JP5312844B2 - Magnetic refrigeration equipment - Google Patents

Magnetic refrigeration equipment Download PDF

Info

Publication number
JP5312844B2
JP5312844B2 JP2008135794A JP2008135794A JP5312844B2 JP 5312844 B2 JP5312844 B2 JP 5312844B2 JP 2008135794 A JP2008135794 A JP 2008135794A JP 2008135794 A JP2008135794 A JP 2008135794A JP 5312844 B2 JP5312844 B2 JP 5312844B2
Authority
JP
Japan
Prior art keywords
magnetic
flow rate
temperature
duct
refrigeration apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008135794A
Other languages
Japanese (ja)
Other versions
JP2009281685A (en
Inventor
直樹 平野
重夫 長屋
哲 小野田
孝治 伊藤
哲至 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2008135794A priority Critical patent/JP5312844B2/en
Publication of JP2009281685A publication Critical patent/JP2009281685A/en
Application granted granted Critical
Publication of JP5312844B2 publication Critical patent/JP5312844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Description

本発明は、本発明は、磁気作業物質の磁気熱量効果を利用した磁気冷凍装置に関する。   The present invention relates to a magnetic refrigeration apparatus using the magnetocaloric effect of a magnetic working material.

フロン等の気体冷媒を使用した従来の気体冷凍装置に代わり、磁気作業物質が増磁或いは減磁の際に大きな温度変化を生じさせる性質(磁気熱量効果)を利用した磁気冷凍装置が近年注目されている。磁気作業物質に作用させる磁場発生手段としては、高磁場を発生できる超電導磁石等が有利であるが、4K(−269℃)近傍で運転する超電導磁石を維持するには大きな動力を要することから、冷蔵庫や空気調和機等冷凍能力が約1〜10kW以下の磁気冷凍装置においては、磁界発生に動力の必要がない永久磁石を用いたコンパクトな形態が望まれている。
そこで、本件出願人は、特許文献1において、磁場発生手段として永久磁石を用いた磁気冷凍装置を提案している。
In recent years, a magnetic refrigeration apparatus using a property (magnetocaloric effect) that causes a large temperature change when a magnetic working material is magnetized or demagnetized has been attracting attention in place of a conventional gas refrigeration apparatus using a gas refrigerant such as Freon. ing. As the magnetic field generating means that acts on the magnetic working substance, a superconducting magnet or the like that can generate a high magnetic field is advantageous, but it requires a large amount of power to maintain a superconducting magnet that operates near 4K (−269 ° C.). In a magnetic refrigeration apparatus having a refrigeration capacity of about 1 to 10 kW or less, such as a refrigerator or an air conditioner, a compact form using a permanent magnet that does not require power for generating a magnetic field is desired.
Therefore, the present applicant has proposed a magnetic refrigeration apparatus using a permanent magnet as magnetic field generating means in Patent Document 1.

これは、駆動手段によって回転し、周面に永久磁石を固着した回転子と、その回転子を軸支し、内面側に、磁場の増減に応じて温度が変化する粒状の磁気作業物質を充填して永久磁石と近接するダクトを配置した筒状の固定子とを有する装置本体と、ダクト間を接続して形成される循環経路に冷却流体(水等)を循環させる冷却流体循環手段と、循環経路に設けられ、冷却流体と被冷却体との間で熱交換を行う熱交換器と、を備えてなる。
この磁気冷凍装置においては、回転子の回転に伴う永久磁石の接近により、磁気作業物質が増磁されて温度上昇し、永久磁石の離反により、磁気作業物質が減磁されて温度低下する。このタイミングに合わせて、冷却流体循環手段がダクト間を通るように冷却流体を循環させることで、ダクトの低温配管接続側の温度を冷凍能力と熱負荷とがバランスする温度まで低下させる一方、高温配管接続側の温度は排熱交換器の排熱能力と冷凍能力とがバランスした一定温度となる。
This consists of a rotor that is rotated by a driving means and has a permanent magnet fixed to the peripheral surface, and the rotor is pivotally supported, and the inner surface is filled with a granular magnetic working material whose temperature changes in accordance with the increase or decrease of the magnetic field. An apparatus main body having a cylindrical stator in which a duct adjacent to the permanent magnet is disposed, and a cooling fluid circulation means for circulating a cooling fluid (water, etc.) in a circulation path formed by connecting the ducts, A heat exchanger that is provided in the circulation path and performs heat exchange between the cooling fluid and the object to be cooled.
In this magnetic refrigeration apparatus, the magnetic working material is magnetized and the temperature rises due to the approach of the permanent magnet accompanying the rotation of the rotor, and the magnetic working material is demagnetized and the temperature falls due to the separation of the permanent magnet. In accordance with this timing, the cooling fluid circulating means circulates the cooling fluid so that it passes between the ducts, so that the temperature on the low-temperature piping connection side of the duct is lowered to a temperature where the refrigerating capacity and the heat load are balanced, The temperature on the pipe connection side is a constant temperature that balances the exhaust heat capacity and the refrigeration capacity of the exhaust heat exchanger.

特開2008−51409号公報JP 2008-51409 A

磁気作業物質としては、ガドリウム系材料や、ランタン−鉄−シリコン化合物等が知られており、これらのうち、特性が異なる数種類の磁気作業物質を各ダクトごとに充填して複合的に用いることで、大きな温度差を得ることが可能となる。
しかし、循環経路においてダクト内で磁気作業物質と熱交換する冷却流体の流量が等しいため、高温側の磁気作業物質で大きな冷凍能力を確保するのが難しい。高温側ほど磁気作業物質を多く充填すれば冷凍能力の向上は可能となるが、反面多量の磁気作業物質が必要となって装置の大型化に繋がってしまう。
As magnetic working substances, gadolinium-based materials, lanthanum-iron-silicon compounds, etc. are known, and among these, several types of magnetic working substances with different characteristics are filled in each duct and used in combination. A large temperature difference can be obtained.
However, since the flow rate of the cooling fluid that exchanges heat with the magnetic working material in the duct is equal in the circulation path, it is difficult to ensure a large refrigeration capacity with the magnetic working material on the high temperature side. Refrigerating capacity can be improved by filling a larger amount of magnetic working material on the higher temperature side, but a large amount of magnetic working material is required, leading to an increase in the size of the apparatus.

そこで、本発明は、数種類の磁気作業物質を複合的に用いたいわゆるハイブリッド型において、磁気作業物質の量を増やすことなく、大きな温度差で大きな冷凍能力を得ることができる磁気冷凍装置を提供することを目的としたものである。   Therefore, the present invention provides a magnetic refrigeration apparatus capable of obtaining a large refrigeration capacity with a large temperature difference without increasing the amount of magnetic working material in a so-called hybrid type using several kinds of magnetic working materials in combination. It is for the purpose.

上記目的を達成するために、請求項1に記載の発明は、磁気作業物質を、循環経路の下流側ほど低温となるようにダクト毎に特性を変えて配設する一方、循環経路における各ダクトの出口側の配管に、下流側の循環経路をバイパスするバイパス管を夫々設けて、その各バイパス管に、当該バイパス管の流量を調整可能な流量調整手段を夫々設けたことを特徴とするものである。
請求項2に記載の発明は、請求項1の構成において、バイパス管での流量調整を適切に行うために、流量調整手段を流量調整弁としたことを特徴とするものである。
請求項3に記載の発明は、請求項1の構成において、バイパス管での流量調整を簡単に行うために、流量調整手段を固定オリフィスとしたことを特徴とするものである。
請求項4に記載の発明は、請求項1乃至3の何れかの構成において、一層の小型化に繋がる構成とするために、永久磁石を、駆動手段によって回転する回転子の周面に固着し、ダクトを、回転子を軸支する筒状の固定子の内面に配置して、回転子の回転に伴う永久磁石の接離により、磁気作業物質の温度が変化する構成としたことを特徴とするものである。
In order to achieve the above object, according to the first aspect of the present invention, the magnetic working substance is arranged with its characteristics changed for each duct so that the temperature becomes lower at the downstream side of the circulation path, while each duct in the circulation path is arranged. Each of the bypass pipes is provided with a bypass pipe for bypassing the downstream circulation path, and each of the bypass pipes is provided with a flow rate adjusting means capable of adjusting the flow rate of the bypass pipe. It is.
The invention according to claim 2 is characterized in that, in the configuration of claim 1, in order to appropriately adjust the flow rate in the bypass pipe, the flow rate adjusting means is a flow rate adjusting valve.
According to a third aspect of the present invention, in the configuration of the first aspect , the flow rate adjusting means is a fixed orifice in order to easily adjust the flow rate in the bypass pipe.
According to a fourth aspect of the present invention, in the configuration according to any one of the first to third aspects, the permanent magnet is fixed to the peripheral surface of the rotor that is rotated by the driving means in order to achieve a configuration that leads to further miniaturization. The duct is disposed on the inner surface of a cylindrical stator that pivotally supports the rotor, and the temperature of the magnetic working material is changed by the contact and separation of the permanent magnet accompanying the rotation of the rotor. To do.

請求項1に記載の発明によれば、複数種類の磁気作業物質を複合的に用いたいわゆるハイブリッド型において、磁気作業物質の量を増やすことなく、大きな温度差で大きな冷凍能力を得ることができる。よって、小型で高性能の磁気冷凍装置を提供可能となる。
請求項2に記載の発明によれば、請求項1の効果に加えて、流量調整弁の採用により、バイパス管内の流量調整を適切に行うことができる。
請求項3に記載の発明によれば、請求項1の効果に加えて、固定オリフィスの採用により、バイパス管内の流量調整を簡単に行うことができる。
請求項4に記載の発明によれば、請求項1乃至3の何れかの効果に加えて、磁気冷凍装置の一層の小型化が達成可能となる。
According to the first aspect of the present invention, in a so-called hybrid type using a plurality of types of magnetic working materials in combination, a large refrigeration capacity can be obtained with a large temperature difference without increasing the amount of magnetic working materials. . Therefore, a small and high-performance magnetic refrigeration apparatus can be provided.
According to the second aspect of the present invention, in addition to the effect of the first aspect, the flow rate adjustment in the bypass pipe can be appropriately performed by adopting the flow rate adjustment valve.
According to the third aspect of the invention, in addition to the effect of the first aspect, the flow rate in the bypass pipe can be easily adjusted by adopting the fixed orifice.
According to the invention described in claim 4, in addition to the effect of any one of claims 1 to 3, it is possible to achieve further downsizing of the magnetic refrigeration apparatus.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、磁気冷凍装置の一例を示す全体図で、磁気冷凍装置1において、装置本体2は、軸方向の前後端が閉塞され、内部を真空気密状態とした中空筒状の固定子3と、その固定子3内の軸心にあって、軸対称となる周面に一対の永久磁石5,5を放射状に取着した回転子4とを備える。回転子4は、前後端が夫々固定子3によって回転可能に軸支されて、減速機を介して連結された図示しないサーボモータ(駆動手段)によって回転制御される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall view showing an example of a magnetic refrigeration apparatus. In the magnetic refrigeration apparatus 1, an apparatus main body 2 includes a hollow cylindrical stator 3 whose front and rear ends in the axial direction are closed and whose inside is vacuum-tight. The rotor 4 is provided with a pair of permanent magnets 5 and 5 attached radially to an axially symmetric circumferential surface in the stator 3. The front and rear ends of the rotor 4 are rotatably supported by the stator 3 and are controlled to rotate by a servo motor (drive means) (not shown) connected via a speed reducer.

また、固定子3の内周には、永久磁石5の2倍の個数である4つのダクト6,6・・が、永久磁石5の外周面に近接する状態で周方向に等間隔で固定されている。このダクト6,6・・のうち、周方向に隣接する一組のダクト6,6には、粒状の磁気作業物質7,7・・が、他の組のダクト6,6には粒状の磁気作業物質8,8・・が夫々充填されている。ここでは磁気作業物質7と磁気作業物質8とは種類が異なっており、磁場の増減に伴う温度変化が、磁気作業物質7の方が磁気作業物質8よりも低温側となっている。   Further, four ducts 6, 6... Which are twice as many as the permanent magnets 5 are fixed to the inner periphery of the stator 3 at equal intervals in the circumferential direction so as to be close to the outer peripheral surface of the permanent magnet 5. ing. Of the ducts 6, 6,..., One set of ducts 6, 6 adjacent in the circumferential direction has granular magnetic working substances 7, 7,..., And the other set of ducts 6, 6 has granular magnetic work. The working substances 8, 8... Are filled respectively. Here, the types of the magnetic working material 7 and the magnetic working material 8 are different, and the temperature change accompanying the increase and decrease of the magnetic field is lower in the magnetic working material 7 than in the magnetic working material 8.

さらに、各ダクト6には、固定子3の外部に導出される低温配管9と高温配管10とが夫々接続されて、冷却流体(ここでは水)の循環経路が形成されている。ここでは軸対称位置にある一組のダクト6A,6B(以下、位置を区別する際には構成部の符号にAB・・を付す)間には、低温配管9Bと高温配管10Aとが、他の組のダクト6C,6D間には、高温配管10Cと低温配管9Dとが夫々接続されている。また、隣り合う一組のダクト6A,6C間では、被冷却体12を冷却するための冷却器11を介して低温配管9A,9C同士が接続され、他の組のダクト6B,6Dの高温配管10B,10Dは、ロータリー弁13を介して、循環機14及び排熱交換器15に接続されている。   Furthermore, a low-temperature pipe 9 and a high-temperature pipe 10 led out of the stator 3 are connected to each duct 6 to form a circulation path for cooling fluid (here, water). Here, between the pair of ducts 6A and 6B in the axially symmetric position (hereinafter, when the positions are distinguished, the reference numerals of the constituent parts are given AB...), The low temperature pipe 9B and the high temperature pipe 10A are the other. A high-temperature pipe 10C and a low-temperature pipe 9D are connected between the two ducts 6C and 6D. Further, between a pair of adjacent ducts 6A and 6C, low-temperature pipes 9A and 9C are connected to each other via a cooler 11 for cooling the object to be cooled 12, and the other sets of ducts 6B and 6D are high-temperature pipes. 10B and 10D are connected to the circulator 14 and the exhaust heat exchanger 15 via the rotary valve 13.

ロータリー弁13は、背景技術で示した特許文献1に開示のものと同じ構造で、内設された流入室に連通する流入ポート16と、流入室に連通して90°間隔で配置される4つの流出ポート17,17,18,18とを夫々形成して、流入室内に設けた弁体を回転子4と同軸で形成された軸と一体回転可能に連結した構成となっている。ここでは流入ポート16が循環機14に接続され、4つの流出ポート17,18は、軸対称位置の一組17,17が高温配管10Dに接続されて、他の組では、一方の流出ポート18が高温配管10Bに、他方の流出ポート18が排熱交換器15に夫々接続されており、弁体の90°回転毎に、循環機14から供給される冷却流体を、高温配管10B,10Dへ交互に供給させるようになっている。   The rotary valve 13 has the same structure as that disclosed in Patent Document 1 shown in the background art, and is provided with an inflow port 16 communicating with an inflow chamber provided therein and at 90 ° intervals communicating with the inflow chamber 4. Two outflow ports 17, 17, 18, 18 are formed, and a valve body provided in the inflow chamber is connected to a shaft formed coaxially with the rotor 4 so as to be integrally rotatable. Here, the inflow port 16 is connected to the circulator 14, and the four outflow ports 17, 18 are connected to the high-temperature pipe 10 </ b> D at one set 17, 17 in the axially symmetrical position, and in the other set, one outflow port 18 Is connected to the high-temperature pipe 10B and the other outflow port 18 is connected to the exhaust heat exchanger 15, and the cooling fluid supplied from the circulator 14 is supplied to the high-temperature pipes 10B and 10D every 90 ° rotation of the valve body. It is made to supply alternately.

そして、排熱交換器15に高温配管10が夫々接続される一組のダクト6B,6D間において、互いの低温配管9B,9D間には、流量調整弁20を備えた第1バイパス管19が接続されている。一方、冷却器11に低温配管9が夫々接続される他の組のダクト6A,6C間において、互いの低温配管9A,9C間にも、流量調整弁22を備えた第2バイパス管21が接続されている。よって、第1バイパス管19の流量調整弁20により、後段のダクト6A,6C及び冷却器11をバイパスして、第1バイパス管19に冷却流体を所定量流すことができ、第2バイパス管21の流量調整弁22により、後段の冷却器11をバイパスして、第2バイパス管21に冷却流体を所定量流すことができる。   And between 1 set of duct 6B, 6D to which the high temperature piping 10 is connected to the exhaust heat exchanger 15, respectively, between the low temperature piping 9B, 9D, the 1st bypass pipe 19 provided with the flow regulating valve 20 is provided. It is connected. On the other hand, between the other sets of ducts 6A and 6C to which the low temperature pipe 9 is connected to the cooler 11, the second bypass pipe 21 having the flow rate adjusting valve 22 is also connected between the low temperature pipes 9A and 9C. Has been. Therefore, the flow regulating valve 20 of the first bypass pipe 19 can bypass the ducts 6A and 6C and the cooler 11 in the subsequent stage, and can flow a predetermined amount of cooling fluid to the first bypass pipe 19. The flow rate adjusting valve 22 bypasses the cooler 11 in the subsequent stage and allows a predetermined amount of cooling fluid to flow through the second bypass pipe 21.

以上の如く構成された磁気冷凍装置1の作用を説明する。
まず永久磁石5,5が0°の位置(図1の実線位置)にある時、この0°及び180°の位置にあるダクト6B,6Aの磁気作業物質7,8は、増磁されて温度が上昇する。一方、これと90°位相が異なる90°及び270°の位置にあるダクト6C,6Dの磁気作業物質7,8は減磁されて温度が低下する。
この時、ロータリー弁13を介して冷却流体を、実線矢印で示すように、循環機14→高温配管10D→ダクト6D→低温配管9D→高温配管10C→ダクト6C→低温配管9C→冷却器11→低温配管9A→ダクト6A→高温配管10A→低温配管9B→ダクト6B→高温配管10B→ロータリー弁13→排熱交換器15→循環機14の順に循環させる。
よって、温度低下した磁気作業物質7C,8Dで冷却された冷却流体は、冷却器11で被冷却体12を冷却した後、増磁されて温度が上昇した磁気作業物質7A,8Bを冷却して排熱交換器15に戻り、仕事分の熱量を放出する。
The operation of the magnetic refrigeration apparatus 1 configured as described above will be described.
First, when the permanent magnets 5 and 5 are at 0 ° positions (solid line positions in FIG. 1), the magnetic working materials 7 and 8 in the ducts 6B and 6A at the 0 ° and 180 ° positions are magnetized to increase the temperature. Rises. On the other hand, the magnetic working materials 7 and 8 in the ducts 6C and 6D at the positions of 90 ° and 270 ° that are 90 ° out of phase with each other are demagnetized to lower the temperature.
At this time, as indicated by the solid line arrow, the cooling fluid is passed through the rotary valve 13 circulator 14 → high temperature piping 10D → duct 6D → low temperature piping 9D → high temperature piping 10C → duct 6C → low temperature piping 9C → cooler 11 → It is made to circulate in order of low temperature piping 9A-> duct 6A-> high temperature piping 10A-> low temperature piping 9B-> duct 6B-> high temperature piping 10B-> rotary valve 13-> exhaust heat exchanger 15-> circulation machine 14.
Therefore, the cooling fluid cooled by the magnetic working materials 7C and 8D whose temperature has been lowered cools the cooled object 12 by the cooler 11, and then cools the magnetic working materials 7A and 8B whose temperature has been increased and increased in temperature. Returning to the exhaust heat exchanger 15, the amount of work is released.

次に、回転子4を永久磁石5,5と共に90°回転させる(図1の二点鎖線位置)と、0°と180°との位置にあるダクト6A,6Bの磁気作業物質7A,8Bは、減磁されて温度が低下し、90°及び270°の位置にあるダクト6C,6Dの磁気作業物質7C,8Dは、増磁されて温度が上昇する。この時ロータリー弁13も軸を介して弁体が90°回転しているため、点線矢印で示すように、今度は逆に0°位置のダクト6Bの高温配管10Bから冷却流体を循環させることになる。
この回転を繰り返すことによって、各ダクト6の低温配管9接続側の温度は冷凍能力と熱負荷とがバランスする温度まで低下する。一方、各ダクト6の高温配管10接続側の温度は排熱交換器15の排熱能力と冷凍能力とがバランスしてほぼ一定温度になる。
Next, when the rotor 4 is rotated 90 ° together with the permanent magnets 5 and 5 (two-dot chain line positions in FIG. 1), the magnetic working substances 7A and 8B in the ducts 6A and 6B at the positions of 0 ° and 180 ° are The magnetic working materials 7C and 8D of the ducts 6C and 6D at the positions of 90 ° and 270 ° are demagnetized to increase the temperature. At this time, since the valve body of the rotary valve 13 is also rotated by 90 ° via the shaft, the cooling fluid is circulated from the high-temperature pipe 10B of the duct 6B at the 0 ° position as shown by the dotted arrow. Become.
By repeating this rotation, the temperature of each duct 6 on the side of the low-temperature pipe 9 is lowered to a temperature at which the refrigerating capacity and the heat load are balanced. On the other hand, the temperature at the connection side of the high-temperature pipe 10 of each duct 6 is substantially constant due to the balance between the exhaust heat capacity and the refrigeration capacity of the exhaust heat exchanger 15.

この冷却流体の循環の際、第1バイパス管19の流量調整弁20と第2バイパス管21の流量調整弁22とを開弁操作して、循環経路の正逆何れの場合も、高温側の磁気作業物質8が充填されるダクト6B,6Dの方が、低温側の磁気作業物質7が充填されるダクト6A,6Cよりも流量が大きくなるように設定しておく。すると、流量が大きくなるダクト6B,6Dによって大きな冷凍能力が得られると共に、流量が小さくなるダクト6A,6Cによって温度差が大きくとれることになる。
図2は、磁気作業物質における温度差ΔTと冷凍能力Pとの関係を示すグラフで、例えば磁気作業物質8の特性を点線のグラフa、磁気作業物質7の特性を一点鎖線のグラフbとした場合、流量の調整によって実線部分cでの複合的な特性が得られることになる。
During the circulation of the cooling fluid, the flow rate adjustment valve 20 of the first bypass pipe 19 and the flow rate adjustment valve 22 of the second bypass pipe 21 are operated to open the high temperature side in both cases of the forward and reverse of the circulation path. The ducts 6B and 6D filled with the magnetic working material 8 are set to have a larger flow rate than the ducts 6A and 6C filled with the magnetic working material 7 on the low temperature side. Then, a large refrigerating capacity is obtained by the ducts 6B and 6D having a large flow rate, and a large temperature difference is obtained by the ducts 6A and 6C having a small flow rate.
FIG. 2 is a graph showing a relationship between the temperature difference ΔT and the refrigerating capacity P in the magnetic working material. For example, the characteristic of the magnetic working material 8 is a dotted line graph a, and the magnetic working material 7 is a one-dot chain line graph b. In this case, a composite characteristic at the solid line portion c is obtained by adjusting the flow rate.

このように、上記形態の磁気冷凍装置1によれば、磁気作業物質7,8を、循環経路の下流側ほど低温となるようにダクト6毎に特性を変えて配設する一方、循環経路における各ダクト6の出口側の配管に、下流側の循環経路をバイパスする第1、第2バイパス管19,21を夫々設けて、その各バイパス管に、当該バイパス管の流量を調整可能な流量調整手段(流量調整弁20,22)を夫々設けたことで、複数の磁気作業物質7,8を複合的に用いたいわゆるハイブリッド型において、磁気作業物質7,8の量を増やすことなく、大きな温度差で大きな冷凍能力を得ることができる。よって、小型で高性能の磁気冷凍装置1を提供可能となる。   As described above, according to the magnetic refrigeration apparatus 1 of the above embodiment, the magnetic working substances 7 and 8 are arranged with different characteristics for each duct 6 so as to be lower in temperature toward the downstream side of the circulation path, while in the circulation path. The first and second bypass pipes 19 and 21 for bypassing the downstream circulation path are respectively provided in the pipes on the outlet side of the ducts 6, and the flow rate adjustment capable of adjusting the flow rate of the bypass pipes in the respective bypass pipes In the so-called hybrid type using a plurality of magnetic working materials 7 and 8 in combination, a large temperature can be achieved without increasing the amount of the magnetic working materials 7 and 8 by providing the means (flow control valves 20 and 22). A large refrigerating capacity can be obtained by the difference. Therefore, a small and high-performance magnetic refrigeration apparatus 1 can be provided.

特にここでは、流量調整手段として流量調整弁を採用しているので、バイパス管での流量の調整が適切に行えるようになっている。
また、永久磁石5が、サーボモータによって回転する回転子4の周面に固着され、ダクト6が、回転子4を軸支する筒状の固定子3の内面に配置されて、回転子4の回転に伴う永久磁石5の接離により、磁気作業物質7,8の温度が変化する態様であるので、磁気冷凍装置1の一層の小型化が達成可能となる。
In particular, here, since a flow rate adjusting valve is employed as the flow rate adjusting means, the flow rate in the bypass pipe can be adjusted appropriately.
Further, the permanent magnet 5 is fixed to the peripheral surface of the rotor 4 rotated by the servo motor, and the duct 6 is disposed on the inner surface of the cylindrical stator 3 that pivotally supports the rotor 4. Since the temperature of the magnetic working materials 7 and 8 changes due to the contact and separation of the permanent magnet 5 accompanying the rotation, further miniaturization of the magnetic refrigeration apparatus 1 can be achieved.

なお、上記形態では、ダクトを4個配設しているが、永久磁石の個数によってはこれより多くても差し支えなく、この場合もダクト毎に異なる特性の磁気作業物質を充填すると共に、各ダクトの出口側にバイパス管を接続すればよい。また、循環経路も上記形態に限らず、例えば複数のダクトが並列に接続されて冷却流体が流れる場合でも出口側でバイパス管を接続すればよい。
また、流量調整手段としては流量調整弁に限らず、固定オリフィス等の他の手段も採用可能である。特に固定オリフィスを採用すれば流量調整が簡単に行える。勿論これらの手段を組み合わせて採用することも可能である。
In the above embodiment, four ducts are provided, but depending on the number of permanent magnets, there may be more than this, and in this case, each duct is filled with a magnetic working substance having different characteristics, and each duct What is necessary is just to connect a bypass pipe to the exit side. Further, the circulation path is not limited to the above form, and for example, even when a plurality of ducts are connected in parallel and the cooling fluid flows, a bypass pipe may be connected on the outlet side.
Further, the flow rate adjusting means is not limited to the flow rate adjusting valve, and other means such as a fixed orifice can be employed. In particular, if a fixed orifice is used, the flow rate can be easily adjusted. Of course, a combination of these means may be employed.

そして、上記形態では、固定子と回転子とを備えた一組の装置本体において磁気作業物質をハイブリッドにした構成となっているが、図3に示すように、複数の装置本体2,2・・間において、同じ位相のダクト間を配管23,23・・で直列に接続して冷却器等の熱交換器24に対して往復する循環経路を形成し、各回転子を同調回転させる磁気冷凍装置1aに対しても本発明は採用可能である。すなわち、ここでも各装置本体2のダクト6毎に磁気作業物質の特性を変えて、循環経路の下流側ほど低温となるように配設する一方、各装置本体2の出口側の配管23に、流量調整弁26を備えたバイパス管25を夫々接続すればよい。勿論この場合も、循環経路の形態やバイパス管の位置等は、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
And in the said form, although it becomes the structure which made the magnetic working material hybrid in the set of apparatus main body provided with the stator and the rotor, as shown in FIG. In between, the ducts having the same phase are connected in series by pipes 23, 23... To form a circulation path that reciprocates with respect to the heat exchanger 24 such as a cooler, and the respective rotors are rotated synchronously. The present invention can be applied to the device 1a. That is, also here, the characteristic of the magnetic working substance is changed for each duct 6 of each apparatus main body 2 and arranged so that the temperature becomes lower toward the downstream side of the circulation path. What is necessary is just to connect the bypass pipe 25 provided with the flow volume adjustment valve 26, respectively. Of course, in this case as well, the form of the circulation path, the position of the bypass pipe, and the like can be changed as appropriate without departing from the spirit of the present invention.

磁気冷凍装置の全体構成図である。1 is an overall configuration diagram of a magnetic refrigeration apparatus. 温度差と冷凍能力との関係を示すグラフである。It is a graph which shows the relationship between a temperature difference and freezing capacity. 磁気冷凍装置の変更例を示す説明図である。It is explanatory drawing which shows the example of a change of a magnetic refrigeration apparatus.

符号の説明Explanation of symbols

1,1a・・磁気冷凍装置、2・・装置本体、3・・固定子、4・・回転子、5・・永久磁石、6・・ダクト、7,8・・磁気作業物質、9・・低温配管、10・・高温配管、11・・冷却器、12・・被冷却体、14・・循環機、15・・排熱交換器、19・・第1バイパス管、20,22,26・・流量調整弁、21・・第2バイパス管、23・・配管、25・・バイパス管。   1, 1a ··· Magnetic refrigeration device ··· Device body 3 ·· Stator 4 ·· Rotor 5 · · Permanent magnet 6 · · Duct 7 · 8 · · Magnetic work material · · · Low temperature pipe, 10 .... High temperature pipe, 11 .... Cooler, 12 .... Cooled object, 14 .... Circulator, 15 .... Exhaust heat exchanger, 19 .... First bypass pipe, 20,22,26 ... -Flow control valve, 21 ... Second bypass pipe, 23 ... Piping, 25 ... Bypass pipe.

Claims (4)

磁場の増減に応じて温度が変化する磁気作業物質が充填される複数のダクトを、配管を介して熱交換器に接続して冷却流体の循環経路を形成し、永久磁石を前記ダクトへ相対的に接離させると共に、前記冷却流体を前記循環経路に循環させることで、前記磁気作業物質によって前記冷却流体を冷却して前記熱交換器で被冷却体を冷却させる磁気冷凍装置であって、
前記磁気作業物質を、前記循環経路の下流側ほど低温となるように前記ダクト毎に特性を変えて配設する一方、前記循環経路における前記各ダクトの出口側の前記配管に、下流側の前記循環経路をバイパスするバイパス管を夫々設けて、その各バイパス管に、当該バイパス管の流量を調整可能な流量調整手段を夫々設けたことを特徴とする磁気冷凍装置。
A plurality of ducts filled with a magnetic working material whose temperature changes in accordance with the increase or decrease of the magnetic field is connected to a heat exchanger via a pipe to form a cooling fluid circulation path, and the permanent magnet is relative to the duct. A magnetic refrigeration apparatus that cools the cooling fluid by the magnetic working substance and cools the object to be cooled by the heat exchanger by circulating the cooling fluid through the circulation path.
The magnetic working substance is disposed with a different characteristic for each duct so that the temperature is lower at the downstream side of the circulation path, while the downstream pipe is connected to the pipe on the outlet side of each duct. A magnetic refrigeration apparatus comprising a bypass pipe for bypassing a circulation path, and a flow rate adjusting means capable of adjusting a flow rate of the bypass pipe in each bypass pipe.
前記流量調整手段を流量調整弁としたことを特徴とする請求項1に記載の磁気冷凍装置。   The magnetic refrigeration apparatus according to claim 1, wherein the flow rate adjusting means is a flow rate adjusting valve. 前記流量調整手段を固定オリフィスとしたことを特徴とする請求項1に記載の磁気冷凍装置。 The magnetic refrigeration apparatus according to claim 1, wherein the flow rate adjusting means is a fixed orifice. 前記永久磁石が、駆動手段によって回転する回転子の周面に固着され、前記ダクトが、前記回転子を軸支する筒状の固定子の内面に配置されて、前記回転子の回転に伴う前記永久磁石の接離により、前記磁気作業物質の温度が変化することを特徴とする請求項1乃至3の何れかに記載の磁気冷凍装置。   The permanent magnet is fixed to a circumferential surface of a rotor that is rotated by driving means, and the duct is disposed on an inner surface of a cylindrical stator that pivotally supports the rotor, and the rotation of the rotor causes the rotor to rotate. The magnetic refrigeration apparatus according to any one of claims 1 to 3, wherein the temperature of the magnetic working material is changed by contact and separation of a permanent magnet.
JP2008135794A 2008-05-23 2008-05-23 Magnetic refrigeration equipment Expired - Fee Related JP5312844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008135794A JP5312844B2 (en) 2008-05-23 2008-05-23 Magnetic refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008135794A JP5312844B2 (en) 2008-05-23 2008-05-23 Magnetic refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2009281685A JP2009281685A (en) 2009-12-03
JP5312844B2 true JP5312844B2 (en) 2013-10-09

Family

ID=41452314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008135794A Expired - Fee Related JP5312844B2 (en) 2008-05-23 2008-05-23 Magnetic refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5312844B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060602B2 (en) * 2010-08-05 2012-10-31 株式会社東芝 Magnetic refrigeration device and magnetic refrigeration system
JP5267613B2 (en) * 2011-04-25 2013-08-21 株式会社デンソー Magneto-caloric effect type heat pump device
JP5278486B2 (en) * 2011-04-25 2013-09-04 株式会社デンソー Thermomagnetic engine device and reversible thermomagnetic cycle device
JP5418616B2 (en) 2011-05-13 2014-02-19 株式会社デンソー Thermomagnetic cycle equipment
JP5556739B2 (en) 2011-05-17 2014-07-23 株式会社デンソー Magnetic heat pump device
JP6136842B2 (en) * 2013-10-16 2017-05-31 株式会社デンソー Thermomagnetic cycle equipment
JP6558296B2 (en) * 2016-04-20 2019-08-14 株式会社デンソー Magnetic heat pump device
CN114383222A (en) * 2021-12-16 2022-04-22 青岛海尔空调器有限总公司 Air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1281032A2 (en) * 2000-05-05 2003-02-05 Rhocraft R.&amp; D. Ltd. University of Victoria Apparatus and methods for cooling and liquefying a fluid using magnetic refrigeration
JP4303879B2 (en) * 2000-10-02 2009-07-29 株式会社東芝 Magnetic refrigeration equipment
EP1736719A1 (en) * 2005-06-20 2006-12-27 Haute Ecole d'Ingénieurs et de Gestion du Canton Continuously rotary magnetic refrigerator or heat pump
JP4921891B2 (en) * 2006-08-24 2012-04-25 中部電力株式会社 Magnetic refrigeration equipment

Also Published As

Publication number Publication date
JP2009281685A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5312844B2 (en) Magnetic refrigeration equipment
EP3025105B1 (en) Variable heat pump using magneto caloric materials
CN112437859B (en) Magnetocaloric thermal diode assembly with rotary heat exchanger
JP5644812B2 (en) Magnetic heat pump system and air conditioner using the system
US10465951B2 (en) Magneto caloric heat pump with variable magnetization
JP2017526890A (en) Magnetic refrigeration system with unequal blow
JP2017501364A (en) Magnetic refrigeration system with improved flow efficiency
US20140305137A1 (en) Heat pump with magneto caloric materials and variable magnetic field strength
CN103216968A (en) Magnetic refrigeration control system and method thereof
JP2015075292A (en) Magneto-caloric element and thermo-magnetic cycle device with the same
JP2008051412A (en) Magnetic refrigerating device
JP2012255642A (en) Thermo-magnetic cycle apparatus
JP2008304183A (en) Rotating magnet magnetic refrigerator
US10520229B2 (en) Caloric heat pump for an appliance
JP2008051409A (en) Magnetic refrigerating device
JP6384255B2 (en) Magneto-caloric element and thermomagnetism cycle device
WO2018088168A1 (en) Magnetic heat pump device
JP7373586B2 (en) Closed motor cooling system
JP5253883B2 (en) Magnetic refrigeration equipment
JP6583143B2 (en) Thermomagnetic cycle equipment
JP5253884B2 (en) Magnetic refrigeration equipment
US11022348B2 (en) Caloric heat pump for an appliance
JP2017194215A (en) Magnetic heat pump device
JP2009162464A (en) Air cycle refrigeration system
JP5310242B2 (en) Shunt and refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees