a diagram conceptually showing a horizontal cross section of a ship shape of a ship aiming at increasing and reducing resistance in waves according to this embodiment, and FIGS. 15 and 16 are diagrams conceptually showing a vertical cross section of the ship. It is.

図14に示されるように、本実施形態に係る船舶は、上述の本発明の趣旨に基づく修正を加えた図10乃至図13に示すようなブラントネス係数Bと反射波に基づく抵抗増加係数KAWとの関係に基づいた修正的形状を有する船首部W1を船首に有する船舶1であり、この船首部W1は,水面下の船首部を外方に向けて膨らませた(肥大化させた)構造物として形成される。この構造物の材質については特に限定されることはなく、一定の剛性、耐久性を有する素材であればよい。また、肥大化する形状については本図で示される形状は一例にすぎないものであり、ブラントネス係数が好適には0.12〜0.32の範囲に設定されるものであれば、形状に限定はない。従来技術によったならば設定されていたであろうブラントネス係数に係る船首部W0位置よりも平面断面視で外側に膨らんだ形状となっている。 As shown in FIG. 14, the ship according to the present embodiment has a bluntness coefficient B f and a resistance increase coefficient K based on the reflected wave as shown in FIGS. 10 to 13, which are modified based on the gist of the present invention described above. A ship 1 having a bow portion W1 having a modified shape based on the relationship with the AW at the bow. Formed as a product. The material of the structure is not particularly limited as long as it has a certain rigidity and durability. In addition, the shape shown in this figure is only an example of the shape to be enlarged, and if the bluntness coefficient is preferably set in the range of 0.12 to 0.32, it is limited to the shape. There is no. According to the prior art, the shape swells outward in a plan sectional view from the bow portion W0 position related to the bluntness coefficient that would have been set.

図15に示されるように、この船舶1は、断面的には、航海中で遭遇する水面或いは喫水面高さに相当する部分を少なくとも含むような範囲で配置される。図15においては縦方向のほぼ全長に亘って、したがって遭遇する水面位置の全範囲を含むように、船首部B1の上部から上甲板10に向かって上方に延びている。この構成により、満載喫水線近傍や、軽荷状態の喫水線の近傍も覆われるように構成される。これは代替的に、図16に示されるように、喫水面の付近より上部部分のみ肥大化させるような構成としてもよい。   As shown in FIG. 15, the ship 1 is arranged in a range that includes at least a portion corresponding to a water surface or a draft surface height encountered during a voyage. In FIG. 15, it extends upward from the upper part of the bow B <b> 1 toward the upper deck 10 so as to include almost the entire range of the water surface position encountered in the vertical direction. By this structure, it is comprised so that the vicinity of the full load waterline and the vicinity of the lightly loaded waterline may be covered. Alternatively, as shown in FIG. 16, only the upper part may be enlarged from the vicinity of the draft surface.

かかる構成を備える船舶1は、船首部分、或いは船首部分の少なくとも喫水面近傍より上部部分がブラントネス係数が好適には0.12〜0.32の範囲に設定されるため、反射波に基づく抵抗増加の低減がより効果的かつ適正に達成される。すなわち、上記第1の実施形態で比較対照したように、これまでのブラントネス係数(向波)B推定設定値では、特に大型船の場合に、却って反射波に基づく抵抗が増加してしまっていたところ、一定範囲で船首部形状を肥大させることで、反射波に基づく抵抗増加について、特に大型船で重要となる短波長域での抵抗増加低減が適切に達成される。 In the ship 1 having such a configuration, since the bluntness coefficient is preferably set in the range of 0.12 to 0.32 at the upper part of the bow part or at least the vicinity of the draft surface of the bow part, the resistance increase based on the reflected wave is increased. Reduction is achieved more effectively and appropriately. That is, as a comparative control in the first embodiment, so far in the Burantonesu coefficient (Konami) B f estimation set value, especially in the case of large ships, it has rather resistor based on the reflected wave got increased However, by enlarging the bow shape within a certain range, the resistance increase based on the reflected wave can be appropriately achieved, particularly in the short wavelength region, which is important for large ships.

なお、上記では船首部分の形状自体を図14乃至16に示される形状とする場合を例にとって説明したが、上記のブラントネス係数を有する装着物として実現し、かかる装着物(構造体)を船首部分に装着することによってもよい(図示しない)。このようにすることで、新造船のみならず、既存の船舶を生かしながら、反射波に基づく抵抗増加の推定精度を向上させることが可能となり、大型既存船舶においても短波長域での抵抗増加低減が適切に達成される。

(第2の実施形態)
次に、第2の実施形態として、プログラムに係る本願発明の形態について、特に波浪中抵抗増加低減を図った船舶の形状設計に関するプログラムの形態について説明する。
In the above description, the case where the shape of the bow portion itself is the shape shown in FIGS. 14 to 16 has been described as an example. However, it is realized as an attachment having the above-mentioned bluntness coefficient, and the attachment (structure) is realized as the bow portion. It may be attached to (not shown). In this way, it is possible to improve the estimation accuracy of the resistance increase based on the reflected wave while taking advantage of existing ships as well as new ships, and reduce resistance increase in the short wavelength range even for large existing ships. Is achieved appropriately.

(Second Embodiment)
Next, as a second embodiment, an embodiment of the present invention relating to a program will be described, in particular, an embodiment of a program related to a ship shape design that aims to increase and decrease resistance in waves.

図17は、本実施形態に係るプログラムの機能構成図である。同図に示すように、本実施形態に係る波浪中抵抗増加低減プログラム2は、相互関係設定部20と、抵抗増加係数KAW値算出部22と、修正部24と、修正抵抗増加係数KAW値算出部26と、選択部28と、抵抗増加係数記憶部201と、全体の制御を行う全体制御部210とを少なくとも備えて構成される。またこのプログラム2とは別にプログラムが搭載されるたとえばPC(パーソナル・コンピュータ)には、情報が入力される機能を有しキーボード、マウス、音声入力装置等によって実現される入力部3と、情報が出力される機能を有したとえばディスプレイ、プリンタ等によって実現される出力部4とが備えられる。 FIG. 17 is a functional configuration diagram of a program according to the present embodiment. As shown in the figure, the wave resistance increase / reduction program 2 according to the present embodiment includes a correlation setting unit 20, a resistance increase coefficient K AW value calculation unit 22, a correction unit 24, and a correction resistance increase coefficient K AW. The value calculation unit 26, the selection unit 28, the resistance increase coefficient storage unit 201, and an overall control unit 210 that performs overall control are provided. In addition, for example, a PC (personal computer) in which a program is installed separately from the program 2 has a function of inputting information, and an input unit 3 realized by a keyboard, a mouse, a voice input device, etc. And an output unit 4 having an output function and realized by a display, a printer, or the like.

相互関係設定部20は、ブラントネス係数Bと反射波に基づく抵抗増加係数KAWとの間の一定の関係を、たとえば実験データのプロット値から読み取って推定して定義し、これを抵抗増加係数記憶部201に出力・記憶させるアルゴリズムを有するサブルーチンもしくはサブプログラムをいう。 The correlation setting unit 20 defines a certain relationship between the bluntness coefficient B f and the resistance increase coefficient K AW based on the reflected wave, for example, by reading from a plot value of experimental data, and defines this. A subroutine or subprogram having an algorithm to be output and stored in the storage unit 201.

抵抗増加係数KAW値算出部22は、設定される船体形状からブラントネス係数B値を算出し、抵抗増加係数記憶部201から相互関係設定情報を読み出し、この算出されたB値を当該相互関係設定情報に当てはめて抵抗増加係数KAW値を求めるアルゴリズムを有するサブルーチンもしくはサブプログラムをいう。 The resistance increase coefficient K AW value calculation unit 22 calculates a bluntness coefficient B f value from the set hull shape, reads the correlation setting information from the resistance increase coefficient storage unit 201, and uses the calculated B f value as the mutual value. A subroutine or subprogram having an algorithm for obtaining the resistance increase coefficient KAW value by applying it to the relationship setting information.

修正部24は、船体形状をいろいろと変えることでブラントネス係数B値を修正し、修正ブラントネス係数B値を得るようなアルゴリズムを有するサブルーチンもしくはサブプログラムをいう。 Correcting unit 24 corrects the Burantonesu coefficient B f value by changing the hull variously referred subroutine or subprogram with an algorithm so as to obtain a modified Burantonesu coefficient B f value.

修正抵抗増加係数KAW値算出部26は、修正部24で得られた修正ブラントネス係数B値を相互関係設定部20で設定された相互関係設定情報に当てはめることで修正抵抗増加係数KAW値を算出するようなアルゴリズムを有するサブルーチンもしくはサブプログラムをいう。 Fixed resistance increase coefficient K AW value calculating section 26, the correction unit 24 in the resulting modified Burantonesu coefficient B f value correlation setting unit 20 at a set interrelated set modifications resistance increase coefficient K AW values by fitting the information A subroutine or subprogram having an algorithm for calculating.

選択部28は、修正抵抗増加係数KAW値算出部26で得られた修正抵抗増加係数KAW値と抵抗増加係数KAW値算出部22で得られた抵抗増加係数KAW値を比較し、抵抗増加係数KAW値が小さい方のブラントネス係数B値に対応する船体形状を選択してこれに対応する船体形状を出力部4に出力するようなアルゴリズムを有するサブルーチンもしくはサブプログラムをいう。 Selecting unit 28 compares the resistance increase coefficient K AW values obtained by modifying the resistance increase coefficient K AW value calculating unit modifications resistance increase factor obtained in 26 K AW and resistivity increase factor K AW value calculating section 22, refers to a subroutine or subprogram has an algorithm that outputs a hull shape corresponding thereto to select the corresponding hull shape Burantonesu factor B f value of the resistance increase factor K Write AW value is smaller in the output unit 4.

抵抗増加係数記憶部201は、相互関係設定部20によって設定されるブラントネス係数Bと反射波に基づく抵抗増加係数KAWとの間の一定の関係情報を記憶するためのRAM(ランダム・アクセス・メモリ)或いはROM(リード・オンリ・メモリ)もしくはその他の記憶装置をいう。 The resistance increase coefficient storage unit 201 is a random access memory (RAM) for storing constant relationship information between the bluntness coefficient B f set by the correlation setting unit 20 and the resistance increase coefficient K AW based on the reflected wave. Memory) or ROM (Read Only Memory) or other storage device.

次に、こうした構成を持つプログラムの動作を説明する。   Next, the operation of the program having such a configuration will be described.

図18は、かかるプログラムの動作を説明するためのフローチャートである。同図に示されるように、まず、相互関係設定部20は、ブラントネス係数Bと反射波に基づく抵抗増加係数KAWとの間の相互関係情報を設定する(ステップ1801)。こうして得られた相互関係情報は抵抗増加係数記憶部201に記録される(ステップ1810)。 FIG. 18 is a flowchart for explaining the operation of the program. As shown in the figure, first, the correlation setting unit 20 sets correlation information between the bluntness coefficient B f and the resistance increase coefficient K AW based on the reflected wave (step 1801). The interrelation information obtained in this way is recorded in the resistance increase coefficient storage unit 201 (step 1810).

次に、全体制御部210は、船体形状からブラントネス係数B値を一定の算出式に基づいて算出する(ステップ1802)。 Next, the overall control unit 210 calculates the bluntness coefficient Bf value from the hull shape based on a fixed calculation formula (step 1802).

次に、抵抗増加係数KAW値算出部22は、ブラントネス係数B値を抵抗増加係数記憶部201から引き出した相互関係情報に当てはめて抵抗増加係数KAW値を算出する(ステップ1803)。 Then, the resistance increase coefficient K AW value calculating section 22 calculates the resistance increase coefficient K AW values by fitting the correlation information elicited Burantonesu coefficient B f value from the resistance increase coefficient storage unit 201 (step 1803).

次に、修正部24は、船体形状をいろいろと変えて、ブラントネス係数B値を修正し(ステップ1804)、船体形状が設計条件や建造コストを満足するかなどをチェックし、所望の修正ブラントネス係数B値を得るまで繰り返す(ステップ1805)。 Next, the correcting unit 24 changes the hull shape in various ways to correct the bluntness coefficient B f value (step 1804), checks whether the hull shape satisfies the design conditions and the construction cost, and the like, and the desired corrected brantness. Repeat until the coefficient Bf value is obtained (step 1805).

所望の修正ブラントネス係数B値が得られたら、修正抵抗増加係数KAW値算出部26は、ステップ1804、1805で得られた修正ブラントネス係数B値をステップ1801で設定された相互関係設定情報に当てはめることで修正抵抗増加係数KAW値を算出する(ステップ1806)。 Once the desired modifications Burantonesu coefficient B f values are obtained, corrected resistance increase coefficient K AW value calculating unit 26, correlation setting information set correction Burantonesu coefficient B f value obtained in step 1804 and 1805 in step 1801 Is applied to the corrected resistance increase coefficient KAW value (step 1806).

次に、選択部28は、ステップ1806で得られた修正抵抗増加係数KAW値とステップ1803で得られた抵抗増加係数KAW値を比較する(ステップ1807)。 Next, the selection unit 28 compares the resistance increase coefficient K AW values obtained by modifying the resistance increase coefficient K AW value and steps 1803 obtained in step 1806 (step 1807).

次に、選択部28は、抵抗増加係数KAW値が小さい方のブラントネス係数B値に対応する船体形状を選択してこれに対応する船体形状を出力部4に出力して(ステップ1808)、一連の処理を終了する。 Next, the selection unit 28 selects the hull shape corresponding to the bluntness coefficient B f value having the smaller resistance increase coefficient K AW value, and outputs the hull shape corresponding to this to the output unit 4 (step 1808). Then, a series of processing is completed.

以上、詳細に説明したように、本実施形態によれば、相互関係設定、抵抗増加係数KAW値算出、修正、修正抵抗増加係数KAW値算出、選択の各機能がルーチン化されて各々がサブルーチンもしくはサブプログラムとして実現され、これらをたとえば汎用のPC(パーソナル・コンピュータ)に搭載させて実行させることで、汎用コンピュータであってもこれらサブルーチンもしくはサブプログラムによってそれぞれの機能を達成することができる。 As described above in detail, according to the present embodiment, the functions of mutual relationship setting, resistance increase coefficient K AW value calculation, correction, correction resistance increase coefficient K AW value calculation, and selection are routinely performed. The functions are realized as subroutines or subprograms, and these functions can be achieved by these subroutines or subprograms even if they are installed on a general-purpose PC (Personal Computer) and executed.

なお、本発明は上述した各実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

また、上述したものは本発明に係る技術思想を具現化するための実施形態の一例を示したにすぎないものであり、他の実施形態でも本発明に係る技術思想を適用することが可能である。   Further, the above is merely an example of an embodiment for realizing the technical idea according to the present invention, and the technical idea according to the present invention can be applied to other embodiments. is there.

さらにまた、本発明を用いて生産される装置、方法、システムが、その2次的生産品に登載されて商品化された場合であっても、本発明の価値は何ら減ずるものではない。   Furthermore, even if the apparatus, method, and system produced using the present invention are listed and commercialized as a secondary product, the value of the present invention is not reduced at all.

本発明によれば、特に船舶の形状によってはブラントネス係数を下げることで却って波浪中抵抗が増大してしまう範囲に対しても有効に波浪中抵抗の低減を図る場合も含めて、波浪中抵抗増加低減を最適化することが可能となるので、船舶産業全般に対して大きな有益性をもたらすものである。   According to the present invention, especially in the case where the resistance in the wave is effectively reduced even in a range where the resistance in the wave is increased by lowering the bluntness coefficient depending on the shape of the ship, the resistance in the wave is increased. Since the reduction can be optimized, it has great benefits for the entire shipping industry.

本発明にいたる技術的な調査・検討事項に係る反射波のための座標系を概略的に示した図である。It is the figure which showed roughly the coordinate system for the reflected wave which concerns on the technical investigation and examination matter which leads to this invention. 本発明にいたる技術的な調査・検討事項に係る反射波に基づく抵抗増加の速度影響項(正面向波中でのコンテナ船で、ブラントネス係数B=0.0585の場合)を概略的に示した図である。The figure which showed roughly the speed influence term of the resistance increase based on the reflected wave which concerns on the technical investigation and examination matter which leads to this invention (in the case of a container ship in the front direction wave, Brantness coefficient Bf = 0.0585) It is. 本発明にいたる技術的な調査・検討事項に係る反射波に基づく抵抗増加の速度影響項(傾波中でのコンテナ船で、ブラントネス係数B=0.267の場合)を概略的に示した図である。The figure which showed roughly the speed influence term of the resistance increase based on the reflected wave which concerns on the technical investigation and examination matter which leads to the present invention (in the case of the container ship in the inclination wave, the Brantness coefficient B f = 0.267) is there. 本発明にいたる技術的な調査・検討事項に係る反射波に基づく抵抗増加の速度影響項(正面向波中での自動車運搬船、ブラントネス係数B=0.0777の場合)を概略的に示した図である。The figure which showed roughly the speed influence term of the resistance increase based on the reflected wave which concerns on the technical investigation and examination matter leading to the present invention (in the case of the car carrier in the front direction wave, the Brantness coefficient B f = 0.0777) is there. 本発明にいたる技術的な調査・検討事項に係る反射波に基づく抵抗増加の速度影響項(正面向波中での撤積船、ブラントネス係数B=0.412の場合)を概略的に示した図である。The figure which showed roughly the speed influence term of the resistance increase based on the reflected wave which concerns on the technical investigation and examination matter leading to the present invention (in the case of the demolition ship in the front direction wave, Brantness coefficient B f = 0.412) is there. 本発明にいたる技術的な調査・検討事項に係わる反射波に基づく抵抗増加の速度影響係数を概略的に示した図である。It is the figure which showed roughly the speed influence coefficient of the resistance increase based on the reflected wave concerning the technical investigation and examination matter which leads to this invention. 本発明にいたる技術的な調査・検討事項に係る修正を行い、表1に示すコンテナ船に対して、正面向波中での抵抗増加(フルード数Fn =0.247、α=0degの場合)を概略的に示した図である。Modifications related to technical investigations and considerations leading to the present invention were made, and the resistance increase in the heading wave for the container ship shown in Table 1 (in case of Froude number F n = 0.247, α = 0deg) It is the figure shown schematically. 本発明にいたる技術的な調査・検討事項に係る修正を行い、表1に示すコンテナ船に対して、正面向波中での抵抗増加(フルード数Fn =0.200、α=0degの場合)を概略的に示した図である。Make the corrections according to technical investigation and consideration leading to the present invention, with respect to container ship shown in Table 1, an increase in resistance in front Konami (the Froude number F n = 0.200, the case of alpha = 0 deg) It is the figure shown schematically. 本発明にいたる技術的な調査・検討事項に係る修正を行い、表1に示すコンテナ船に対して、正面向波中での抵抗増加(フルード数Fn =0.247、α=40degの場合)を概略的に示した図である。Modifications related to technical investigations and considerations leading to the present invention were made, and the resistance increase in the head-to-side wave for the container ship shown in Table 1 (in the case of Froude number F n = 0.247, α = 40 deg) It is the figure shown schematically. 本発明の趣旨に基づく修正を加えた、ブラントネス係数Bと反射波に基づく抵抗増加係数KAWの関係を示した図である。With modifications based on the spirit of the present invention and shows the relationship between the resistance increase coefficient K AW based on the reflected wave and Burantonesu factor B f. 本発明の趣旨に基づく修正を加えた、ブラントネス係数Bと反射波に基づく抵抗増加係数KAWの関係を示した図である。With modifications based on the spirit of the present invention and shows the relationship between the resistance increase coefficient K AW based on the reflected wave and Burantonesu factor B f. 本発明の趣旨に基づく修正を加えた、ブラントネス係数Bと反射波に基づく抵抗増加係数KAWの関係を示した図である。With modifications based on the spirit of the present invention and shows the relationship between the resistance increase coefficient K AW based on the reflected wave and Burantonesu factor B f. 本発明の趣旨に基づく修正を加えた、ブラントネス係数Bと反射波に基づく抵抗増加係数KAWの関係を示した図である。With modifications based on the spirit of the present invention and shows the relationship between the resistance increase coefficient K AW based on the reflected wave and Burantonesu Factor B f. 本発明の第1の実施形態に係る波浪中抵抗増加低減を図った船舶の船舶形状の水平断面を概念的に示す図である。It is a figure which shows notionally the horizontal cross section of the ship shape of the ship which aimed at the resistance increase in waves which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波浪中抵抗増加低減を図った船舶の船舶形状の垂直断面を概念的に示す図である。It is a figure which shows notionally the vertical cross section of the ship shape of the ship which aimed at the resistance increase in waves which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波浪中抵抗増加低減を図った船舶の船舶形状の垂直断面を概念的に示す図である。It is a figure which shows notionally the vertical cross section of the ship shape of the ship which aimed at the resistance increase in waves which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る波浪中抵抗増加低減を図った船舶の船舶形状を行うためのプログラムに係る機能構成図である。It is a functional block diagram which concerns on the program for performing the ship shape of the ship which aimed at the resistance increase in waves which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るプログラムの動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the program which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

2 波浪中抵抗増加低減プログラム、3 入力部、4 出力部、20 相互関係設定部、22 抵抗増加係数KAW値算出部、24 修正部、26 修正抵抗増加係数KAW値算出部、28 選択部、201 抵抗増加係数記憶部、210 全体制御部 2 Wave resistance increase reduction program, 3 input section, 4 output section, 20 correlation setting section, 22 resistance increase coefficient K AW value calculation section, 24 correction section, 26 correction resistance increase coefficient K AW value calculation section, 28 selection section , 201 Resistance increase coefficient storage unit, 210 Overall control unit

Claims (6)

船体の次式で定義される反射波に基づく抵抗増加係数KAW
AW=B・α・(1+α2)
:ブラントネス係数
α:喫水影響項
1+α2 :速度影響項
とブラントネス係数Bの関係において、
ブラントネス係数Bが0.04〜0.187となる船体形状を、該ブラントネス係数Bが0.12〜0.32の範囲になるように再設定し、抵抗増加係数KAWを低く抑えたことを特徴とする波浪中抵抗増加低減を図った船舶の形状設計方法。
Resistance increase coefficient K AW based on the reflected wave defined by the following equation of the hull
K AW = B f・ α 1・ (1 + α 2 )
B f : Bluntness coefficient α 1 : Drafting effect term
1 + α 2 : In the relationship between the velocity effect term and the brandtness coefficient B f
Burantonesu factor B f is a hull shape which is 0.04 to 0.187, the Burantonesu factor B f is reset to be in the range of 0.12 to 0.32, with reduced resistance increase coefficient K AW low A ship shape design method that aims to reduce and increase resistance in waves.
ブラントネス係数Bと反射波に基づく抵抗増加係数KAWの関係を設定する相互関係設定ステップと、船体形状から算出されるブラントネス係数B値を前記相互関係ステップの設定に当てはめ抵抗増加係数KAW値を求める抵抗増加係数KAW値算出ステップと、前記船体形状を変え前記ブラントネス係数B値を修正する修正ステップと、この修正ステップで修正された修正ブラントネス係数B値を前記相互関係ステップの設定に当てはめ修正抵抗増加係数KAW値を求める修正抵抗増加係数KAW値算出ステップと、この修正抵抗増加係数KAW値算出ステップで求められた修正抵抗増加係数KAW値と前記抵抗増加係数KAW値算出ステップで求められた前記抵抗増加係数KAW値を比較し、抵抗増加係数KAW値が小さい方のブラントネス係数B値を示す船体形状を選択する選択ステップを備えた波浪中抵抗増加低減を図った船舶の形状設計方法。 A correlation setting step for setting the relationship between the brandness coefficient B f and the resistance increase coefficient K AW based on the reflected wave, and a bluntness coefficient B f value calculated from the hull shape is applied to the setting of the correlation step to increase the resistance increase coefficient K AW and resistance increase coefficient K AW value calculation step of obtaining a value, and modifying step of modifying the Burantonesu coefficient B f value changing the hull shape, the modified modified Burantonesu coefficient B f values in this modification step of the correlation step a modified resistance increase coefficient K AW value calculation step of obtaining a correction resistance increase coefficient K AW values fit to set the resistance increase coefficient K with modified resistance increase coefficient K AW value obtained by this correction resistance increase coefficient K AW value calculation step comparing the resistance increase coefficient K AW value obtained by AW value calculation step, the resistance increase coefficient K AW value Shape design method of the ship which attained Waves resistance increase reduced with a selection step of selecting a hull showing the Burantonesu coefficient B f value again side. 前記相互関係設定ステップで設定される関係は、
(図中、KAW:抵抗増加係数(無次元)、B:ブラントネス係数(無次元)、F:フルード数(無次元))
もしくは
(図中、ρ:流体密度(kg/m) 、g:重力加速度(m/s)、ζa:波の振幅(m)、B:船幅(m)、KAW:抵抗増加係数(無次元)、B:ブラントネス係数(無次元)、F:フルード数(無次元))
もしくは
(図中記号は同上)
もしくは
(図中記号は同上)
もしくは
(表中、F:フルード数(無次元)、ρ:流体密度(kg/m

g:重力加速度(m/s)、 ζa:波の振幅(m)、B:船幅(m)、
:ブラントネス係数(無次元)、KAW:抵抗増加係数(無次元))
もしくは
(表中記号は同上)
を含む図表で表されるものとし、この各々の図表において0.3以下のブラントネス係数B値及びこれに関係した抵抗増加係数KAW値、もしくは0.3・船幅(m)以下のB・B値(m)及びこれに関係した0.5ρ・g・ζa・B・KAW値(kN)も表示したことを特徴とする請求項2記載の波浪中抵抗増加低減を図った船舶の形状設計方法。
The relationship set in the correlation setting step is
(In the figure, K AW : resistance increase coefficient (non-dimensional), B f : bluntness coefficient (non-dimensional), F n : fluid number (non-dimensional))
Or
(In the figure, ρ: fluid density (kg / m 3 ), g: gravitational acceleration (m / s 2 ), ζa: wave amplitude (m), B: ship width (m), K AW : resistance increase coefficient ( dimensionless), B f: Burantonesu coefficient (dimensionless), F n: Froude number (dimensionless))
Or
(The symbols in the figure are the same as above.)
Or
(The symbols in the figure are the same as above.)
Or
(In the table, F n : Froude number (dimensionless), ρ: Fluid density (kg / m 3 )
,
g: gravitational acceleration (m / s 2 ), ζa: wave amplitude (m), B: ship width (m),
B f : Brandtness coefficient (non-dimensional), K AW : Resistance increase coefficient (non-dimensional))
Or
(The symbols in the table are the same as above.)
In each of these charts, the Brantness coefficient B f value of 0.3 or less and the resistance increase coefficient K AW value related thereto or B of 0.3 · ship width (m) or less. The B f value (m) and the related 0.5ρ · g · ζa 2 · B · K AW value (kN) are also displayed, and the resistance increase in waves is reduced according to claim 2. Ship shape design method.
ブラントネス係数Bが0.04〜0.187の船体の少なくとも喫水線近傍より上部に、ブラントネス係数Bが0.12〜0.32となる船首装着物を装着し波浪中抵抗を低減したことを特徴とする波浪中抵抗増加低減を図った船舶。 The top than at least the water line near the hull Burantonesu factor B f is from 0.04 to 0.187, that Burantonesu factor B f is decreased mounting and Waves resistor bow wearable object to be from 0.12 to 0.32 A ship designed to reduce and increase resistance in the waves. ブラントネス係数Bが、0.04〜0.187の痩型船の船首部形状の少なくとも喫水線近傍より上部部分を肥大させ、ブラントネス係数Bを0.12〜0.32としたことを特徴とする波浪中抵抗増加低減を図った船舶。 The bluntness coefficient Bf is enlarged from at least the vicinity of the waterline of the bow shape of a dredger with a dredge of 0.04 to 0.187, and the bluntness coefficient Bf is set to 0.12 to 0.32. A ship designed to reduce and increase resistance in waves. コンピュータを、
ブラントネス係数Bと反射波に基づく抵抗増加係数KAWとの関係を設定して抵抗増加係数記憶手段に記憶させる相互関係設定手段と、
船体形状から算出されるブラントネス係数B値を前記抵抗増加係数記憶手段から読み出した前記相互関係設定に係る情報に当てはめることにより抵抗増加係数KAW値を求める抵抗増加係数KAW値算出手段と、
前記船体形状を変え前記ブラントネス係数B値を修正する修正手段と、
この修正手段で修正された修正ブラントネス係数B値を前記抵抗増加係数記憶手段から読み出した前記相互関係設定に係る情報に当てはめることにより修正抵抗増加係数KAW値を求める修正抵抗増加係数KAW値算出手段と、
この修正抵抗増加係数KAW値算出手段で求められた修正抵抗増加係数KAW値と前記抵抗増加係数KAW値算出手段で求められた前記抵抗増加係数KAW値を比較し、抵抗増加係数KAW値が小さい方のブラントネス係数B値を示す船体形状を選択する選択手段と
として機能させるためのプログラム。
Computer
Correlation setting means for setting the relationship between the brandness coefficient B f and the resistance increase coefficient K AW based on the reflected wave and storing it in the resistance increase coefficient storage means;
And resistance increase coefficient K AW value calculating means for determining the resistance increase coefficient K AW values by fitting the Burantonesu coefficient B f value calculated from the hull shape on the correlation according to the setting information read from the resistance increase coefficient storing means,
Correcting means for changing the hull shape and correcting the bluntness coefficient B f value;
Modified modified Burantonesu coefficient B the f value determining a correction resistance increase coefficient K AW values by fitting the information relating to the correlation set read from the resistance increase coefficient storage means modifying the resistance increase coefficient K AW value in this correction means A calculation means;
Comparing the resistance increase coefficient K AW value obtained by modifying the resistance increase coefficient K AW value obtained by this correction resistance increase coefficient K AW value calculating means and the resistance increase coefficient K AW value calculating means, the resistance increase factor K program for functioning as a selecting means for selecting the hull shape shown towards the Burantonesu coefficient B f value of AW value is small.
JP2008137874A 2008-05-27 2008-05-27 Ship shape design method, ship and program for increasing resistance in waves Expired - Fee Related JP5540303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008137874A JP5540303B2 (en) 2008-05-27 2008-05-27 Ship shape design method, ship and program for increasing resistance in waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008137874A JP5540303B2 (en) 2008-05-27 2008-05-27 Ship shape design method, ship and program for increasing resistance in waves

Publications (2)

Publication Number Publication Date
JP2009286166A true JP2009286166A (en) 2009-12-10
JP5540303B2 JP5540303B2 (en) 2014-07-02

Family

ID=41455821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008137874A Expired - Fee Related JP5540303B2 (en) 2008-05-27 2008-05-27 Ship shape design method, ship and program for increasing resistance in waves

Country Status (1)

Country Link
JP (1) JP5540303B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214075A (en) * 2011-03-31 2012-11-08 National Maritime Research Institute Hull construction and ship for reducing resistance increase in wave by overflow system
CN102849178A (en) * 2011-06-29 2013-01-02 大连船舶重工集团有限公司 Method for acquiring container ship resistance
JP2021176733A (en) * 2020-05-08 2021-11-11 剛太 山内 Hull of marine floating structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136686A (en) * 1995-11-16 1997-05-27 Ishikawajima Harima Heavy Ind Co Ltd Low-resistant boat form

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136686A (en) * 1995-11-16 1997-05-27 Ishikawajima Harima Heavy Ind Co Ltd Low-resistant boat form

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012047133; '肥大船船首形状の研究-船首ブラントネスの影響について-' 日本鋼管技報 NO.66, 1975, 67-78ページ *
JPN6012047139; '肥大船の波浪中抵抗増加に及ぼす船型要素の影響' 石川島播磨技報 Vol.45 No.4, 200512, 147-151ページ *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214075A (en) * 2011-03-31 2012-11-08 National Maritime Research Institute Hull construction and ship for reducing resistance increase in wave by overflow system
CN102849178A (en) * 2011-06-29 2013-01-02 大连船舶重工集团有限公司 Method for acquiring container ship resistance
JP2021176733A (en) * 2020-05-08 2021-11-11 剛太 山内 Hull of marine floating structure

Also Published As

Publication number Publication date
JP5540303B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
Liu et al. Impacts of the rudder profile on manoeuvring performance of ships
JP5540303B2 (en) Ship shape design method, ship and program for increasing resistance in waves
Kandasamy et al. Multi-fidelity optimization of a high-speed foil-assisted semi-planing catamaran for low wake
JP6414989B2 (en) Inwardly inclined bow shape, ship having inwardly inclined bow shape, and inwardly inclined bow shape design method
JP2002347688A (en) Enlarged ship
WO2017033921A1 (en) Ship
JP5357466B2 (en) Liquefied gas carrier
JP5638215B2 (en) Ship with low wind pressure resistance and its design method
KR20090051010A (en) Vessel provided with a foil below the waterline
Fonseca et al. Comparison between experimental and numerical results of the nonlinear vertical ship motions and loads on a containership in regular waves
JP2006224811A (en) Bow shape of ship
De Jong et al. The broaching of a fast rescue craft in following seas
JP7093983B2 (en) Bow shape, ship, and bow shape design method
KR102250485B1 (en) A ship
JP2007118950A (en) Enlarged vessel
JP7012986B2 (en) How to design a bow shape with an inwardly inclined shape, a ship with an inwardly inclined shape, and a bow shape with an inwardly inclined shape.
Bodger et al. Vibration control by propeller design
Senjanović et al. Effective stiffness of the engine room structure in large container ships
CN107054599B (en) Stern rectification structure and ship
Lau et al. A novel CFD approach for the prediction of ride control system response on wave-piercing catamaran in calm water
CN110114266B (en) Bow shape
Rotteveel et al. Optimization of ships in shallow water with viscous flow computa-tions and surrogate modeling
Silva-Campillo et al. Effect of bow hull form on the buckling strength assessment of the corner bracket connection
JP2020164037A (en) Vessel
JP6737900B2 (en) Bow shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140409

R150 Certificate of patent or registration of utility model

Ref document number: 5540303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees