JP2009280635A - Apparatus and method for reforming fuel - Google Patents

Apparatus and method for reforming fuel Download PDF

Info

Publication number
JP2009280635A
JP2009280635A JP2008131186A JP2008131186A JP2009280635A JP 2009280635 A JP2009280635 A JP 2009280635A JP 2008131186 A JP2008131186 A JP 2008131186A JP 2008131186 A JP2008131186 A JP 2008131186A JP 2009280635 A JP2009280635 A JP 2009280635A
Authority
JP
Japan
Prior art keywords
fuel
steam
drying
heat exchange
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008131186A
Other languages
Japanese (ja)
Inventor
Naoki Matsuyama
直樹 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2008131186A priority Critical patent/JP2009280635A/en
Publication of JP2009280635A publication Critical patent/JP2009280635A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for reforming a fuel capable of reducing energy required for reforming fuel. <P>SOLUTION: This fuel reforming apparatus 11 is equipped with a hydrothermal treatment apparatus 13 in which a biomass fuel is steam-treated by high-temperature and high-pressure steam, and a vacuum drying apparatus 15 in which a mixture of the fuel and steam generated in the hydrothermal treatment apparatus 13 is subjected to open vacuum treatment before drying the biomass fuel. The vacuum drying apparatus 15 is equipped with a steam compressor 15b in which steam generated by the open vacuum treatment is pressurized, and a heat exchange part 15c in which heat exchange is performed between steam pressurized in the steam compressor 15b and the biomass fuel to be dried. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料の改質を行う燃料改質装置及び燃料改質方法に関するものである。   The present invention relates to a fuel reforming apparatus and a fuel reforming method for reforming fuel.

従来、例えば下記特許文献1に記載のように、廃棄物を燃料として用いるボイラ発電において、燃料の改質を行う技術が知られている。この文献の燃料改質方法では、発電工程で発生する高圧水蒸気を用いて燃料を蒸煮処理して廃棄物燃料中の腐食成分(Na、K、Cl等)を分離除去し、その後爆砕処理することで、廃棄物燃料の改質を行う。このように、廃棄物を燃料とする場合、廃棄物燃料中の腐食成分がボイラの各部を傷めることが問題になるため、予め、燃料中の腐食成分を取り除くための燃料の改質が必要である。
特開2006−239623号公報
2. Description of the Related Art Conventionally, as described in, for example, Patent Document 1 below, a technology for reforming fuel is known in boiler power generation using waste as fuel. In the fuel reforming method of this document, the fuel is steamed using high-pressure steam generated in the power generation process to separate and remove corrosive components (Na, K, Cl, etc.) in the waste fuel, and then blasting is performed. The waste fuel is reformed. As described above, when waste is used as fuel, since corrosive components in waste fuel damage each part of the boiler, it is necessary to reform the fuel in advance to remove the corrosive components in the fuel. is there.
JP 2006-239623 A

しかしながら、発電の前処理である燃料改質処理において多くのエネルギーが投入されることとなれば、ボイラ発電のトータルの発電効率の低下を招いてしまう。従って、ボイラ発電全体の発電効率向上のためにも、燃料改質処理にあっては、必要とされるエネルギーを極力低減することが望まれる。   However, if a large amount of energy is input in the fuel reforming process, which is a pretreatment for power generation, the total power generation efficiency of the boiler power generation is reduced. Therefore, in order to improve the power generation efficiency of the entire boiler power generation, it is desired to reduce the required energy as much as possible in the fuel reforming process.

そこで、本発明は、燃料改質処理に必要なエネルギーを低減することができる燃料改質装置及び燃料改質方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a fuel reforming apparatus and a fuel reforming method that can reduce energy required for fuel reforming.

本発明の燃料改質装置は、燃料を改質する燃料改質装置であって、燃料を改質する燃料改質装置であって、燃料を、加圧及び加熱された水蒸気によって蒸煮処理する蒸煮処理手段と、蒸煮処理手段で処理された燃料を収容し減圧処理する減圧処理手段と、減圧処理手段による処理後の燃料を乾燥させる燃料乾燥手段と、を備え、燃料乾燥手段は、減圧処理手段で発生する水蒸気を加圧する水蒸気加圧部と、水蒸気加圧部で加圧された水蒸気と乾燥させる燃料との間で熱交換を行わせる熱交換部と、を有することを特徴とする。   The fuel reforming apparatus of the present invention is a fuel reforming apparatus for reforming fuel, which is a fuel reforming apparatus for reforming fuel, and steams steamed by pressurized and heated steam. A processing means; a decompression processing means for containing the fuel treated by the steaming treatment means and decompressing the fuel; and a fuel drying means for drying the fuel treated by the decompression processing means, the fuel drying means comprising the decompression processing means And a heat exchanging section for exchanging heat between the steam pressurized by the steam pressurizing section and the fuel to be dried.

この燃料改質装置では、蒸煮処理手段により燃料の蒸煮処理が行われる。このとき、燃料中の不要成分が水蒸気及び凝縮水に同伴して分離除去されることで、燃料が改質される。その後、減圧処理手段により燃料と水蒸気との混合物の圧力が低下される。このとき、燃料中に浸透していた水蒸気の膨張により燃料が破砕される。更にその後、燃料乾燥手段によって燃料の乾燥が行われ、乾燥した燃料が得られる。燃料乾燥手段においては、減圧処理手段で発生した水蒸気が加圧され、この加圧水蒸気と乾燥させるべき燃料との間の熱交換がおこなわれる。すなわち、ここでは、加圧されることで水蒸気の凝縮温度が上昇するので、高い温度においてこの水蒸気を凝縮させ凝縮潜熱を利用することが可能になり、水蒸気の凝縮の際の凝縮潜熱が燃料側に付与される。すなわち、この熱交換により燃料が加熱されるので、燃料の乾燥が促進される。   In this fuel reformer, the steaming of the fuel is performed by the steaming means. At this time, the unnecessary components in the fuel are separated and removed along with the water vapor and the condensed water, whereby the fuel is reformed. Thereafter, the pressure of the mixture of fuel and water vapor is reduced by the decompression processing means. At this time, the fuel is crushed by the expansion of water vapor that has permeated into the fuel. Thereafter, the fuel is dried by the fuel drying means to obtain a dried fuel. In the fuel drying means, the steam generated by the decompression processing means is pressurized, and heat exchange is performed between the pressurized steam and the fuel to be dried. That is, since the condensation temperature of the water vapor is increased by pressurization, it is possible to condense the water vapor at a high temperature and use the condensation latent heat. The condensation latent heat at the time of condensation of the water vapor is To be granted. That is, since the fuel is heated by this heat exchange, drying of the fuel is promoted.

また、燃料乾燥手段では、加圧・熱交換に用いる水蒸気として、減圧処理手段で発生する水蒸気を利用している。この減圧処理手段で発生する水蒸気は、前段の蒸煮処理を経てある程度の顕熱及び潜熱を保有しており、上記加圧・熱交換用の水蒸気として直ぐに利用可能であるので、燃料乾燥手段における熱交換を素早く開始することができる。また、この減圧処理手段で発生する水蒸気の顕熱及び潜熱のエネルギーを廃棄することなく、燃料乾燥のための加熱のエネルギーとして有効利用することができるので、燃料改質装置全体としての消費エネルギーを低減することができる。   Further, in the fuel drying means, water vapor generated by the decompression processing means is used as the water vapor used for pressurization and heat exchange. The steam generated in this decompression processing means retains a certain amount of sensible heat and latent heat through the previous steaming process and can be used immediately as steam for pressurization and heat exchange. The exchange can be started quickly. In addition, since the sensible heat and latent heat energy of water vapor generated by the decompression processing means can be effectively used as heating energy for fuel drying, the energy consumption of the entire fuel reformer can be reduced. Can be reduced.

また、減圧処理手段は、熱交換部を備えることとしてもよい。   The decompression processing means may include a heat exchange unit.

また、本発明の燃料改質方法は、燃料を改質する燃料改質方法であって、燃料を、加圧及び加熱された水蒸気によって蒸煮処理する蒸煮処理工程と、蒸煮処理工程で処理された燃料を収容し減圧処理する減圧処理工程と、減圧処理工程による処理後の燃料を乾燥させる燃料乾燥工程と、を備え、燃料乾燥工程では、減圧処理工程で発生する水蒸気を加圧する水蒸気加圧ステップと、水蒸気加圧ステップで加圧された水蒸気と乾燥させる燃料との間で熱交換を行わせる熱交換ステップとを有することを特徴とする。   The fuel reforming method of the present invention is a fuel reforming method for reforming a fuel, and the fuel is treated in a steaming process step in which steam is steamed by pressurized and heated steam, and in the steaming process step. A steam pressurizing step for pressurizing water vapor generated in the decompression process in the fuel drying process, and a fuel drying process for drying the fuel after the treatment in the decompression process And a heat exchanging step for exchanging heat between the steam pressurized in the steam pressurizing step and the fuel to be dried.

この燃料改質方法では、蒸煮処理工程により燃料の蒸煮処理が行われる。このとき、燃料中の不要成分が水蒸気及び凝縮水に同伴して分離除去されることで、燃料が改質される。その後、減圧処理工程により燃料と水蒸気との混合物の圧力が低下される。このとき、燃料中に浸透していた水蒸気の膨張により燃料が破砕される。更にその後、燃料乾燥工程によって燃料の乾燥が行われ、乾燥した燃料が得られる。燃料乾燥工程においては、減圧処理工程で発生した水蒸気が加圧され、この加圧水蒸気と乾燥させるべき燃料との間の熱交換がおこなわれる。すなわち、ここでは、加圧されることで水蒸気の凝縮温度が上昇するので、高い温度においてこの水蒸気を凝縮させ凝縮潜熱を利用することが可能になり、水蒸気の凝縮の際の凝縮潜熱が燃料側に付与される。すなわち、この熱交換により燃料が加熱されるので、燃料の乾燥が促進される。   In this fuel reforming method, the fuel is steamed by the steaming process. At this time, the unnecessary components in the fuel are separated and removed along with the water vapor and the condensed water, whereby the fuel is reformed. Thereafter, the pressure of the mixture of fuel and water vapor is reduced by the decompression process. At this time, the fuel is crushed by the expansion of water vapor that has permeated into the fuel. Thereafter, the fuel is dried by a fuel drying step, and a dried fuel is obtained. In the fuel drying process, the steam generated in the decompression process is pressurized, and heat exchange is performed between the pressurized steam and the fuel to be dried. That is, since the condensation temperature of the water vapor is increased by pressurization, it is possible to condense the water vapor at a high temperature and use the condensation latent heat, and the condensation latent heat during the condensation of the water vapor is To be granted. That is, since the fuel is heated by this heat exchange, drying of the fuel is promoted.

また、燃料乾燥工程では、加圧・熱交換に用いる水蒸気として、減圧処理工程で発生する水蒸気を利用している。この減圧処理工程で発生する水蒸気は、前段の蒸煮処理を経てある程度の顕熱及び潜熱を保有しており、上記加圧・熱交換用の水蒸気として直ぐに利用可能であるので、燃料乾燥工程における熱交換を素早く開始することができる。また、この減圧処理工程で発生する水蒸気の顕熱及び潜熱のエネルギーを廃棄することなく、燃料乾燥のための加熱のエネルギーとして有効利用することができるので、燃料改質方法全体としての消費エネルギーを低減することができる。   Further, in the fuel drying process, the steam generated in the decompression process is used as the steam used for pressurization and heat exchange. The steam generated in this decompression process has a certain amount of sensible heat and latent heat after the previous steaming process and can be used immediately as the steam for pressurization and heat exchange. The exchange can be started quickly. In addition, since the sensible heat and latent heat energy of water vapor generated in this decompression process can be effectively used as heating energy for fuel drying, the energy consumption of the fuel reforming method as a whole can be reduced. Can be reduced.

本発明の燃料改質装置及び燃料改質方法によれば、燃料改質処理に必要なエネルギーを低減することができる。   According to the fuel reforming apparatus and the fuel reforming method of the present invention, the energy required for the fuel reforming process can be reduced.

以下、図面を参照しつつ本発明に係る燃料改質装置及び燃料改質方法の一実施形態について詳細に説明する。   Hereinafter, an embodiment of a fuel reforming apparatus and a fuel reforming method according to the present invention will be described in detail with reference to the drawings.

図1に示す発電プラント1は、燃料を燃焼させて蒸気を発生させるボイラ3と、ボイラ3で発生する蒸気を利用して発電を行う蒸気タービン7とを備えている。このボイラ3の燃料としては、固体のバイオマス燃料が利用される。バイオマス燃料には、Na、K、Clといった腐食成分が含まれる場合があり、これらの腐食成分が高濃度で含まれる場合には、ボイラ3の蒸発器や過熱器等の腐食の原因となってしまう。そこで、この発電プラント1は、ボイラ3の前段において燃料の改質を行うべく、本発明の一実施形態である燃料改質装置11を備えている。   A power plant 1 shown in FIG. 1 includes a boiler 3 that burns fuel to generate steam, and a steam turbine 7 that generates power using steam generated in the boiler 3. A solid biomass fuel is used as the fuel for the boiler 3. Biomass fuel may contain corrosive components such as Na, K, and Cl. If these corrosive components are contained at a high concentration, it may cause corrosion of the evaporator or superheater of the boiler 3. End up. In view of this, the power plant 1 includes a fuel reformer 11 that is an embodiment of the present invention in order to reform the fuel before the boiler 3.

燃料改質装置11は、水熱処理装置13と減圧乾燥装置15とを備えている。水熱処理装置13には、バイオマス燃料がラインL1を通じて導入され、蒸気タービン7で抽気された高温高圧水蒸気がラインL5を通じて導入される。そして、水熱処理装置13では、バイオマス燃料と高温高圧水蒸気とが混合されて燃料の蒸煮処理が行われる(蒸煮処理工程)。このとき、水蒸気がバイオマス燃料中に浸透して腐食成分(Na、K、Cl等)を溶かし出し、腐食成分は凝縮水に同伴されて分離される。この凝縮水は、ラインL6を通じて系外に排出される。このようにして、バイオマス燃料中の腐食成分が除去され、改質されたバイオマス燃料が得られる。一方、所定時間の蒸煮処理の後、バイオマス燃料と水蒸気との混合物は、ラインL2を通じて減圧乾燥装置15に導入される。   The fuel reformer 11 includes a hydrothermal treatment device 13 and a vacuum drying device 15. Biomass fuel is introduced into the hydrothermal treatment device 13 through the line L1, and high-temperature high-pressure steam extracted by the steam turbine 7 is introduced through the line L5. And in the hydrothermal treatment apparatus 13, biomass fuel and high temperature / high pressure steam are mixed, and the steaming process of a fuel is performed (steaming process process). At this time, water vapor permeates into the biomass fuel and dissolves the corrosive components (Na, K, Cl, etc.), and the corrosive components are entrained in the condensed water and separated. This condensed water is discharged out of the system through the line L6. In this way, the corrosive components in the biomass fuel are removed, and a modified biomass fuel is obtained. On the other hand, after the steaming process for a predetermined time, the mixture of biomass fuel and water vapor is introduced into the vacuum drying apparatus 15 through the line L2.

この蒸煮処理においては、腐食成分であるバイオマス燃料中のNa、K、Clが効率よく凝縮水に同伴し、かつ、バイオマス燃料の固形分・発熱量の歩留まりをよくするように、高温高圧水蒸気の温度・圧力が適宜設定される。なお、この水熱処理装置13で用いられる高温高圧水蒸気は、圧力1MPaG,温度180℃程度の飽和蒸気である。また、水熱処理装置13による燃料の処理は、バッチ式が想定されるが、適当なシール機構を設けて連続的な処理を行ってもよい。また、水熱処理装置13に導入する高温高圧水蒸気は、ボイラ3から送気してもよい。   In this steaming process, high-temperature and high-pressure steam is used so that Na, K, and Cl in the biomass fuel, which is a corrosive component, efficiently accompany the condensed water and improve the yield of solid content and calorific value of the biomass fuel. Temperature and pressure are set appropriately. Note that the high-temperature and high-pressure steam used in the hydrothermal treatment apparatus 13 is saturated steam having a pressure of 1 MPaG and a temperature of about 180 ° C. Further, the fuel treatment by the hydrothermal treatment apparatus 13 is assumed to be a batch type, but a continuous treatment may be performed by providing an appropriate sealing mechanism. Further, the high-temperature and high-pressure steam introduced into the hydrothermal treatment apparatus 13 may be supplied from the boiler 3.

水熱処理装置13の後段に設けられた減圧乾燥装置15は、バイオマス燃料を導入する処理室15aを備えている。また、減圧乾燥装置15は、ラインL7を通じて処理室15a内の水蒸気を吸引し、加圧してラインL8に送出する水蒸気圧縮機(水蒸気加圧部)15bを備えている。更に、減圧乾燥装置15は、処理室15a内に設けられた熱交換部15cを備えている。熱交換部15cは、処理室15a内の燃料と接するように配置された熱媒体流路を有しており、ラインL8から導入された加圧水蒸気を当該熱媒体流路に通過させる。   The reduced pressure drying apparatus 15 provided in the subsequent stage of the hydrothermal treatment apparatus 13 includes a processing chamber 15a for introducing biomass fuel. The reduced pressure drying apparatus 15 includes a steam compressor (steam pressurizing unit) 15b that sucks the steam in the processing chamber 15a through the line L7, pressurizes it, and sends it to the line L8. Furthermore, the reduced pressure drying apparatus 15 includes a heat exchange unit 15c provided in the processing chamber 15a. The heat exchanging unit 15c has a heat medium flow path disposed so as to be in contact with the fuel in the processing chamber 15a, and allows the pressurized water vapor introduced from the line L8 to pass through the heat medium flow path.

この減圧乾燥装置15では、以下のように、処理室15aに導入されたバイオマス燃料の減圧処理及び乾燥処理が行われる。まず、ラインL2を通じて導入されたバイオマス燃料と水蒸気との混合物が、処理室15aに導入され、開放減圧される(減圧処理工程)。この開放減圧処理により、バイオマス燃料中に浸透していた水蒸気が膨張し、バイオマス燃料は爆砕され細分化される。このとき、バイオマス燃料中に存在する腐食成分は、発生する水蒸気及び凝縮水に同伴し分離される。なお、この凝縮水を効率的に取り出すために、バイオマス燃料の脱水を機械的に行う機構を設け、開放減圧処理の前又は後に、バイオマス燃料の機械的な脱水処理を行ってもよい。   In this reduced pressure drying apparatus 15, the reduced pressure process and the drying process of the biomass fuel introduced into the processing chamber 15a are performed as follows. First, the mixture of biomass fuel and water vapor introduced through the line L2 is introduced into the processing chamber 15a, and is decompressed and opened (decompression processing step). By this open decompression process, the water vapor that has penetrated into the biomass fuel expands, and the biomass fuel is crushed and subdivided. At this time, the corrosive components present in the biomass fuel are separated along with the generated water vapor and condensed water. In order to efficiently extract the condensed water, a mechanism for mechanically dehydrating the biomass fuel may be provided, and the biomass fuel may be mechanically dehydrated before or after the open decompression process.

その後、細分化されたバイオマス燃料は、処理室15a内で乾燥処理され(燃料乾燥工程)、その後、改質燃料としてラインL3を通じてボイラ3に導入される。なお、減圧乾燥装置15においては、処理室15aに熱源(例えば、熱風源)を設けて燃料を加熱することで乾燥を促進したり、処理室15a内を減圧するポンプを設けて処理室15a内を負圧にすることで燃料の乾燥を促進したりしてもよい。   Thereafter, the subdivided biomass fuel is dried in the processing chamber 15a (fuel drying step), and then introduced into the boiler 3 through the line L3 as reformed fuel. In the reduced pressure drying apparatus 15, a heat source (for example, a hot air source) is provided in the processing chamber 15a to heat the fuel to promote drying, or a pump for reducing the pressure in the processing chamber 15a is provided. The drying of the fuel may be promoted by making the pressure negative.

一方、上記の開放減圧処理により発生した処理室15a内の水蒸気は、ラインL7を通じて水蒸気圧縮機15bに導入され、加圧されて(水蒸気加圧ステップ)ラインL8に送出される。そして、熱交換部15cが、ラインL8からの加圧水蒸気を熱媒体流路に通過させることで、熱媒体流路を形成する管壁を挟んで加圧水蒸気と処理室15a内のバイオマス燃料とが接触し、両者の間での熱交換が行われる(熱交換ステップ)。   On the other hand, the water vapor in the processing chamber 15a generated by the above-described open depressurization process is introduced into the water vapor compressor 15b through the line L7, pressurized (water vapor pressure step), and sent to the line L8. Then, the heat exchange unit 15c allows the pressurized steam from the line L8 to pass through the heat medium flow path so that the pressurized water vapor and the biomass fuel in the processing chamber 15a contact each other across the tube wall forming the heat medium flow path. Then, heat exchange is performed between the two (heat exchange step).

この熱交換によって、加圧水蒸気は熱交換部15cを通過中に凝縮し、バイオマス燃料に対して凝縮潜熱を付与し凝縮水となる。すなわち、ここでは、水蒸気が水蒸気圧縮機15bで加圧されることで凝縮温度が上昇するので、バイオマス燃料よりも高い温度において加圧水蒸気を凝縮させて凝縮潜熱を利用することが可能になり、加圧水蒸気の凝縮潜熱が燃料側に付与される。そして、熱交換部15cで生成した凝縮水は、ラインL9を通じて系外に排出される。なお、この凝縮水には、水蒸気に同伴していた腐食成分が含まれている。一方、処理室15a内のバイオマス燃料は、上記の凝縮潜熱の付与により加熱されるので、バイオマス燃料の乾燥が促進される。   By this heat exchange, the pressurized steam is condensed while passing through the heat exchange part 15c, and condensing latent heat is given to the biomass fuel to become condensed water. That is, here, since the water vapor is pressurized by the water vapor compressor 15b, the condensation temperature rises. Therefore, the water vapor can be condensed at a temperature higher than that of the biomass fuel to use the latent heat of condensation. Steam condensation latent heat is applied to the fuel side. And the condensed water produced | generated in the heat exchange part 15c is discharged | emitted out of the system through the line L9. This condensed water contains corrosive components that have been accompanied by water vapor. On the other hand, since the biomass fuel in the processing chamber 15a is heated by the application of the latent heat of condensation, drying of the biomass fuel is promoted.

その後、バイオマス燃料の乾燥の過程において、バイオマス燃料中に含まれていた水分が蒸発し、処理室15a内に水蒸気が発生する。このように発生した水蒸気も、ラインL7を通じて水蒸気圧縮機15bに導入され、加圧されてラインL8に送出され、熱交換部15cにおいて乾燥の促進に継続的に寄与する。このように、開放減圧処理と燃料乾燥処理とを、同じ処理室15a内で行っているので、熱交換部15cによる燃料乾燥の促進が継続的に行われる。すなわち、一つの減圧乾燥装置15内で開放減圧処理と燃料乾燥処理とを行うことにより、開放減圧処理で生じた水蒸気による燃料乾燥の促進と、燃料乾燥処理で生じた水蒸気による燃料乾燥の促進とを、共通の処理室15a、水蒸気圧縮機15b、及び熱交換部15cを用いて継続的に行うことができる。   Thereafter, in the course of drying the biomass fuel, the water contained in the biomass fuel evaporates, and water vapor is generated in the processing chamber 15a. The steam generated in this way is also introduced into the steam compressor 15b through the line L7, pressurized and sent to the line L8, and continuously contributes to the promotion of drying in the heat exchange unit 15c. Thus, since the open pressure reduction process and the fuel drying process are performed in the same processing chamber 15a, the fuel drying is continuously promoted by the heat exchanging unit 15c. That is, by performing an open decompression process and a fuel drying process in one decompression drying apparatus 15, fuel drying is promoted by water vapor generated by the open decompression process, and fuel drying is promoted by water vapor generated by the fuel drying process. Can be continuously performed using the common processing chamber 15a, the water vapor compressor 15b, and the heat exchange unit 15c.

ここで、減圧乾燥装置15との比較のため、図2に示す燃料乾燥装置65を考える。この減圧乾燥装置65では、湿った燃料のみを常圧下で処理室65a内に導入する。そして、燃料乾燥の過程で発生する水蒸気を水蒸気圧縮機65bで加圧し、熱交換部65cにおいて熱交換(燃料の加熱)に用いることで、燃料の乾燥を促進する。しかしながら、この燃料乾燥装置65の場合、乾燥の開始時においては、処理室65a内には水蒸気がほとんど存在しないので、開始直後は、まず、処理室65a内の燃料を、ヒータ等で加熱することで燃料に含まれる水分を蒸発させ、水蒸気圧縮機65bに供給するための水蒸気を発生させなければならない。従って、熱交換部65cにおける熱交換は、乾燥処理の開始直後に機能するものではない。また、開始直後に燃料加熱が必要であることから、燃料の加熱手段が必須となる。   Here, for comparison with the reduced pressure drying apparatus 15, a fuel drying apparatus 65 shown in FIG. 2 is considered. In this vacuum drying apparatus 65, only wet fuel is introduced into the processing chamber 65a under normal pressure. Then, the water vapor generated during the fuel drying process is pressurized by the water vapor compressor 65b and used for heat exchange (heating of the fuel) in the heat exchanging portion 65c, thereby promoting fuel drying. However, in the case of this fuel drying device 65, since there is almost no water vapor in the processing chamber 65a at the start of drying, immediately after the start, the fuel in the processing chamber 65a is first heated with a heater or the like. Thus, the water contained in the fuel must be evaporated to generate water vapor to be supplied to the water vapor compressor 65b. Therefore, the heat exchange in the heat exchange unit 65c does not function immediately after the start of the drying process. Moreover, since fuel heating is required immediately after the start, a means for heating the fuel is essential.

これに対し、減圧乾燥装置15においては、最初に、熱交換部15cに用いる水蒸気として、開放減圧処理で発生する水蒸気が利用される。この開放減圧処理で発生する水蒸気は、前段の蒸煮処理を経てある程度の顕熱及び潜熱を保有しており、加圧によって熱交換部15c用の水蒸気として直ぐに利用可能であるので、熱交換部15cによる熱交換を素早く開始することができる。従って、減圧乾燥装置15では、熱交換部15cの性能によっては、燃料の加熱手段を省略することも可能になる。   On the other hand, in the reduced pressure drying apparatus 15, the water vapor | steam which generate | occur | produces by an open | release decompression process is utilized as water vapor | steam used for the heat exchange part 15c first. The steam generated in the open decompression process has a certain amount of sensible heat and latent heat after the previous steaming process, and can be immediately used as the steam for the heat exchange part 15c by pressurization. Therefore, the heat exchange part 15c The heat exchange by can be started quickly. Therefore, in the reduced pressure drying apparatus 15, depending on the performance of the heat exchange unit 15c, the fuel heating means can be omitted.

また、この燃料改質装置1では、開放減圧処理で発生する水蒸気の顕熱及び潜熱のエネルギーを廃棄することなく、燃料乾燥のための加熱のエネルギーとして有効利用することができるので、燃料改質装置1全体としての消費エネルギーを低減することができる。その結果、発電プラント1のトータルの発電効率の向上を図ることができる。   Further, in this fuel reformer 1, since the sensible heat and latent heat energy of water vapor generated in the open decompression process can be effectively used as heating energy for fuel drying, fuel reforming is possible. The energy consumption of the entire device 1 can be reduced. As a result, the total power generation efficiency of the power plant 1 can be improved.

本発明の一実施形態に係る燃料改質装置を用いた発電プラントを示す図である。It is a figure showing a power plant using a fuel reformer concerning one embodiment of the present invention. 比較のため他の燃料乾燥装置を示す図である。It is a figure which shows another fuel drying apparatus for a comparison.

符号の説明Explanation of symbols

11…燃料改質装置、13…水熱処理装置(蒸煮処理手段)、15…減圧乾燥装置(減圧処理手段、燃料乾燥手段)、15b…水蒸気圧縮機(水蒸気加圧部)、15c…熱交換部。   DESCRIPTION OF SYMBOLS 11 ... Fuel reformer, 13 ... Hydrothermal treatment apparatus (cooking process means), 15 ... Decompression drying apparatus (decompression process means, fuel drying means), 15b ... Steam compressor (steam pressurization part), 15c ... Heat exchange part .

Claims (3)

燃料を改質する燃料改質装置であって、
前記燃料を、加圧及び加熱された水蒸気によって蒸煮処理する蒸煮処理手段と、
前記蒸煮処理手段で処理された前記燃料を収容し減圧処理する減圧処理手段と、
前記減圧処理手段による処理後の前記燃料を乾燥させる燃料乾燥手段と、を備え、
前記燃料乾燥手段は、
前記減圧処理手段で発生する前記水蒸気を加圧する水蒸気加圧部と、
前記水蒸気加圧部で加圧された前記水蒸気と乾燥させる前記燃料との間で熱交換を行わせる熱交換部と、を有することを特徴とする燃料改質装置。
A fuel reformer for reforming fuel,
Steaming means for steaming the fuel with pressurized and heated steam;
Decompression processing means for containing the fuel treated by the steaming treatment means and decompressing the fuel;
Fuel drying means for drying the fuel after processing by the decompression processing means,
The fuel drying means includes
A steam pressurizing unit that pressurizes the steam generated by the decompression processing means;
A fuel reformer, comprising: a heat exchanging unit that exchanges heat between the steam pressurized by the steam pressurizing unit and the fuel to be dried.
前記減圧処理手段は、前記熱交換部を備えることを特徴とする請求項1に記載の燃料改質装置。   The fuel reformer according to claim 1, wherein the decompression processing unit includes the heat exchange unit. 燃料を改質する燃料改質方法であって、
前記燃料を、加圧及び加熱された水蒸気によって蒸煮処理する蒸煮処理工程と、
前記蒸煮処理工程で処理された前記燃料を収容し減圧処理する減圧処理工程と、
前記減圧処理工程による処理後の前記燃料を乾燥させる燃料乾燥工程と、を備え、
前記燃料乾燥工程では、
前記減圧処理工程で発生する前記水蒸気を加圧する水蒸気加圧ステップと、
前記水蒸気加圧ステップで加圧された前記水蒸気と乾燥させる前記燃料との間で熱交換を行わせる熱交換ステップとを有することを特徴とする燃料改質方法。
A fuel reforming method for reforming fuel,
A steaming process for steaming the fuel with pressurized and heated steam;
A depressurization treatment step of accommodating and depressurizing the fuel treated in the cooking step;
A fuel drying step of drying the fuel after the treatment by the decompression treatment step,
In the fuel drying step,
A steam pressurizing step for pressurizing the steam generated in the decompression process;
A fuel reforming method comprising: a heat exchange step for performing heat exchange between the steam pressurized in the steam pressurization step and the fuel to be dried.
JP2008131186A 2008-05-19 2008-05-19 Apparatus and method for reforming fuel Pending JP2009280635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131186A JP2009280635A (en) 2008-05-19 2008-05-19 Apparatus and method for reforming fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131186A JP2009280635A (en) 2008-05-19 2008-05-19 Apparatus and method for reforming fuel

Publications (1)

Publication Number Publication Date
JP2009280635A true JP2009280635A (en) 2009-12-03

Family

ID=41451433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131186A Pending JP2009280635A (en) 2008-05-19 2008-05-19 Apparatus and method for reforming fuel

Country Status (1)

Country Link
JP (1) JP2009280635A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011156515A3 (en) * 2010-06-08 2012-04-19 Zilkha Biomass Fuels Llc Methods for the manufacture of fuel pellets and other products from lignocellulosic biomass
JP2014009264A (en) * 2012-06-28 2014-01-20 Oji Holdings Corp Method for producing solid fuel from lignocellulosic material
JP2015124981A (en) * 2013-12-27 2015-07-06 株式会社Ihi Boiler system and method of supplying biomass fuel to boiler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119397A (en) * 1981-12-30 1983-07-15 Ebara Infilco Co Ltd Treatment of sludge like substance
JPS60212491A (en) * 1984-03-21 1985-10-24 フオエスト‐アルピネ アクチエンゲゼルシヤフト Drying plant for high water content brown coal
JP2004361013A (en) * 2003-06-05 2004-12-24 Taiheiyo Cement Corp Method of drying waste containing moisture and its system
JP2007136312A (en) * 2005-11-17 2007-06-07 Kubota Kankyo Service Kk Organic waste treatment system
JP2009120746A (en) * 2007-11-15 2009-06-04 Tokyo Institute Of Technology High water content waste disposal apparatus and high water content waste disposal method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119397A (en) * 1981-12-30 1983-07-15 Ebara Infilco Co Ltd Treatment of sludge like substance
JPS60212491A (en) * 1984-03-21 1985-10-24 フオエスト‐アルピネ アクチエンゲゼルシヤフト Drying plant for high water content brown coal
JP2004361013A (en) * 2003-06-05 2004-12-24 Taiheiyo Cement Corp Method of drying waste containing moisture and its system
JP2007136312A (en) * 2005-11-17 2007-06-07 Kubota Kankyo Service Kk Organic waste treatment system
JP2009120746A (en) * 2007-11-15 2009-06-04 Tokyo Institute Of Technology High water content waste disposal apparatus and high water content waste disposal method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011156515A3 (en) * 2010-06-08 2012-04-19 Zilkha Biomass Fuels Llc Methods for the manufacture of fuel pellets and other products from lignocellulosic biomass
EP2580307A2 (en) * 2010-06-08 2013-04-17 Zilkha Biomass Fuels Llc Methods for the manufacture of fuel pellets and other products from lignocellulosic biomass
EP2580307A4 (en) * 2010-06-08 2014-04-16 Zilkha Biomass Fuels Llc Methods for the manufacture of fuel pellets and other products from lignocellulosic biomass
EA024805B1 (en) * 2010-06-08 2016-10-31 Зилка Биомасс Текнолоджиз Ллс Method for the manufacture of fuel pellets and other products from lignocellulosic biomass
JP2014009264A (en) * 2012-06-28 2014-01-20 Oji Holdings Corp Method for producing solid fuel from lignocellulosic material
JP2015124981A (en) * 2013-12-27 2015-07-06 株式会社Ihi Boiler system and method of supplying biomass fuel to boiler

Similar Documents

Publication Publication Date Title
JP5325023B2 (en) Apparatus and method for drying hydrous solid fuel
RU2472843C2 (en) Integration as to heat in process involving coal gasification and methanation reaction
JP3961058B2 (en) Method and apparatus for converting heat into effective energy
CA2679811C (en) High efficiency feedwater heater
JP5734572B2 (en) Steam generation in chemical pulp mill digester plant.
MX2010009296A (en) Energy generating method using thermal cycles with high-pressure and moderate-temperature steam.
JP2016506488A (en) Operation method and style of gas turbine equipment
US9254449B2 (en) Solid and liquid separation process
JP2009280635A (en) Apparatus and method for reforming fuel
JP4555010B2 (en) Reformed fuel-fired gas turbine and operation method thereof
KR101825316B1 (en) Flash tank design
JP2002371861A (en) Steam injection gas turbine generator
JP2007285196A (en) Gas fuel engine apparatus
JP2007218530A (en) Method and system for generating superheated steam, and method and system for steam power generation
JP2007017096A (en) Oil heat dehydration device
RU2340779C1 (en) Method of thermal power plant operation
JP2019011723A (en) Combined heat and power system
RU2350759C1 (en) Thermal power plant operating method
RU2555597C1 (en) Operating method of thermal power plant
JP2020023923A (en) Integrated facility and method for fermenting woody biomass
JP2004316439A (en) Steam injection gas turbine power generating device
JP2009068437A (en) Electric power generating system using heavy oil burning gas turbine
JP2003239706A (en) Combined generation plant and operation method thereof
JP2004154749A (en) Apparatus for treating organic waste for which external fuel is not required

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417