JP2009281684A - Magnetic refrigerating device - Google Patents

Magnetic refrigerating device Download PDF

Info

Publication number
JP2009281684A
JP2009281684A JP2008135793A JP2008135793A JP2009281684A JP 2009281684 A JP2009281684 A JP 2009281684A JP 2008135793 A JP2008135793 A JP 2008135793A JP 2008135793 A JP2008135793 A JP 2008135793A JP 2009281684 A JP2009281684 A JP 2009281684A
Authority
JP
Japan
Prior art keywords
duct
magnetic
cooling fluid
magnetic working
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008135793A
Other languages
Japanese (ja)
Other versions
JP5253884B2 (en
Inventor
Naoki Hirano
直樹 平野
Shigeo Nagaya
重夫 長屋
Satoru Onoda
哲 小野田
Koji Ito
孝治 伊藤
Tetsuji Okamura
哲至 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZAO SEIKI KK
Chubu Electric Power Co Inc
Original Assignee
ZAO SEIKI KK
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZAO SEIKI KK, Chubu Electric Power Co Inc filed Critical ZAO SEIKI KK
Priority to JP2008135793A priority Critical patent/JP5253884B2/en
Publication of JP2009281684A publication Critical patent/JP2009281684A/en
Application granted granted Critical
Publication of JP5253884B2 publication Critical patent/JP5253884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure high heat exchanging efficiency by improving the durability of magnetic working substances. <P>SOLUTION: The inside of a central duct 7 filled with the magnetic working substances is provided with a partitioning plate 16 composed of a lateral plate 17 for dividing the inside of the central duct 7 into two in the thickness direction, and longitudinal plates 18 orthogonally connected with the lateral plate section 17 and dividing the inside of the central duct 7 into ten in the longitudinal direction, and thus the inside of the central duct 7 is divided into twenty filling chambers 19 in parallel with each other and connecting between end ducts 10, 11. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、本発明は、磁気作業物質の磁気熱量効果を利用した磁気冷凍装置に関する。   The present invention relates to a magnetic refrigeration apparatus using the magnetocaloric effect of a magnetic working material.

フロン等の気体冷媒を使用した従来の気体冷凍装置に代わり、磁気作業物質が増磁或いは減磁の際に大きな温度変化を生じさせる性質(磁気熱量効果)を利用した磁気冷凍装置が近年注目されている。磁気作業物質に作用させる磁場発生手段としては、高磁場を発生できる超電導磁石等が有利であるが、4K(−269℃)近傍で運転する超電導磁石を維持するには大きな動力を要することから、冷蔵庫や空気調和機等冷凍能力が約1〜10kW以下の磁気冷凍装置においては、磁界発生に動力の必要がない永久磁石を用いたコンパクトな形態が望まれている。
そこで、本件出願人は、特許文献1において、磁場発生手段として永久磁石を用いた磁気冷凍装置を提案している。
In recent years, a magnetic refrigeration apparatus using a property (magneto-caloric effect) that causes a large temperature change when a magnetic working material is magnetized or demagnetized has been attracting attention in place of a conventional gas refrigeration apparatus using a gas refrigerant such as Freon. ing. As the magnetic field generating means that acts on the magnetic work substance, a superconducting magnet or the like that can generate a high magnetic field is advantageous, but it requires a large amount of power to maintain a superconducting magnet that operates near 4K (−269 ° C.). In a magnetic refrigeration apparatus having a refrigeration capacity of about 1 to 10 kW or less, such as a refrigerator or an air conditioner, a compact form using a permanent magnet that does not require power for generating a magnetic field is desired.
Therefore, the present applicant has proposed a magnetic refrigeration apparatus using a permanent magnet as magnetic field generating means in Patent Document 1.

これは、駆動手段によって回転し、周面に永久磁石を固着した回転子と、その回転子を軸支し、内面側に、磁場の増減に応じて温度が変化する粒状の磁気作業物質を充填して永久磁石と近接するダクトを配置した筒状の固定子とを有する装置本体と、ダクト間を接続して形成される循環経路に冷却流体(水等)を循環させる冷却流体循環手段と、循環経路に設けられ、冷却流体と被冷却体との間で熱交換を行う熱交換器と、を備えてなる。
この磁気冷凍装置においては、回転子の回転に伴う永久磁石の接近により、磁気作業物質が増磁されて温度上昇し、永久磁石の離反により、磁気作業物質が減磁されて温度低下する。このタイミングに合わせて、冷却流体循環手段がダクト間を通るように冷却流体を循環させることで、ダクトの低温配管接続側の温度を冷凍能力と熱負荷とがバランスする温度まで低下させる一方、高温配管接続側の温度は排熱交換器の排熱能力と冷凍能力とがバランスした一定温度となる。
This consists of a rotor that is rotated by a driving means and has a permanent magnet fixed to the peripheral surface, and the rotor is pivotally supported, and the inner surface is filled with a granular magnetic working material whose temperature changes in accordance with the increase or decrease of the magnetic field. An apparatus main body having a cylindrical stator in which a duct adjacent to the permanent magnet is disposed, and a cooling fluid circulation means for circulating a cooling fluid (water, etc.) in a circulation path formed by connecting the ducts, A heat exchanger that is provided in the circulation path and performs heat exchange between the cooling fluid and the object to be cooled.
In this magnetic refrigeration apparatus, the magnetic working material is magnetized and the temperature rises due to the approach of the permanent magnet accompanying the rotation of the rotor, and the magnetic working material is demagnetized and the temperature falls due to the separation of the permanent magnet. In accordance with this timing, the cooling fluid circulating means circulates the cooling fluid so that it passes between the ducts, so that the temperature on the low-temperature piping connection side of the duct is lowered to a temperature where the refrigerating capacity and the heat load are balanced, The temperature on the pipe connection side is a constant temperature in which the exhaust heat capacity and the refrigeration capacity of the exhaust heat exchanger are balanced.

特開2008−51409号公報JP 2008-51409 A

しかし、ダクト内では、磁気作業物質が冷却流体の流れによって不規則に浮動しやすく、磁気作業物質がダクトの内壁面に衝突したり、磁気作業物質同士で衝突したりして摩耗劣化するおそれがある。また、広いダクト内で冷却流体の流れが不均一となりやすく、結果熱交換効率の低下に繋がっていた。   However, in the duct, the magnetic working material tends to float irregularly due to the flow of the cooling fluid, and the magnetic working material may collide with the inner wall surface of the duct or collide with each other with the magnetic working material, resulting in wear deterioration. is there. Moreover, the flow of the cooling fluid is likely to be non-uniform in a wide duct, resulting in a decrease in heat exchange efficiency.

そこで、本発明は、磁気作業物質の摩耗劣化を抑えて耐久性を向上させると共に、ダクト内での冷却流体の流れも均一にして高い熱交換効率を確保可能とする磁気冷凍装置を提供することを目的としたものである。   Therefore, the present invention provides a magnetic refrigeration apparatus capable of ensuring high heat exchange efficiency by suppressing wear deterioration of a magnetic working substance to improve durability and uniforming a flow of a cooling fluid in a duct. It is aimed at.

上記目的を達成するために、請求項1に記載の発明は、ダクト内における磁気作業物質の充填領域を、仕切り板によって互いに平行な複数の充填室に区分したことを特徴とするものである。
請求項2に記載の発明は、請求項1の構成において、熱交換効率の一層の向上を図るために、仕切り板に、隣接する充填室間を連通させる連通部を設けたことを特徴とするものである。
請求項3に記載の発明は、請求項1又は2の構成において、熱交換効率のさらなる向上を達成するために、仕切り板を磁気作業物質と同じ材料で形成したことを特徴とするものである。
In order to achieve the above object, the invention described in claim 1 is characterized in that the filling region of the magnetic working substance in the duct is divided into a plurality of filling chambers parallel to each other by a partition plate.
According to a second aspect of the present invention, in the configuration of the first aspect, in order to further improve the heat exchange efficiency, the partition plate is provided with a communication portion for communicating between adjacent filling chambers. Is.
The invention according to claim 3 is characterized in that, in the configuration of claim 1 or 2, the partition plate is formed of the same material as the magnetic working substance in order to achieve further improvement in heat exchange efficiency. .

請求項1に記載の発明によれば、磁気作業物質の摩耗劣化が抑えられて耐久性が向上すると共に、ダクト内での冷却流体の流れも均一となって高い熱交換効率が確保でき、ひいては冷凍能力の向上に繋がる。
請求項2に記載の発明によれば、請求項1の効果に加えて、連通部によって充填室間の流体圧が等しくなり、流れの均一化が促進されて熱交換効率の一層の向上が期待できる。
請求項3に記載の発明によれば、請求項1又は2の効果に加えて、冷却流体と磁気作業物質との接触量が増加して熱交換効率のさらなる向上に繋がる。
According to the first aspect of the present invention, the wear deterioration of the magnetic working material is suppressed and the durability is improved, and the flow of the cooling fluid in the duct is made uniform, so that high heat exchange efficiency can be ensured. It leads to improvement of freezing capacity.
According to the second aspect of the present invention, in addition to the effect of the first aspect, the fluid pressure between the filling chambers is equalized by the communicating portion, and the flow is more uniform, and further improvement in heat exchange efficiency is expected. it can.
According to the third aspect of the present invention, in addition to the effect of the first or second aspect, the contact amount between the cooling fluid and the magnetic working substance increases, leading to further improvement in heat exchange efficiency.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、磁気冷凍装置の一例を示す全体図で、磁気冷凍装置1において、装置本体2は、軸方向の前後端が閉塞され、内部を真空気密状態とした中空筒状の固定子3と、その固定子3内の軸心にあって、軸対称となる周面に一対の永久磁石5,5を放射状に取着した回転子4とを備える。回転子4は、前後端が夫々固定子3によって回転可能に軸支されて、減速機を介して連結された図示しないサーボモータ(駆動手段)によって回転制御される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall view showing an example of a magnetic refrigeration apparatus. In the magnetic refrigeration apparatus 1, an apparatus main body 2 includes a hollow cylindrical stator 3 whose front and rear ends in the axial direction are closed and whose inside is vacuum-tight. The rotor 4 is provided with a pair of permanent magnets 5 and 5 attached radially to an axially symmetric circumferential surface in the stator 3. The front and rear ends of the rotor 4 are rotatably supported by the stator 3 and are controlled to rotate by a servo motor (drive means) (not shown) connected via a speed reducer.

また、固定子3の内周には、永久磁石5の2倍の個数である4つのダクト6,6・・が、永久磁石5の外周面に近接する状態で周方向に等間隔で固定されている。このダクト6は、図2に示すように、固定子3の内周に沿った円弧状で、内部に粒径が0.6〜1.0mmの磁気作業物質(ここではガドリニウム(Gd))8,8・・が充填される中空の中央ダクト7と、その中央ダクト7の両端にボルト9,9・・で連結され、中央ダクト7と連続する円弧状となる中空の端部ダクト10,11とからなる。一方の端部ダクト10の長手方向(固定子3の軸方向)の端部には、冷却流体の入口12が、他方の端部ダクト11における端部ダクト10と反対側の端部には、冷却流体の出口13が夫々形成されている。   Further, four ducts 6, 6... Which are twice as many as the permanent magnets 5 are fixed to the inner periphery of the stator 3 at equal intervals in the circumferential direction so as to be close to the outer peripheral surface of the permanent magnet 5. ing. As shown in FIG. 2, the duct 6 has an arc shape along the inner circumference of the stator 3 and a magnetic working material (here, gadolinium (Gd)) 8 having a particle diameter of 0.6 to 1.0 mm. , 8... Are filled with a hollow central duct 7, and are connected to both ends of the central duct 7 by bolts 9, 9. It consists of. At the end of one end duct 10 in the longitudinal direction (the axial direction of the stator 3), there is an inlet 12 for cooling fluid, and at the end of the other end duct 11 opposite to the end duct 10, Cooling fluid outlets 13 are respectively formed.

さらに、中央ダクト7と端部ダクト10,11との互いに隣接する壁には、図3にも示すように、長円状の透孔14,14・・が夫々長手方向に三箇所並設されて、対向する透孔14,14同士により、中央ダクト7と端部ダクト10,11間を夫々連通させている。また、対向する透孔14,14の位置で両壁の間には、磁気作業物質8の径よりもメッシュの小さい金網15,15・・が挟持固定されて、中央ダクト7からの磁気作業物質8の流出を防止している。
一方、中央ダクト7の内部には、中央ダクト7内を厚み方向で二分する横板部17と、その横板部17へ直交状に連設され、中央ダクト7内を長手方向で10分割する縦板部18,18・・とからなる仕切り板16が設けられて、中央ダクト7の内部を、端部ダクト10,11間を接続する互いに平行な20個の充填室19,19・・に区分している。磁気作業物質8は、各充填室19へ等分に充填される。
Further, on the walls adjacent to each other of the central duct 7 and the end ducts 10 and 11, as shown in FIG. 3, three oval through holes 14, 14. Thus, the central duct 7 and the end ducts 10 and 11 are communicated with each other through the opposing through holes 14 and 14. Further, between the walls at the positions of the opposing through holes 14 and 14, metal nets 15, 15... Having a mesh smaller than the diameter of the magnetic working material 8 are sandwiched and fixed so that the magnetic working material from the central duct 7 is sandwiched. 8 outflow is prevented.
On the other hand, inside the central duct 7, a horizontal plate portion 17 that bisects the inside of the central duct 7 in the thickness direction, and is connected to the horizontal plate portion 17 orthogonally, and the central duct 7 is divided into ten in the longitudinal direction. A partition plate 16 comprising vertical plate portions 18, 18... Is provided, and the inside of the central duct 7 is divided into 20 parallel filling chambers 19, 19... Connecting the end ducts 10, 11. It is divided. The magnetic working substance 8 is filled into each filling chamber 19 equally.

そして、装置本体2の各ダクト6には、固定子3の外部に導出される低温配管21と高温配管22とが夫々接続され、冷却流体(ここでは水)の循環経路が形成されている。ここでは、軸対称位置にある一組のダクト6A,6A(以下、位置を区別する際には構成部の符号にABを付す)間では、低温配管21Aと高温配管22Aとが、他の組のダクト6B,6B間では、低温配管21Bと高温配管22Bとが夫々接続されている。一方、隣り合う一組のダクト6A,6B間では、被冷却体24を冷却するための冷却器23を介して、低温配管21A,21B同士が接続されている。また、隣接する他の組のダクト6A,6Bの高温配管22A,22Bは、ロータリー弁25を介して、冷却流体循環手段である循環機26及び排熱交換器27に接続されている。   A low-temperature pipe 21 and a high-temperature pipe 22 led out of the stator 3 are connected to each duct 6 of the apparatus main body 2 to form a circulation path for a cooling fluid (water here). Here, between the pair of ducts 6A and 6A in the axially symmetric position (hereinafter, the reference numerals of the constituent parts are denoted by AB when distinguishing the positions), the low temperature pipe 21A and the high temperature pipe 22A are connected to another group. Between the ducts 6B and 6B, a low temperature pipe 21B and a high temperature pipe 22B are connected, respectively. On the other hand, between a pair of adjacent ducts 6 </ b> A and 6 </ b> B, low-temperature pipes 21 </ b> A and 21 </ b> B are connected to each other via a cooler 23 for cooling the object 24 to be cooled. Further, the high-temperature pipes 22A and 22B of the other adjacent ducts 6A and 6B are connected to a circulator 26 and a waste heat exchanger 27, which are cooling fluid circulation means, via a rotary valve 25.

ロータリー弁25は、背景技術で示した特許文献1に開示のものと同じ構造で、内設された流入室に連通する流入ポート28と、流入室に連通して90°間隔で配置される4つの流出ポート29,29,30,30とを夫々形成して、流入室内に設けた弁体を回転子4と同軸で形成された軸と一体回転可能に連結した構成となっている。ここでは流入ポート28が循環機26に接続され、4つの流出ポート29,30は、軸対称位置の一組29,29が高温配管22Bに接続されて、他の組では、一方の流出ポート30が高温配管22Aに、他方の流出ポート30が排熱交換器27に夫々接続されており、弁体の90°回転毎に、循環機6から供給される冷却流体を、高温配管22A,22Bへ交互に供給させるようになっている。   The rotary valve 25 has the same structure as that disclosed in Patent Document 1 shown in the background art, and is provided with an inflow port 28 communicating with an inflow chamber provided therein and at 90 ° intervals communicating with the inflow chamber 4. Two outflow ports 29, 29, 30, and 30 are formed, and a valve body provided in the inflow chamber is connected to a shaft formed coaxially with the rotor 4 so as to be integrally rotatable. Here, the inflow port 28 is connected to the circulator 26, and the four outflow ports 29, 30 are connected to the high-temperature pipe 22 </ b> B in a set of axially symmetric positions 29, 30. Is connected to the high-temperature pipe 22A and the other outflow port 30 is connected to the exhaust heat exchanger 27. The cooling fluid supplied from the circulator 6 is supplied to the high-temperature pipes 22A and 22B every 90 ° rotation of the valve body. It is made to supply alternately.

以上の如く構成された磁気冷凍装置1の作用を説明する。
まず永久磁石5,5が0°の位置(図1に示す位置)にある時、この0°及び180°の位置にあるダクト6A,6Aの磁気作業物質8A,8Aは、増磁されて温度が上昇する。一方、これと90°位相が異なる90°及び270°の位置にあるダクト6B,6Bの磁気作業物質8B,8Bは減磁されて温度が低下する。
この時、ロータリー弁25を介して冷却流体を、実線矢印で示すように、循環機26→90°位置のダクト6Bの高温配管22B→当該位置のダクト6B→低温配管21B→270°位置のダクト6Bの高温配管22B→当該位置のダクト6B→低温配管21B→冷却器23→180°位置のダクト6Aの低温配管21A→当該位置のダクト6A→高温配管22A→0°位置のダクト6Aの低温配管21A→当該位置のダクト6A→高温配管22A→ロータリー弁25→排熱交換器27→循環機26の順に循環させる。
よって、温度低下した磁気作業物質8Bで冷却された冷却流体は、冷却器23で被冷却体24を冷却した後、増磁されて温度が上昇した磁気作業物質8Aを冷却して排熱交換器27に戻り、仕事分の熱量を放出する。
The operation of the magnetic refrigeration apparatus 1 configured as described above will be described.
First, when the permanent magnets 5 and 5 are at 0 ° positions (positions shown in FIG. 1), the magnetic working materials 8A and 8A in the ducts 6A and 6A at the 0 ° and 180 ° positions are magnetized to increase the temperature. Rises. On the other hand, the magnetic working materials 8B and 8B in the ducts 6B and 6B at the positions of 90 ° and 270 ° that are 90 ° out of phase with each other are demagnetized and the temperature is lowered.
At this time, as indicated by the solid line arrow, the cooling fluid passes through the rotary valve 25, the circulating pipe 26 → the high temperature pipe 22B of the duct 6B at the 90 ° position → the duct 6B at the relevant position → the low temperature pipe 21B → the duct at the 270 ° position. 6B hot pipe 22B → duct 6B at the position → cold pipe 21B → cooler 23 → cold pipe 21A at the position 6 ° 180 ° → duct 6A at the position 6 → high temperature pipe 22A → cold pipe 6A at the position 0 ° It is made to circulate in order of 21A-> duct 6A of the said position-> high temperature piping 22A-> rotary valve 25-> waste heat exchanger 27-> circulator 26.
Therefore, the cooling fluid cooled by the magnetic working material 8B whose temperature has decreased is cooled by the cooler 23, and then the magnetic working material 8A whose temperature has been increased and the temperature has been increased is cooled to remove the heat exchanger. Returning to 27, the amount of heat for work is released.

次に、回転子4を永久磁石5,5と共に90°回転させる(図1の二点鎖線位置)と、0°と180°との位置にあるダクト6A,6Aの磁気作業物質8A,8Aは、減磁されて温度が低下し、90°及び270°の位置にあるダクト6B,6Bの磁気作業物質8B,8Bは、増磁されて温度が上昇する。この時ロータリー弁25も軸を介して弁体が90°回転しているため、点線矢印で示すように、今度は逆に0°位置のダクト6Aの高温配管22Aから冷却流体を循環させることになる。
この回転を繰り返すことによって、各ダクト6の低温配管21接続側の温度は冷凍能力と熱負荷とがバランスする温度まで低下する。一方、各ダクト6の高温配管22接続側の温度は排熱交換器27の排熱能力と冷凍能力とがバランスしてほぼ一定温度になる。
Next, when the rotor 4 is rotated 90 ° together with the permanent magnets 5 and 5 (two-dot chain line positions in FIG. 1), the magnetic working substances 8A and 8A in the ducts 6A and 6A at the positions of 0 ° and 180 ° are The magnetic working materials 8B and 8B in the ducts 6B and 6B at the positions of 90 ° and 270 ° are demagnetized to increase the temperature. At this time, the rotary valve 25 is also rotated 90 ° through the shaft, so that the cooling fluid is circulated from the high-temperature pipe 22A of the duct 6A at the 0 ° position as shown by the dotted arrow. Become.
By repeating this rotation, the temperature of each duct 6 on the side of the low-temperature pipe 21 is lowered to a temperature at which the refrigerating capacity and the heat load are balanced. On the other hand, the temperature at the connection side of the high-temperature pipe 22 of each duct 6 becomes a substantially constant temperature due to the balance between the exhaust heat capacity and the refrigeration capacity of the exhaust heat exchanger 27.

そして、冷却流体の循環の際、各ダクト6内を流れる冷却流体は、入口12から端部ダクト10に供給された後、各透孔14から中央ダクト7内に流れ込むが、中央ダクト7内は複数の充填室19に区分されているため、冷却流体は各充填室19に分かれて中央ダクト7内を平行に流れ、反対側の各透孔14から端部ダクト11に流れて出口13から流出することになる。従って、各充填室19での圧力損失が等しくなって流れが均一になり、熱交換効率の向上に繋がる。
また、各充填室19内の磁気作業物質8は、狭い充填室19内で遊動が抑制されるため、磁気作業物質8が中央ダクト7の内壁面や仕切り板16に衝突したり、磁気作業物質8同士で衝突したりすることが起きにくくなる。
When the cooling fluid is circulated, the cooling fluid flowing in each duct 6 is supplied from the inlet 12 to the end duct 10 and then flows into the central duct 7 from each through hole 14. Since it is divided into a plurality of filling chambers 19, the cooling fluid is divided into the respective filling chambers 19, flows in parallel in the central duct 7, flows from the opposite through holes 14 to the end duct 11, and flows out from the outlet 13. Will do. Therefore, the pressure loss in each filling chamber 19 becomes equal, the flow becomes uniform, and the heat exchange efficiency is improved.
Further, since the magnetic working material 8 in each filling chamber 19 is restrained from moving in the narrow filling chamber 19, the magnetic working material 8 collides with the inner wall surface of the central duct 7 or the partition plate 16, or the magnetic working material 8. It becomes difficult to happen that 8 collide with each other.

なお、図4は、上記形態の磁気冷凍装置において仕切り板の有無による冷凍能力の相違を示すグラフで、横軸が冷却流体の流量(L/min)、縦軸が冷凍能力(W)となっている。試験条件は、高温端温度が24℃、循環サイクル時間が1.8sec、高温端と低温端との温度差が5℃である。これで明らかなように、流量を3L/minから5L/minまで増加させても、常にダクトに仕切り板を設けた装置の方が、ダクトに仕切り板を設けない装置よりも冷凍能力が上回っていることがわかる。   FIG. 4 is a graph showing the difference in refrigeration capacity depending on the presence or absence of a partition plate in the magnetic refrigeration apparatus of the above embodiment, where the horizontal axis represents the flow rate (L / min) of the cooling fluid and the vertical axis represents the refrigeration capacity (W). ing. As test conditions, the high temperature end temperature is 24 ° C., the circulation cycle time is 1.8 sec, and the temperature difference between the high temperature end and the low temperature end is 5 ° C. As is clear from this, even when the flow rate is increased from 3 L / min to 5 L / min, the apparatus in which the partition plate is always provided in the duct has a higher refrigeration capacity than the apparatus in which the partition plate is not provided in the duct. I understand that.

このように、上記形態の磁気冷凍装置1によれば、ダクト6内における磁気作業物質8の充填領域(中央ダクト7)を、仕切り板16によって互いに平行な複数の充填室19,19・・に区分したことで、磁気作業物質8の摩耗劣化が抑えられて耐久性が向上すると共に、ダクト6内での冷却流体の流れも均一となって高い熱交換効率が確保でき、ひいては冷凍能力の向上に繋がる。   As described above, according to the magnetic refrigeration apparatus 1 of the above-described form, the filling region (central duct 7) of the magnetic working substance 8 in the duct 6 is divided into a plurality of filling chambers 19, 19,. By classifying, the wear deterioration of the magnetic working material 8 is suppressed and the durability is improved, and the flow of the cooling fluid in the duct 6 is made uniform, so that high heat exchange efficiency can be secured, and consequently the refrigeration capacity is improved. It leads to.

なお、充填領域における充填室の区分形態は、仕切り板の形状を変えることで適宜変更可能である。例えば、横板部や縦板部の数の増減は勿論、図5に示すように横板部を無くして縦板部18のみで充填室19を併設したり等の変更が考えられる。
また、同図に示すように、縦板部18に複数の連通孔31,31・・を形成して、隣接する充填室19,19間を連通させるようにすることも可能である。このような連通孔31を設ければ、充填室19間の流体圧が等しくなり、流れの均一化が促進されて熱交換効率の一層の向上が期待できる。勿論連通部としては連通孔以外に、スリット状としたり、ダクトの一方の内壁面に立設した仕切り板と他方の内壁面との間に形成した隙間としたり等、連通部の形態も適宜変更可能である。さらに、対向する内壁面間で仕切り板を互い違いに立設して充填室を仕切り形成してもよい。
In addition, the division form of the filling chamber in the filling region can be appropriately changed by changing the shape of the partition plate. For example, it is possible to change the number of horizontal plate portions and vertical plate portions as well as to change the number of horizontal plate portions and vertical plate portions as shown in FIG.
Further, as shown in the figure, it is also possible to form a plurality of communication holes 31, 31. If such a communication hole 31 is provided, the fluid pressure between the filling chambers 19 becomes equal, the flow is made uniform, and further improvement in heat exchange efficiency can be expected. Of course, in addition to the communication hole, the form of the communication part can be changed as appropriate, such as a slit or a gap formed between the partition plate standing on one inner wall surface of the duct and the other inner wall surface. Is possible. Further, the filling chamber may be partitioned and formed by alternately arranging partition plates between the opposing inner wall surfaces.

そして、仕切り板を磁気作業物質と同じ材料(ガドリニウム等)で形成することも可能である。このようにすれば、冷却流体と磁気作業物質との接触量が増加して熱交換効率のさらなる向上に繋がる。
また、上記形態では、仕切り板を冷却流体の流れと平行に設けて充填室を仕切り形成しているが、例えば仕切り板を流れと交差状で且つ千鳥状に配置して充填室を形成することも可能である。このようにすると、充填領域内で冷却流体が蛇行状に流れ、冷却流体と磁気作業物質との接触量が増加することになる。
その他、ダクトの形態も上記構造に限らず、入口及び出口の位置を変更したり、中央ダクトと端部ダクトとを一体的に形成して両ダクト間を仕切り板で区分したり等、適宜設計変更可能である。
And it is also possible to form a partition plate with the same material (gadolinium etc.) as a magnetic working substance. If it does in this way, the contact amount of a cooling fluid and a magnetic working material will increase, and it will lead to the further improvement of heat exchange efficiency.
Moreover, in the said form, although the partition plate is provided in parallel with the flow of the cooling fluid and the filling chamber is formed, for example, the partition plate is arranged in a crossing manner and in a staggered manner to form the filling chamber. Is also possible. In this case, the cooling fluid flows in a meandering manner in the filling region, and the amount of contact between the cooling fluid and the magnetic working substance increases.
In addition, the form of the duct is not limited to the above structure, and it is appropriately designed such as changing the positions of the inlet and outlet, or forming the central duct and end duct integrally and partitioning both ducts with a partition plate. It can be changed.

磁気冷凍装置の全体構成図である。1 is an overall configuration diagram of a magnetic refrigeration apparatus. ダクトの説明図で、(A)は固定子の軸方向から見た平面、(B)が固定子の軸心側から見た断面を夫々示す。It is explanatory drawing of a duct, (A) shows the plane seen from the axial direction of the stator, (B) shows the cross section seen from the axial center side of the stator, respectively. (A)はA−A矢視図、(B)はダクトの横断面図である。(A) is an AA arrow line view, (B) is a cross-sectional view of a duct. 仕切り板の有無による冷凍能力の相違を示すグラフである。It is a graph which shows the difference in the refrigerating capacity by the presence or absence of a partition plate. 仕切り板の変更例を示す説明図である。It is explanatory drawing which shows the example of a change of a partition plate.

符号の説明Explanation of symbols

1・・磁気冷凍装置、2・・装置本体、3・・固定子、4・・回転子、5・・永久磁石、6・・ダクト、7・・中央ダクト、8・・磁気作業物質、10,11・・端部ダクト、12・・入口、13・・出口、14・・透孔、16・・仕切り板、17・・横板部、18・・縦板部、19・・充填室、21・・低温配管、22・・高温配管、23・・冷却器、24・・被冷却体、31・・連通孔。   1 .... Magnetic refrigeration equipment 2 .... Main body 3 .... Stator 4 .... Rotor 5 .... Permanent magnet 6 ... Duct 7 ... Central duct 8 ... Magnetic work substance 10 11 .. End duct, 12 .. Inlet, 13 .. Outlet, 14 .. Through hole, 16 .. Partition plate, 17 .. Horizontal plate part, 18 .. Vertical plate part, 19 .. Filling chamber, 21 .. Low temperature piping, 22. High temperature piping, 23 ... Cooler, 24 ... Cooled body, 31 ... Communication hole.

Claims (3)

駆動手段によって回転し、周面に永久磁石を固着した回転子と、その回転子を軸支し、内面側に、磁場の増減に応じて温度が変化する粒状の磁気作業物質を充填して前記永久磁石と近接するダクトを配置した筒状の固定子とを有する装置本体と、
前記ダクト間を接続して形成される循環経路に冷却流体を循環させる冷却流体循環手段と、
前記循環経路に設けられ、前記冷却流体と被冷却体との間で熱交換を行う熱交換器と、を備えてなる磁気冷凍装置であって、
前記ダクト内における前記磁気作業物質の充填領域を、仕切り板によって互いに平行な複数の充填室に区分したことを特徴とする磁気冷凍装置。
A rotor that is rotated by a driving means and has a permanent magnet fixed on a peripheral surface thereof, and the rotor is pivotally supported, and the inner surface side is filled with a granular magnetic working material whose temperature changes in accordance with the increase or decrease of the magnetic field. A device body having a permanent magnet and a cylindrical stator in which a duct adjacent to the permanent magnet is disposed;
A cooling fluid circulation means for circulating a cooling fluid in a circulation path formed by connecting the ducts;
A heat exchanger provided in the circulation path and performing heat exchange between the cooling fluid and an object to be cooled, and a magnetic refrigeration apparatus comprising:
A magnetic refrigeration apparatus characterized in that the magnetic working substance filling region in the duct is divided into a plurality of parallel filling chambers by a partition plate.
前記仕切り板に、隣接する充填室間を連通させる連通部を設けたことを特徴とする請求項1に記載の磁気冷凍装置。   The magnetic refrigeration apparatus according to claim 1, wherein the partition plate is provided with a communication portion that communicates between adjacent filling chambers. 前記仕切り板を前記磁気作業物質と同じ材料で形成したことを特徴とする請求項1又は2に記載の磁気冷凍装置。   The magnetic refrigeration apparatus according to claim 1 or 2, wherein the partition plate is made of the same material as the magnetic working substance.
JP2008135793A 2008-05-23 2008-05-23 Magnetic refrigeration equipment Expired - Fee Related JP5253884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008135793A JP5253884B2 (en) 2008-05-23 2008-05-23 Magnetic refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008135793A JP5253884B2 (en) 2008-05-23 2008-05-23 Magnetic refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2009281684A true JP2009281684A (en) 2009-12-03
JP5253884B2 JP5253884B2 (en) 2013-07-31

Family

ID=41452313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008135793A Expired - Fee Related JP5253884B2 (en) 2008-05-23 2008-05-23 Magnetic refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5253884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050284A (en) * 2011-08-31 2013-03-14 Chubu Electric Power Co Inc Magnetic refrigerating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012411A1 (en) * 2006-07-24 2008-01-31 Cooltech Applications S.A.S. Magnetocaloric thermal generator
JP2008051409A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012411A1 (en) * 2006-07-24 2008-01-31 Cooltech Applications S.A.S. Magnetocaloric thermal generator
JP2008051409A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050284A (en) * 2011-08-31 2013-03-14 Chubu Electric Power Co Inc Magnetic refrigerating device

Also Published As

Publication number Publication date
JP5253884B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
CN112437859B (en) Magnetocaloric thermal diode assembly with rotary heat exchanger
KR102217279B1 (en) Variable heat pump using magneto caloric materials
JP4921891B2 (en) Magnetic refrigeration equipment
JP4942751B2 (en) Heat generator with magneto-thermal conversion material
US20140305137A1 (en) Heat pump with magneto caloric materials and variable magnetic field strength
US7603865B2 (en) Magnetic refrigerator
JP2017526890A (en) Magnetic refrigeration system with unequal blow
JP4917385B2 (en) Magnetic refrigeration equipment
JP5312844B2 (en) Magnetic refrigeration equipment
JP2008304183A (en) Rotating magnet magnetic refrigerator
US10520229B2 (en) Caloric heat pump for an appliance
JP2010043775A (en) Heat pump applying magneto-caloric effect
JP5253883B2 (en) Magnetic refrigeration equipment
WO2018088168A1 (en) Magnetic heat pump device
JP5253884B2 (en) Magnetic refrigeration equipment
KR20110127151A (en) Magnetocaloric heat generator
JP5816491B2 (en) Magnetic refrigeration equipment
CN108668508B (en) Cooling device of cabinet and cabinet
US9851128B2 (en) Magneto caloric heat pump
JP4917386B2 (en) Magnetic refrigeration equipment
JP4921890B2 (en) Magnetic refrigeration equipment
KR100806716B1 (en) Magnet rotating magnetic refrigerator
US11022348B2 (en) Caloric heat pump for an appliance
CN108668507B (en) Cold accumulation cabinet
RU2354898C2 (en) Method for adjustment of magnetocaloric refrigerator operation parametres in laboratory conditions and device for its realisation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130417

R150 Certificate of patent or registration of utility model

Ref document number: 5253884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees