JP2004316439A - Steam injection gas turbine power generating device - Google Patents

Steam injection gas turbine power generating device Download PDF

Info

Publication number
JP2004316439A
JP2004316439A JP2003107425A JP2003107425A JP2004316439A JP 2004316439 A JP2004316439 A JP 2004316439A JP 2003107425 A JP2003107425 A JP 2003107425A JP 2003107425 A JP2003107425 A JP 2003107425A JP 2004316439 A JP2004316439 A JP 2004316439A
Authority
JP
Japan
Prior art keywords
steam
saturated
water
gas turbine
economizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107425A
Other languages
Japanese (ja)
Inventor
Genichiro Nagahara
元一郎 永原
Moichi Uji
茂一 宇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003107425A priority Critical patent/JP2004316439A/en
Publication of JP2004316439A publication Critical patent/JP2004316439A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam injection gas turbine power generating device suppressing deterioration of exergy efficiency by effectively using latent heat of vaporization of steam generated by waste heat collection to generate low pressure saturated steam equivalent to a case of using a plurality of boilers with a simple structure, supplying steam to a external process, and preventing generation of white smoke when gas is discharged to atmosphere. <P>SOLUTION: The steam injection gas turbine power generating device including a compressor, a burner, a gas turbine comprised of a turbine, an economizer, an evaporator and a superheater is provided with a steam superheater superheating saturated steam generated by the evaporator, a steam expander generating electric power by steam superheated by the steam superheater, an expansion valve generating wet steam by expanding feed water superheated by the economizer, an steam water separator separating rest of wet steam generated by the expansion valve into saturated steam and saturated water, a first flow passage mixing the separated saturated water into feed water of the economizer, and a second flow passage mixing the separated saturated steam and high temperature steam flowing out of the steam expander and injecting the same into the burner. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は蒸気噴射ガスタービン発電装置に関するものである。
【0002】
【従来の技術】
【0003】蒸気噴射型ガスタービンは排熱により発生した蒸気をタービンに噴出させて発電電力を増加するシステムで、代表的なものに図5に示すチェンサイクル等がある。図5では、エコノマイザにより加熱された給水は排熱回収ボイラに注入され、排熱回収ボイラにより発生された飽和蒸気が、蒸気過熱器によりさらに加熱され過熱蒸気として燃焼器に注入される。
さらに、近年では関連する技術として特許文献1〜特許文献3等が提案されている。
【0004】
【特許文献1】
特開2002−129984号公報
【特許文献2】
特開平11−280493号公報
【特許文献3】
特願2001−320687号
【0005】ここで、特許文献1は、図5に示す水又は水蒸気をガスタービン内部に噴射するガスタービン設備において、煙突より発生する白煙を防止するためのものである。このため、前記ガスタービンから出た高温の排ガスの一部を煙突内の低温排ガスに混入させおり、これにより、煙突からの排ガス温度を白煙が発生しない程度にまで上昇させるものである。
【0006】特許文献2は、図5に示す水又は水蒸気をガスタービン内部に噴射するガスタービン設備において、前記ガスタービンから出た高温の排ガスにより加熱された高温水蒸気のエネルギーを他の蒸気タービンで回収することにより、単位蒸気量あたりの熱エネルギーの交換量を増加するものである。
【0007】特許文献3は、図5に示す水又は水蒸気をガスタービン内部に噴射するガスタービン設備において、前記ガスタービンにより回転駆動されたブースト圧縮機を利用することにより、燃焼器内に流入する高温水蒸気の量を増大するものである。これにより従来使用されていなかった余剰蒸気を有効利用して、発電出力と熱効率を向上するものである。
【0008】
【発明が解決しようとする課題】これらの特許文献では、ガスタービン排熱で与えられた蒸気の蒸発潜熱は最終的には仕事として回収されず、排ガスと共に大気中に排気されてしまう問題点がある。また、排熱回収におけるエクセルギー効率の損失低減のためには、一般的にボイラドラムを複数用いる手法がとられるが、この場合システムが複雑となる問題点がある。さらに、従来蒸気噴射ガスタービン発生装置では、文献1で指摘された様に排ガス中の水蒸気比率が高く、大気中で水蒸気が凝縮して白煙が発生しやすい問題点があった。
【0009】本発明は上述した種々の問題を解決するために創案されたものである。すなわち、(1)本発明の目的は排熱回収により発生した蒸気の蒸発潜熱を有効活用し、簡易な構成により複数のボイラを用いた場合と同様な低圧飽和蒸気を発生させることによりエクセルギー効率の低下を抑え、(2)外部プロセスへの蒸気の供給を可能とし、(3)さらに大気中にガスを排気する際の白煙の発生防止をすることができる蒸気噴射ガスタービン発電装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明によれば、圧縮機、燃焼器、タービンからなるガスタービンと、エコノマイザと、蒸発部および過熱器を有する、蒸気噴射ガスタービン発電装置において、前記蒸発部で発生した飽和蒸気を加熱する蒸気過熱器と、前記蒸気過熱器にて過熱した蒸気により発電を行う蒸気膨張機と、前記エコノマイザで過熱した給水を膨張させ湿り蒸気を発生させる膨張弁と、前記膨張弁により発生した湿り蒸気の残りを飽和蒸気と飽和水に分離する汽水分離器と、分離した前記飽和水をエコノマイザの給水に混入する第1流路と、分離した前記飽和蒸気を蒸気膨張機より流出した高温蒸気と混入し燃焼器に注入する第2流路と、を備えたことを特徴とする蒸気噴射ガスタービン発電装置提供される。
【0011】上述した本発明の構成によれば、エコノマイザにより加熱された高温給水は、膨張弁にてフラッシュされ減圧される。減圧により高圧飽和水と飽和蒸気が生成された後、前記高圧飽和水を汽水分離器で飽和水と飽和蒸気に分離する。さらに、飽和水はエコノマイザの給水に混入しインライン混合加熱器により加熱を行い補給水と混合され、エコノマイザにより加熱され循環することにより、蒸発潜熱を有効活用し循環する給水の温度を上昇させることができ、これにより、大気中に放出する排ガス温度を高めて白煙の発生を防止することができる。
また、分離された飽和蒸気は、複数のドラムを持つ複圧ボイラにおける低圧蒸気と同等の蒸気として用いることが可能となる。
エコノマイザにより加熱された給水は、一部蒸発部に供給され、ボイラ内の圧力の維持に用いられる。蒸発部で加熱され生成された蒸気は、さらに蒸気過熱器により加熱され、蒸気過熱器の入口温度を十分高めることができる。これにより、蒸気膨張機の入口と出口間の温度差および圧力差を大きくすることができ、蒸気膨張機でのエネルギーの回収を可能とする。
また、膨張弁を通過した後および蒸気膨張機を通過した後の低圧の蒸気については、低圧蒸気過熱器で加熱後に燃焼器に投入することが可能となる。一般に燃焼器で燃焼を行う為には、投入される蒸気の温度、圧力、流量に制約があることを考慮すると、本構成によりこれらの特徴をうまく利用して効率よくエネルギーを変換することができる。
【0012】本発明によれば、分離した前記飽和蒸気の一部を給水に供給する第3流路を備え、該第3流路に蒸気流量調整弁と、インライン混合加熱器と、を有することを特徴とする蒸気噴射ガスタービン発電装置が提供される。
【0013】上述した本発明の構成によれば、白煙の発生の程度に応じて、蒸気流量調節弁の開度を調整し、分離蒸気により循環水の温度を調節することが可能となる。さらに、余分な蒸気については、プロセス蒸気として使用するまたは燃焼器に注入するといったことが可能となる。
【0014】本発明によれば、前記第2流路に低圧蒸気加熱器を備えることを特徴とする蒸気噴射ガスタービン発電装置が提供される。
【0015】上述した本発明の構成によれば、燃焼器に供給される蒸気の熱量が奪われた後でも、低圧蒸気過熱器による加熱を行い燃焼器へと投入することが可能となる。ここで、蒸気の熱量が奪われる場合とは、例えば白煙防止のために汽水分離器より分離された蒸気を大量に循環水と混合させた場合、プロセス蒸気を大量に外部に供給した場合等を示す。
【0016】
【発明の実施の形態】
本発明の実施の好ましい実施形態を図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0017】図1は、本発明の第1の実施形態を示す概念図である。本実施例では、供給された補給水は給水ポンプにより加圧されエコノマイザへと供給される。エコノマイザでは、排気を利用して給水を加熱する。エコノマイザで昇温された給水の一部は蒸発部に供給され、残りは膨張弁へと供給される。膨張弁により給水は、膨張され飽和水と蒸気が混在する状態になる。この水と蒸気が混在した状態で汽水分離器を通過させることにより、飽和水と飽和水蒸気が分離生成される。この後、分離された飽和水を補給水に、飽和水蒸気を燃焼器に供給する。
一方で、エコノマイザで昇温され蒸発部に供給された水は、過熱器にて過熱され、過熱蒸気となり蒸気膨張機に供給される。蒸気膨張機では、過熱蒸気により発電を行う。さらに、発電後の蒸気は、前記汽水分離器により分離された蒸気と混合され燃焼器へと供給される。
燃焼器により発生した排気ガスはタービンにより動力回収され圧縮機および発電機を駆動する。圧縮機では外部から酸素の吸入後に酸素を圧縮し燃焼器に供給する事により燃焼を増加させる。さらに、発電機では回収された動力により発電を行う。動力回収された排ガスは、過熱器、蒸発部および白煙防止用のエコノマイザを加熱後、排気として大気中に放出される。
【0018】図2は、本発明の第2の実施形態を示す図である。本実施例では、汽水分離器により分離された蒸気の一部を、飽和蒸気弁およびインライン混合過熱器を介してエコノマイザに供給する給水に混入することにより、白煙防止の際にエコノマイザの給水の温度を制御できるようになっている。
【0019】図3は、本発明の第3の実施形態を示す図である。本実施例では、汽水分離器により分離された飽和蒸気と、蒸気膨張機から排出された蒸気の混合蒸気を、低圧蒸気過熱器により過熱後、燃焼器へと注入する。また、汽水分離器より分離された飽和蒸気の一部は燃焼器に直接注入される。
さらに、図4には図3の実施形態における排熱回収線図を示す。この図において排熱回収ボイラの圧力は40ataに設定されている。また、ガスタービン排ガスの温度は87度となっている。更にこの例で、発電出力は約6400Kw、発電効率は約40.85%となる。本実施例では、補給水は約60度、13.1ataで供給され給水ポンプと膨張弁により前記40ata付近まで加圧される。さらに蒸発部および過熱器により約250度付近まで過熱され過熱蒸気となって蒸気膨張機に送られる。排熱回収線図において、蒸気の交換熱量が2500Kcal/s付近で約450度から350度付近まで下降しているのは、蒸気膨張機によるエネルギーの動力への変換を示している。蒸気はこの後、低圧蒸気過熱器により熱量を加えられ燃焼器へと供給される。低圧蒸気過熱器により燃焼器に投入される蒸気を過熱することにより、従来例のように出力/効率の向上を図ることができるだけでなく、白煙防止の為の給水への蒸気供給や、蒸気膨張機による発電およびプロセスへの蒸気供給により燃焼器へ投入する蒸気の温度が下がった場合でも、エクセルギーロスを低減することができる。
【0020】また、上述した発明の蒸気噴射ガスタービン発電装置では、給水ポンプ、膨張弁、汽水分離器により発生した飽和水の一部を白煙防止に用いるとともに、蒸発部により生成された蒸気を、先述の汽水分離器により生成された蒸気と混合することにより、プロセスへの蒸気供給をも可能としている。
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは無論である。
【0021】
【発明の効果】上述した本発明によれば、以下の効果が得られる。
1.蒸気膨張機出口に含まれる凝縮水は排熱回収ボイラによる蒸気潜熱の一部が膨張機の軸動力ならびに蒸気の顕熱に変換されたものである。蒸気膨張機へ供給される水の一部を膨張弁、汽水分離器により飽和水と飽和蒸気に分離し、飽和水を再蒸発させることなく系外に排除することができる。このため、最終的に排ガス中に含まれる蒸発潜熱を有効に回収しサイクル効率が向上する。
また、水をエコノマイザから膨張弁、汽水分離器を経て再度エコノマイザへ循環させ、その過程でフラッシュ蒸気として低圧蒸気を得る操作は、ボイラドラムなしで低圧蒸気を生成することができると同時に、膨張弁出口で圧倒的に液相の多い気液混相状態を作り出す役割も担っている。この状態が蒸気膨張機を出た蒸気にわずかに含まれる凝縮水ミストを効率よく分離することを可能にする。すなわち、サイクル率向上のための複圧蒸気による排熱回収と同等の効果を1個のドラムで実現できる。
2.蒸気膨張機により出力された蒸気を汽水分離器を経ずに燃焼室へ投入する構造としたことにより、その間で他のプロセスに用いられる蒸気を取り出して利用することができる。このため、ユーザーのニーズに合わせ、プロセス蒸気を利用することが可能となる。
3.蒸気膨張機、白煙の防止およびプロセスへの供給によって、燃焼器へ供給される蒸気の温度が下降した場合でも、低圧蒸気過熱器によって過熱されることにより、エクセルギーロスを低減することができる。
【図面の簡単な説明】
【図1】本発明の蒸気噴射ガスタービン発電装置の第1実施形態の構成図である。
【図2】本発明の蒸気噴射ガスタービン発電装置の第2実施形態の構成図である。
【図3】本発明の蒸気噴射ガスタービン発電装置の第3実施形態の構成図である。
【図4】図3の排熱回収線図である。
【図5】従来の蒸気噴射ガスタービン発電装置の構成図である。
【符号の説明】
1 ガスタービン
1a圧縮機
1b燃焼器
1cタービン
2 発電機
2a 減速機
3a エコノマイザ
3b 蒸発部
3c 過熱器
3d 低圧蒸気過熱器
3f 給水ポンプ
10 蒸気噴射ガスタービン発電装置
12 蒸気膨張機
14 汽水分離器
16 膨張弁
18 インライン混合過熱器
18a 蒸気流量調節弁
21 第1流路
22 第2流路
23 第3流路
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam injection gas turbine power generator.
[0002]
[Prior art]
[0003] A steam injection type gas turbine is a system in which steam generated by exhaust heat is injected into the turbine to increase the generated power, and a typical example is a chain cycle shown in FIG. In FIG. 5, the feed water heated by the economizer is injected into the exhaust heat recovery boiler, and the saturated steam generated by the exhaust heat recovery boiler is further heated by the steam superheater and injected into the combustor as superheated steam.
In recent years, Patent Documents 1 to 3 have been proposed as related technologies.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-129984 [Patent Document 2]
JP-A-11-280493 [Patent Document 3]
[0005] Japanese Patent Application No. 2001-320687 discloses a technique for preventing white smoke generated from a chimney in gas turbine equipment shown in FIG. 5 for injecting water or steam into a gas turbine. . For this reason, a part of the high-temperature exhaust gas discharged from the gas turbine is mixed with the low-temperature exhaust gas in the chimney, whereby the temperature of the exhaust gas from the chimney is raised to such an extent that white smoke is not generated.
[0006] Patent Document 2 discloses a gas turbine facility for injecting water or steam shown in FIG. 5 into a gas turbine, in which energy of high-temperature steam heated by high-temperature exhaust gas discharged from the gas turbine is used by another steam turbine. By recovering, the amount of exchange of heat energy per unit steam amount is increased.
[0007] Patent Document 3 discloses a gas turbine facility for injecting water or steam into a gas turbine as shown in FIG. 5, in which a boost compressor rotationally driven by the gas turbine is used to flow into a combustor. It increases the amount of hot steam. As a result, the power generation output and the thermal efficiency are improved by effectively utilizing the surplus steam that has not been used conventionally.
[0008]
In these patent documents, there is a problem that the latent heat of vaporization of the steam provided by the exhaust heat of the gas turbine is not finally recovered as work but exhausted to the atmosphere together with the exhaust gas. is there. Further, in order to reduce the loss of exergy efficiency in exhaust heat recovery, a method of using a plurality of boiler drums is generally employed, but in this case, there is a problem that the system becomes complicated. Further, in the conventional steam injection gas turbine generator, as pointed out in Document 1, the ratio of water vapor in the exhaust gas is high, and there is a problem that water vapor is easily condensed in the atmosphere to generate white smoke.
The present invention has been made to solve the above-mentioned various problems. That is, (1) an object of the present invention is to effectively utilize the latent heat of vaporization of steam generated by exhaust heat recovery and generate low-pressure saturated steam similar to the case of using a plurality of boilers with a simple configuration, thereby achieving exergy efficiency. And (2) a steam injection gas turbine power generator capable of supplying steam to an external process, and (3) preventing generation of white smoke when exhausting gas into the atmosphere. Is to do.
[0010]
[Means for Solving the Problems]
According to the present invention, in a steam injection gas turbine power generator having a compressor, a combustor, a gas turbine including a turbine, an economizer, an evaporator, and a superheater, steam for heating saturated steam generated in the evaporator is provided. A superheater, a steam expander that generates power using the steam superheated by the steam superheater, an expansion valve that expands the feedwater superheated by the economizer to generate wet steam, and a remainder of the wet steam generated by the expansion valve. Separator for separating water into saturated steam and saturated water, a first flow path for mixing the separated saturated water into the feed water of the economizer, and mixing the separated saturated steam with high-temperature steam flowing out of the steam expander for combustion And a second flow path for injecting the gas into the steam generator.
According to the configuration of the present invention described above, the high-temperature feedwater heated by the economizer is flushed by the expansion valve and reduced in pressure. After the high-pressure saturated water and the saturated steam are generated by the reduced pressure, the high-pressure saturated water is separated into the saturated water and the saturated steam by the steam separator. Furthermore, the saturated water is mixed with the supply water of the economizer, heated by the in-line mixing heater, mixed with make-up water, and heated and circulated by the economizer, thereby effectively utilizing the latent heat of vaporization to raise the temperature of the circulating supply water. As a result, the temperature of the exhaust gas discharged into the atmosphere can be increased to prevent the generation of white smoke.
Further, the separated saturated steam can be used as steam equivalent to low-pressure steam in a double-pressure boiler having a plurality of drums.
The feedwater heated by the economizer is partially supplied to the evaporator and used to maintain the pressure in the boiler. The steam generated by heating in the evaporator is further heated by the steam superheater, so that the inlet temperature of the steam superheater can be sufficiently increased. Thereby, the temperature difference and the pressure difference between the inlet and the outlet of the steam expander can be increased, and energy can be recovered in the steam expander.
The low-pressure steam after passing through the expansion valve and after passing through the steam expander can be injected into the combustor after being heated by the low-pressure steam superheater. In general, in order to perform combustion in a combustor, considering that there are restrictions on the temperature, pressure, and flow rate of the steam to be injected, this configuration can efficiently utilize these characteristics to efficiently convert energy. .
According to the present invention, there is provided a third flow path for supplying a part of the separated saturated steam to the feed water, and the third flow path has a steam flow regulating valve and an in-line mixing heater. A steam injection gas turbine power generator is provided.
According to the configuration of the present invention described above, it is possible to adjust the opening of the steam flow control valve in accordance with the degree of generation of white smoke and adjust the temperature of the circulating water by the separated steam. In addition, excess steam can be used as process steam or injected into a combustor.
According to the present invention, there is provided a steam-injected gas turbine power generator, wherein a low-pressure steam heater is provided in the second flow passage.
According to the configuration of the present invention described above, even after the calorific value of the steam supplied to the combustor is deprived, it is possible to perform heating by the low-pressure steam superheater and to feed the steam into the combustor. Here, the case where the calorie of the steam is taken away is, for example, a case where a large amount of steam separated from the brackish water separator is mixed with circulating water to prevent white smoke, a case where a large amount of process steam is supplied to the outside, and the like. Is shown.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention will be described with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is a conceptual diagram showing a first embodiment of the present invention. In this embodiment, the supplied makeup water is pressurized by a water supply pump and supplied to the economizer. The economizer heats the water supply using exhaust gas. Part of the supply water heated by the economizer is supplied to the evaporator, and the rest is supplied to the expansion valve. The supply water is expanded by the expansion valve, so that saturated water and steam are mixed. By passing the mixture of water and steam through the brackish water separator, saturated water and saturated steam are separated and generated. Thereafter, the separated saturated water is supplied to the makeup water, and the saturated steam is supplied to the combustor.
On the other hand, the water heated by the economizer and supplied to the evaporator is superheated by the superheater, becomes superheated steam, and is supplied to the steam expander. The steam expander generates power using superheated steam. Further, the steam after the power generation is mixed with the steam separated by the steam separator and supplied to the combustor.
Exhaust gas generated by the combustor is recovered by a turbine to drive a compressor and a generator. The compressor compresses oxygen after inhaling oxygen from the outside and supplies it to the combustor to increase combustion. Further, the generator generates electric power by using the recovered power. The exhaust gas whose power has been recovered is heated as a superheater, an evaporator, and an economizer for preventing white smoke, and then discharged into the atmosphere as exhaust gas.
FIG. 2 is a diagram showing a second embodiment of the present invention. In this embodiment, a part of the steam separated by the brackish water separator is mixed into the water supply to the economizer via the saturated steam valve and the in-line mixing superheater, so that the water supply to the economizer is prevented when white smoke is prevented. The temperature can be controlled.
FIG. 3 is a diagram showing a third embodiment of the present invention. In this embodiment, the mixed steam of the saturated steam separated by the steam separator and the steam discharged from the steam expander is superheated by a low-pressure steam superheater and then injected into the combustor. A part of the saturated steam separated from the steam separator is directly injected into the combustor.
FIG. 4 shows an exhaust heat recovery diagram in the embodiment of FIG. In this figure, the pressure of the exhaust heat recovery boiler is set to 40 ata. The temperature of the gas turbine exhaust gas is 87 degrees. Further, in this example, the power generation output is about 6400 Kw, and the power generation efficiency is about 40.85%. In this embodiment, make-up water is supplied at about 60 degrees and 13.1 ata, and is pressurized to about 40 ata by a water supply pump and an expansion valve. Further, it is superheated to about 250 degrees by an evaporator and a superheater, and is sent to a steam expander as superheated steam. In the exhaust heat recovery diagram, the amount of heat exchanged by steam falls from about 450 degrees to about 350 degrees near 2500 Kcal / s, which indicates the conversion of energy into power by the steam expander. The steam is thereafter heated by a low-pressure steam superheater and supplied to the combustor. By superheating the steam injected into the combustor by the low-pressure steam superheater, not only can the output / efficiency be improved as in the conventional example, but also the steam supply to the water supply to prevent white smoke and the steam Exergy loss can be reduced even when the temperature of the steam introduced into the combustor decreases due to power generation by the expander and steam supply to the process.
In the steam injection gas turbine power generator of the invention described above, a part of the saturated water generated by the feed water pump, the expansion valve, and the steam separator is used for white smoke prevention, and the steam generated by the evaporator is used. By mixing with the steam generated by the above-mentioned steam separator, the steam can be supplied to the process.
Note that the present invention is not limited to the above-described embodiment, and it is a matter of course that various changes can be made without departing from the gist of the present invention.
[0021]
According to the present invention described above, the following effects can be obtained.
1. The condensed water contained in the outlet of the steam expander is obtained by converting a part of the latent heat of the steam by the exhaust heat recovery boiler into the shaft power of the expander and the sensible heat of the steam. Part of the water supplied to the steam expander is separated into saturated water and saturated steam by an expansion valve and a steam separator, and the saturated water can be removed from the system without re-evaporating. Therefore, the latent heat of vaporization contained in the exhaust gas is effectively recovered, and the cycle efficiency is improved.
In addition, the operation of circulating water from the economizer through the expansion valve and the brackish water separator to the economizer again to obtain low-pressure steam as flash steam in the process can generate low-pressure steam without a boiler drum, At the outlet, it also plays a role in creating a gas-liquid mixed phase state with a predominantly liquid phase. This condition makes it possible to efficiently separate the condensate mist slightly contained in the steam exiting the steam expander. That is, the same effect as the exhaust heat recovery by the double-pressure steam for improving the cycle rate can be realized by one drum.
2. With the structure in which the steam output from the steam expander is introduced into the combustion chamber without passing through the steam separator, the steam used for other processes can be taken out and used during the process. Therefore, it is possible to use the process steam in accordance with the needs of the user.
3. Even if the temperature of the steam supplied to the combustor decreases due to the steam expander, prevention of white smoke, and supply to the process, exergy loss can be reduced by being superheated by the low-pressure steam superheater. .
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment of a steam injection gas turbine power generator of the present invention.
FIG. 2 is a configuration diagram of a second embodiment of the steam injection gas turbine power generator of the present invention.
FIG. 3 is a configuration diagram of a third embodiment of the steam injection gas turbine power generator of the present invention.
FIG. 4 is an exhaust heat recovery diagram of FIG. 3;
FIG. 5 is a configuration diagram of a conventional steam injection gas turbine power generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas turbine 1a Compressor 1b Combustor 1c Turbine 2 Generator 2a Reduction gear 3a Economizer 3b Evaporator 3c Superheater 3d Low-pressure steam superheater 3f Water feed pump 10 Steam injection gas turbine generator 12 Steam expander 14 Steam separator 16 Expansion Valve 18 In-line mixing superheater 18a Steam flow control valve 21 First flow path 22 Second flow path 23 Third flow path

Claims (3)

圧縮機、燃焼器、タービンからなるガスタービンと、エコノマイザと、蒸発部および過熱器を有する、蒸気噴射ガスタービン発電装置において、
前記蒸発部で発生した飽和蒸気を加熱する蒸気過熱器と、
前記蒸気過熱器にて過熱した蒸気により発電を行う蒸気膨張機と、
前記エコノマイザで過熱した給水を膨張させ湿り蒸気を発生させる膨張弁と、
前記膨張弁により発生した湿り蒸気の残りを飽和蒸気と飽和水に分離する汽水分離器と、
分離した前記飽和水をエコノマイザの給水に混入する第1流路と、
分離した前記飽和蒸気を蒸気膨張機より流出した高温蒸気と混入し燃焼器に注入する第2流路と、を備えたことを特徴とする蒸気噴射ガスタービン発電装置。
A compressor, a combustor, a gas turbine including a turbine, an economizer, and an evaporator and a superheater.
A steam superheater for heating the saturated steam generated in the evaporator,
A steam expander that performs power generation with the steam superheated by the steam superheater,
An expansion valve that expands the supply water heated by the economizer to generate wet steam,
A brackish water separator that separates the remainder of the wet steam generated by the expansion valve into saturated steam and saturated water,
A first flow path for mixing the separated saturated water into the water supply to the economizer,
A steam injection gas turbine power generator, comprising: a second flow path that mixes the separated saturated steam with high-temperature steam flowing out of a steam expander and injects the mixed steam into a combustor.
分離した前記飽和蒸気の一部を給水に供給する第3流路を備え、該第3流路に蒸気流量調整弁と、インライン混合加熱器と、を有することを特徴とする請求項1記載の蒸気噴射ガスタービン発電装置。2. The apparatus according to claim 1, further comprising: a third flow path configured to supply a part of the separated saturated steam to feed water, wherein the third flow path includes a steam flow control valve and an in-line mixing heater. 3. Steam injection gas turbine power generator. 前記第2流路に低圧蒸気加熱器を備えることを特徴とする請求項1記載の蒸気噴射ガスタービン発電装置。The steam injection gas turbine power generator according to claim 1, wherein a low-pressure steam heater is provided in the second flow path.
JP2003107425A 2003-04-11 2003-04-11 Steam injection gas turbine power generating device Pending JP2004316439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107425A JP2004316439A (en) 2003-04-11 2003-04-11 Steam injection gas turbine power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107425A JP2004316439A (en) 2003-04-11 2003-04-11 Steam injection gas turbine power generating device

Publications (1)

Publication Number Publication Date
JP2004316439A true JP2004316439A (en) 2004-11-11

Family

ID=33469255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107425A Pending JP2004316439A (en) 2003-04-11 2003-04-11 Steam injection gas turbine power generating device

Country Status (1)

Country Link
JP (1) JP2004316439A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130283784A1 (en) * 2012-04-30 2013-10-31 Teoman Uzkan Energy recovery arrangement having multiple heat sources
JP2014080878A (en) * 2012-10-15 2014-05-08 Rui Qi Tong Heat recovery converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130283784A1 (en) * 2012-04-30 2013-10-31 Teoman Uzkan Energy recovery arrangement having multiple heat sources
US9074492B2 (en) * 2012-04-30 2015-07-07 Electro-Motive Diesel, Inc. Energy recovery arrangement having multiple heat sources
JP2014080878A (en) * 2012-10-15 2014-05-08 Rui Qi Tong Heat recovery converter

Similar Documents

Publication Publication Date Title
KR100341646B1 (en) Method of cooling thermally loaded components of a gas turbine group
US6945052B2 (en) Methods and apparatus for starting up emission-free gas-turbine power stations
EP0676532B1 (en) Steam injected gas turbine system with topping steam turbine
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
RU2352859C2 (en) Steam generator on waste heat
JPH0758043B2 (en) Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator
RU2595192C2 (en) Power plant with built-in pre-heating of fuel gas
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
JP2001271612A (en) Apparatus and method for reheating gas turbine cooling steam and high-pressure steam turbine exhaust steam in combined cycle power generating apparatus
CN104533621A (en) Dual-fuel steam injection direct-inverse gas turbine combined cycle
JP2013527370A (en) Energy recovery and steam supply for increased power output in combined cycle power systems
KR100814940B1 (en) Thermal power plant having pure oxygen combustor
JP7178464B2 (en) Plant and flue gas treatment method
RU2661231C1 (en) Method of hydrogen steam overheating at npp
JP2017503105A (en) Pressure-selective kettle boiler for application to rotor air cooling
JPH11173109A (en) Power generation and hot water supply system
JP2004316439A (en) Steam injection gas turbine power generating device
CN105980773A (en) Method and plant for co-generation of heat and power
JP2002371861A (en) Steam injection gas turbine generator
JP2006052738A (en) Gas turbine plant
JPS6365807B2 (en)
JPH10325336A (en) Gas turbine power generating system
RU2166102C2 (en) Combined-cycle cogeneration process and combined- cycle plant implementing it
JP2002309908A (en) Turbine equipment and method for operating turbine equipment
JP2004052612A (en) Gas turbine power generation plant