JP2009281017A - Spiral rod - Google Patents

Spiral rod Download PDF

Info

Publication number
JP2009281017A
JP2009281017A JP2008132819A JP2008132819A JP2009281017A JP 2009281017 A JP2009281017 A JP 2009281017A JP 2008132819 A JP2008132819 A JP 2008132819A JP 2008132819 A JP2008132819 A JP 2008132819A JP 2009281017 A JP2009281017 A JP 2009281017A
Authority
JP
Japan
Prior art keywords
spiral rod
opening
discharge port
spiral
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008132819A
Other languages
Japanese (ja)
Other versions
JP5064297B2 (en
Inventor
Yoshiaki Tsukada
義明 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP2008132819A priority Critical patent/JP5064297B2/en
Publication of JP2009281017A publication Critical patent/JP2009281017A/en
Application granted granted Critical
Publication of JP5064297B2 publication Critical patent/JP5064297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spiral rod which has a discharge opening for supplying water to a hydraulic bulk load supplied concurrently with the drilling of a hole, and which makes a column body with homogeneous strength surely constructed with proper reproducibility by preventing the column body from being poorly constructed due to clogging. <P>SOLUTION: Conveying screws 3a and 3b are provided on the outside; a water passage 5 is provided on the inside; a terminal end of the water passage 5 is provided with one or more discharge opening lines wherein the discharge openings 4a with an opening length of less than 10 mm along a circumferential direction are disposed in the circumferential direction; and an opening ratio, which is expressed by the sum of the opening length along the circumferential direction of all the discharge openings 4a, opened in the axial arbitrary position of the spiral rod 1, and the circumferential length of an outside surface of a main body 2, is set at 50% or less in the above position. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、緩い砂地盤や粘性土地盤、異なる地層が積層した多層地盤といった不安定な地盤において、該地盤の強化を図るべく地盤中に柱体を構築する工法に用いられるスパイラルロッドに関する。   The present invention relates to a spiral rod used in a construction method for constructing a pillar body in a ground in order to strengthen the ground in an unstable ground such as a loose sand ground, a viscous ground, or a multi-layer ground in which different ground layers are laminated.

緩い砂地盤や粘性土からなる地盤、異なる地層が積層した多層地盤は、地震や水害発生時に崩れて該地盤上に建てられた建築物や道路などの構造物の損傷を招いたり、周辺に影響を及ぼしたりする恐れがある。   Loose sand ground, clay soil, and multi-layered ground where different layers are stacked will collapse in the event of an earthquake or flood, causing damage to structures or roads and other structures built on the ground, and affecting the surrounding area. There is a risk of causing.

そこで、地盤中に硬質の柱体を構築して地盤を強化する手段が講じられている。このような柱体の構築工法として本発明者は、外側に搬送スクリュを備えた中空のスパイラルロッドを、該搬送スクリュの搬送方向が該スパイラルロッドの圧入方向と一致するように回転させながら地盤中に圧入すると同時に水硬性バラ荷を上記搬送スクリュに供給し、該水硬性バラ荷にスパイラルロッドの中空部を介してスパイラルロッド先端より水を供給して硬化させる工法を提案した。   Therefore, a means for strengthening the ground by constructing hard pillars in the ground has been taken. As a method for constructing such a column body, the present inventor has developed a hollow spiral rod having a conveying screw on the outside while rotating the conveying screw so that the conveying direction of the conveying screw coincides with the press-fitting direction of the spiral rod. At the same time, a hydraulic bulk load was supplied to the conveying screw, and water was supplied to the hydraulic bulk load from the end of the spiral rod through the hollow portion of the spiral rod to cure it.

しかしながら、上記工法においては、スパイラルロッド先端に設けた水の供給口がスクリュによって搬送されるバラ荷や周囲の土砂によって目詰まりを生じる恐れがあった。水の供給口が目詰まりを起こした場合、水が周囲のバラ荷に均一に吐出されず、均質な強度を備えた柱体を構築することができない。該目詰まりは工程途中で容易には解消することができず、例えば一時的な高圧で強制的に排水を促すことは可能だが、施工時に瞬時に目詰まりを感知し、水圧を調整することは困難で、且つ、水量が一定にならないため不均質な柱体となるため対応が困難であった。   However, in the above construction method, there is a possibility that the water supply port provided at the tip of the spiral rod may be clogged by the bulk load conveyed by the screw or the surrounding earth and sand. When the water supply port is clogged, the water is not uniformly discharged to the surrounding bulk load, and a column having uniform strength cannot be constructed. This clogging cannot be easily resolved during the process, for example, it is possible to force drainage with a temporary high pressure, but it is possible to detect clogging instantaneously during construction and adjust the water pressure. It was difficult, and the amount of water was not constant, so it became a non-homogeneous column, making it difficult to cope with it.

特許文献1には、掘削翼と撹拌翼を備えた掘削ロッドに固化材液吐出口を設け、該掘削ロッドで切削した土壌に固化材液を供給して撹拌し、地盤中に円柱状のコラムを構築する工法において、上記固化材液吐出口の目詰まり防止を図るべく、該固化材液吐出口に磁力作用で動作する弁体を配置し、固化材液が不要な時は該弁体の磁力作用で該吐出口を閉塞し、固化材液が必要な時には固化材液の吐出圧力によって弁体を移動させて吐出口を開放する構造が開示されている。   In Patent Document 1, a drilling rod provided with a drilling blade and a stirring blade is provided with a solidified material liquid discharge port, and the solidified material liquid is supplied to the soil cut by the drilling rod and stirred to form a columnar column in the ground. In order to prevent clogging of the solidification material liquid discharge port, a valve body that operates by magnetic action is disposed at the solidification material liquid discharge port, and when the solidification material liquid is unnecessary, A structure is disclosed in which the discharge port is closed by magnetic action, and when the solidifying material liquid is required, the valve body is moved by the discharge pressure of the solidifying material liquid to open the discharge port.

特開平7−138936号公報JP-A-7-138936

しかしながら、前記特許文献1の掘削ロッドの吐出口も、弁体の下方に土砂またはバラ荷、またはそれらの混合物が詰まった場合には、弁体を下方に移動させて固化材液吐出口を開放することができなくなってしまう。   However, the discharge port of the excavating rod of Patent Document 1 also opens the solidified material liquid discharge port by moving the valve body downward when earth or sand or loose load or a mixture thereof is clogged below the valve body. You will not be able to.

本発明の課題は、削孔の掘削と同時に供給した水硬性バラ荷に水を供給するための吐出口を有したスパイラルロッドであって、目詰まりによる柱体の構築不良を防止し、強度が均質な柱体を再現性よく、且つ、確実に構築するためのスパイラルロッドを提供することにある。   An object of the present invention is a spiral rod having a discharge port for supplying water to a hydraulic bulk load supplied at the same time as excavation of a drilling hole, which prevents a poor construction of a column body due to clogging and has strength. An object of the present invention is to provide a spiral rod for constructing a homogeneous column with good reproducibility and reliability.

本発明の第1は、外側に搬送スクリュを備え、内部に、後端部から先端部近傍の外側面につながる通水路を備えたスパイラルロッドであって、
上記スパイラルロッドの先端部近傍の外側面における通水路の終端が、
上記外側面の周方向に沿った開口長が10mm未満の吐出口を少なくとも1個、周方向に配列した吐出口ラインを少なくとも1列有し、
スパイラルロッドの軸方向の任意の位置において、スパイラルロッドの外側面の周長に対する、該位置に開口する全吐出口の周方向に沿った開口長の和で示される開口率が50%以下であることを特徴とする。
The first of the present invention is a spiral rod provided with a conveying screw on the outside, and provided with a water passage that leads from the rear end to the outer surface near the tip,
The end of the water passage on the outer surface near the tip of the spiral rod is
At least one discharge port having an opening length along the circumferential direction of the outer surface of less than 10 mm and at least one discharge port line arranged in the circumferential direction,
At an arbitrary position in the axial direction of the spiral rod, the opening ratio represented by the sum of the opening lengths along the circumferential direction of all the discharge ports opening at the outer surface of the spiral rod is 50% or less. It is characterized by that.

本発明の第2は、外側に搬送スクリュを備え、内部に、後端部から先端部近傍の外側面につながる通水路を備えたスパイラルロッドであって、
上記スパイラルロッドの先端部近傍の外側面における通水路の終端が、
上記外側面の周方向に沿った開口長が10mm未満の吐出口を少なくとも2個、螺旋状に配列した吐出口ラインを少なくとも1列有し、
各列の吐出口ラインにおいて、スパイラルロッドの後端から見て周方向に1周分の螺旋の長さに対する、該螺旋上に開口する全吐出口の該螺旋に沿った方向の開口長の和で示される開口率が50%以下であり、
スパイラルロッドの軸方向の任意の位置において、スパイラルロッドの外側面の周長に対する、該位置に開口する全吐出口の周方向に沿った開口長の和で示される開口率が50%以下であることを特徴とする。
The second of the present invention is a spiral rod provided with a conveying screw on the outside, and provided with a water passage that leads from the rear end to the outer surface near the tip,
The end of the water passage on the outer surface near the tip of the spiral rod is
At least two discharge ports having an opening length of less than 10 mm along the circumferential direction of the outer surface, and at least one row of discharge port lines arranged spirally;
The sum of the opening length in the direction along the spiral of all the discharge ports opened on the spiral with respect to the length of the spiral for one round in the circumferential direction when viewed from the rear end of the spiral rod in the discharge port line of each row The aperture ratio indicated by is 50% or less,
At an arbitrary position in the axial direction of the spiral rod, the opening ratio represented by the sum of the opening lengths along the circumferential direction of all the discharge ports opening at the outer surface of the spiral rod is 50% or less. It is characterized by that.

本発明によれば、バラ荷や土砂による吐出口の目詰まりが生じにくく、破線状に吐出口を設けておくことにより、目詰まりする吐出口があっても、他の吐出口から水を吐出することができるため、均一に且つ確実にバラ荷に水を供給することができる。よって、柱体の構築不良を起こす恐れが無く、強度が均質な柱体を所定の位置に確実に構築することができる。   According to the present invention, clogging of discharge ports due to loose loads or earth and sand is unlikely to occur, and by providing discharge ports in a broken line shape, water is discharged from other discharge ports even when there are clogged discharge ports. Therefore, water can be supplied uniformly and reliably to the bulk load. Therefore, there is no possibility of causing a poor construction of the column, and a column having a uniform strength can be reliably constructed at a predetermined position.

本発明のスパイラルロッドを用いた柱体の構築工法は、基本的に、外側に搬送スクリュを備えた中空のスパイラルロッドを、該搬送スクリュの搬送方向が該スパイラルロッドの圧入方向と一致するように回転させながら地盤中に圧入する工程と、該スパイラルロッドの先端が所定の深さにまで達した後、該スパイラルロッドを圧入時と同じ方向に回転させながら引き上げる引き上げ工程とを有する。また、上記圧入工程においては、水硬性バラ荷を搬送スクリュに供給する。搬送スクリュの搬送方向はスパイラルロッドの圧入方向と一致していることから、該搬送スクリュに供給された水硬性バラ荷はスパイラルロッドの圧入に伴い、スパイラルロッドで掘削された削孔内に充填されてゆく。また、スパイラルロッドで掘削された土砂は、搬送スクリュの搬送方向がスパイラルロッドの圧入方向と一致することから外部に搬送されることなく、スパイラルロッドの圧入に伴って周囲に押しつけられて固められ、密な削孔壁を形成する。即ち、本発明に係る柱体の構築工法においては、柱体を構築する地盤の土砂が外部に排出されないため、該土砂の廃棄操作が不要である。   The column construction method using the spiral rod according to the present invention basically uses a hollow spiral rod having a conveying screw on the outside so that the conveying direction of the conveying screw coincides with the press-fitting direction of the spiral rod. There are a step of press-fitting into the ground while rotating, and a step of pulling-up while rotating the spiral rod in the same direction as the press-fitting after the tip of the spiral rod reaches a predetermined depth. In the press-fitting step, a hydraulic bulk load is supplied to the conveying screw. Since the conveying direction of the conveying screw coincides with the press-fitting direction of the spiral rod, the hydraulic bulk load supplied to the conveying screw is filled in the drilling hole excavated by the spiral rod with the press-fitting of the spiral rod. Go. Also, the earth and sand excavated with the spiral rod is pressed and hardened with the press-fitting of the spiral rod without being transported to the outside because the transport direction of the transport screw matches the press-fitting direction of the spiral rod, A dense drilling wall is formed. That is, in the column construction method according to the present invention, since the earth and sand of the ground for constructing the column is not discharged to the outside, the disposal operation of the earth and sand is unnecessary.

さらに、本発明に係る柱体の構築工法においては、上記引き上げ工程において、スパイラルロッドの先端部近傍から水を吐出させ、水硬性バラ荷に水を供給する。水硬性バラ荷は供給された水によって硬化する。係る水は連続的に或いは所望のタイミングで水硬性バラ荷に供給される。   Furthermore, in the column construction method according to the present invention, in the pulling-up step, water is discharged from the vicinity of the tip of the spiral rod to supply water to the hydraulic loose load. The hydraulic bulk load is hardened by the supplied water. Such water is supplied to the hydraulic bulk load continuously or at a desired timing.

本発明は、係る水を均一に水硬性バラ荷に供給するための通水路を内部に備えたスパイラルロッドであり、水を吐出する吐出口が土砂またはバラ荷、またはそれらの混合物によって目詰まりする問題を解決したものである。   The present invention is a spiral rod provided with a water passage for supplying such water uniformly to a hydraulic bulk load, and a discharge port for discharging water is clogged with earth or sand, a bulk load, or a mixture thereof. It is a solution to the problem.

本発明のスパイラルロッドは、好ましくは吐出口を破線状に構成するもので、該吐出口がスパイラルロッドの外側面に周方向に配列した第1の形態と、螺旋状に配列した第2の形態に分けられる。   In the spiral rod of the present invention, preferably, the discharge ports are configured in a broken line shape, and the first mode in which the discharge ports are arranged in the circumferential direction on the outer surface of the spiral rod and the second mode in which the discharge ports are arranged in a spiral shape. It is divided into.

以下、それぞれについて好ましい実施形態を挙げて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with preferred embodiments for each.

図1は、本発明のスパイラルロッドの第1の形態の好ましい一例の先端部近傍の正面図であり、図2はその断面模式図であり、(a)は中心軸に沿った鉛直方向断面図、(b)は(a)中のA−A’断面模式図、(c)は(a)のB−B’断面模式図である。   FIG. 1 is a front view of the vicinity of the tip of a preferred example of the first form of the spiral rod of the present invention, FIG. 2 is a schematic cross-sectional view thereof, and (a) is a vertical cross-sectional view along the central axis. (B) is an AA 'cross-sectional schematic diagram in (a), (c) is a BB' cross-sectional schematic diagram of (a).

本発明のスパイラルロッド1は、図1,図2に示すように、本体2の外側に搬送スクリュ3a,3bを有している。尚、本例においては搬送スクリュ3a,3bを二重螺旋構造としたが、一重螺旋構造でもかまわない。   As shown in FIGS. 1 and 2, the spiral rod 1 of the present invention has conveying screws 3 a and 3 b outside the main body 2. In this example, the conveying screws 3a and 3b have a double spiral structure, but a single spiral structure may be used.

本発明のスパイラルロッド1は、図2に示すように、本体2の内部に、後端部から先端部近傍の外側面に向かって延びる通水路5を有し、その終端が、スパイラルロッド1の先端部近傍の外側面において、吐出口ラインを構成している。   As shown in FIG. 2, the spiral rod 1 of the present invention has a water passage 5 extending from the rear end portion toward the outer surface in the vicinity of the front end portion inside the main body 2. A discharge port line is formed on the outer surface in the vicinity of the tip.

本発明の第1の形態においては、少なくとも1個の吐出口4aを周方向に配列した吐出口ラインを少なくとも1列有する。   In the first embodiment of the present invention, there are at least one discharge port line in which at least one discharge port 4a is arranged in the circumferential direction.

図3−1は、第1の形態における吐出口4aの配列例を示す図であり、本体2の吐出口ライン近傍の展開図である。図3−1において、(a)は図1,図2の例と同様に、12個の吐出口4aが周方向に上下端をそろえて配列した例であり、吐出口ラインは1列である。(b)は(a)と同様の吐出口ラインをスパイラルロッドの軸方向に2列並べた例である。(c)は吐出口ラインが1列であるが、1個ずつ互い違いに上下端を上下させて配列した例である。本形態において、(c)に示すように、吐出口4aの上下端が揃っていなくても、ほぼ直線状に吐出口4aが配列した構成を1列の吐出口ラインとする。   FIG. 3A is a diagram illustrating an arrangement example of the discharge ports 4 a in the first embodiment, and is a development view of the vicinity of the discharge port line of the main body 2. In FIG. 3A, (a) is an example in which twelve discharge ports 4 a are arranged with their upper and lower ends aligned in the circumferential direction, similar to the example of FIGS. . (B) is an example in which the same discharge port lines as in (a) are arranged in two rows in the axial direction of the spiral rod. (C) is an example in which the discharge port lines are arranged in a row, but the upper and lower ends are alternately arranged one by one. In this embodiment, as shown in (c), even if the upper and lower ends of the discharge ports 4a are not aligned, a configuration in which the discharge ports 4a are arranged in a substantially straight line is defined as one row of discharge port lines.

本発明において、吐出口4aの、本体2の外側面の周方向に沿った開口長(L2)は、10mm未満であり、スパイラルロッドの軸方向の任意の位置において、スパイラルロッドの外側面の周長(L1)に対する、該位置に開口する全吐出口の周方向に沿った開口長(L2)の和で示される開口率が50%以下である。即ち、図3−1においては、(a)〜(c)のいずれの例も周方向の開口率は(L2×12/L1)である。   In the present invention, the opening length (L2) along the circumferential direction of the outer side surface of the main body 2 of the discharge port 4a is less than 10 mm, and the circumference of the outer side surface of the spiral rod is at an arbitrary position in the axial direction of the spiral rod. The opening ratio represented by the sum of the opening length (L2) along the circumferential direction of all the discharge ports opening at the position with respect to the length (L1) is 50% or less. That is, in FIG. 3A, the aperture ratio in the circumferential direction is (L2 × 12 / L1) in any of the examples (a) to (c).

本発明において、周方向に沿った吐出口4aの開口長(L2)を10mm未満と小さくすることにより、該吐出口4aの土砂やバラ荷による目詰まりが防止される。好ましくは5mm以下であり、加工性を考慮すると2mm以上である。   In the present invention, by making the opening length (L2) of the discharge port 4a along the circumferential direction as small as less than 10 mm, the discharge port 4a can be prevented from being clogged with earth and sand or loose loads. The thickness is preferably 5 mm or less, and 2 mm or more in consideration of workability.

また、本発明において、直径の小さい本体2に1個の吐出口を開口した場合に、上記開口率が50%を超える吐出口とした場合には、周方向に広く吐出口が開くことになり、このような吐出口は目詰まりしやすくなってしまう。また、直径の小さい本体2に吐出口4aを2個以上設けた場合であっても、開口率が50%を超えると、隣接する吐出口間の間隔が狭くなるため、該吐出口ラインにおいて本体2の強度が低くなり、破損しやすくなってしまう。そのため、本発明においては、周方向において周長に対する全吐出口の開口長の和で示される開口率は50%以下とする必要がある。   Further, in the present invention, when one discharge port is opened in the main body 2 having a small diameter, when the above-described opening rate is more than 50%, the discharge port opens widely in the circumferential direction. Such an outlet tends to be clogged. Further, even when two or more discharge ports 4a are provided in the main body 2 having a small diameter, if the opening ratio exceeds 50%, the interval between adjacent discharge ports becomes narrow. The strength of No. 2 becomes low, and it becomes easy to break. Therefore, in the present invention, the opening ratio indicated by the sum of the opening lengths of all the discharge ports with respect to the circumferential length in the circumferential direction needs to be 50% or less.

図1,図2においては、製造の便宜上、吐出口4aを貫通孔として設けた吐出口リング4を本体2に設けた凹部に嵌め込み、スパイラルロッド1の本体2の後端部から先端部に向かって軸方向に伸びてきた通水路5を、先端部近傍で十字型の平面形状に分岐させ、該十字の先端が上記凹部に到達する箇所においてリング4と本体2との間に間隙を設けることで、複数の吐出口4aにまんべんなく水が供給されるように形成している。特に、本例の構成において、通水路5の十字型に分岐して水平方向に伸びる通路部分よりも吐出口4aが下方に位置しており、通水路5から供給される水が吐出口4aより吐出されやすく、且つ、外部より吐出口4aにバラ荷や土砂が入りにくく、吐出口4aがより目詰まりしにくい構造となっている。尚、本発明は当該構成に限定されるものではない。   In FIG. 1 and FIG. 2, for convenience of manufacturing, a discharge port ring 4 provided with a discharge port 4 a as a through hole is fitted into a recess provided in the main body 2, and the spiral rod 1 is directed from the rear end portion to the front end portion of the main body 2. The water flow path 5 extending in the axial direction is branched into a cross-shaped planar shape in the vicinity of the tip, and a gap is provided between the ring 4 and the main body 2 at a position where the tip of the cross reaches the recess. Thus, water is uniformly supplied to the plurality of discharge ports 4a. In particular, in the configuration of this example, the discharge port 4a is positioned below the passage portion that branches into the cross shape of the water passage 5 and extends in the horizontal direction, and water supplied from the water passage 5 is from the discharge port 4a. The discharge port 4a is less likely to be clogged because it is easy to be discharged, and it is difficult for loose loads or earth and sand to enter the discharge port 4a from the outside. In addition, this invention is not limited to the said structure.

また、吐出口4aの高さ(スパイラルロッドの軸方向の開口長)を高くすれば全体の開口面積が増えて水を吐出しやすくなるが、吐出口4aの高さを高くしすぎると、本体2の強度が低くなるため、全体の開口面積を増やす場合には、図3−1(b)に示すように、吐出口ラインを2列以上とすることが好ましい。尚、このように吐出口ラインを複数列設ける場合、各列の吐出口4aの開口長と開口率は、スパイラルロッドの任意の位置において、上記した周方向における開口長と開口率を満たす範囲内であれば、互いに同じでも異なっていてもよい。即ち、図3−1(b)においては、C−C’ラインと、D−D’ラインにおいてそれぞれ上記した周方向における開口長と開口率を満たす範囲になるように、吐出口4aを設ければよい。また、各列内において、吐出口4aの開口長や高さ、間隔は全てを同一にする必要はなく、2種類以上の形状、寸法を組み合わせて構成してもかまわない。   Further, if the height of the discharge port 4a (the axial opening length of the spiral rod) is increased, the entire opening area is increased and water is easily discharged. However, if the height of the discharge port 4a is too high, the main body In order to increase the overall opening area, it is preferable that the discharge port lines have two or more rows as shown in FIG. 3-1 (b). When a plurality of discharge port lines are provided in this way, the opening length and opening ratio of the discharge ports 4a in each row are within a range satisfying the opening length and opening ratio in the circumferential direction at an arbitrary position of the spiral rod. If so, they may be the same or different. In other words, in FIG. 3B, the discharge port 4a is provided so as to satisfy the above-described opening length and opening ratio in the circumferential direction on the CC ′ line and the DD ′ line, respectively. That's fine. In each row, the opening length, height, and interval of the discharge ports 4a do not have to be the same, and two or more shapes and dimensions may be combined.

また、図3−1(b)においては、周方向の吐出口4aの位置を上下の吐出口ラインで一致させているが、互い違いに配置してもよく、また、各吐出口ラインの吐出口4aの個数や形状、間隔を互いに異ならせてもかまわない。   In FIG. 3B, the positions of the discharge ports 4a in the circumferential direction are made to coincide with each other on the upper and lower discharge port lines, but they may be arranged alternately, and the discharge ports of the respective discharge port lines. The number, shape and interval of 4a may be different from each other.

図3−1(c)は、上記したように、吐出口4aの上下方向(スパイラルロッドの軸方向)の位置を1個ずつ互い違いにずらせた例である。   FIG. 3-1 (c) is an example in which the positions of the discharge ports 4a in the vertical direction (axial direction of the spiral rod) are staggered one by one as described above.

尚、図3−1(a)、(b)においても、C−C’ライン内において、吐出口4aの開口長や高さ、間隔は全てを同一にする必要はなく、2種類以上の形状、寸法を組み合わせて構成してもかまわない。   Also in FIGS. 3A and 3B, the opening length, height, and interval of the discharge port 4a do not have to be the same in the CC ′ line, and two or more types are possible. A combination of dimensions may be used.

本形態においては、スパイラルロッドの軸方向のいずれにC−C’ラインを設定しても、上記開口率が50%以下となるように吐出口4aを設ければよい。   In this embodiment, the discharge port 4a may be provided so that the aperture ratio is 50% or less regardless of whether the C-C ′ line is set in any axial direction of the spiral rod.

次に、本発明の第2の形態について説明する。第2の形態は、吐出口4aの配列が異なる以外の構成は、第1の形態と同様であり、説明を省略する。   Next, a second embodiment of the present invention will be described. The configuration of the second embodiment is the same as that of the first embodiment except for the arrangement of the discharge ports 4a, and the description thereof is omitted.

図3−2は第2の形態における吐出口4aの配列例を示す図であり、本体2の吐出口ライン近傍の展開図である。図3−2において、(a)は12個の吐出口4aが螺旋状に配列した例であり、各吐出口4aはE−E’ラインで示される螺旋に沿って配列している。吐出口ラインは1列である。(b)はE−E’ラインとG−H−G’ラインの二重螺旋に沿って、(a)と同様の吐出口ラインを2列並べた例である。(c)は吐出口ラインが1列であるが、2個ずつ吐出口が上下方向で同じ位置に並んだ状態で該2個単位でE−E’ラインに沿って配列した例である。本形態において、(c)に示すように、E−E’ラインに対する各吐出口4aの位置関係が同じでない場合であっても、全体としてほぼ螺旋状に配置し、隣り合った吐出口4a同士で上下方向の開口領域が部分的に重複する場合には、該E−E’ラインに開口する吐出口4aを全て1列の吐出口ラインに含むものとする。   FIG. 3B is a diagram illustrating an arrangement example of the discharge ports 4 a in the second embodiment, and is a development view of the vicinity of the discharge port line of the main body 2. In FIG. 3A, (a) is an example in which twelve discharge ports 4a are arranged in a spiral shape, and each discharge port 4a is arranged along a spiral indicated by the E-E 'line. The discharge port line is one row. (B) is an example in which two discharge port lines similar to (a) are arranged along the double helix of the E-E 'line and the GH-G' line. (C) is an example in which the discharge port lines are arranged in a line, but two discharge ports are arranged along the E-E 'line in units of two in a state where the discharge ports are arranged in the same position in the vertical direction. In this embodiment, as shown in (c), even if the positional relationship of the discharge ports 4a with respect to the EE ′ line is not the same, the entire discharge ports 4a are arranged in a substantially spiral shape and adjacent to each other. When the opening areas in the vertical direction partially overlap, the discharge ports 4a that open to the EE ′ line are all included in one row of discharge port lines.

本形態においても、第1の形態と同様の理由により、周方向に沿った吐出口4aの開口長(L2)は10mm未満である。さらに、第1の形態と同様の理由により、スパイラルロッドの軸方向の任意の位置において、スパイラルロッドの外側面の周長(L1)に対する、該位置に開口する全吐出口の周方向に沿った開口長(L2)の和で示される開口率が50%以下である。即ち、図3−2(a)においては、F−F’ラインにおいて、開口率は(L2×4/L1)であり、(b)においては、F−F’ラインにおいて、開口率は(L2×8/L1)であり、(c)においては、F−F’ラインにおいて、開口率は(L2×4/L1)である。   Also in this embodiment, for the same reason as in the first embodiment, the opening length (L2) of the discharge port 4a along the circumferential direction is less than 10 mm. Furthermore, for the same reason as in the first embodiment, at any position in the axial direction of the spiral rod, the circumferential length (L1) of the outer surface of the spiral rod is along the circumferential direction of all the discharge ports opening at the position. The aperture ratio indicated by the sum of the aperture lengths (L2) is 50% or less. That is, in FIG. 3A, the aperture ratio is (L2 × 4 / L1) in the FF ′ line, and in FIG. 3B, the aperture ratio is (L2) in the FF ′ line. In (c), the aperture ratio is (L2 × 4 / L1) in the FF ′ line.

本形態においては、スパイラルロッドの軸方向のいずれにF−F’ラインを設定しても、周方向の開口率が50%以下となるように吐出口4aを設ける。   In this embodiment, the discharge port 4a is provided so that the aperture ratio in the circumferential direction is 50% or less regardless of whether the F-F ′ line is set in any axial direction of the spiral rod.

また、本形態においては、1列の吐出口ラインにおいて、スパイラルロッドの後端から見て周方向に1周分(=360°)の螺旋の長さに対する、該螺旋上に開口する全吐出口の該螺旋に沿った方向の開口長の和で示される開口率が50%以下である。即ち、図3−2(a)、(c)においては、E−E’ラインの長さ(S1)に対する、E−E’ライン上に配列する全吐出口4aのE−E’ラインに沿った開口長(S2)の和で示される開口率(=S2×12/S1)が50%以下である。また、図3−2(b)においては、(a)、(c)と同様に、E−E’ラインの長さ(S1)に対する、E−E’ライン上に配列する全吐出口4aのE−E’ラインに沿った開口長(S2)の和で示される開口率(=S2×12/S1)が50%以下であると同時に、G−H−G’ラインの長さ(S1)に対する、G−H−G’ライン上に配列する全吐出口4aのG−H−G’ラインに沿った開口長(S2)の和で示される開口率(=S2×12/S1)が50%以下である。係る開口率が50%を超えると、隣接する吐出口間の間隔が狭くなるため、該吐出口ラインにおいて本体2の強度が低くなり、破損しやすくなってしまう。   Further, in this embodiment, all the discharge ports opened on the spiral with respect to the length of the spiral for one round (= 360 °) in the circumferential direction when viewed from the rear end of the spiral rod in one row of discharge port lines. The aperture ratio indicated by the sum of the aperture lengths in the direction along the spiral is 50% or less. That is, in FIGS. 3-2 (a) and 3 (c), along the EE ′ line of all the discharge ports 4a arranged on the EE ′ line with respect to the length (S1) of the EE ′ line. The aperture ratio (= S2 × 12 / S1) indicated by the sum of the aperture lengths (S2) is 50% or less. Further, in FIG. 3B, as in (a) and (c), all the discharge ports 4a arranged on the EE ′ line with respect to the length (S1) of the EE ′ line. The aperture ratio (= S2 × 12 / S1) indicated by the sum of the aperture lengths (S2) along the line EE ′ is 50% or less, and at the same time, the length of the GHG ′ line (S1) The aperture ratio (= S2 × 12 / S1) represented by the sum of the aperture lengths (S2) along the HG-G ′ line of all the discharge ports 4a arranged on the GH-G ′ line is 50. % Or less. When the aperture ratio exceeds 50%, the interval between the adjacent discharge ports becomes narrow, so that the strength of the main body 2 is lowered in the discharge port line and is easily damaged.

本発明の第2の形態において、吐出口ラインの螺旋の傾斜角度(図3−2において、F−F’ラインに対してE−E’ラインのなす角度)は、特に限定されるものではないが、製造上の容易性を考慮すると、搬送スクリュ3a,3bの本体2への取り付け位置の螺旋の傾斜角度と一致させておくことが好ましい。   In the second embodiment of the present invention, the spiral inclination angle of the discharge port line (the angle formed by the EE ′ line with respect to the FF ′ line in FIG. 3-2) is not particularly limited. However, in consideration of ease of manufacture, it is preferable to match the inclination angle of the spiral at the position where the conveying screws 3a and 3b are attached to the main body 2.

尚、図3−2(a)、(b)において、E−E’ライン内において、吐出口4aの開口長や高さ、間隔は全てを同一にする必要はなく、2種類以上の形状、寸法を組み合わせて構成してもかまわない。   3-2 (a) and 3 (b), the opening length, height, and interval of the discharge port 4a need not be the same in the EE ′ line, and two or more types of shapes, It may be configured by combining dimensions.

また、図3−2(b)において、E−E’ラインと、G−H−G’ラインの各列内において、吐出口4aの開口長や高さ、間隔は全てを同一にする必要はなく、2種類以上の形状、寸法を組み合わせて構成してもかまわない。   Further, in FIG. 3B, the opening length, height, and interval of the ejection ports 4a need to be the same in each row of the EE ′ line and the GHG ′ line. Alternatively, two or more shapes and dimensions may be combined.

さらに、図3−2(b)においては、周方向の吐出口4aの位置を二重螺旋の上下で一致させているが、互い違いに配置してもよく、また、各吐出口ラインの吐出口4aの個数や形状、間隔を互いに異ならせてもかまわない。   Furthermore, in FIG. 3-2 (b), the positions of the circumferential discharge ports 4a are made to coincide with each other above and below the double helix, but they may be arranged alternately, and the discharge ports of the respective discharge port lines. The number, shape and interval of 4a may be different from each other.

尚、本例においては、吐出口4aの形状として矩形のものを例示したが、本発明においてはこれに限定されるものではなく、円形、楕円形などであっても構わない。   In this example, a rectangular shape is exemplified as the shape of the discharge port 4a. However, in the present invention, the shape is not limited to this, and it may be a circle, an ellipse, or the like.

本発明のスパイラルロッドを用いた柱体の構築方法において用いられる水硬性バラ荷は、水硬性成分としてのセメント系固化材と、骨材としての砂からなり、一般にこれに水を加えて練ったものがモルタルである。砂は粒径が20mm以下、好ましくは5mm以下のものが用いられる。セメント系固化材は、セメント或いは石灰に必要に応じて硬化促進剤等の添加剤が添加されたものである。セメント系固化材と砂とは重量比で1:2〜1:3の割合で配合される。   The hydraulic bulk load used in the method for constructing a column using the spiral rod of the present invention is composed of a cement-based solidified material as a hydraulic component and sand as an aggregate, and is generally kneaded by adding water thereto. Things are mortar. Sand having a particle size of 20 mm or less, preferably 5 mm or less is used. The cement-based solidifying material is obtained by adding an additive such as a hardening accelerator to cement or lime as necessary. The cement-based solidifying material and sand are blended at a weight ratio of 1: 2 to 1: 3.

以下に本発明のスパイラルロッドを用いた柱体の構築工法を図4を参照しながら説明する。   The column construction method using the spiral rod of the present invention will be described below with reference to FIG.

スパイラルロッド1を囲むようにホッパー11を配設し、ホッパー11内に水硬性バラ荷12を収納しておく。この状態でスパイラルロッド1を、搬送スクリュ3a,3bの搬送方向が該スパイラルロッド1の圧入方向(矢印B方向)と一致するように回転させながら(矢印A方向)圧入する〔図4(a)〕。即ち、図4において、スパイラルロッド1の後端から見た場合、搬送スクリュ3a,3bはスパイラルロッド1の後端から先端に向かって時計回りに形成されており、該スパイラルロッド1を図4(a)に示すようにスパイラルロッド1の後端から見て反時計回り(矢印A)方向に回転させた場合、搬送スクリュ3a,3bの搬送方向はスパイラルロッド1の後端から先端に向かう方向となり、スパイラルロッド1の圧入方向(矢印B方向)と一致する。即ち、通常、圧入を容易にするために搬送スクリュ3a,3bを利用する場合とは逆方向に回転させることになり、これによりホッパー11内に収納された水硬性バラ荷12が搬送スクリュ3a,3bに供給され、圧入方向、即ちスパイラルロッド1の先端に向かって搬送される。また、搬送スクリュ3a,3bの搬送方向がスパイラルロッド1の圧入方向と同じであるため、地盤の土砂がホッパー11内に排出される恐れがない。   A hopper 11 is disposed so as to surround the spiral rod 1, and a hydraulic bulk load 12 is stored in the hopper 11. In this state, the spiral rod 1 is press-fitted while rotating so that the conveying direction of the conveying screws 3a, 3b coincides with the press-fitting direction (arrow B direction) of the spiral rod 1 (arrow A direction) [FIG. ]. That is, in FIG. 4, when viewed from the rear end of the spiral rod 1, the conveying screws 3a and 3b are formed clockwise from the rear end to the front end of the spiral rod 1, and the spiral rod 1 is shown in FIG. As shown in a), when rotated counterclockwise (arrow A) as viewed from the rear end of the spiral rod 1, the transport direction of the transport screws 3a and 3b is the direction from the rear end to the front end of the spiral rod 1. This coincides with the press-fitting direction (arrow B direction) of the spiral rod 1. That is, normally, the conveyance screws 3a and 3b are rotated in the opposite direction to facilitate press-fitting, whereby the hydraulic bulk load 12 stored in the hopper 11 is transferred to the conveyance screws 3a and 3b. 3b and conveyed toward the press-fitting direction, that is, toward the tip of the spiral rod 1. Further, since the conveying direction of the conveying screws 3 a and 3 b is the same as the press-fitting direction of the spiral rod 1, there is no possibility that the earth and sand of the ground will be discharged into the hopper 11.

スパイラルロッド1の先端が所定の深さまで達した時点で〔図4(b)〕、スパイラルロッド1の圧入で形成された削孔14内壁とスパイラルロッド1との間隙には水硬性バラ荷12が充填されている。   When the tip of the spiral rod 1 reaches a predetermined depth (FIG. 4B), a hydraulic loose load 12 is formed in the gap between the inner wall of the hole 14 formed by press-fitting the spiral rod 1 and the spiral rod 1. Filled.

次に、スパイラルロッド1を圧入時と同じ方向(矢印A方向)に回転させながら、上方(矢印B’方向)に引き上げる。即ち、搬送スクリュ3a,3bの搬送方向はスパイラルロッド1の引き上げ方向(矢印B’方向)とは逆方向となるため、一旦削孔14内に供給された水硬性バラ荷12がスパイラルロッド1の引き上げによって削孔14外に排出される恐れはない。また、好ましくはスパイラルロッド1を引き上げる際にも、搬送スクリュ3a,3bに引き続き水硬性バラ荷12を供給することで、削孔14内により密に水硬性バラ荷12を充填することができる。特に、スパイラルロッド1の先端側においては、該先端が引き上げられると同時に水硬性バラ荷12が供給されるため、水硬性バラ荷12を密に且つ均一に充填することができる。   Next, the spiral rod 1 is pulled upward (arrow B ′ direction) while rotating in the same direction (arrow A direction) as in press-fitting. That is, since the conveying direction of the conveying screws 3a and 3b is opposite to the pulling direction of the spiral rod 1 (arrow B ′ direction), the hydraulic bulk load 12 once supplied into the drilling hole 14 is There is no fear of being discharged out of the hole 14 by pulling up. Further, preferably, when the spiral rod 1 is pulled up, the hydraulic bulk load 12 can be more densely filled in the hole 14 by supplying the hydraulic bulk load 12 to the conveying screws 3a and 3b. In particular, since the hydraulic loose load 12 is supplied at the tip of the spiral rod 1 at the same time that the tip is pulled up, the hydraulic loose load 12 can be filled densely and uniformly.

また、当該工程において、スパイラルロッド1の本体2に形成した通水路5に水を供給し、先端部近傍の吐出口4aより水を吐出して水硬性バラ荷12に水を供給する。尚、供給する水には、硬化促進剤等の添加物を添加してもかまわない。   Further, in this process, water is supplied to the water passage 5 formed in the main body 2 of the spiral rod 1, water is discharged from the discharge port 4 a near the tip, and water is supplied to the hydraulic loose load 12. In addition, you may add additives, such as a hardening accelerator, to the water to supply.

本発明のスパイラルロッド1は、通水路5の終端である吐出口4aの土砂やバラ荷による目詰まりが防止されていることから、確実に削孔14内の水硬性バラ荷12に水を供給することができる。   Since the spiral rod 1 of the present invention prevents clogging due to earth and sand and loose loads at the discharge port 4a which is the end of the water passage 5, water is reliably supplied to the hydraulic loose load 12 in the hole 14. can do.

スパイラルロッド1を完全に引き上げた後、水硬性バラ荷12が供給された水によって硬化し、地盤13中に強固な柱体15が構築される〔図4(d)〕。   After the spiral rod 1 is completely pulled up, the hydraulic loose load 12 is hardened by the supplied water, and a strong column 15 is built in the ground 13 [FIG. 4 (d)].

図1,図2に例示した第1の形態のスパイラルロッドを吐出口4aの開口長と個数を変えて4種類作製した。本体2の外径は60mm、搬送スクリュ3a,3bはピッチが100mm、後端から先端部近傍までの最大径が120mm、先端部で漸減して100mm、厚さが6〜9mm、吐出口ラインは吐出口4aの下端が本体2の先端部から500mの位置とし、高さを5mmとして、開口長2mmで12個、5mmで12個、8mmで8個、10mmで8個とした。   Four types of spiral rods of the first embodiment illustrated in FIGS. 1 and 2 were produced by changing the opening length and the number of discharge ports 4a. The outer diameter of the main body 2 is 60 mm, the pitch of the conveying screws 3 a and 3 b is 100 mm, the maximum diameter from the rear end to the vicinity of the front end is 120 mm, the diameter gradually decreases at the front end, 100 mm, the thickness is 6 to 9 mm, the discharge port line is The lower end of the discharge port 4a was positioned 500 m from the tip of the main body 2, the height was 5 mm, the opening length was 2 mm, 12 pieces were 5 mm, 8 pieces were 8 mm, and 8 pieces were 10 mm.

水硬性バラ荷12として、普通ポルトランドセメントと砂とを重量比で1:2に混合したものを用い、直径が130mm〜200mm(平均160mm)、深さ6mの柱体を構築した。水硬性バラ荷12は深さ1m当たり40kg充填し、深さ1m当たり水は3L〜6L供給した。本例で用いた砂と、該砂とセメントとの混合物の粒度試験の結果を図5に示す。   As the hydraulic bulk load 12, a mixture of ordinary Portland cement and sand in a weight ratio of 1: 2 was used to construct a column having a diameter of 130 mm to 200 mm (average 160 mm) and a depth of 6 m. The hydraulic loose load 12 was filled with 40 kg per 1 m depth, and 3 to 6 L of water was supplied per 1 m depth. FIG. 5 shows the results of a particle size test of the sand used in this example and a mixture of the sand and cement.

その結果、開口長2mm及び5mmについては流量が一定し、吐出圧力も高くなく、一定で安定していた。開口長8mmについては、流量は2mm、5mmのものに若干届かず、吐出圧力が高くなったが、実用に耐える柱体を構築できるレベルであった。これらに対して開口長10mmの場合には、2mm〜8mmより大幅に吐出圧力が高いにもかかわらず、流量が大幅に低下し、十分な量の水が供給できなかった。スパイラルロッド1を引き上げて吐出口4aを観察したところ、開口長2mm及び5mmの吐出口4aはほとんど目詰まりを起こしていなかったが、8mmはいくつかの吐出口が目詰まりを生じていた。また、開口長10mmの吐出口は8mmよりもさらに多くの吐出口が目詰まりを生じていた。   As a result, for the opening lengths of 2 mm and 5 mm, the flow rate was constant, the discharge pressure was not high, and it was constant and stable. For the opening length of 8 mm, the flow rate did not reach 2 mm and 5 mm, and the discharge pressure was high, but it was at a level where a column body that could be used practically could be constructed. On the other hand, in the case of the opening length of 10 mm, although the discharge pressure was significantly higher than 2 mm to 8 mm, the flow rate was greatly reduced and a sufficient amount of water could not be supplied. When the discharge port 4a was observed by pulling up the spiral rod 1, the discharge ports 4a having the opening lengths of 2 mm and 5 mm were hardly clogged, but some discharge ports were clogged at 8 mm. Further, the discharge ports having an opening length of 10 mm were clogged at more discharge ports than 8 mm.

本発明は、土壌の強化等を目的として、スパイラルロッドを地盤中に圧入して削孔を形成すると同時に該削孔内に水硬性バラ荷を供給し、該水硬性バラ荷を水によって硬化して柱体を構築する工法において用いられる。   The present invention, for the purpose of strengthening the soil and the like, press-fit a spiral rod into the ground to form a borehole, and simultaneously supply a hydraulic loose load into the borehole and harden the hydraulic loose load with water. It is used in the construction method of building a column.

本発明のスパイラルロッドの一実施形態の先端部近傍の正面図である。It is a front view of the front-end | tip part vicinity of one Embodiment of the spiral rod of this invention. 図1のスパイラルロッドの断面模式図である。It is a cross-sectional schematic diagram of the spiral rod of FIG. 本発明の第1の形態の吐出口の配列例を示す図である。It is a figure which shows the example of an arrangement | sequence of the discharge outlet of the 1st form of this invention. 本発明の第2の形態の吐出口の配列例を示す図である。It is a figure which shows the example of an arrangement | sequence of the discharge outlet of the 2nd form of this invention. 図1のスパイラルロッドを用いた柱体の構築工法の工程図である。It is process drawing of the construction method of the column using the spiral rod of FIG. 本発明の実施例で用いた水硬性バラ荷の粒度試験の結果を示す図である。It is a figure which shows the result of the particle size test of the hydraulic bulk load used in the Example of this invention.

符号の説明Explanation of symbols

1 スパイラルロッド
2 本体
3a,3b 搬送スクリュ
4 吐出口リング
4a 吐出口
5 通水路
11 ホッパー
12 水硬性バラ荷
13 地盤
14 削孔
15 柱体
DESCRIPTION OF SYMBOLS 1 Spiral rod 2 Main body 3a, 3b Conveying screw 4 Discharge port ring 4a Discharge port 5 Water passage 11 Hopper 12 Hydraulic loose load 13 Ground 14 Drilling 15 Column

Claims (2)

外側に搬送スクリュを備え、内部に、後端部から先端部近傍の外側面につながる通水路を備えたスパイラルロッドであって、
上記スパイラルロッドの先端部近傍の外側面における通水路の終端が、
上記外側面の周方向に沿った開口長が10mm未満の吐出口を少なくとも1個、周方向に配列した吐出口ラインを少なくとも1列有し、
スパイラルロッドの軸方向の任意の位置において、スパイラルロッドの外側面の周長に対する、該位置に開口する全吐出口の周方向に沿った開口長の和で示される開口率が50%以下であることを特徴とするスパイラルロッド。
A spiral rod provided with a conveying screw on the outside, and provided with a water passage leading from the rear end portion to the outer surface near the tip portion,
The end of the water passage on the outer surface near the tip of the spiral rod is
At least one discharge port having an opening length along the circumferential direction of the outer surface of less than 10 mm and at least one discharge port line arranged in the circumferential direction,
At an arbitrary position in the axial direction of the spiral rod, the opening ratio represented by the sum of the opening lengths along the circumferential direction of all the discharge ports opening at the outer surface of the spiral rod is 50% or less. Spiral rod characterized by that.
外側に搬送スクリュを備え、内部に、後端部から先端部近傍の外側面につながる通水路を備えたスパイラルロッドであって、
上記スパイラルロッドの先端部近傍の外側面における通水路の終端が、
上記外側面の周方向に沿った開口長が10mm未満の吐出口を少なくとも2個、螺旋状に配列した吐出口ラインを少なくとも1列有し、
各列の吐出口ラインにおいて、スパイラルロッドの後端から見て周方向に1周分の螺旋の長さに対する、該螺旋上に開口する全吐出口の該螺旋に沿った方向の開口長の和で示される開口率が50%以下であり、
スパイラルロッドの軸方向の任意の位置において、スパイラルロッドの外側面の周長に対する、該位置に開口する全吐出口の周方向に沿った開口長の和で示される開口率が50%以下であることを特徴とするスパイラルロッド。
A spiral rod provided with a conveying screw on the outside, and provided with a water passage leading from the rear end portion to the outer surface near the tip portion,
The end of the water passage on the outer surface near the tip of the spiral rod is
At least two discharge ports having an opening length of less than 10 mm along the circumferential direction of the outer surface, and at least one row of discharge port lines arranged spirally;
The sum of the opening length in the direction along the spiral of all the discharge ports opened on the spiral with respect to the length of the spiral for one round in the circumferential direction when viewed from the rear end of the spiral rod in the discharge port line of each row The aperture ratio indicated by is 50% or less,
At an arbitrary position in the axial direction of the spiral rod, the opening ratio represented by the sum of the opening lengths along the circumferential direction of all the discharge ports opening at the outer surface of the spiral rod is 50% or less. Spiral rod characterized by that.
JP2008132819A 2008-05-21 2008-05-21 Spiral rod Active JP5064297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132819A JP5064297B2 (en) 2008-05-21 2008-05-21 Spiral rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132819A JP5064297B2 (en) 2008-05-21 2008-05-21 Spiral rod

Publications (2)

Publication Number Publication Date
JP2009281017A true JP2009281017A (en) 2009-12-03
JP5064297B2 JP5064297B2 (en) 2012-10-31

Family

ID=41451750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132819A Active JP5064297B2 (en) 2008-05-21 2008-05-21 Spiral rod

Country Status (1)

Country Link
JP (1) JP5064297B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056650A (en) * 2014-09-12 2016-04-21 株式会社テノックス Device and method for manufacturing hydraulic solidification material liquid-substituted column, and hydraulic solidification material liquid-substituted column
JP2018105028A (en) * 2016-12-27 2018-07-05 常郎 後藤 Ground improvement method
KR20220147245A (en) * 2021-04-27 2022-11-03 삼성물산 주식회사 Ground improvement mixing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316397A (en) * 2003-04-17 2004-11-11 Newtech Kenkyusha:Kk Ground improvement method and ground improvement device
JP2006169954A (en) * 2004-12-14 2006-06-29 Bauer Maschinen Gmbh Foundation construction apparatus and method for making foundation element
JP2007113177A (en) * 2005-10-18 2007-05-10 Asahi Kasei Construction Materials Co Ltd Ground improvement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316397A (en) * 2003-04-17 2004-11-11 Newtech Kenkyusha:Kk Ground improvement method and ground improvement device
JP2006169954A (en) * 2004-12-14 2006-06-29 Bauer Maschinen Gmbh Foundation construction apparatus and method for making foundation element
JP2007113177A (en) * 2005-10-18 2007-05-10 Asahi Kasei Construction Materials Co Ltd Ground improvement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056650A (en) * 2014-09-12 2016-04-21 株式会社テノックス Device and method for manufacturing hydraulic solidification material liquid-substituted column, and hydraulic solidification material liquid-substituted column
JP2018105028A (en) * 2016-12-27 2018-07-05 常郎 後藤 Ground improvement method
KR20220147245A (en) * 2021-04-27 2022-11-03 삼성물산 주식회사 Ground improvement mixing device
KR102609062B1 (en) * 2021-04-27 2023-12-04 삼성물산 주식회사 Ground improvement mixing device

Also Published As

Publication number Publication date
JP5064297B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
US7854572B2 (en) Piling machine with high-pressure jet spiral bit and its piling method
CN105256795B (en) Hold type thread core built pile and its construction equipment and construction method in a kind of end
CN104234042A (en) Concrete pile forming device and construction method thereof
JP5064297B2 (en) Spiral rod
JP4520913B2 (en) Ground improvement method and existing structure foundation reinforcement method
CN104196017A (en) Method for preventing lava zone hole punching/drilling cast-in-place pile mud leakage and hole collapse
CN103806922A (en) Traction grouting process
JP6576230B2 (en) Rotating cap, ready-made pile burying device, pile foundation construction method
JP4771464B2 (en) Ground improvement method
JP4615507B2 (en) Drilling rod
CN110644481A (en) Radial variable modulus composite pile and construction equipment and construction method thereof
CN205062810U (en) End support type screw thread core composite pile&#39;s construction equipment
JP2007077739A (en) Jet grout type ground improvement construction method
JP6378652B2 (en) Underground continuous wall construction method
KR101855413B1 (en) Hardener injection equipment for deep mixing method of soil stabiliazation and construction method using same
CN211621559U (en) Construction equipment for radial variable modulus composite pile
WO2016117975A2 (en) Blade-type grouting apparatus capable of continuous injection and continuous injection-type grouting method using same
JP2005282063A (en) Composite field preparation pile, its construction method and device for preparing composite field preparation pile
CN205062809U (en) End support type screw thread core composite pile
JP4795299B2 (en) Construction method of hollow column
WO1992021825A1 (en) Construction method of improving or strengthening ground
JP2017014869A (en) Auger screw and ground reinforcement method
CN106223314B (en) Aperture fills and controlled grouting combines the method for administering Rockfill Dam deformation
JP2008038424A (en) Spiral rod and method of constructing structure using the same
CN218843073U (en) High-pressure jet grouting pile machine with efficient stirring effect and jet grouting stirring head thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5064297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3