JP2009281622A - Inner tube joint structure of internal heat exchanger - Google Patents

Inner tube joint structure of internal heat exchanger Download PDF

Info

Publication number
JP2009281622A
JP2009281622A JP2008132602A JP2008132602A JP2009281622A JP 2009281622 A JP2009281622 A JP 2009281622A JP 2008132602 A JP2008132602 A JP 2008132602A JP 2008132602 A JP2008132602 A JP 2008132602A JP 2009281622 A JP2009281622 A JP 2009281622A
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
internal heat
cylindrical joint
joint portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008132602A
Other languages
Japanese (ja)
Inventor
Hisatoshi Hirota
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP2008132602A priority Critical patent/JP2009281622A/en
Publication of JP2009281622A publication Critical patent/JP2009281622A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To branch an inner tube from an outer tube without using an expensive joint member such as a block, in a double tube-type internal heat exchanger used in a refrigerating cycle of an air conditioning device for an automobile. <P>SOLUTION: A metallic pipe 16 integrally provided with a cylindrical joint section 17 flared at its distal end, on its outer face, is connected to one end of the outer tube 11, a distal end part of the inner tube 12 is inserted to the cylindrical joint section 17, and a distal end of high-pressure piping 13 is throttled in a state of covering the flared part of the cylindrical joint section 17, thus the high-pressure piping 13 is connected to the cylindrical joint section 17. Here, an O-ring 18 is disposed on a part surrounded by the inner tube 12, the cylindrical joint section 17 and the high-pressure piping 13. Thus the leakage of a refrigerant from the high-pressure piping 13 into the metallic pipe 16, and the leakage of a refrigerant from the high-pressure piping 13 to the atmospheric air are simultaneously prevented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は内部熱交換器の内管継手構造に関し、特に自動車用空調装置の冷凍サイクル内で膨張装置に導入される高温・高圧の冷媒と圧縮機へ導入される低温・低圧の冷媒との間で熱交換を行う内部熱交換器の内管継手構造に関する。   The present invention relates to an inner pipe joint structure of an internal heat exchanger, and in particular, between a high-temperature and high-pressure refrigerant introduced into an expansion device and a low-temperature and low-pressure refrigerant introduced into a compressor in a refrigeration cycle of an automotive air conditioner. The present invention relates to an inner pipe joint structure of an internal heat exchanger that performs heat exchange at a temperature.

自動車用空調装置では、一般に、エンジンルーム内に圧縮機、凝縮器およびレシーバドライヤが設置され、車室内に蒸発器が設置され、圧縮機、凝縮器、レシーバドライヤ、膨張弁および蒸発器がこの順序で冷媒が流れるよう配管され、蒸発器を出た冷媒は圧縮機へ戻るようにして冷凍サイクルが構成されている。膨張弁は、車室とエンジンルームとを区画している隔壁に設置されて車室内側の配管とエンジンルーム内側の配管との継手を兼ねるようにしていたり、蒸発器の中または蒸発器の直近に設置されていたりしている。   In an automotive air conditioner, a compressor, a condenser and a receiver dryer are generally installed in an engine room, an evaporator is installed in a vehicle compartment, and the compressor, condenser, receiver dryer, expansion valve and evaporator are arranged in this order. Then, the refrigerant is piped so that the refrigerant flows out, and the refrigerant exiting the evaporator returns to the compressor to constitute the refrigeration cycle. The expansion valve is installed in the partition that separates the vehicle compartment from the engine room, and serves as a joint between the piping inside the vehicle compartment and the piping inside the engine room, or in or near the evaporator. It is installed in.

このような冷凍サイクルにおいて、その成績係数の向上を目的として内部熱交換器を備えることが知られている。この内部熱交換器は、レシーバドライヤから膨張弁に送られる高温・高圧の冷媒と、蒸発器から圧縮機へ送られる低温・低圧の冷媒との間で熱交換を行って、膨張弁に導入される冷媒の過冷却度および圧縮機に導入される冷媒の過熱度をそれぞれ大きくし、それにより冷凍サイクルの成績係数を向上させている。   In such a refrigeration cycle, it is known to include an internal heat exchanger for the purpose of improving the coefficient of performance. This internal heat exchanger exchanges heat between the high-temperature and high-pressure refrigerant sent from the receiver dryer to the expansion valve and the low-temperature and low-pressure refrigerant sent from the evaporator to the compressor, and is introduced into the expansion valve. The degree of supercooling of the refrigerant and the degree of superheat of the refrigerant introduced into the compressor are increased, thereby improving the coefficient of performance of the refrigeration cycle.

冷凍サイクルで使用される内部熱交換器は、熱交換率を重要視するよりも配管の機能を重要視しているため、熱交換のための大きな表面積は必要ない。このため、たとえば非常にシンプルな同軸二重管式のものが用いられている(たとえば、特許文献1参照)。この同軸二重管は、外管と、この外管の中に収容された内管と、これら内管および外管の同心を維持するために内管と外管との間に配置された支持部材とを備え、中空押し出し成形によって一体に形成されている。   Since the internal heat exchanger used in the refrigeration cycle places importance on the function of the piping rather than on the heat exchange rate, a large surface area for heat exchange is not necessary. For this reason, for example, a very simple coaxial double tube type is used (for example, see Patent Document 1). This coaxial double pipe is an outer pipe, an inner pipe housed in the outer pipe, and a support disposed between the inner pipe and the outer pipe to maintain concentricity between the inner pipe and the outer pipe. And is integrally formed by hollow extrusion molding.

二重管式の内部熱交換器は、その端部に二重管を分岐して2つの独立した外部配管をそれぞれ接続する継手部材が設けられている(たとえば、特許文献2参照)。この継手部材は、一方の面に外管を受け入れる筒状雌部を有し、その反対側の面には、継手部材を貫通して外管から伸びている内管を保持する挿通孔と、この挿通孔と離間した位置に内管の軸と平行な軸を有する突出部とを有し、その突出部の孔が継手部材の内部で内部熱交換器の外管と内管との間の通路に連通している構成となっている。
特表2003−510546号公報(段落〔0018〕,図8) 特開2004−239318号公報(段落〔0032〕−〔0037〕,図6)
The double pipe type internal heat exchanger is provided with a joint member that branches the double pipe and connects two independent external pipes at the end thereof (see, for example, Patent Document 2). This joint member has a cylindrical female portion that receives the outer tube on one surface, and an insertion hole that holds the inner tube extending from the outer tube through the joint member on the opposite surface; A protrusion having an axis parallel to the axis of the inner tube at a position spaced from the insertion hole, and the hole of the protrusion is between the outer tube and the inner tube of the internal heat exchanger inside the joint member. It is the structure which is connected to the passage.
Japanese translation of PCT publication No. 2003-510546 (paragraph [0018], FIG. 8) JP 2004-239318 A (paragraphs [0032]-[0037], FIG. 6)

しかしながら、上記のような継手部材は、ダイカストまたは切削加工により製作されたブロックで構成されるが、このようなブロックは、製造コストが高いという問題点があった。   However, the joint member as described above is composed of a block manufactured by die casting or cutting, but such a block has a problem that the manufacturing cost is high.

本発明はこのような点に鑑みてなされたものであり、ブロックのような継手部材を使用しないで内管を外管から分岐することができる内部熱交換器の内管継手構造を提供することを目的とする。   This invention is made | formed in view of such a point, and provides the inner pipe joint structure of the internal heat exchanger which can branch an inner pipe from an outer pipe, without using a joint member like a block. With the goal.

本発明では上記問題点を解決するために、外管とこの外管の中に収容された内管とを備え、冷凍サイクル内で膨張装置に導入される高温・高圧の冷媒と圧縮機へ導入される低温・低圧の冷媒との間で熱交換を行う二重管式の内部熱交換器の内管継手構造において、前記外管の先端近傍の外側面に前記内管の外径に概略等しい内径を有する筒状継手部が突設され、前記内管の先端部分が前記筒状継手部に流体密封状態で挿通され、前記筒状継手部に外部配管が流体密封状態で接続されていることを特徴とする内部熱交換器の内管継手構造が提供される。   In order to solve the above-described problems, the present invention includes an outer tube and an inner tube accommodated in the outer tube, and is introduced into a high-temperature and high-pressure refrigerant and compressor that are introduced into the expansion device in the refrigeration cycle. In the inner pipe joint structure of the double pipe type internal heat exchanger that performs heat exchange with the low-temperature and low-pressure refrigerant to be performed, the outer surface near the tip of the outer pipe is approximately equal to the outer diameter of the inner pipe A cylindrical joint portion having an inner diameter is protruded, a tip portion of the inner pipe is inserted into the cylindrical joint portion in a fluid-tight state, and an external pipe is connected to the cylindrical joint portion in a fluid-tight state. An internal pipe joint structure for an internal heat exchanger is provided.

このような内部熱交換器の内管継手構造によれば、内部熱交換器の構成要素である外管を加工して内管を外管から分岐する筒状継手部を形成して、低コストの内管継手構造にしている。   According to such an inner pipe joint structure of an internal heat exchanger, the outer pipe which is a constituent element of the internal heat exchanger is processed to form a cylindrical joint portion that branches the inner pipe from the outer pipe, thereby reducing the cost. The inner pipe joint structure.

上記構成の内部熱交換器の内管継手構造は、旋盤による切削加工等を必要とするブロックを用いることなく、外管を加工して筒状継手部を直接形成するようにし、筒状継手部に内管を通して外部配管を接続するようにしたので、内管継手構造を低コストで実現できるという利点がある。   The inner pipe joint structure of the internal heat exchanger having the above configuration is such that a cylindrical joint part is directly formed by machining an outer pipe without using a block that requires cutting with a lathe. Since the external pipe is connected through the inner pipe, there is an advantage that the inner pipe joint structure can be realized at low cost.

以下、本発明の実施の形態について、自動車用空調装置の冷凍サイクルで使用される内部熱交換器に適用した場合を例に図面を参照して詳細に説明する。
図1は自動車用空調装置の冷凍サイクルを示すシステム図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, taking as an example a case where the present invention is applied to an internal heat exchanger used in a refrigeration cycle of an automotive air conditioner.
FIG. 1 is a system diagram showing a refrigeration cycle of an automotive air conditioner.

この自動車用空調装置の冷凍サイクルは、冷媒を圧縮する圧縮機1と、圧縮された冷媒を外気との熱交換により凝縮させる凝縮器2と、凝縮された冷媒を気液に分離するとともに冷凍サイクル内の余剰冷媒を蓄えておくレシーバドライヤ3とをエンジンルーム内に備えている。冷凍サイクルは、エンジンルームと車室との間の配管を行う内部熱交換器4を備え、さらに、内部熱交換器4からの液冷媒を絞り膨張させる温度式の膨張弁5と、膨張された冷媒を車室内の空気との熱交換により蒸発させる蒸発器6とを車室内に備えている。蒸発器6は、これを出た冷媒の温度および圧力を検出するために膨張弁5に接続され、さらに、内部熱交換器4を介して圧縮機1の吸入口に接続される。   The refrigeration cycle of this automotive air conditioner includes a compressor 1 that compresses a refrigerant, a condenser 2 that condenses the compressed refrigerant by heat exchange with outside air, and separates the condensed refrigerant into gas and liquid and a refrigeration cycle. A receiver dryer 3 for storing the excess refrigerant is provided in the engine room. The refrigeration cycle includes an internal heat exchanger 4 that performs piping between the engine room and the vehicle compartment, and is further expanded with a temperature type expansion valve 5 that squeezes and expands the liquid refrigerant from the internal heat exchanger 4. An evaporator 6 that evaporates the refrigerant by heat exchange with the air in the passenger compartment is provided in the passenger compartment. The evaporator 6 is connected to the expansion valve 5 in order to detect the temperature and pressure of the refrigerant that has left the evaporator 6, and is further connected to the suction port of the compressor 1 via the internal heat exchanger 4.

内部熱交換器4は、レシーバドライヤ3からの高温・高圧の液冷媒を膨張弁5へ送り出す高圧通路と蒸発器6からの低温・低圧のガス冷媒を圧縮機1へ送り出す低圧通路とを有し、高圧通路を流れる高温の冷媒と低圧通路を流れる低温の冷媒との間で熱交換を行う。これにより、高圧通路を流れる冷媒は、低圧通路の冷媒によって過冷却され、低圧通路を流れる冷媒は、高圧通路の冷媒によって過熱されることになるため、冷凍サイクルの成績係数を向上させることができる。   The internal heat exchanger 4 has a high-pressure passage for sending high-temperature and high-pressure liquid refrigerant from the receiver dryer 3 to the expansion valve 5 and a low-pressure passage for sending low-temperature and low-pressure gas refrigerant from the evaporator 6 to the compressor 1. Heat exchange is performed between the high-temperature refrigerant flowing through the high-pressure passage and the low-temperature refrigerant flowing through the low-pressure passage. Thereby, the refrigerant flowing through the high-pressure passage is supercooled by the refrigerant in the low-pressure passage, and the refrigerant flowing through the low-pressure passage is overheated by the refrigerant in the high-pressure passage, so that the coefficient of performance of the refrigeration cycle can be improved. .

この内部熱交換器4において、膨張弁5の側の端部は、膨張弁5が二重管の接続構造を有していて、二重管構造のまま膨張弁5に接続することができるので、内管を外管から分岐するような構成は必要ない。したがって、この冷凍サイクルの例では、内部熱交換器4は、圧縮機1およびレシーバドライヤ3が接続される側の端部に内管継手構造を有している。   In this internal heat exchanger 4, the end of the expansion valve 5 side has an expansion valve 5 having a double pipe connection structure and can be connected to the expansion valve 5 with a double pipe structure. The structure that branches the inner tube from the outer tube is not necessary. Therefore, in this example of the refrigeration cycle, the internal heat exchanger 4 has an inner pipe joint structure at the end on the side where the compressor 1 and the receiver dryer 3 are connected.

図2は内部熱交換器の第1の実施の形態に係る内管継手構造を示す断面図である。
この内部熱交換器10は、外管11とこの外管11の中に収容された内管12とを有し、内管12および外管11がそれぞれ冷凍サイクルの高圧配管および低圧配管として使用される配管兼用の二重管熱交換器を構成している。特に、この内部熱交換器10は、エンジンルーム内の配管に使用され、図の左側の端部は、車室とエンジンルームとの境界である隔壁にて車室内に設置される二重管構造の内部熱交換器と接続される。したがって、図示の内部熱交換器10は、図1の内部熱交換器4の一部を構成していることになる。内部熱交換器10は、その図の右側に内管継手構造を有していて、内管12がレシーバドライヤ3の出口側の高圧配管13(請求項1の外部配管に対応)に接続され、外管11がフレキシブルホース14を介して圧縮機1へ接続される。
FIG. 2 is a sectional view showing the inner pipe joint structure according to the first embodiment of the internal heat exchanger.
The internal heat exchanger 10 has an outer pipe 11 and an inner pipe 12 accommodated in the outer pipe 11, and the inner pipe 12 and the outer pipe 11 are used as a high-pressure pipe and a low-pressure pipe of a refrigeration cycle, respectively. This double pipe heat exchanger is also used as a pipe. In particular, the internal heat exchanger 10 is used for piping in an engine room, and the left end portion in the figure is a double pipe structure installed in a vehicle compartment by a partition wall that is a boundary between the vehicle compartment and the engine room. Connected to the internal heat exchanger. Therefore, the illustrated internal heat exchanger 10 constitutes a part of the internal heat exchanger 4 of FIG. The internal heat exchanger 10 has an inner pipe joint structure on the right side of the drawing, and the inner pipe 12 is connected to a high-pressure pipe 13 on the outlet side of the receiver dryer 3 (corresponding to the external pipe of claim 1). The outer tube 11 is connected to the compressor 1 via the flexible hose 14.

外管11は、ストレートパイプであり、その中に収容される内管12は、その両端近傍を除く部分が螺旋状に巻かれた形状に加工されている。この内管12の螺旋部分は、非常に長い螺旋ピッチで巻かれており、かつ、最外周に内接する仮想円筒の径が外管11の内径より僅かに大きくなるように形成されている。したがって、この内管12は、外管11の中に圧入されると、螺旋部分の概略全周が外管11の内壁に接触した状態で外管11の中に収容されることになる。これにより、内管12は、外管11によってその中にきつく拘束されることになるため、外部より振動が与えられても、外管11に衝突することによる異音が発生するということはない。   The outer tube 11 is a straight pipe, and the inner tube 12 accommodated therein is processed into a shape in which portions excluding the vicinity of both ends are spirally wound. The spiral portion of the inner tube 12 is wound at a very long helical pitch, and is formed so that the diameter of the virtual cylinder inscribed in the outermost periphery is slightly larger than the inner diameter of the outer tube 11. Therefore, when the inner tube 12 is press-fitted into the outer tube 11, the entire circumference of the spiral portion is accommodated in the outer tube 11 with the inner wall of the outer tube 11 in contact with the inner tube 12. As a result, the inner tube 12 is tightly constrained therein by the outer tube 11, so that even if vibration is applied from the outside, no abnormal noise is generated due to collision with the outer tube 11. .

また、内管12の螺旋部分は、緩い螺旋ピッチで巻かれているため、全長が長くならないことから、冷媒通路が長くなることによる圧力損失がなく、しかも、外管11とは、その長手方向に沿って物理的に結合している部分はなく、単なる接触にて外管11内に固定されているだけなので、外管11およびその中の内管12が非常に曲げ易くなっており、内部熱交換器10の曲げ加工を容易に行うことを可能にしている。   Further, since the spiral portion of the inner tube 12 is wound at a loose helical pitch, the overall length does not become long, so there is no pressure loss due to the long refrigerant passage, and the outer tube 11 is in the longitudinal direction. There is no portion physically coupled along the outer tube 11, and the outer tube 11 and the inner tube 12 therein are very easy to bend. The bending of the heat exchanger 10 can be easily performed.

内管12は、車室内側の端部に位置決め部材15が設けられている。この位置決め部材15は、内管12の先端近傍のストレート部分に嵌合される筒状部とその外周に突設されたたとえば3つの支持部材とを有している。これにより、内管12は、外管11の軸心に位置決めされることになり、その開口端を同軸二重管構造にしている。   The inner pipe 12 is provided with a positioning member 15 at an end on the vehicle interior side. The positioning member 15 includes a cylindrical portion that is fitted to a straight portion near the tip of the inner tube 12 and, for example, three support members that protrude from the outer periphery thereof. As a result, the inner tube 12 is positioned at the axial center of the outer tube 11, and the open end thereof has a coaxial double tube structure.

この同軸二重管構造の開口端の反対側において、外管11には金属パイプ16が接続されている。この金属パイプ16は、その外側面に筒状継手部17が突設されている。筒状継手部17は、たとえば金属パイプ16の内側からプレス加工することによって比較的容易に形成することができる。筒状継手部17は、内管12の外径に概略等しい内径を有し、先端がラッパ状にフレア加工されている。   A metal pipe 16 is connected to the outer tube 11 on the opposite side of the open end of the coaxial double tube structure. The metal pipe 16 has a cylindrical joint portion 17 protruding from the outer surface thereof. The cylindrical joint portion 17 can be formed relatively easily by, for example, pressing from the inside of the metal pipe 16. The cylindrical joint portion 17 has an inner diameter that is substantially equal to the outer diameter of the inner tube 12, and the tip is flared into a trumpet shape.

内管12は、ほぼ直角に屈曲された先端部分が筒状継手部17に挿通され、先端が筒状継手部17の先端よりも突出した状態にしている。高圧配管13は、内管12の外径に概略等しい内径を有し、フレア加工されている先端を塑性変形することによって筒状継手部17のフレア部に結合されている。内管12の外周面と筒状継手部17のフレア部と高圧配管13のフレア部とによって形成された空間にOリング18(請求項1のシールリングに対応)が配置されて、高圧配管13の高圧冷媒が外管11内の低圧通路へ漏れたり大気へ漏れたりするのを防止している。   The inner pipe 12 has a tip portion bent at a substantially right angle inserted through the cylindrical joint portion 17 so that the tip protrudes beyond the tip of the cylindrical joint portion 17. The high-pressure pipe 13 has an inner diameter substantially equal to the outer diameter of the inner pipe 12 and is joined to the flare portion of the cylindrical joint portion 17 by plastically deforming the flared tip. An O-ring 18 (corresponding to the seal ring of claim 1) is arranged in a space formed by the outer peripheral surface of the inner pipe 12, the flare part of the cylindrical joint part 17, and the flare part of the high-pressure pipe 13, and the high-pressure pipe 13. The high-pressure refrigerant is prevented from leaking into the low-pressure passage in the outer tube 11 or leaking into the atmosphere.

金属パイプ16は、その開口端側が縮径されていてその縮径部に継手部材19が嵌着されている。この継手部材19は、金属パイプ16を挿入して変形することにより固定される貫通孔とねじ穴とを有している。圧縮機1の振動を遮断するために取り付けられた可撓性を有するフレキシブルホース14は、その一端を金属パイプ16に接続することができるように末端処理されている。すなわち、フレキシブルホース14は、その一端に金属パイプ20を挿入し、この金属パイプ20の挿入領域の外側に金属スリーブ21を嵌め、この金属スリーブ21をかしめ加工することによって金属パイプ20が気密に固定されている。この金属スリーブ21の開口端には、継手部材22がろう接されている。この継手部材22は、継手部材19内の金属パイプ16に嵌合する筒状突起部が一体に形成され、その筒状突起部には溝が周設されてOリング23が嵌められている。この継手部材22は、その筒状突起部を継手部材19内の金属パイプ16に嵌合し、ボルト24で締め付けることにより、外管11、金属パイプ16、金属パイプ20およびフレキシブルホース14が連結される。   The opening of the metal pipe 16 is reduced in diameter, and a joint member 19 is fitted in the reduced diameter portion. The joint member 19 has a through hole and a screw hole that are fixed by inserting and deforming the metal pipe 16. A flexible hose 14 having flexibility, which is attached to block vibration of the compressor 1, is terminated so that one end thereof can be connected to the metal pipe 16. That is, the flexible hose 14 has a metal pipe 20 inserted into one end thereof, a metal sleeve 21 is fitted outside the insertion region of the metal pipe 20, and the metal sleeve 20 is caulked to fix the metal pipe 20 in an airtight manner. Has been. A joint member 22 is brazed to the open end of the metal sleeve 21. The joint member 22 is integrally formed with a cylindrical projection that fits into the metal pipe 16 in the joint member 19, and a groove is provided around the cylindrical projection to fit an O-ring 23. The joint member 22 is connected to the outer pipe 11, the metal pipe 16, the metal pipe 20, and the flexible hose 14 by fitting the cylindrical projecting portion to the metal pipe 16 in the joint member 19 and fastening with the bolt 24. The

図3は内管継手構造の組立手順を示す説明図であって、(A)はその第1段階を示し、(B)は第2段階を示し、(C)は第3段階を示している。
内部熱交換器10の内管継手構造は、まず、図3の(A)に示したように、外管11から突出している内管12の先端部分をほぼ直角に屈曲加工した後、外管11の開口端における拡管部に金属パイプ16を挿入し、外管11の先端部を絞り加工することによって外管11と金属パイプ16とを結合する。
FIG. 3 is an explanatory view showing an assembly procedure of the inner pipe joint structure, where (A) shows the first stage, (B) shows the second stage, and (C) shows the third stage. .
As shown in FIG. 3A, the inner pipe joint structure of the inner heat exchanger 10 is first bent at a right angle at the tip of the inner pipe 12 protruding from the outer pipe 11, and then the outer pipe. The outer pipe 11 and the metal pipe 16 are coupled by inserting the metal pipe 16 into the expanded portion at the open end of the eleventh and drawing the tip of the outer pipe 11.

次に、図3の(B)に示したように、内管12の先端部分を金属パイプ16に形成された筒状継手部17に挿通する。このとき、内管12の先端部分が筒状継手部17から抜けて金属パイプ16の中に戻らないように、内管12の先端部分と筒状継手部17との間に接着剤を流し込んでもよい。この場合、接着剤は、内管12と筒状継手部17とを固着するとともに内管12と筒状継手部17との間のクリアランスを埋めて流体密封状態にすることができる。そして、内管12の先端部分にOリング18が嵌められ、フレア加工された高圧配管13の先端が筒状継手部17の先端に被せられる。   Next, as shown in FIG. 3B, the distal end portion of the inner tube 12 is inserted into a cylindrical joint portion 17 formed on the metal pipe 16. At this time, even if an adhesive is poured between the distal end portion of the inner tube 12 and the cylindrical joint portion 17 so that the distal end portion of the inner tube 12 does not come out of the cylindrical joint portion 17 and return into the metal pipe 16. Good. In this case, the adhesive can fix the inner tube 12 and the cylindrical joint portion 17 and fill a clearance between the inner tube 12 and the cylindrical joint portion 17 to be in a fluid-tight state. Then, an O-ring 18 is fitted to the distal end portion of the inner pipe 12, and the distal end of the flared high-pressure pipe 13 is put on the distal end of the cylindrical joint portion 17.

最後に、図3の(C)に示したように、高圧配管13の先端が筒状継手部17のフレア背面17aを覆った状態でそのフレア背面17aに倣うように高圧配管13の先端を絞り加工することで筒状継手部17と高圧配管13とが流体密封状態で結合される。高圧配管13の絞り加工により、Oリング18が内管12の先端部分の外周面と、筒状継手部17のフレア内面17bと、高圧配管13のフレア内面13aとにより概略三角断面形状に変形され、高圧配管13から金属パイプ16内への冷媒漏れと、高圧配管13から大気への冷媒漏れとを同時に防ぐようにしている。   Finally, as shown in FIG. 3C, the tip of the high-pressure pipe 13 is squeezed so as to follow the flare back surface 17a with the tip of the high-pressure pipe 13 covering the flare back surface 17a of the cylindrical joint portion 17. By processing, the cylindrical joint portion 17 and the high-pressure pipe 13 are coupled in a fluid-tight state. By drawing the high-pressure pipe 13, the O-ring 18 is deformed into a substantially triangular cross-sectional shape by the outer peripheral surface of the tip portion of the inner pipe 12, the flare inner surface 17 b of the cylindrical joint portion 17, and the flare inner surface 13 a of the high-pressure pipe 13. The refrigerant leakage from the high-pressure pipe 13 into the metal pipe 16 and the refrigerant leakage from the high-pressure pipe 13 to the atmosphere are prevented at the same time.

図4は内部熱交換器の第2の実施の形態に係る内管継手構造を示す要部断面図である。なお、この図4において、図2に示した構成要素と同じ構成要素については同じ符号を付してその詳細な説明は省略する。   FIG. 4 is a cross-sectional view of an essential part showing an inner pipe joint structure according to a second embodiment of the internal heat exchanger. In FIG. 4, the same components as those shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

この内部熱交換器10の内管継手構造によれば、内管12の先端部分が振動および高圧による軸方向の応力によって高圧配管13から、さらには筒状継手部17から抜けることがないようにしている。すなわち、内管12の先端部分は、筒状継手部17に挿通した後に拡管処理されて、その拡管部分12aの外径が筒状継手部17の内径よりも大きくなるようにしている。このとき、高圧配管13として図2に示したものと同じサイズのパイプを使用する場合、内管12の拡管部分12aを高圧配管13に挿入することができなくなるので、高圧配管13は、内管12の拡管部分12aに対応する部分に拡管部分13bを有している。   According to the inner pipe joint structure of the internal heat exchanger 10, the tip portion of the inner pipe 12 is prevented from coming out of the high pressure pipe 13 and further from the cylindrical joint portion 17 due to axial stress caused by vibration and high pressure. ing. That is, the distal end portion of the inner tube 12 is expanded after being inserted into the cylindrical joint portion 17 so that the outer diameter of the expanded portion 12 a is larger than the inner diameter of the cylindrical joint portion 17. At this time, when a pipe having the same size as that shown in FIG. 2 is used as the high-pressure pipe 13, the expanded portion 12 a of the inner pipe 12 cannot be inserted into the high-pressure pipe 13. A tube expansion portion 13b is provided at a portion corresponding to 12 tube expansion portions 12a.

なお、上記の実施の形態では、内部熱交換器の一方の端部において内管を外管から分岐できるようにする継手構造に関して詳述したが、この内管継手構造を必要に応じて内部熱交換器の両端に適用しても良い。また、筒状継手部17は、外管11よりも肉厚のある金属パイプ16を用い、これを加工して形成しているが、外管11が筒状継手部17を形成できるだけの十分な肉厚を有するものであれば、金属パイプ16は不要であり、外管11に筒状継手部17を直接形成することができる。   In the above embodiment, the joint structure that enables the inner pipe to branch from the outer pipe at one end of the internal heat exchanger has been described in detail. It may be applied to both ends of the exchanger. The tubular joint portion 17 is formed by using a metal pipe 16 having a thickness greater than that of the outer tube 11 and processing the metal pipe 16. However, the tubular joint portion 17 is sufficient to form the tubular joint portion 17. If it has thickness, the metal pipe 16 is unnecessary and the cylindrical joint part 17 can be directly formed in the outer tube 11.

自動車用空調装置の冷凍サイクルを示すシステム図である。It is a system diagram which shows the refrigerating cycle of the air conditioner for motor vehicles. 内部熱交換器の第1の実施の形態に係る内管継手構造を示す断面図である。It is sectional drawing which shows the inner pipe joint structure which concerns on 1st Embodiment of an internal heat exchanger. 内管継手構造の組立手順を示す説明図であって、(A)はその第1段階を示し、(B)は第2段階を示し、(C)は第3段階を示している。It is explanatory drawing which shows the assembly procedure of an inner pipe joint structure, Comprising: (A) shows the 1st step, (B) shows the 2nd step, (C) has shown the 3rd step. 内部熱交換器の第2の実施の形態に係る内管継手構造を示す要部断面図である。It is principal part sectional drawing which shows the inner pipe joint structure which concerns on 2nd Embodiment of an internal heat exchanger.

符号の説明Explanation of symbols

1 圧縮機
2 凝縮器
3 レシーバドライヤ
4 内部熱交換器
5 膨張弁
6 蒸発器
10 内部熱交換器
11 外管
12 内管
12a 拡管部分
13 高圧配管
13a フレア内面
13b 拡管部分
14 フレキシブルホース
15 位置決め部材
16 金属パイプ
17 筒状継手部
17a フレア背面
17b フレア内面
18 Oリング
19 継手部材
20 金属パイプ
21 金属スリーブ
22 継手部材
23 Oリング
24 ボルト
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Receiver dryer 4 Internal heat exchanger 5 Expansion valve 6 Evaporator 10 Internal heat exchanger 11 Outer pipe 12 Inner pipe 12a Expanded pipe part 13 High pressure piping 13a Flare inner surface 13b Expanded pipe part 14 Flexible hose 15 Positioning member 16 Metal pipe 17 Tubular joint 17a Flare back surface 17b Flare inner surface 18 O-ring 19 Joint member 20 Metal pipe 21 Metal sleeve 22 Joint member 23 O-ring 24 Bolt

Claims (7)

外管とこの外管の中に収容された内管とを備え、冷凍サイクル内で膨張装置に導入される高温・高圧の冷媒と圧縮機へ導入される低温・低圧の冷媒との間で熱交換を行う二重管式の内部熱交換器の内管継手構造において、
前記外管の先端近傍の外側面に前記内管の外径に概略等しい内径を有する筒状継手部が突設され、前記内管の先端部分が前記筒状継手部に流体密封状態で挿通され、前記筒状継手部に外部配管が流体密封状態で接続されていることを特徴とする内部熱交換器の内管継手構造。
An outer pipe and an inner pipe housed in the outer pipe are provided, and heat is generated between the high-temperature and high-pressure refrigerant introduced into the expansion device in the refrigeration cycle and the low-temperature and low-pressure refrigerant introduced into the compressor. In the inner pipe joint structure of the double pipe type internal heat exchanger that performs exchange,
A cylindrical joint portion having an inner diameter substantially equal to the outer diameter of the inner tube is protruded from the outer surface near the distal end of the outer tube, and the distal end portion of the inner tube is inserted into the tubular joint portion in a fluid-tight state. An internal pipe joint structure for an internal heat exchanger, wherein an external pipe is connected to the cylindrical joint portion in a fluid-tight state.
前記筒状継手部および前記外部配管はそれぞれフレア加工された先端を有し、前記外部配管の先端を、前記筒状継手部の先端のフレア背面を覆った状態で前記フレア背面に倣うように絞り加工することで前記筒状継手部と前記外部配管とを接続した請求項1記載の内部熱交換器の内管継手構造。   Each of the cylindrical joint portion and the external pipe has a flared tip, and the tip of the external pipe is narrowed so as to follow the flare back surface while covering the flare back surface of the tip of the cylindrical joint portion. The internal pipe joint structure of an internal heat exchanger according to claim 1, wherein the cylindrical joint portion and the external pipe are connected by processing. 前記内管の先端部分の外周面と前記筒状継手部のフレア内面と前記外部配管のフレア内面とによって囲まれる空間にシールリングを配置し、前記内管、前記筒状継手部および前記外部配管の間を互いに流体密封状態にした請求項2記載の内部熱交換器の内管継手構造。   A seal ring is disposed in a space surrounded by the outer peripheral surface of the distal end portion of the inner pipe, the flare inner surface of the cylindrical joint portion, and the flare inner surface of the outer pipe, and the inner pipe, the cylindrical joint portion, and the outer pipe The inner pipe joint structure of the internal heat exchanger according to claim 2, wherein the space is in a fluid-tight state. 前記内管および前記筒状継手部は、接着剤で互いに固着および流体密封状態にした請求項1記載の内部熱交換器の内管継手構造。   The inner pipe joint structure of an internal heat exchanger according to claim 1, wherein the inner pipe and the cylindrical joint portion are fixed to each other and fluid-tight with an adhesive. 前記外部配管は、前記内管の外径に概略等しい内径を有している請求項1記載の内部熱交換器の内管継手構造。   The inner pipe joint structure for an internal heat exchanger according to claim 1, wherein the outer pipe has an inner diameter substantially equal to an outer diameter of the inner pipe. 前記内管は、前記筒状継手部に挿通された後に先端部分が拡管され、前記外部配管は、前記内管の拡管部分に対応する部分が拡管されている請求項5記載の内部熱交換器の内管継手構造。   The internal heat exchanger according to claim 5, wherein a tip portion of the inner pipe is expanded after being inserted into the cylindrical joint portion, and a portion corresponding to the expanded portion of the inner pipe is expanded. Inner pipe joint structure. 前記外管は、前記筒状継手部が形成される部分を、別部品のパイプを加工することによって構成した請求項1記載の内部熱交換器の内管継手構造。   The inner pipe joint structure for an internal heat exchanger according to claim 1, wherein the outer pipe is formed by processing a pipe of a separate part at a portion where the cylindrical joint portion is formed.
JP2008132602A 2008-05-21 2008-05-21 Inner tube joint structure of internal heat exchanger Pending JP2009281622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132602A JP2009281622A (en) 2008-05-21 2008-05-21 Inner tube joint structure of internal heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132602A JP2009281622A (en) 2008-05-21 2008-05-21 Inner tube joint structure of internal heat exchanger

Publications (1)

Publication Number Publication Date
JP2009281622A true JP2009281622A (en) 2009-12-03

Family

ID=41452263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132602A Pending JP2009281622A (en) 2008-05-21 2008-05-21 Inner tube joint structure of internal heat exchanger

Country Status (1)

Country Link
JP (1) JP2009281622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101161793B1 (en) 2012-05-02 2012-07-09 동아대학교 산학협력단 Cooling safety valve apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101161793B1 (en) 2012-05-02 2012-07-09 동아대학교 산학협력단 Cooling safety valve apparatus

Similar Documents

Publication Publication Date Title
JP5086840B2 (en) Double pipe connection structure and double pipe connection method
US7753413B2 (en) Vapour-compression type refrigerating machine and double pipe structure and double pipe joint structure preferably used therefor
US20060096314A1 (en) Double-wall pipe and refrigerant cycle device using the same
JP6824366B2 (en) Refrigeration cycle equipment with internal heat exchanger and internal heat exchanger
JP5202030B2 (en) Double tube heat exchanger
JP2009270802A (en) Internal heat exchanger
JP2001235080A (en) Joint for double tubes
JP2008207630A (en) Internal heat exchanger for automotive air conditioner
US20110126580A1 (en) Liquid supercooling system
JP2006132653A (en) Double pipe, its manufacturing method, and supporting member of double pipe
KR101510160B1 (en) Pipe joint flange for air conditioning system for automotive vehicles
JP2009281622A (en) Inner tube joint structure of internal heat exchanger
JP4270860B2 (en) Flexible hose and method for manufacturing flexible hose
JP2009162305A (en) Flexible hose
JP2009168127A (en) Double tube joint structure
JP2004239318A (en) Doubled pipe construction
JP2005207463A (en) Connecting structure of passages
JP2009204271A (en) Refrigerating cycle
WO2010131455A1 (en) Double pipe-type heat exchanger
WO2020116271A1 (en) Internal heat exchanger and refrigerating cycle device equipped with internal heat exchanger
JP2005022601A (en) Air conditioning unit for vehicle
JP2009222144A (en) Expansion valve
KR20160119378A (en) Double pipe heat-exchanger with one body type connector
JPH11159676A (en) Refrigerant pipe of air conditioner for vehicle and tightening method
JP2009127998A (en) Heat exchanger and method for manufacturing heat exchanger