JP2009285545A - Method of mixing powdered polymer flocculant - Google Patents

Method of mixing powdered polymer flocculant Download PDF

Info

Publication number
JP2009285545A
JP2009285545A JP2008138997A JP2008138997A JP2009285545A JP 2009285545 A JP2009285545 A JP 2009285545A JP 2008138997 A JP2008138997 A JP 2008138997A JP 2008138997 A JP2008138997 A JP 2008138997A JP 2009285545 A JP2009285545 A JP 2009285545A
Authority
JP
Japan
Prior art keywords
polymer flocculant
mixing
powdery polymer
powder
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008138997A
Other languages
Japanese (ja)
Other versions
JP5202107B2 (en
Inventor
Hiroji Hotta
浩次 堀田
Takeshi Aoyama
武嗣 青山
Hidetoshi Watabe
英俊 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MT AquaPolymer Inc
Original Assignee
MT AquaPolymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MT AquaPolymer Inc filed Critical MT AquaPolymer Inc
Priority to JP2008138997A priority Critical patent/JP5202107B2/en
Publication of JP2009285545A publication Critical patent/JP2009285545A/en
Application granted granted Critical
Publication of JP5202107B2 publication Critical patent/JP5202107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Accessories For Mixers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To mix two or more types of powdered polymer flocculants in a powder state to obtain a powdered polymer flocculant. <P>SOLUTION: A mixing method comprises arranging powder discharge outlets of at least two powder quantitative feeders 12a and 12b upstream of a screw type mixer 100 in the extruding direction of the screw, supplying individual powdered polymer flocculants from the powder discharge outlets of at least two of the powder quantitative feeders continuously to the screw type mixer 100 and mixing the powdered polymer flocculants while carrying downstream at least two types of powdered polymer flocculants by the screw of the screw mixer 100 and taking out the mixed powdered polymer flocculant from a downstream discharge outlet. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、粉末状高分子凝集剤を安定して連続的に均一混合する粉末状高分子凝集剤の混合方法に関する。   The present invention relates to a powdery polymer flocculant mixing method for stably and uniformly mixing a powdery polymer flocculant.

高分子凝集剤は、高分子量の水溶性ポリマーからなり、水中の浮遊微粒子を効率良く凝集除去できるので、各種汚水、廃水等の清澄化に多用されている。   The polymer flocculant is made of a high-molecular weight water-soluble polymer, and can efficiently agglomerate and remove suspended fine particles in water.

高分子凝集剤は、汚水、廃液、下水等の多様化、及び日々新規に開発される機能の異なる多種類の排水処理設備、及び装置にきめ細かく対応する必要があるため、高分子凝集剤の銘柄区分の細分化による多品種生産を余儀なくされている。   The polymer flocculant is a brand of polymer flocculants because it needs to respond to diversification of waste water, waste liquid, sewage, etc., and various types of wastewater treatment facilities and equipment that are newly developed every day with different functions. It is forced to produce a variety of products by segmentation.

従来高分子凝集剤のメーカーは各種モノマーで構成されるモノマー混合物を重合開始剤量、重合開始剤の種類、重合温度、重合方式等の重合条件を選択することにより、得られる高分子凝集剤の分子量を調整することで、上記要求に答えている。   Conventional manufacturers of polymer flocculants select the polymerization conditions such as the amount of polymerization initiator, type of polymerization initiator, polymerization temperature, polymerization method, etc. The above requirement is answered by adjusting the molecular weight.

高分子凝集剤の銘柄区分は、高分子凝集剤を構成するモノマーの組成と共に、同じモノマー組成であっても0.5%塩粘度のみが異なる銘柄を数銘柄ずつ商品としてラインアップする必要がある。   In the brand classification of polymer flocculants, it is necessary to line up several brands of brands that differ only in the 0.5% salt viscosity, even with the same monomer composition, together with the composition of the monomers constituting the polymer flocculant. .

従来は、各銘柄ごとに重合条件を変更し、厳しい製造管理をすることで上記要求に対応していた。   Conventionally, the above requirements have been met by changing the polymerization conditions for each brand and carrying out strict manufacturing control.

高分子凝集剤の銘柄区分は、通常0.5%塩粘度で細分化されており、予定の0.5%塩粘度を実現するために、光照射をはじめとする重合条件を厳しく管理する必要があり、工業的に製造管理するには困難が伴っている。   The brand classification of polymer flocculants is usually subdivided with 0.5% salt viscosity, and it is necessary to strictly control the polymerization conditions including light irradiation in order to achieve the planned 0.5% salt viscosity. Therefore, it is difficult to industrially manage production.

製品カタログには0.2%溶解粘度と表記されている場合があるが、実際には0.5%塩粘度の結果を換算して0.2%溶解粘度としている。下記表1はMTアクアポリマー株式会社の製品カタログの抜粋である。   Although it may be written as 0.2% melt viscosity in the product catalog, the result of 0.5% salt viscosity is actually converted to 0.2% melt viscosity. Table 1 below is an excerpt from the product catalog of MT Aqua Polymer Co., Ltd.

Figure 2009285545
Figure 2009285545

同じ単量体組成で、光照射における重合開始剤の種類と強度とを変化させることにより、0.5%塩粘度の異なる高分子凝集剤を製造した例があるが(特許文献1参照)、重合条件を厳しく管理し、0.5%塩粘度をコントロールした重合を行うのは工業的に困難である。   There is an example in which a polymer flocculant having a different 0.5% salt viscosity is produced by changing the kind and strength of the polymerization initiator in the light irradiation with the same monomer composition (see Patent Document 1). It is industrially difficult to carry out polymerization while strictly controlling the polymerization conditions and controlling the 0.5% salt viscosity.

また、同じ単量体組成で、光照射における重合開始剤の種類と強度を変化させて、固有粘度を変えて製造させた例(特許文献2参照)があるが、光重合開始剤を単量体混合物に均一に分散させないと、高分子重合体の粘度のバラツキが大きくなるなど、製造上の問題がある。   In addition, there is an example (see Patent Document 2) in which the intrinsic viscosity is changed by changing the kind and strength of the polymerization initiator in the light irradiation with the same monomer composition, but the photopolymerization initiator is a single amount. If it is not uniformly dispersed in the body mixture, there are problems in production, such as a large variation in viscosity of the polymer.

一方、高分子凝集剤を混合して所望の溶解粘度の高分子凝集剤を製造することも行われている。混合する装置としては、遊星運動型混合機、空気による流動混合装置、容器回転型混合装置などが用いられているが、いずれも粉体をバッチ式で混合するものであり、且つ、混合時間が長時間必要であり、しかも後述する比較例で示されるように、短時間で均一に混合することは困難で、工業的な生産性が低い。   On the other hand, a polymer flocculant having a desired solution viscosity is produced by mixing polymer flocculants. As a mixing device, a planetary motion type mixer, a fluid mixing device using air, a container rotation type mixing device, and the like are used, but all mix powder in a batch type and have a mixing time. It is necessary for a long time, and as shown in a comparative example described later, it is difficult to mix uniformly in a short time, and industrial productivity is low.

また、いずれもバッチ式の混合装置であるため、混合前の製品に端数が発生した場合は廃棄する必要があったり、バッチ式混合装置の混合性能上最適仕込み量が存在しており、常に変動する出荷量に対応する必要量だけの生産が不可能で、不良在庫が発生している。   In addition, since both are batch-type mixing devices, if fractions occur in the product before mixing, it must be discarded, or there is an optimum charge amount due to the mixing performance of the batch-type mixing device, and it is constantly changing. It is impossible to produce only the necessary amount corresponding to the shipping amount to be produced, resulting in defective inventory.

従って、2種以上の粉末状高分子凝集剤を粉末の状態で連続的に混合し、所定の水溶液粘度を与える粉末状高分子凝集剤の連続的混合方法は知られていない。
特開2001−335603号公報(実施例1−6) 特開平4−57682号公報(実施例1−3)
Therefore, a continuous mixing method of a powdery polymer flocculant in which two or more powdery polymer flocculants are continuously mixed in a powder state to give a predetermined aqueous solution viscosity is not known.
JP 2001-335603 A (Example 1-6) JP-A-4-57682 (Example 1-3)

本発明の目的は、2種以上の粉末状高分子凝集剤を粉末の状態で連続的に混合する粉末状高分子凝集剤の混合方法であって、極めて効率的に混合することができる方法を提供することにある。   An object of the present invention is a mixing method of a powdery polymer flocculant in which two or more kinds of powdery polymer flocculants are continuously mixed in a powder state, and a method capable of mixing extremely efficiently. It is to provide.

上記目的を達成する本発明は、以下に記載するものである。
〔1〕 所定濃度の水溶液の粘度が異なる少なくとも2種類の粉末状高分子凝集剤を粉末の状態で混合する粉末状高分子凝集剤の混合方法であって、スクリュー式混合機のスクリュー押し出し方向の上流側に少なくとも2台の粉体定量供給装置の粉体供給口をそれぞれ設け、前記少なくとも2台の粉体定量供給装置の粉体供給口からそれぞれ粉末状高分子凝集剤を連続的に所定供給速度でスクリュー式混合機に供給すると共にスクリュー式混合機のスクリューで少なくとも2種類の粉末状高分子凝集剤を下流側に搬送しながら前記少なくとも2種類の粉末状高分子凝集剤を混合して下流側に設けた吐出口から少なくとも2種類の混合した粉末状高分子凝集剤を取り出すことを特徴とする粉末状高分子凝集剤の混合方法。
The present invention for achieving the above object is described below.
[1] A method for mixing powdery polymer flocculants in which at least two kinds of powdery polymer flocculants having different viscosities of an aqueous solution of a predetermined concentration are mixed in the form of a powder, and The powder supply ports of at least two powder quantitative supply devices are provided on the upstream side, respectively, and a predetermined amount of powdery polymer flocculant is continuously supplied from the powder supply ports of the at least two powder quantitative supply devices. The at least two types of powdery polymer flocculants are mixed downstream while being fed to the screw-type mixer at a speed and at least two types of powdery polymer flocculants are conveyed downstream by the screw of the screw-type mixer. A method for mixing a powdery polymer flocculant, wherein at least two kinds of mixed powdery polymer flocculants are taken out from a discharge port provided on the side.

本発明の粉末状高分子凝集剤の混合方法によれば、2種以上の粉末状高分子凝集剤を、粉末の状態で連続的に均一混合できるため、粉末状高分子凝集剤の重要な品質項目である0.5%塩粘度を予め設定した値とする粉末状高分子凝集剤混合物を容易に得ることができる。   According to the mixing method of the powdery polymer flocculant of the present invention, since two or more kinds of powdery polymer flocculants can be continuously and uniformly mixed in a powder state, the quality of the powdery polymer flocculant is important. It is possible to easily obtain a powdery polymer flocculant mixture having an item 0.5% salt viscosity as a preset value.

以下、本発明を図面を参照にして詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明の粉末状高分子凝集剤の混合方法に用いるスクリュー式混合機の一例を示すものである。このスクリュー式混合機100は、円筒状のケーシング2内に螺旋状の回転羽根4を形成したスクリュー6が収納されている。このスクリュー6の回転軸8は、モータ10の回転力により回転する。前記スクリュー式混合機100のスクリュー押し出し方向Xの上流側には、複数(本例においては2台)の粉体定量供給装置12a、12bが設置されている。粉体定量供給装置12a、12bにおいて、13a、13bは混合するべき粉末状高分子凝集剤をそれぞれ投入するホッパーである。前記ホッパー13a、13bの下端には、フィーダ14a、14bが取り付けられている。このフィーダ14a、14bは定量的且つ連続的にホッパー12a、12b内の粉末状高分子凝集剤を供給管16a、16bに供給する。供給管16a、16bはフィーダ14a、14bの出口側にその一端側が連結された供給管で、他端側の供給口18a、18bは前記ケーシング2の上流側に連結されている。   FIG. 1 shows an example of a screw mixer used in the method for mixing a powdery polymer flocculant of the present invention. In the screw mixer 100, a screw 6 in which a spiral rotating blade 4 is formed in a cylindrical casing 2 is accommodated. The rotating shaft 8 of the screw 6 is rotated by the rotational force of the motor 10. A plurality (two in this example) of powder quantitative supply devices 12 a and 12 b are installed on the upstream side of the screw-type mixer 100 in the screw extrusion direction X. In the powder quantitative supply devices 12a and 12b, reference numerals 13a and 13b denote hoppers for respectively charging powdery polymer flocculants to be mixed. Feeders 14a and 14b are attached to the lower ends of the hoppers 13a and 13b. The feeders 14a and 14b quantitatively and continuously supply the powdery polymer flocculant in the hoppers 12a and 12b to the supply pipes 16a and 16b. The supply pipes 16 a and 16 b are supply pipes connected at one end to the outlet sides of the feeders 14 a and 14 b, and the supply ports 18 a and 18 b at the other end are connected to the upstream side of the casing 2.

なお、20はケーシング2の下流側に連結された吐出管で、混合された粉末状高分子凝集剤混合物は吐出管20の下端の吐出口22から外部に取り出される。   Reference numeral 20 denotes a discharge pipe connected to the downstream side of the casing 2, and the mixed powdery polymer flocculant mixture is taken out from a discharge port 22 at the lower end of the discharge pipe 20.

前記供給口18a、18bは、ケーシング2の可能な限り上流側に設けることが好ましく、下流側に設ける程混合効率が低下する。供給口18a、18bは、少なくともケーシング2の中央よりも上流側に設けることが好ましい。   The supply ports 18a and 18b are preferably provided on the upstream side of the casing 2 as much as possible, and the mixing efficiency decreases as the supply ports 18a and 18b are provided on the downstream side. The supply ports 18 a and 18 b are preferably provided at least upstream of the center of the casing 2.

ホッパー13a、13b内の粉末状高分子凝集剤はフィーダ14a、14bにより、所定の流量で連続的に供給管16a、16bに送られ、これらを通ってケーシング2内に送られる。ケーシング2内に送られた粉末状高分子凝集剤は、ケーシング2内で回転する回転羽根4により下流(矢印X方向)に送られると共に粉末状高分子凝集剤同士が混合される。ケーシング2内で充分に混合された粉末状高分子凝集剤は、ケーシング2内の下流側に設けられた吐出管20を通り、吐出口22から外部に取り出される。   The powdery polymer flocculant in the hoppers 13a and 13b is continuously fed to the supply pipes 16a and 16b at a predetermined flow rate by the feeders 14a and 14b, and is fed into the casing 2 through them. The powdery polymer flocculant sent into the casing 2 is sent downstream (in the direction of the arrow X) by the rotating blade 4 rotating in the casing 2 and the powdery polymer flocculant is mixed. The powdery polymer flocculant sufficiently mixed in the casing 2 passes through the discharge pipe 20 provided on the downstream side in the casing 2 and is taken out from the discharge port 22 to the outside.

粉末状高分子凝集剤の混合比は、フィーダ14a、14bの供給速度により決定される。   The mixing ratio of the powdery polymer flocculant is determined by the feeding speed of the feeders 14a and 14b.

なお、上記例においては、粉体定量供給装置12a、12bを2つ設けたが、これに限られず、混合する粉末状高分子凝集剤の数に応じて粉体定量供給装置を設けることができる。   In the above example, two powder quantitative supply devices 12a and 12b are provided. However, the present invention is not limited to this, and a powder quantitative supply device can be provided according to the number of powdery polymer flocculants to be mixed. .

更に、スクリュー式混合機は、一軸式混合機を用いたが、ケーシング内に2本以上のスクリューを有する多軸式混合機を用いても良い。   Furthermore, although the single screw type mixer was used as the screw type mixer, a multi screw type mixer having two or more screws in the casing may be used.

粉末状高分子凝集剤としては、汚泥、廃水の凝集脱水処理に用いられている高分子凝集剤のうち、粉末状のものが使用できる。カチオン性、アニオン性、ノニオン性、両性などいずれのものも使用できる。   As the powdery polymer flocculant, a powdery one can be used among the polymer flocculants used in the coagulation and dehydration treatment of sludge and wastewater. Any of cationic, anionic, nonionic and amphoteric can be used.

使用する粉末状高分子凝集剤の平均粒子径としては、特に制限はない。水に対する溶解の容易性の観点から平均粒子径は100〜200μmが好ましい。分子量も特に制限はない。   There is no restriction | limiting in particular as an average particle diameter of the powdery polymer flocculent to be used. The average particle size is preferably 100 to 200 μm from the viewpoint of ease of dissolution in water. The molecular weight is not particularly limited.

なお、高分子凝集剤として、一般的に粉末状の他、液状、エマルション状のものが市販されている。粉末状高分子凝集剤は、液状のものやエマルション状のものに比べて、保存安定性が良く、保存時に性能が劣化しにくい利点がある。   In addition, as a polymer flocculant, in general, in addition to powder, liquid and emulsion are commercially available. The powdery polymer flocculant has an advantage that the storage stability is better than the liquid or emulsion type, and the performance is not easily deteriorated during storage.

2種類の粉末状高分子凝集剤を混合する場合、その混合比率(質量比)は、90/10〜10/90であることが好ましく、70/30〜30/70であることがより好ましい。一方が90質量%を超える場合は、混合効果が十分には発現出来ない虞がある。   When two kinds of powdery polymer flocculants are mixed, the mixing ratio (mass ratio) is preferably 90/10 to 10/90, and more preferably 70/30 to 30/70. When one side exceeds 90 mass%, there exists a possibility that a mixing effect cannot fully be expressed.

また、使用時に粉末状高分子凝集剤を溶解して用いることにより溶液状態の期間を短くできるため、凝集剤水溶液の性能の劣化を抑制できる。更に、粉末であるため、輸送費が安く、貯蔵に要する場所も少なくて済むなどの利点がある。   Moreover, since the period of a solution state can be shortened by melt | dissolving and using a powdery polymer flocculant at the time of use, degradation of the performance of flocculant aqueous solution can be suppressed. Furthermore, since it is a powder, there are advantages such as low transportation costs and a small number of places required for storage.

実施例1
図1に示す粉末状高分子凝集剤連続混合装置を用いて、2種類の粉末状高分子凝集剤を混合した。
Example 1
Two kinds of powdery polymer flocculants were mixed using the powdery polymer flocculent continuous mixing apparatus shown in FIG.

粉末状高分子凝集剤連続混合装置100は、直径20cm、長さ2mの回転羽根4をケーシング2内に収納しており、回転羽根のピッチは10cmであった。回転羽根4の回転数を60回/分に保った。   The powdery polymer flocculant continuous mixing apparatus 100 accommodates the rotary blades 4 having a diameter of 20 cm and a length of 2 m in the casing 2, and the pitch of the rotary blades was 10 cm. The rotation speed of the rotary blade 4 was kept at 60 times / minute.

粉体定量供給装置12aに粉末状高分子凝集剤A(ジメチルアミノエチルアクリレートの塩化メチル4級化物=60mol%/アクリルアミド=40mol%の共重合体、0.5%塩粘度29.0(mPa/s))を投入し、供給速度5.01kg/分で供給管16aに供給した。同時に粉末状高分子凝集剤B(ジメチルアミノエチルメタクリレートの塩化メチル4級化物=100mol%の重合体、0.5%塩粘度11.8(mPa/s))を投入し、供給速度11.69kg/分で供給管16bに供給した。   The powdered polymer flocculant A (methyl chloride quaternized product of dimethylaminoethyl acrylate = 60 mol% / acrylamide = 40 mol%, 0.5% salt viscosity 29.0 (mPa / s)) was supplied and supplied to the supply pipe 16a at a supply rate of 5.01 kg / min. At the same time, powdery polymer flocculant B (dimethylaminoethyl methacrylate methyl chloride quaternized compound = 100 mol% polymer, 0.5% salt viscosity 11.8 (mPa / s)) was charged, and the supply rate was 11.69 kg. / Min. To the supply pipe 16b.

その後、スクリュー式混合機の吐出口から取り出される混合物をサンプリングしサンプル1−1〜1−6とした。これらのサンプルの乾燥残分、0.5%塩粘度を測定し、混合率を算出した。   Thereafter, the mixture taken out from the discharge port of the screw mixer was sampled to obtain samples 1-1 to 1-6. The dry residue and 0.5% salt viscosity of these samples were measured, and the mixing rate was calculated.

乾燥残分の測定方法
アルミカップの値量を精秤する(W1g)。風袋除去し、試料を約2.0gのアルミカップに採り精秤する(W2g)。次いで、試料を105±0.5℃の熱風循環乾燥器中で、90分間乾燥する。その後、デシケーター中で約15分間放冷し、再び精秤する(W3g)。下記式(1)
乾燥残分(wt%)=(W3g−W1g)÷W2g×100・・・(1)
により、乾燥残分を求める。
Measuring method of dry residue The amount of aluminum cup is precisely weighed (W1 g). The tare is removed, and the sample is placed in an aluminum cup of about 2.0 g and precisely weighed (W2 g). Next, the sample is dried for 90 minutes in a hot air circulating dryer at 105 ± 0.5 ° C. Thereafter, the mixture is allowed to cool in a desiccator for about 15 minutes and weighed again (W3 g). Following formula (1)
Dry residue (wt%) = (W3g−W1g) ÷ W2g × 100 (1)
To obtain the dry residue.

0.5%塩粘度の測定方法
500mlのポリビーカーに蒸留水500.0gを正確に秤採り、試薬1級の塩化ナトリウム20.8gを加え、ジャーテスターの回転数を200rpmに合わせて攪拌溶解する。アルミカップに試料2.77gを正確に秤採り、ポリビーカー中に、試料(粉末状高分子凝集剤)をママコにならないように徐々に添加する。4時間攪拌溶解後、粘度測定をする。この際、溶解途中で2時間及び3時間後に攪拌を一時停止し、羽根に付着しているゲル状物を掻き落とす。恒温水槽(25℃)中にポリビーカーを入れて、溶解液を25±0.5℃に温調後、専用粘度計を使用し粘度を測定する。専用粘度計の測定条件としては回転数60rpm、測定時間5分間、測定温度25±0.5℃、測定ローラーNo1、No2で行う。5分後の粘度計指針の目盛板の数値を小数一桁まで読み取り、下記式(2)、(3)
ローターNo1使用 0.5%塩粘度(mPa・s)=読み値×94÷乾燥残分(wt%)・・・(2)
ローターNo2使用 0.5%塩粘度(mPa・s)=読み値×5×94÷乾燥残分(wt%)・・・(3)
により溶解液の粘度の測定値を求める。
0.5% Salt Viscosity Measurement Method Accurately weigh 500.0 g of distilled water in a 500 ml poly beaker, add 20.8 g of reagent grade 1 sodium chloride, and dissolve with stirring while adjusting the rotation speed of the jar tester to 200 rpm. . 2.77 g of a sample is accurately weighed in an aluminum cup, and the sample (powdered polymer flocculant) is gradually added to a poly beaker so as not to become mamaco. Viscosity is measured after stirring and dissolving for 4 hours. At this time, stirring is temporarily stopped after 2 hours and 3 hours in the middle of dissolution, and the gel-like material adhering to the blade is scraped off. A poly beaker is placed in a thermostatic water bath (25 ° C.), and the temperature of the solution is adjusted to 25 ± 0.5 ° C., and then the viscosity is measured using a dedicated viscometer. Measurement conditions of the dedicated viscometer are 60 rpm, measurement time 5 minutes, measurement temperature 25 ± 0.5 ° C., and measurement rollers No 1 and No 2. The value on the scale plate of the viscometer pointer after 5 minutes is read to one decimal place.
Rotor No. 1 used 0.5% salt viscosity (mPa · s) = reading x 94 ÷ dry residue (wt%) (2)
Using rotor No. 2 0.5% salt viscosity (mPa · s) = reading x 5 x 94 ÷ dry residue (wt%) (3)
To determine the measured viscosity value of the solution.

混合率の測定方法
下記式(4)により、混合率を求める。
Measuring method of mixing ratio The mixing ratio is obtained by the following formula (4).

混合高分子凝集剤の0.5%塩粘度(計算値)=Aの0.5%塩粘度×Aの含有率(wt%)/100+Bの0.5%塩粘度×Bの含有率(wt%)
混合率=(0.5%塩粘度(実測値)/0.5%塩粘度(計算値))×100・・・(4)
測定結果を表2にまとめた。
0.5% salt viscosity of mixed polymer flocculant (calculated value) = 0.5% salt viscosity of A × A content (wt%) / 100 + B 0.5% salt viscosity × B content (wt %)
Mixing ratio = (0.5% salt viscosity (actual value) /0.5% salt viscosity (calculated value)) × 100 (4)
The measurement results are summarized in Table 2.

実施例2
高分子凝集剤Aの供給速度を8.35kg/分、高分子凝集剤Bの供給速度を8.35kg/分に変更した以外は、実施例1と同様の操作、測定を実施した。測定結果を表2にまとめた。
Example 2
The same operation and measurement as in Example 1 were performed except that the supply rate of the polymer flocculant A was changed to 8.35 kg / min and the supply rate of the polymer flocculant B was changed to 8.35 kg / min. The measurement results are summarized in Table 2.

実施例3
高分子凝集剤Aの供給速度を11.69kg/分、高分子凝集剤Bの供給速度を5.01kg/分にした以外は、実施例1と同様の操作、測定を実施した。 測定結果を表2にまとめた。
Example 3
The same operation and measurement as in Example 1 were carried out except that the feeding rate of the polymer flocculant A was 11.69 kg / min and the feeding rate of the polymer flocculant B was 5.01 kg / min. The measurement results are summarized in Table 2.

Figure 2009285545
Figure 2009285545

比較例1
空気による流動混合装置を用いて粉末状高分子凝集剤をバッチ式で混合した。この流動混合装置は、混合槽の下端から混合槽内に空気を吹き込み、内部の粉末状高分子凝集剤を流動状態に吹き上げることにより混合する装置である。内容積3500lの流動混合装置(エアブレンダー)の混合槽に高分子凝集剤B(ジメチルアミノエチルメタクリレートの塩化メチル4級化物の単独重合体)1285kg、高分子凝集剤A(ジメチルアミノエチルアクリレートの塩化メチル4級化物=60mol%/アクリルアミド=40mol%の共重合体)560kgを投入し、空気(空気圧=0.45Mpa以上)を18回吹き込み混合した。
Comparative Example 1
The powdery polymer flocculant was mixed batchwise using a fluid mixing device with air. This fluid mixing device is a device for mixing by blowing air into the mixing tank from the lower end of the mixing tank and blowing up the powdered polymer flocculant inside. In a mixing tank of a fluid mixing device (air blender) with an internal volume of 3500 l, polymer flocculant B (homopolymer of dimethyl quaternary methyl chloride quaternary polymer) 1285 kg, polymer flocculant A (dimethylaminoethyl acrylate chloride) 560 kg of methyl quaternized product = 60 mol% / acrylamide = 40 mol% copolymer) was charged, and air (air pressure = 0.45 Mpa or more) was blown and mixed 18 times.

18回の混合に要した時間は18分であった。サンプリングは空気吹き込み混合12回後(混合時間は12分間)、16回後、18回後に実施した。測定結果を表3にまとめた。   The time required for 18 mixings was 18 minutes. Sampling was performed 12 times after air blowing mixing (mixing time was 12 minutes), 16 times, and 18 times later. The measurement results are summarized in Table 3.

比較例2
直径が下端に向かって漸少になる円錐状攪拌槽内壁に沿って歳差運動をするスクリュー攪拌機を備えた遊星運動型混合機(ホソカワミクロン製Vナウタミキサー内容積3000l)を用いて粉末状高分子凝集剤の混合を行った。先ず、同混合機に高分子凝集剤Bを1180kg、高分子凝集剤Aを500kgを投入し、20分間混合した。
Comparative Example 2
Powder polymer using a planetary motion type mixer equipped with a screw stirrer that precesses along the inner wall of a conical stirrer whose diameter gradually decreases toward the lower end (V-Nauta mixer internal volume 3000 l made by Hosokawa Micron). The flocculant was mixed. First, 1180 kg of polymer flocculant B and 500 kg of polymer flocculant A were charged into the same mixer and mixed for 20 minutes.

サンプリングは12分後、16分後、18分後、20分後に実施した。20分後にサンプリングした混合粉末状高分子凝集剤の混合率は82.4%であり、混合不十分の製品しか得られなかった。   Sampling was performed after 12 minutes, 16 minutes, 18 minutes, and 20 minutes. The mixing rate of the mixed powdery polymer flocculant sampled after 20 minutes was 82.4%, and only a product with insufficient mixing was obtained.

測定結果を表3にまとめた。なお、同混合機の運転は自転回転数60回/分および公転回転数0.8回/分で運転した。   The measurement results are summarized in Table 3. The mixer was operated at a rotation speed of 60 times / minute and a revolution speed of 0.8 times / minute.

比較例3
図2に示すブレンダーを用いた。このブレンダーは回転軸30に取り付けたV字状の混合容器32が回転することにより、内容物が混合されるものである。容器回転型混合機(西村機械製作所製Vブレンダー、内容積2000l)に高分子凝集剤Bを635kg、高分子凝集剤Aを285kgを投入し、20分間混合した。
Comparative Example 3
The blender shown in FIG. 2 was used. This blender mixes the contents by rotating a V-shaped mixing container 32 attached to the rotary shaft 30. 635 kg of polymer flocculant B and 285 kg of polymer flocculant A were charged into a container rotating type mixer (V blender manufactured by Nishimura Machinery Co., Ltd., internal volume 2000 l) and mixed for 20 minutes.

混合機の運転は回転速度12回/分で行った。サンプリングは12分後、16分後、18分後、20分後に実施した。20分後のサンプルの混合率は83.0%であり、混合不十分の製品しか得られなかった。測定結果を表3にまとめた。   The mixer was operated at a rotation speed of 12 times / minute. Sampling was performed after 12 minutes, 16 minutes, 18 minutes, and 20 minutes. The mixing ratio of the sample after 20 minutes was 83.0%, and only a product with insufficient mixing was obtained. The measurement results are summarized in Table 3.

Figure 2009285545
Figure 2009285545

本発明の混合方法で用いる粉末状高分子凝集剤連続混合装置の一例を示す側面図である。It is a side view which shows an example of the powdery polymer flocculent continuous mixing apparatus used with the mixing method of this invention. 比較例3で用いたブレンダーを示す説明図である。It is explanatory drawing which shows the blender used in the comparative example 3.

符号の説明Explanation of symbols

100 スクリュー式混合機
2 ケーシング
4 回転羽根
6 スクリュー
8 回転軸
10 モータ
12a、12b 粉体定量供給装置
13a、13b ホッパー
14a、14b フィーダ
16a、16b 供給管
18a、18b 供給口
20 吐出管
22 吐出口
30 回転軸
32 混合容器
DESCRIPTION OF SYMBOLS 100 Screw type mixer 2 Casing 4 Rotating blade 6 Screw 8 Rotating shaft 10 Motor 12a, 12b Powder fixed quantity supply apparatus 13a, 13b Hopper 14a, 14b Feeder 16a, 16b Supply pipe 18a, 18b Supply port 20 Discharge pipe 22 Discharge port 30 Rotating shaft 32 Mixing container

Claims (1)

所定濃度の水溶液の粘度が異なる少なくとも2種類の粉末状高分子凝集剤を粉末の状態で混合する粉末状高分子凝集剤の混合方法であって、スクリュー式混合機のスクリュー押し出し方向の上流側に少なくとも2台の粉体定量供給装置の粉体供給口をそれぞれ設け、前記少なくとも2台の粉体定量供給装置の粉体供給口からそれぞれ粉末状高分子凝集剤を連続的に所定供給速度でスクリュー式混合機に供給すると共にスクリュー式混合機のスクリューで少なくとも2種類の粉末状高分子凝集剤を下流側に搬送しながら前記少なくとも2種類の粉末状高分子凝集剤を混合して下流側に設けた吐出口から少なくとも2種類の混合した粉末状高分子凝集剤を取り出すことを特徴とする粉末状高分子凝集剤の混合方法。   A method of mixing a powdery polymer flocculant in which at least two kinds of powdery polymer flocculants having different viscosities of an aqueous solution of a predetermined concentration are mixed in a powder state, and on the upstream side of the screw extrusion direction of a screw type mixer The powder supply ports of at least two powder quantitative supply devices are respectively provided, and the powdery polymer flocculant is continuously screwed at a predetermined supply rate from the powder supply ports of the at least two powder quantitative supply devices. The at least two types of powdery polymer flocculants are mixed and provided on the downstream side while being fed to the mixer and at least two types of the powdery polymer flocculants are conveyed downstream by the screw of the screw mixer. A method of mixing a powdery polymer flocculant, wherein at least two kinds of mixed powdery polymer flocculants are taken out from the discharge port.
JP2008138997A 2008-05-28 2008-05-28 Method for mixing powdery polymer flocculant Active JP5202107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138997A JP5202107B2 (en) 2008-05-28 2008-05-28 Method for mixing powdery polymer flocculant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138997A JP5202107B2 (en) 2008-05-28 2008-05-28 Method for mixing powdery polymer flocculant

Publications (2)

Publication Number Publication Date
JP2009285545A true JP2009285545A (en) 2009-12-10
JP5202107B2 JP5202107B2 (en) 2013-06-05

Family

ID=41455296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138997A Active JP5202107B2 (en) 2008-05-28 2008-05-28 Method for mixing powdery polymer flocculant

Country Status (1)

Country Link
JP (1) JP5202107B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302338B1 (en) * 2012-09-07 2013-08-30 신종우 The fixed quantity mixing equipment for making a prosthetic appliance
WO2020027312A1 (en) * 2018-08-03 2020-02-06 Mtアクアポリマー株式会社 Macromolecular coagulant and sludge dehydration method

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144956A (en) * 1974-05-13 1975-11-21
JPS5743827U (en) * 1980-08-25 1982-03-10
JPS5763109A (en) * 1980-10-01 1982-04-16 Norihiko Base High molecular flocculant composition
JPS58215454A (en) * 1982-06-09 1983-12-14 Ichikawa Keori Kk Polyelectrolyte composition
JPS58216707A (en) * 1982-06-09 1983-12-16 Kurita Water Ind Ltd Dehydrating agent for sludge
JPS595541U (en) * 1982-06-30 1984-01-13 株式会社荏原製作所 Conveyor screw mixer and discharge device
JPS59110036U (en) * 1982-08-25 1984-07-25 白川 昭三 Fertilizer mixing and feeding machine
JPS639221U (en) * 1986-07-07 1988-01-21
JPS63240999A (en) * 1987-03-30 1988-10-06 Ebara Infilco Co Ltd Dehydration of organic sludge
JPH0370735U (en) * 1989-11-07 1991-07-16
JPH07323221A (en) * 1994-05-30 1995-12-12 Toenec Corp Device for mixing and shipping powder
JPH1099367A (en) * 1996-09-30 1998-04-21 Japan Pionics Co Ltd Method for mixing and transporting powder raw material of exothermic composition
JPH10113921A (en) * 1996-10-14 1998-05-06 Sanki Tsuuun Kk Forming and feeding method for multiple kind cement mixed powder and forming and feeding device therefor
JP2001113153A (en) * 1999-10-15 2001-04-24 Tsukishima Kikai Co Ltd Method and device for mixing powdery granular material
JP2001335603A (en) * 2000-05-26 2001-12-04 Toagosei Co Ltd Method for producing water-soluble polymer
JP2004000934A (en) * 2002-03-29 2004-01-08 Sanyo Chem Ind Ltd Polymeric flocculant

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144956A (en) * 1974-05-13 1975-11-21
JPS5743827U (en) * 1980-08-25 1982-03-10
JPS5763109A (en) * 1980-10-01 1982-04-16 Norihiko Base High molecular flocculant composition
JPS58215454A (en) * 1982-06-09 1983-12-14 Ichikawa Keori Kk Polyelectrolyte composition
JPS58216707A (en) * 1982-06-09 1983-12-16 Kurita Water Ind Ltd Dehydrating agent for sludge
JPS595541U (en) * 1982-06-30 1984-01-13 株式会社荏原製作所 Conveyor screw mixer and discharge device
JPS59110036U (en) * 1982-08-25 1984-07-25 白川 昭三 Fertilizer mixing and feeding machine
JPS639221U (en) * 1986-07-07 1988-01-21
JPS63240999A (en) * 1987-03-30 1988-10-06 Ebara Infilco Co Ltd Dehydration of organic sludge
JPH0370735U (en) * 1989-11-07 1991-07-16
JPH07323221A (en) * 1994-05-30 1995-12-12 Toenec Corp Device for mixing and shipping powder
JPH1099367A (en) * 1996-09-30 1998-04-21 Japan Pionics Co Ltd Method for mixing and transporting powder raw material of exothermic composition
JPH10113921A (en) * 1996-10-14 1998-05-06 Sanki Tsuuun Kk Forming and feeding method for multiple kind cement mixed powder and forming and feeding device therefor
JP2001113153A (en) * 1999-10-15 2001-04-24 Tsukishima Kikai Co Ltd Method and device for mixing powdery granular material
JP2001335603A (en) * 2000-05-26 2001-12-04 Toagosei Co Ltd Method for producing water-soluble polymer
JP2004000934A (en) * 2002-03-29 2004-01-08 Sanyo Chem Ind Ltd Polymeric flocculant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302338B1 (en) * 2012-09-07 2013-08-30 신종우 The fixed quantity mixing equipment for making a prosthetic appliance
WO2020027312A1 (en) * 2018-08-03 2020-02-06 Mtアクアポリマー株式会社 Macromolecular coagulant and sludge dehydration method
JPWO2020027312A1 (en) * 2018-08-03 2021-08-10 Mtアクアポリマー株式会社 Method of dehydrating polymer flocculants and sludge
JP7362620B2 (en) 2018-08-03 2023-10-17 Mtアクアポリマー株式会社 Polymer flocculant and sludge dewatering method

Also Published As

Publication number Publication date
JP5202107B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
AU2006232824B2 (en) Method and device for producing concentrated polymer solutions
CN102413997B (en) Conveying liquid body additives
JP2017535650A5 (en)
TWI671265B (en) Water purifying agent and water purifying method
JP5202107B2 (en) Method for mixing powdery polymer flocculant
CN106915807A (en) The medicament dilution device of high-efficiency concentrator
WO2016157646A1 (en) Method for controlling rapid stirrer, and rapid stirrer
CN204380535U (en) A kind of polyacrylamide preparation dissolution system
CN105457525A (en) Uniform small-dose quantitative feed liquid dispensing device
KR101063766B1 (en) Polymer agitator
JP6714445B2 (en) Mixed material manufacturing apparatus and mixed material manufacturing method
JP2013120107A (en) Floc strength measuring instrument
KR100718036B1 (en) Sludge treatment apparatus
JPH08229378A (en) Mixing and dissolving device
JP5928832B2 (en) Flocculant dissolver
AU2017211155A1 (en) Apparatus and process for flocculation of solids fractions of a solid-liquid mixture
CN207391040U (en) For the molten medicine system of macromolecule flocculation aid of sewage disposal
JP6138582B2 (en) Powder-liquid mixing and dispersion system
WO2014076358A1 (en) A flocculant wetting device and a flocculant preparation system
KR102096273B1 (en) Apparatus and method for preparing of polymer latex
US11110417B2 (en) Device and method for granulating a powder or a powder mixture
JP2006256854A (en) Screw feeder and screw with blade
CN213995695U (en) Powder dissolving and preparing device
CN204341418U (en) A kind of screw filling apparatus
KR20060022744A (en) Automatic condensation melting unit using a liquid high polymer condensing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Ref document number: 5202107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250