JP2009283978A - Solid-state image pickup device - Google Patents

Solid-state image pickup device Download PDF

Info

Publication number
JP2009283978A
JP2009283978A JP2009192868A JP2009192868A JP2009283978A JP 2009283978 A JP2009283978 A JP 2009283978A JP 2009192868 A JP2009192868 A JP 2009192868A JP 2009192868 A JP2009192868 A JP 2009192868A JP 2009283978 A JP2009283978 A JP 2009283978A
Authority
JP
Japan
Prior art keywords
solid
incident light
color filter
state imaging
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009192868A
Other languages
Japanese (ja)
Inventor
Satoshi Hirayama
聡 平山
Yasuhiro Sekine
康弘 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009192868A priority Critical patent/JP2009283978A/en
Publication of JP2009283978A publication Critical patent/JP2009283978A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state image pickup device which suppresses variation of amounts of incident light to a photoelectric conversion part to prevent deterioration of a pickup image. <P>SOLUTION: The solid-state image pickup device has: the photoelectric conversion part which generates a signal electric charge according to the incident light; a plurality of color filters formed by division exposure for performing exposure by dividing an area into at least two or more exposure areas and having an overlap or gap between adjacent color filters; and a condenser lens which condenses the incident light to the photoelectric conversion part in the shape that makes the incident light pass through an area with identical spectral characteristics of the color filters. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はカラー画像を撮像するためのカラーフィルタを有する固体撮像素子に関する。   The present invention relates to a solid-state imaging device having a color filter for capturing a color image.

従来、カラービデオカメラやカラースチルカメラ等で用いる固体撮像素子としては、図4に示す構成が知られている。   Conventionally, a configuration shown in FIG. 4 is known as a solid-state imaging device used in a color video camera, a color still camera, or the like.

図4は従来の固体撮像素子の構造を示す側断面図である。   FIG. 4 is a side sectional view showing the structure of a conventional solid-state imaging device.

図4に示すように、固体撮像素子は、半導体基板1の表面近傍に、入射光量に応じた信号電荷を発生する光電変換部2を備えた構成である。光電変換部2は格子状に配列された複数の画素毎に設けられている。なお、半導体基板1上には、一般に光電変換部2と共に不図示の能動素子が形成される。   As shown in FIG. 4, the solid-state imaging device is configured to include a photoelectric conversion unit 2 that generates a signal charge corresponding to the amount of incident light in the vicinity of the surface of the semiconductor substrate 1. The photoelectric conversion unit 2 is provided for each of a plurality of pixels arranged in a grid. Note that an active element (not shown) is generally formed on the semiconductor substrate 1 together with the photoelectric conversion unit 2.

半導体基板1上には、光電変換部2上に開口を備えた、例えばSiO2から成る第1の層間絶縁膜3が堆積され、第1の層間絶縁膜3上にはAl(アルミニウム)等を用いて所望の形状にパターニングされた第1の配線4が形成される。 On the semiconductor substrate 1, a first interlayer insulating film 3 made of, for example, SiO 2 having an opening on the photoelectric conversion unit 2 is deposited, and Al (aluminum) or the like is deposited on the first interlayer insulating film 3. Thus, the first wiring 4 patterned into a desired shape is formed.

また、第1の層間絶縁膜3上には、回路パターンに対応して第2の層間絶縁膜、第2の配線6、第3の層間絶縁膜7、第3の配線8が順次形成される。これらの層間絶縁膜及び配線は3層構造である必要はなく、2層、1層、あるいは4層以上の構造であってもよい。   On the first interlayer insulating film 3, a second interlayer insulating film, a second wiring 6, a third interlayer insulating film 7, and a third wiring 8 are sequentially formed corresponding to the circuit pattern. . These interlayer insulating films and wirings do not need to have a three-layer structure, and may have a structure of two layers, one layer, or four layers or more.

第3の層間絶縁膜7上には、第3の配線8を覆うようにして、例えばSiONからなる保護膜9が堆積され、その上に、例えばアクリル系樹脂からなる第1の平坦化層10が堆積されている。   A protective film 9 made of, for example, SiON is deposited on the third interlayer insulating film 7 so as to cover the third wiring 8, and the first planarizing layer 10 made of, for example, acrylic resin is formed thereon. Is deposited.

第1の平坦化膜10上には、各画素に対応して入射光を分光するカラーフィルタ11が設けられている。カラーフィルタ11は、赤(R)、緑(G)、青(B)の3原色の顔料を含むフォトレジストを用いて形成される。   On the first planarization film 10, a color filter 11 that disperses incident light corresponding to each pixel is provided. The color filter 11 is formed using a photoresist containing pigments of three primary colors of red (R), green (G), and blue (B).

カラーフィルタ11上には、光透過性を有する第2の平坦化層12が堆積され、その上に光電変換部2に入射光を集光するための集光レンズであるマイクロレンズ13が形成される。   On the color filter 11, a second planarizing layer 12 having optical transparency is deposited, and a microlens 13 that is a condensing lens for condensing incident light on the photoelectric conversion unit 2 is formed thereon. The

チップサイズの大きな固体撮像素子では、パターン形成領域が露光装置による1回の露光可能範囲よりも大きいため、パターン形成領域を複数の露光領域に分割し、これら分割したパターンを繋ぎ合わせることで所望のパターンを形成する分割露光が採用されている(例えば、特許文献1参照)。   In a solid-state imaging device having a large chip size, since the pattern formation area is larger than the exposure possible range by the exposure apparatus, the pattern formation area is divided into a plurality of exposure areas, and these divided patterns are joined together to obtain a desired Divided exposure for forming a pattern is employed (see, for example, Patent Document 1).

また、近年の固体撮像素子では、高集積化に伴ってカラーフィルタの寸法ばらつきや位置ずれにより、隣接するカラーフィルタどうしが重なって形成される場合や隙間が空いて形成される場合がある。さらに、カラーフィルタの角部は露光装置の解像度の低下により円弧状に形成されるため、このような角部にもカラーフィルタが形成されない隙間が生じる。これら撮像画像の悪化を招くカラーフィルタの重なりや隙間を無くす手法は、例えば特許文献2で開示されている。特許文献2には3種類のカラーフィルタを順次重ねて形成し、その後最下層のカラーフィルタが露出するまで上層のカラーフィルタを除去することで隣接するカラーフィルタ間の隙間を無くす手法が記載されている。   Further, in recent solid-state imaging devices, there are cases where adjacent color filters are overlapped or formed with a gap due to dimensional variations and positional shifts of color filters with higher integration. Furthermore, since the corners of the color filter are formed in an arc shape due to a decrease in the resolution of the exposure apparatus, a gap in which the color filter is not formed also occurs in such corners. For example, Patent Document 2 discloses a technique for eliminating the overlapping and gaps of the color filters that cause deterioration of the captured image. Patent Document 2 describes a method of eliminating gaps between adjacent color filters by sequentially forming three color filters and then removing the upper color filter until the lowermost color filter is exposed. Yes.

特開平5−6849号公報JP-A-5-6849 特開平10−209410号公報JP-A-10-209410

図5に示すように、固体撮像素子14を第1の露光領域15と第2の露光領域16の2つの露光領域に分割して形成する場合、図6(a)、(b)に示すように、第1の露光領域15と第2の露光領域16とで、カラーフィルタの位置ずれによる重なり量やカラーフィルタ間の隙間の大きさが異なることがある。   As shown in FIGS. 5A and 5B, when the solid-state imaging device 14 is divided and formed into two exposure areas, a first exposure area 15 and a second exposure area 16, as shown in FIGS. In addition, the first exposure region 15 and the second exposure region 16 may differ in the amount of overlap due to the position shift of the color filter and the size of the gap between the color filters.

このような場合、カラーフィルタ上に形成される第2の平坦化膜の表面が十分に平坦化されず、カラーフィルタの重なり部位や隙間部位で凹凸が生じてしまう。   In such a case, the surface of the second flattening film formed on the color filter is not sufficiently flattened, and irregularities occur at the overlapping portions and gap portions of the color filter.

例えば、カラーフィルタの隙間部位に生じる第2の平坦化膜の凹部は、図7に示すようにレンズと同様に作用して入射光を分散させる。その結果、分散されることでカラーフィルタを通過した光が光電変換部へ到達し、画素間で入射光量にばらつきが生じてしまう。さらに、カラーフィルタの隙間を通過した光も配線等で反射されることで最終的に光電変換部へ到達することがあるため、撮像画像が悪化する問題がある。   For example, the concave portion of the second flattening film generated in the gap portion of the color filter acts like a lens and disperses incident light as shown in FIG. As a result, the light that has passed through the color filter due to the dispersion reaches the photoelectric conversion unit, and the amount of incident light varies among the pixels. Furthermore, since the light that has passed through the gap between the color filters is also reflected by the wiring or the like and eventually reaches the photoelectric conversion unit, there is a problem that the captured image is deteriorated.

一方、カラーフィルタの重なり部位でも、膜厚が厚いカラーフィルタを通過することで光電変換部に到達する入射光量が減衰するため、画素間で入射光量にばらつきが生じてしまう。   On the other hand, even in the overlapping part of the color filters, the amount of incident light reaching the photoelectric conversion unit is attenuated by passing through the thick color filter, so that the amount of incident light varies among pixels.

特に、上記分割露光によりカラーフィルタを形成する場合は、図7(a)、(b)に示すように第1の露光領域と第2の露光領域とで、カラーフィルタの重なり量や隙間量が異なるため、第2の平坦化膜の表面に生じる凹凸の高さも異なり、入射光量のばらつきが撮像画像に顕著に現れてしまう。   In particular, when a color filter is formed by the above-described divided exposure, the amount of overlap of the color filters and the amount of gap between the first exposure area and the second exposure area are as shown in FIGS. 7 (a) and 7 (b). Because of the difference, the height of the unevenness generated on the surface of the second planarizing film is also different, and the variation in the amount of incident light appears remarkably in the captured image.

本発明は上記したような従来の技術が有する問題点を解決するためになされたものであり、光電変換部に対する入射光量のばらつきを抑制して撮像画像の悪化を防止した固体撮像素子を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and provides a solid-state imaging device that suppresses variations in the amount of incident light with respect to a photoelectric conversion unit and prevents deterioration of a captured image. For the purpose.

上記目的を達成するため本発明の固体撮像素子は、入射光に応じた信号電荷を発生する光電変換部と、
少なくとも2つ以上の露光領域に分割して露光する分割露光により形成され、隣接するカラーフィルタどうしで重なりまたは隙間を有する、複数のカラーフィルタと、
前記入射光を、前記カラーフィルタの分光特性が同一の領域を通過させる形状である、前記光電変換部に入射光を集光する集光レンズと、
を有する。
In order to achieve the above object, a solid-state imaging device of the present invention includes a photoelectric conversion unit that generates a signal charge according to incident light, and
A plurality of color filters formed by divided exposure in which exposure is performed by dividing into at least two exposure areas, and having overlapping or gaps between adjacent color filters;
A condensing lens that condenses the incident light on the photoelectric conversion unit, the incident light having a shape that allows the spectral characteristics of the color filter to pass through the same region;
Have

上記のように構成された固体撮像素子では、入射光を、カラーフィルタの分光特性が同一の領域を通過させる形状の集光レンズを有することで、カラーフィルタの特性に起因する光電変換部への入射光量の変化が低減されるため、画素間での入射光量のばらつきが低減される。   The solid-state imaging device configured as described above has a condenser lens having a shape that allows incident light to pass through an area where the spectral characteristics of the color filter are the same. Since the change in the amount of incident light is reduced, variation in the amount of incident light between pixels is reduced.

本発明によれば、入射光を、カラーフィルタの分光特性が同一の領域を通過させる形状の集光レンズを有することで、カラーフィルタの特性に起因する光電変換部への入射光量の変化が低減されるため、画素間での入射光量のばらつきが低減され、撮像画像の悪化が防止される。   According to the present invention, the change in the amount of incident light to the photoelectric conversion unit due to the characteristics of the color filter is reduced by having the condensing lens having a shape that allows the incident light to pass through the region where the spectral characteristics of the color filter are the same. Therefore, the variation in the amount of incident light between pixels is reduced, and the deterioration of the captured image is prevented.

特に、分割露光法を用いてカラーフィルタが形成される構成では、分割された領域間の入射光量のばらつきが低減されるため、撮像画像の悪化がより防止される。   In particular, in the configuration in which the color filter is formed using the divided exposure method, the variation in incident light amount between the divided regions is reduced, and thus the captured image is further prevented from deteriorating.

本発明の固体撮像素子の第1の実施の形態の構成を示す側断面図である。It is a sectional side view which shows the structure of 1st Embodiment of the solid-state image sensor of this invention. 本発明の固体撮像素子の第2の実施の形態の構成を示す側断面図である。It is a sectional side view which shows the structure of 2nd Embodiment of the solid-state image sensor of this invention. 第2の平坦化膜の膜厚に対する第2の平坦化膜表面に生じる凹凸の高さの関係を示すグラフである。It is a graph which shows the relationship of the height of the unevenness | corrugation which arises on the surface of the 2nd planarization film with respect to the film thickness of a 2nd planarization film. 従来の固体撮像素子の構造を示す側断面図である。It is a sectional side view which shows the structure of the conventional solid-state image sensor. 分割露光する固体撮像素子の一例を示す平面図である。It is a top view which shows an example of the solid-state image sensor to divide and expose. 図5に示した固体撮像素子が有するカラーフィルタの位置ずれの様子を示す平面図である。It is a top view which shows the mode of the position shift of the color filter which the solid-state image sensor shown in FIG. 5 has. 図5に示した固体撮像素子が有するカラーフィルタの位置ずれの様子を示す側断面図である。FIG. 6 is a side cross-sectional view illustrating a state of a positional shift of a color filter included in the solid-state imaging device illustrated in FIG. 5.

次に本発明について図面を用いて説明する。   Next, the present invention will be described with reference to the drawings.

図1は本発明の固体撮像素子の第1の実施の形態の構成を示す側断面図である。また、図2は本発明の固体撮像素子の第2の実施の形態の構成を示す側断面図である。   FIG. 1 is a side sectional view showing the configuration of the first embodiment of the solid-state imaging device of the present invention. FIG. 2 is a side sectional view showing the configuration of the second embodiment of the solid-state imaging device of the present invention.

図1に示すように、本発明の固体撮像素子の第1の実施の形態では、カラーフィルタ21上に堆積する第2の平坦化膜22を従来よりも厚く形成し、その表面に生じる凹凸量が十分に小さくなるようにする。具体的には、第2の平坦化膜22の表面に生じる凹凸の深さ(高さ)が0.2μm以下となるように第2の平坦化膜22の厚さを設定する。   As shown in FIG. 1, in the first embodiment of the solid-state imaging device of the present invention, the second flattening film 22 deposited on the color filter 21 is formed thicker than before, and the unevenness generated on the surface thereof. To be sufficiently small. Specifically, the thickness of the second planarization film 22 is set so that the depth (height) of the unevenness generated on the surface of the second planarization film 22 is 0.2 μm or less.

このような構成では、第2の平坦化層12の形状に起因する光電変換部2への入射光量の変化が低減されるため、画素間での入射光量のばらつきが低減され、撮像画像の悪化が防止される。   In such a configuration, since the change in the amount of incident light to the photoelectric conversion unit 2 due to the shape of the second planarization layer 12 is reduced, the variation in the amount of incident light between pixels is reduced, and the captured image is deteriorated. Is prevented.

一方、本発明の固体撮像素子の第2の実施の形態では、カラーフィルタの重なり部位を光電変換部への入射光が通過しないようにマイクロレンズ23の形状を設定する。具体的には、図2に示すように、画素径をLとしたとき、画素の両端から内側に0.1L〜0.25Lの位置で、入射光の最も外側の光路とカラーフィルタ11の上面とが一致するようにマイクロレンズ23の径及び厚さを設定する。   On the other hand, in the second embodiment of the solid-state imaging device of the present invention, the shape of the microlens 23 is set so that incident light to the photoelectric conversion unit does not pass through the overlapping portion of the color filters. Specifically, as shown in FIG. 2, when the pixel diameter is L, the outermost optical path of the incident light and the upper surface of the color filter 11 at positions of 0.1 L to 0.25 L inward from both ends of the pixel. The diameter and thickness of the microlens 23 are set so that.

このような構成では、カラーフィルタ11の特性に起因する光電変換部2への入射光量の変化が低減されるため、画素間での入射光量のばらつきが低減され、撮像画像の悪化が防止される。   In such a configuration, since the change in the amount of incident light to the photoelectric conversion unit 2 due to the characteristics of the color filter 11 is reduced, the variation in the amount of incident light between pixels is reduced, and deterioration of the captured image is prevented. .

特に、分割露光法を用いてカラーフィルタが形成される固体撮像素子に上記第1の実施の形態あるいは第2の実施の形態の構成を適用すれば、分割された各領域間の入射光量のばらつきが低減されるため、撮像画像の悪化がより防止される。   In particular, if the configuration of the first embodiment or the second embodiment is applied to a solid-state imaging device in which a color filter is formed using the divided exposure method, the variation in the amount of incident light between the divided areas is achieved. As a result, the deterioration of the captured image is further prevented.

その他の構成は図4に示した従来の固体撮像素子と同様であるため、その説明は省略する。したがって、図1、図2では従来と同じ構成要素については同じ符号を付与して示している。   The other configuration is the same as that of the conventional solid-state imaging device shown in FIG. Therefore, in FIG. 1 and FIG. 2, the same reference numerals are given to the same components as those in the prior art.

なお、図1及び図2では、マイクロレンズ23とカラーフィルタ11を別々に備えた構成を示しているが、マイクロレンズ23はカラーフィルタ11の機能を有する構成であってもよい。   1 and 2 illustrate a configuration in which the microlens 23 and the color filter 11 are separately provided, the microlens 23 may have a configuration having the function of the color filter 11.

次に本発明の固体撮像素子の実施例について図面を用いて説明する。   Next, embodiments of the solid-state imaging device of the present invention will be described with reference to the drawings.

なお、本実施例は上記第1の実施の形態の固体撮像素子の具体的な製造例である。   This example is a specific manufacturing example of the solid-state imaging device of the first embodiment.

図1に示したカラーフィルタ11上に形成される第2の平坦化膜22の材料としては、通常、PGMA(ポリグリシジルメタアクリレート)、PMMA(ポリメチルメタアクリレート)、ポリイミド等が用いられる。より具体的には、例えば、FVR(富士薬品工業製)、オプトマーSS(JSR製)、オプトマーLC(JSR製)、オプトマーAH(JSR製)等が好適な材料として知られている。   As the material of the second planarization film 22 formed on the color filter 11 shown in FIG. 1, PGMA (polyglycidyl methacrylate), PMMA (polymethyl methacrylate), polyimide, or the like is usually used. More specifically, for example, FVR (manufactured by Fuji Pharmaceutical), Optmer SS (manufactured by JSR), Optmer LC (manufactured by JSR), Optmer AH (manufactured by JSR) and the like are known as suitable materials.

本実施例では、上記オプトマーAHを使用し、その厚さが0.5μm、1.0μm、1.5μmの第2の平坦化膜22を有する固体撮像素子をそれぞれ形成した。このとき第2の平坦化膜22上に生じる凹部の深さは、0.31μm、0.21μm、0.10μmであった。この第2の平坦化膜22の膜厚に対する第2の平坦化膜表面に生じる凹凸の高さの関係を図3に示す。なお、オプトマーAH(JSR製)の屈折率nDは1.55である。 In this example, the above-described optomer AH was used to form solid-state imaging devices each having the second planarizing film 22 having thicknesses of 0.5 μm, 1.0 μm, and 1.5 μm. At this time, the depths of the recesses formed on the second planarizing film 22 were 0.31 μm, 0.21 μm, and 0.10 μm. FIG. 3 shows the relationship between the thickness of the second planarizing film 22 and the height of the irregularities generated on the surface of the second planarizing film. The refractive index n D of Optomer AH (manufactured by JSR) is 1.55.

上記膜厚の異なる第2の平坦化膜22上にそれぞれマイクロレンズ23を形成し、3種類の固体撮像素子を製作した。なお、配線及び層間絶縁膜を含む半導体基板1からカラーフィルタ11までの構造は図4に示した従来の構成と同様とした。   Microlenses 23 were respectively formed on the second planarizing films 22 having different thicknesses, and three types of solid-state imaging devices were manufactured. The structure from the semiconductor substrate 1 including the wiring and the interlayer insulating film to the color filter 11 is the same as the conventional configuration shown in FIG.

上記固体撮像素子を使用して撮像を行ったところ、分割露光によって形成された隣接する露光領域間の画素信号の電圧差は、第2の平坦化膜22の凹凸を画素領域内で0.2μm以下となるように設定すれば、画質上問題が無いことが確認できた。すなわち、第2の平坦化膜の膜厚は、およそ1.0μm以上に設定すればよい。   When imaging was performed using the solid-state imaging device, the voltage difference of the pixel signal between adjacent exposure regions formed by the divided exposure was such that the unevenness of the second planarization film 22 was 0.2 μm in the pixel region. It was confirmed that there was no problem in image quality if the settings were as follows. That is, the thickness of the second planarizing film may be set to about 1.0 μm or more.

1 半導体基板
2 光電変換部
3 第1の層間絶縁膜
4 第1の配線
5 第2の層間絶縁膜
6 第2の配線
7 第3の層間絶縁膜
8 第3の配線
9 保護膜
10 第1の平坦化層
11R、11G、11B カラーフィルタ
12、22 第2の平坦化層
13、23 マイクロレンズ
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Photoelectric conversion part 3 1st interlayer insulation film 4 1st wiring 5 2nd interlayer insulation film 6 2nd wiring 7 3rd interlayer insulation film 8 3rd wiring 9 Protective film 10 1st Planarization layer 11R, 11G, 11B Color filter 12, 22 Second planarization layer 13, 23 Microlens

Claims (6)

入射光に応じた信号電荷を発生する光電変換部と、
少なくとも2つ以上の露光領域に分割して露光する分割露光により形成され、隣接するカラーフィルタどうしで重なりまたは隙間を有する、複数のカラーフィルタと、
前記入射光を、前記カラーフィルタの分光特性が同一の領域を通過させる形状である、前記光電変換部に入射光を集光する集光レンズと、
を有する固体撮像素子。
A photoelectric conversion unit that generates a signal charge according to incident light;
A plurality of color filters formed by divided exposure in which exposure is performed by dividing into at least two exposure areas, and having overlapping or gaps between adjacent color filters;
A condensing lens that condenses the incident light on the photoelectric conversion unit, the incident light having a shape that allows the spectral characteristics of the color filter to pass through the same region;
A solid-state imaging device.
前記集光レンズは、
前記入射光を、前記カラーフィルタの膜厚が同一の領域を通過させる形状である請求項1記載の固体撮像素子。
The condenser lens is
The solid-state imaging device according to claim 1, wherein the incident light has a shape that allows the color filter to pass through a region having the same film thickness.
前記集光レンズは、
画素径をLとしたとき、前記画素の両端から内側に0.1Lから0.25Lの位置で、前記入射光の最も外側の光路と、前記カラーフィルタの前記集光レンズとの対向面とを一致させる形状である請求項1または2記載の固体撮像素子。
The condenser lens is
When the pixel diameter is L, the outermost optical path of the incident light at the position of 0.1 L to 0.25 L inward from both ends of the pixel, and the surface facing the condenser lens of the color filter The solid-state imaging device according to claim 1, wherein the solid-state imaging device has a matching shape.
前記光電変換部と前記カラーフィルタ間に形成される配線層を有し、
前記配線層は、前記入射光の最も外側の光路と交差しないように配置された配線を有する請求項1乃至3のいずれか1項記載の固体撮像素子。
A wiring layer formed between the photoelectric conversion unit and the color filter;
4. The solid-state imaging device according to claim 1, wherein the wiring layer has a wiring arranged so as not to intersect an outermost optical path of the incident light. 5.
前記光電変換部と前記カラーフィルタとの間に形成される配線層は複数層であり、前記複数の配線層のうち最も前記カラーフィルタに近接した配線を覆う保護層を有し、前記保護層と前記カラーフィルタとの間に配された平均化層を有する請求項4記載の固体撮像素子。   The wiring layer formed between the photoelectric conversion unit and the color filter is a plurality of layers, and has a protective layer that covers a wiring closest to the color filter among the plurality of wiring layers, and the protective layer The solid-state imaging device according to claim 4, further comprising an averaging layer disposed between the color filters. 前記カラーフィルタと前記集光レンズとの間に配された第2の平坦化層を有する請求項1乃至5のいずれか1項記載の固体撮像素子。   The solid-state imaging device according to claim 1, further comprising a second flattening layer disposed between the color filter and the condenser lens.
JP2009192868A 2009-08-24 2009-08-24 Solid-state image pickup device Pending JP2009283978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009192868A JP2009283978A (en) 2009-08-24 2009-08-24 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009192868A JP2009283978A (en) 2009-08-24 2009-08-24 Solid-state image pickup device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002275949A Division JP2004111867A (en) 2002-09-20 2002-09-20 Solid-state imaging device

Publications (1)

Publication Number Publication Date
JP2009283978A true JP2009283978A (en) 2009-12-03

Family

ID=41454020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009192868A Pending JP2009283978A (en) 2009-08-24 2009-08-24 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JP2009283978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10969681B2 (en) 2016-08-29 2021-04-06 Canon Kabushiki Kaisha Method for forming color filter array and method for manufacturing electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315204A (en) * 1986-07-07 1988-01-22 Dainippon Printing Co Ltd Color filter
JPH0284742A (en) * 1988-01-21 1990-03-26 Sony Corp Pattern formation for charge transfer device
JPH02121368A (en) * 1988-10-31 1990-05-09 Sony Corp Pattern forming method of charge coupled color line sensor
JPH0527117A (en) * 1991-03-25 1993-02-05 Hitachi Ltd Color solid-state image pickup element and its production
JPH11150252A (en) * 1997-11-19 1999-06-02 Sony Corp Color solid-state image-pickup element and its manufacturing method
JP2000150846A (en) * 1998-11-12 2000-05-30 Olympus Optical Co Ltd Solid state imaging device and manufacture of it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315204A (en) * 1986-07-07 1988-01-22 Dainippon Printing Co Ltd Color filter
JPH0284742A (en) * 1988-01-21 1990-03-26 Sony Corp Pattern formation for charge transfer device
JPH02121368A (en) * 1988-10-31 1990-05-09 Sony Corp Pattern forming method of charge coupled color line sensor
JPH0527117A (en) * 1991-03-25 1993-02-05 Hitachi Ltd Color solid-state image pickup element and its production
JPH11150252A (en) * 1997-11-19 1999-06-02 Sony Corp Color solid-state image-pickup element and its manufacturing method
JP2000150846A (en) * 1998-11-12 2000-05-30 Olympus Optical Co Ltd Solid state imaging device and manufacture of it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10969681B2 (en) 2016-08-29 2021-04-06 Canon Kabushiki Kaisha Method for forming color filter array and method for manufacturing electronic device

Similar Documents

Publication Publication Date Title
JP5493461B2 (en) Solid-state imaging device, electronic apparatus, and manufacturing method of solid-state imaging device
JP6105538B2 (en) Solid-state imaging device and manufacturing method thereof
US9261769B2 (en) Imaging apparatus and imaging system
TWI537666B (en) Solid-state imaging devices
US9502453B2 (en) Solid-state imaging devices
JP4310093B2 (en) Manufacturing method of solid-state imaging device
JP5710526B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
TWI668849B (en) Solid-state imaging element, imaging device and electronic device
JP2012074521A (en) Manufacturing method of solid-state image pickup device, solid-state image pickup device, and electronic equipment
US20120012961A1 (en) Solid-state imaging device and method of manufacturing of same
JP2005294647A (en) Solid state image pickup apparatus and method for manufacturing the same
US7777795B2 (en) Solid-state image pickup device
JP2004047682A (en) Solid-state image pickup device
JP5298617B2 (en) SOLID-STATE IMAGING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
KR102223515B1 (en) Solid-state imaging device and electronic device
JP7301090B2 (en) Solid-state image sensor
JP2010062417A (en) Solid-state imaging device and method of manufacturing the same
WO2014156657A1 (en) Solid-state imaging device, production method therefor, and electronic device
KR100868630B1 (en) Pattern mask used for forming micro lense, image sensor and method of manufacturing the same
JP2008053627A (en) Solid-state imaging device
JP2009146957A (en) Solid-state imaging apparatus, and manufacturing method of solid-state imaging apparatus
JP2009283978A (en) Solid-state image pickup device
WO2013046531A1 (en) Solid-state image pickup device
KR100903466B1 (en) Cmos image sensor and method for manufacturing the same
JP2011165791A (en) Solid-state imaging element, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604