JP2009280040A - Continuously variable transmission and irregular ground traveling vehicle - Google Patents

Continuously variable transmission and irregular ground traveling vehicle Download PDF

Info

Publication number
JP2009280040A
JP2009280040A JP2008132987A JP2008132987A JP2009280040A JP 2009280040 A JP2009280040 A JP 2009280040A JP 2008132987 A JP2008132987 A JP 2008132987A JP 2008132987 A JP2008132987 A JP 2008132987A JP 2009280040 A JP2009280040 A JP 2009280040A
Authority
JP
Japan
Prior art keywords
swash plate
inclination angle
engine
continuously variable
plate inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008132987A
Other languages
Japanese (ja)
Inventor
Takahiro Uchiyama
貴裕 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2008132987A priority Critical patent/JP2009280040A/en
Publication of JP2009280040A publication Critical patent/JP2009280040A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Control Of Transmission Device (AREA)
  • Arrangement Of Transmissions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuously variable transmission capable of suppressing deterioration with age in HMT and a waste of fuel and performing starting time swash plate inclination angle control without using a clutch electronic control mechanism. <P>SOLUTION: The continuously variable transmission is provided with: a hydro-mechanical transmission (HMT) 15 for performing continuously variable speed-change by a mechanical type transmission (MT) 13 arranged close to an engine output shaft 11a of a motive power transmission route reaching from an engine 11 to a drive wheel 12 and a static hydraulic type transmission (HST) 14 provided on the MT 13 in parallel and utilizing static pressure energy of a fluid; and an automatic centrifugal clutch mechanism 16 arranged on an engine output shaft 11a between the engine 11 and the HMT 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車両用の無段変速機、特に、機械式トランスミッションが入力軸と出力軸との間に介装されると共に、この機械式トランスミッションに静液圧式トランスミッションを並設した無段変速機及び不整地走行車両に関する。   The present invention relates to a continuously variable transmission for a vehicle, and in particular, a continuously variable transmission in which a mechanical transmission is interposed between an input shaft and an output shaft, and a hydrostatic transmission is provided in parallel with the mechanical transmission. And an irregular terrain vehicle.

従来から、バスやトラック等の大型車両や各種建設機械用車両、トラクタ等の各種農業機械用車両、四輪バギー車等の不整地走行車両(ATV)といったレジャー・スポーツ産業車両、等の各種車両には、機械式トランスミッション(Mechanical Transmission;以下、「MT」と称する。)が入力軸と出力軸との間に介装されると共に、このMTと、流体の静圧エネルギーを利用する静液圧式トランスミッション(Hydro Static Transmission;以下、「HST」と称する。)とを、遊星歯車機構等を介して組み合わせることにより、無段階の変速を行うようにしたハイドロメカニカルトランスミッション(Hydro Mechanical Transmission;以下、「HMT」と称する。)を搭載したものが周知である。   Conventionally, various vehicles such as large vehicles such as buses and trucks, vehicles for various construction machines, vehicles for various agricultural machines such as tractors, and leisure / sport industrial vehicles such as rough terrain vehicles (ATV) such as four-wheel buggy vehicles. A mechanical transmission (hereinafter referred to as “MT”) is interposed between an input shaft and an output shaft, and a hydrostatic pressure type using the MT and the hydrostatic energy of the fluid. A hydro mechanical transmission (hereinafter referred to as “HMT”), which is configured to perform a stepless speed change by combining a transmission (Hydro Static Transmission; hereinafter referred to as “HST”) via a planetary gear mechanism or the like. " Is well known.

また、このような無段変速機としてのHMTとしては、例えば、図5に示すように、エンジン1から駆動輪2に至る動力伝達経路に、クラッチ機構3と遊星歯車機構4とで構成されたMT5と、エンジン1側に連結された斜板6aを有する液圧ポンプ6と駆動輪2側に連結された斜板7aを有する液圧モータ7とを接続したHST8と、を並列に配設してHMT9を構成したものが知られている(例えば、特許文献1参照。)。   In addition, as an HMT as such a continuously variable transmission, for example, as shown in FIG. 5, a clutch mechanism 3 and a planetary gear mechanism 4 are configured in a power transmission path from the engine 1 to the drive wheels 2. MT5 and HST8 connected in parallel with a hydraulic pump 6 having a swash plate 6a connected to the engine 1 side and a hydraulic motor 7 having a swash plate 7a connected to the drive wheel 2 side are arranged in parallel. The one that constitutes the HMT 9 is known (for example, see Patent Document 1).

さらに、図6に示すように、駆動輪2の入力側にブレーキスイッチ10を介在し、ブレーキペダル(図示せず)踏み込み量に応じて電気的にクラッチを開放すると共に停車中は変速比を中立制御する構成も知られている(例えば、特許文献2参照。)。
特開平11−236969号公報 特開2000−127780号公報
Further, as shown in FIG. 6, a brake switch 10 is interposed on the input side of the drive wheel 2 to electrically release the clutch according to the amount of depression of a brake pedal (not shown) and to neutralize the gear ratio while the vehicle is stopped. The structure to control is also known (for example, refer patent document 2).
Japanese Patent Laid-Open No. 11-236969 JP 2000-127780 A

ところが、上記の如く構成された無段変速機にあっては、例えば、特許文献1に開示の技術では、アイドリング時においても常にHMT9が作動を継続してしまうため、HMT9の経年劣化が早まってしまうばかりでなく、燃料を無駄に使用してしまうという問題が生じていた。   However, in the continuously variable transmission configured as described above, for example, in the technique disclosed in Patent Document 1, since the HMT 9 always continues to operate even during idling, the aging of the HMT 9 is accelerated. In addition to this, there has been a problem of wasteful use of fuel.

また、特許文献2に開示の技術では、停車中にクラッチを開放及び変速比を中立としてしまうことから、発進時斜板傾斜角度で待機することができず、急発進が不可能となってしまうという問題が生じていた。   Further, in the technique disclosed in Patent Document 2, since the clutch is disengaged and the gear ratio is neutralized while the vehicle is stopped, it is impossible to stand by at the inclination angle of the swash plate at the time of start, and sudden start is impossible. There was a problem.

そこで、本発明は、上記事情を考慮し、HMTの経年劣化並びに燃料の無駄使いを抑制し得て、しかも、クラッチ電子制御機構を用いることなく発進時斜板傾斜角度制御を行うことができる無段変速機を提供することを目的とする。   Therefore, in consideration of the above circumstances, the present invention can suppress the aging deterioration of the HMT and the wasteful use of fuel, and can perform the swash plate inclination angle control at the time of start without using the clutch electronic control mechanism. An object is to provide a step transmission.

本発明の無段変速機は、エンジンから駆動輪に至る動力伝達経路のエンジン出力軸寄りに配置された機械式トランスミッションと、該機械式トランスミッションに並設され且つ前記エンジンの出力軸側に液圧ポンプ及び前記駆動輪の入力軸側に液圧モータをそれぞれ接続した流体の静圧エネルギーを利用する静液圧式トランスミッションと、によって無段階の変速を行うハイドロメカニカルトランスミッションを搭載した無段変速機において、前記エンジンと前記ハイドロメカニカルトランスミッションとの間の前記エンジン出力軸に、自動遠心クラッチ機構を配置したことを特徴とする。   A continuously variable transmission according to the present invention includes a mechanical transmission disposed near an engine output shaft of a power transmission path from an engine to a drive wheel, and a hydraulic pressure which is provided side by side with the mechanical transmission and on the output shaft side of the engine. In a continuously variable transmission equipped with a hydromechanical transmission that performs a stepless shift by a hydrostatic transmission that uses static pressure energy of a fluid that is connected to a pump and an input shaft side of the driving wheel, respectively, An automatic centrifugal clutch mechanism is disposed on the engine output shaft between the engine and the hydromechanical transmission.

また、車両走行状態の有無を検出する走行状態検出手段と、前記エンジンのエンジン回転数を検出するエンジン回転数検出手段と、前記ハイドロメカニカルトランスミッションの入力回転数及び出力回転数を検出するHMT入力回転数検出手段及びHMT出力回転数検出手段と、前記液圧ポンプの斜板傾斜角度を検出する斜板傾斜角度検出手段と、前記HMT入力回転数検出手段及びHMT出力回転数検出手段で検出した各回転数に基づいて変速比を算出した後に斜板傾斜角度を算出する演算手段と、前記自動遠心クラッチ機構が切断状態にあるときに前記斜板傾斜角度検出手段で検出した斜板傾斜角度と前記演算手段で算出した斜板傾斜角度とを比較して発進時斜板傾斜角度を修正する発進時斜板傾斜角度修正手段と、を備えていることを特徴とする。   Further, a running state detecting means for detecting the presence or absence of a running state of the vehicle, an engine speed detecting means for detecting the engine speed of the engine, and an HMT input rotation for detecting the input speed and the output speed of the hydromechanical transmission. Number detection means and HMT output rotation speed detection means, swash plate inclination angle detection means for detecting the swash plate inclination angle of the hydraulic pump, and each of the detected by the HMT input rotation speed detection means and the HMT output rotation speed detection means A calculating means for calculating a swash plate inclination angle after calculating a gear ratio based on a rotational speed; a swash plate inclination angle detected by the swash plate inclination angle detecting means when the automatic centrifugal clutch mechanism is in a disconnected state; and And a starting swash plate inclination angle correcting means for correcting the starting swash plate inclination angle by comparing with the swash plate inclination angle calculated by the calculating means. And butterflies.

さらに、前記斜板傾斜角度検出手段で検出した斜板傾斜角度と前記演算手段で算出した斜板傾斜角度とを相関曲線に対応付けして記憶する記憶手段を備え、前記発進時斜板傾斜角度修正手段は前記記憶手段に記憶された相関曲線に対応付けして発進時斜板傾斜角度を修正することを特徴とする。   And a storage means for storing the swash plate inclination angle detected by the swash plate inclination angle detection means and the swash plate inclination angle calculated by the calculation means in association with a correlation curve, and the starting swash plate inclination angle The correcting means corrects the inclination angle of the swash plate at the start in association with the correlation curve stored in the storage means.

また、本発明の不整地走行車両には、請求項1乃至請求項3に記載の無段変速機が搭載されている。   Further, the continuously variable transmission according to any one of claims 1 to 3 is mounted on the rough terrain vehicle of the present invention.

本発明の無段変速機は、HMTの経年劣化並びに燃料の無駄使いを抑制し得て、しかも、クラッチ電子制御機構を用いることなく発進時斜板傾斜角度制御を行うことができる。   The continuously variable transmission of the present invention can suppress the aging deterioration of the HMT and the wasteful use of fuel, and can perform the swash plate inclination angle control at the time of starting without using the clutch electronic control mechanism.

次に、本発明の一実施形態に係る無段変速機について、四輪バギー車等の不整地走行車両(ATV)に適用し、図面を参照して説明する。   Next, a continuously variable transmission according to an embodiment of the present invention will be described with reference to the drawings, which is applied to an uneven terrain vehicle (ATV) such as a four-wheel buggy.

図1は本発明の一実施形態に係る無段変速機を搭載した車両の模式図、図2は本発明の一実施形態に係る無段変速機の説明図、図3は本発明の一実施形態に係る無段変速機における制御回路による制御ルーチンのフロー図、図4は変速比と斜板角度との相関のグラフ図である。   FIG. 1 is a schematic diagram of a vehicle equipped with a continuously variable transmission according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of a continuously variable transmission according to an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 4 is a graph showing the correlation between the transmission gear ratio and the swash plate angle.

図1に示すように、本発明の一実施形態に係る無段変速機は、エンジン11から駆動輪(本実施の形態では後輪)12に至る動力伝達経路のエンジン出力軸11a寄りに配置された機械式トランスミッション(以下、単に「MT」と称する。)13と、MT13に並設されて流体の静圧エネルギーを利用する静液圧式トランスミッション(以下、単に「HST」と称する。)14と、によって無段階の変速を行うハイドロメカニカルトランスミッション(以下、単に「HMT」と称する。)15と、エンジン11とHMT15との間のエンジン出力軸11aに配置された自動遠心クラッチ機構16と、を備えている。   As shown in FIG. 1, a continuously variable transmission according to an embodiment of the present invention is disposed near an engine output shaft 11a in a power transmission path from an engine 11 to drive wheels (rear wheels in the present embodiment) 12. A mechanical transmission (hereinafter simply referred to as “MT”) 13, and a hydrostatic transmission (hereinafter simply referred to as “HST”) 14 that is provided in parallel with MT 13 and uses the static pressure energy of the fluid; A hydromechanical transmission (hereinafter simply referred to as “HMT”) 15 that performs a stepless speed change, and an automatic centrifugal clutch mechanism 16 disposed on the engine output shaft 11a between the engine 11 and the HMT 15. Yes.

MT13は、エンジン出力軸11aに自動遠心クラッチ機構16を介して連結されたギヤ17と、駆動輪入力軸12aに連結されてギヤ17と噛み合う遊星歯車機構18と、を備えている。   The MT 13 includes a gear 17 connected to the engine output shaft 11a via an automatic centrifugal clutch mechanism 16, and a planetary gear mechanism 18 connected to the drive wheel input shaft 12a and meshing with the gear 17.

HST14は、エンジン出力軸11a側に連結された斜板19aを有する液圧ポンプ19と、駆動輪入力軸12a側に連結された斜板20aを有する液圧モータ20と、これら液圧ポンプ19と液圧モータ20とを接続した流体の静圧エネルギーを利用する油圧機構21と、を備えている。   The HST 14 includes a hydraulic pump 19 having a swash plate 19a connected to the engine output shaft 11a, a hydraulic motor 20 having a swash plate 20a connected to the drive wheel input shaft 12a, and the hydraulic pump 19 And a hydraulic mechanism 21 that uses the static pressure energy of the fluid connected to the hydraulic motor 20.

自動遠心クラッチ機構16は、エンジン出力軸11aの中途部に配置されてこのエンジン出力軸11aを入力側と出力側とに分離しており、エンジン11が駆動してエンジン出力軸11aが回転している時にエンジン出力軸11aの入力側と出力側とを接続し且つエンジン出力軸11aが回転していない時にはエンジン出力軸11aの入力側と出力側とを切断する。   The automatic centrifugal clutch mechanism 16 is disposed in the middle of the engine output shaft 11a and separates the engine output shaft 11a into an input side and an output side, and the engine 11 is driven to rotate the engine output shaft 11a. When the engine output shaft 11a is connected, the input side and the output side of the engine output shaft 11a are connected, and when the engine output shaft 11a is not rotating, the input side and the output side of the engine output shaft 11a are disconnected.

この際、自動遠心クラッチ機構16は、エンジン11が駆動していても車両走行状態に無い、所謂、アイドリング時よりも遅い回転数のエンジン出力軸11aの回転を出力側に伝達しないように切断設定されている。従って、自動遠心クラッチ機構16は、小型化が可能であると同時に、アイドリング時におけるエンジン出力軸11aの回転はMT13には伝達しないため、電磁クラッチ等の電気的な制御を行うことなく、HMT15の機械的な経年劣化や燃費消費無駄を抑制することができる。   At this time, the automatic centrifugal clutch mechanism 16 is disconnected so as not to transmit to the output side the rotation of the engine output shaft 11a, which is not in the vehicle running state even when the engine 11 is driven, that is, the so-called idling speed slower than that during idling. Has been. Therefore, the automatic centrifugal clutch mechanism 16 can be reduced in size, and at the same time, the rotation of the engine output shaft 11a at the time of idling is not transmitted to the MT 13, so that the HMT 15 can be operated without electrical control of an electromagnetic clutch or the like. Mechanical aging and fuel consumption waste can be suppressed.

一方、エンジン11のエンジン回転数は制御回路22に出力される。また、この制御回路22には、スロットルポジションセンサ23からのスロットル信号が入力される他、HMT15の入力回転数及び出力回転数並びに液圧ポンプ19の斜板19aの傾斜角度、等が入力される。さらに、制御回路22は、ROM24に格納された制御プログラムに基づいて車両走行に係る各種制御を実行する。尚、ROM24は、本発明に係る発進時斜板傾斜角度修正プログラムも格納しており、この発進時斜板傾斜角度修正プログラムを実行する制御回路22とでマイクロコンピュータを構成している。   On the other hand, the engine speed of the engine 11 is output to the control circuit 22. In addition to the throttle signal from the throttle position sensor 23, the control circuit 22 receives the input rotation speed and output rotation speed of the HMT 15, the inclination angle of the swash plate 19a of the hydraulic pump 19, and the like. . Furthermore, the control circuit 22 executes various controls related to vehicle travel based on a control program stored in the ROM 24. The ROM 24 also stores a startup swash plate inclination angle correction program according to the present invention, and constitutes a microcomputer with a control circuit 22 that executes the startup swash plate inclination angle correction program.

これにより、制御回路22は、スロットルポジションセンサ23からのスロットル信号とエンジン回転数とに基づいて車両走行状態の有無を検出する。また、制御回路22は、HMT入力回転数及びHMT出力回転数に基づいて変速比を算出すると共に、その変速比をメモリ25に格納する。さらに、制御回路22は、メモリ25に格納した変速比に基づいて斜板19aの傾斜角度を算出する。また、制御回路22は、検出した斜板19aの傾斜角度と算出した斜板19aの傾斜角度とを比較して発進時斜板傾斜角度を修正し、その修正結果をメモリ25にフィードバック(学習)する。   Thereby, the control circuit 22 detects the presence or absence of the vehicle running state based on the throttle signal from the throttle position sensor 23 and the engine speed. Further, the control circuit 22 calculates a gear ratio based on the HMT input rotation speed and the HMT output rotation speed, and stores the gear ratio in the memory 25. Further, the control circuit 22 calculates the inclination angle of the swash plate 19 a based on the gear ratio stored in the memory 25. Further, the control circuit 22 compares the detected inclination angle of the swash plate 19a with the calculated inclination angle of the swash plate 19a to correct the starting swash plate inclination angle, and feeds back the correction result to the memory 25 (learning). To do.

尚、制御回路22は、例えば、
(1)スロットルポジションセンサ23=全閉
(2)HMT出力回転数=0
(3)エンジン回転数≠HMT入力回転数
(4)エンジン回転数≒アイドリング回転数
の何れか或いは任意の組み合わせが成立した時に、発進時に要求される斜板角度への制御を実行する。
The control circuit 22 is, for example,
(1) Throttle position sensor 23 = fully closed (2) HMT output speed = 0
(3) Engine rotational speed ≠ HMT input rotational speed (4) Engine rotational speed≈When any or any combination of idling rotational speeds is established, control to the swash plate angle required at the time of start is executed.

これにより、スロットル開度と車速とに応じたエンジン目標回転数を予め設定することで、制御回路22により目標変速比を算出して斜板角度をモータ等(図示せず)により制御することができる。この際、制御回路22は、環境条件(機構内温度や外気温等)によって実際に要求される変速比とそれに対応する斜板角度との関係に誤差が生じ、状況によっては、HMT作動中にフィードバック(学習)が効かなくなって発進時の斜板角度・発進斜板角度に誤差となってしまう虞がある。   As a result, the target speed ratio is calculated by the control circuit 22 and the swash plate angle is controlled by a motor or the like (not shown) by presetting the target engine speed according to the throttle opening and the vehicle speed. it can. At this time, the control circuit 22 causes an error in the relationship between the gear ratio actually required and the corresponding swash plate angle depending on environmental conditions (in-mechanism temperature, outside air temperature, etc.). There is a risk that feedback (learning) becomes ineffective and an error occurs in the swash plate angle and the start swash plate angle at the time of start.

従って、制御回路22は、自動遠心クラッチ機構16が接続されて動力伝達状態にあるとき、即ち、エンジン回転数とHMT入力回転数とが同じである複数の任意変速比における斜板角度を学習してメモリ25に格納しておく。   Therefore, the control circuit 22 learns the swash plate angles at a plurality of arbitrary speed ratios when the automatic centrifugal clutch mechanism 16 is connected and in a power transmission state, that is, the engine speed and the HMT input speed are the same. And stored in the memory 25.

次に、このような制御回路22による発進時斜板傾斜角度修正ルーチンの一例を、図3のフロー図を参照しつつ説明する。   Next, an example of the starting swash plate inclination angle correction routine by the control circuit 22 will be described with reference to the flowchart of FIG.

(ステップS1)
ステップS1では、制御回路22は、自動遠心クラッチ16が切断状態、即ち、車両走行状態にあるか否かを判定し、走行状態にあるときにはステップS2へと移行し、走行状態にないときには継続してステップS1を監視する。
(Step S1)
In step S1, the control circuit 22 determines whether or not the automatic centrifugal clutch 16 is in a disengaged state, that is, whether the vehicle is in a traveling state. When the automatic centrifugal clutch 16 is in a traveling state, the control circuit 22 proceeds to step S2. Step S1 is monitored.

尚、制御回路22は、自動遠心クラッチ16が機械的にエンジン出力軸11aの入力側と出力側とを接続・切断する機構であるため、この自動遠心クラッチ16が接続状態にあるということを、車両走行状態にあるということで判定する。従って、制御回路22は、本実施の形態においては、スロットルポジションセンサ23≠全閉で、エンジン回転数=HMT入力回転数の時に、車両走行状態にあると判定する。   Note that the control circuit 22 is a mechanism for mechanically connecting / disconnecting the input side and the output side of the engine output shaft 11a, so that the automatic centrifugal clutch 16 is in a connected state. Judgment is based on the vehicle running state. Therefore, in the present embodiment, the control circuit 22 determines that the vehicle is in a traveling state when the throttle position sensor 23 is not fully closed and the engine speed is equal to the HMT input speed.

(ステップS2)
ステップS2では、制御回路22は、斜板19aの角度を検出する検出センサ(図示せず)を利用して、斜板19aの実際の斜板傾斜角度を取得すると共に、HMT入力回転数及びHMT出力回転数に基づいて変速比を算出したうえで、その算出した変速比を用いて斜板19aの傾斜角度を算出し、実際の斜板傾斜角度から算出した斜板傾斜角度を減算した値(絶対値)が「0(ゼロ)」の場合にはステップS3へと移行し、実際の斜板傾斜角度から算出した斜板傾斜角度を減算した値(絶対値)が「0(ゼロ)」でない場合にはステップS4へと移行する。
(Step S2)
In step S2, the control circuit 22 obtains the actual swash plate inclination angle of the swash plate 19a by using a detection sensor (not shown) for detecting the angle of the swash plate 19a, as well as the HMT input rotational speed and the HMT. After calculating the gear ratio based on the output rotational speed, the tilt angle of the swash plate 19a is calculated using the calculated gear ratio, and the calculated swash plate tilt angle is subtracted from the actual swash plate tilt angle ( If (absolute value) is "0 (zero)", the process proceeds to step S3, and the value (absolute value) obtained by subtracting the swash plate inclination angle calculated from the actual swash plate inclination angle is not "0 (zero)". In this case, the process proceeds to step S4.

(ステップS3)
ステップS3では、制御回路22は、例えば、図4に示したグラフのように、変速比と斜板角度との相関曲線に対して、ステップ2で算出した斜板傾斜角度が相違する場合、相関曲線を算出した傾斜角度へと修正を行い、修正した相関曲線をROM24に格納してステップS5へと移行する。
(Step S3)
In step S3, for example, as shown in the graph shown in FIG. 4, the control circuit 22 correlates when the swash plate inclination angle calculated in step 2 is different from the correlation curve between the transmission ratio and the swash plate angle. The curve is corrected to the calculated inclination angle, the corrected correlation curve is stored in the ROM 24, and the process proceeds to step S5.

(ステップS4)
ステップS4では、制御回路22は、ステップS2における実際の斜板傾斜角度と算出した斜板傾斜角度とに関連付けした変速比をメモリ25に格納し、実際の斜板傾斜角度と算出した斜板傾斜角度が一致するようにフィードバック制御を実行してステップS1へとループする。
(Step S4)
In step S4, the control circuit 22 stores in the memory 25 the gear ratio associated with the actual swash plate inclination angle in step S2 and the calculated swash plate inclination angle, and calculates the actual swash plate inclination angle and the calculated swash plate inclination. Feedback control is executed so that the angles match, and the process loops to step S1.

(ステップS5)
ステップS5では、制御回路22は、ステップS3で修正した相関曲線に基づいて、発進時斜板角度を修正してこのルーチンを終了する。
(Step S5)
In step S5, the control circuit 22 corrects the starting swash plate angle based on the correlation curve corrected in step S3, and ends this routine.

この際、制御回路22は、車両停止状態直前の車両走行状態における環境条件の変化に対応して修正された相関曲線に基づいて、発進時斜板角度を決定することができる。   At this time, the control circuit 22 can determine the starting swash plate angle based on the correlation curve corrected in response to a change in environmental conditions in the vehicle running state immediately before the vehicle stop state.

しかも、制御回路22は、自動遠心クラッチ16が切断状態にあるときに、最適な発進時斜板角度を決定し、その発進時斜板角度に斜板19aの角度を制御することができるため、発進時加速性に優れ、特に不整地走行車両等にあっては、運転者のイメージするスムーズな発進加速を実現することができ、車両コントロールが困難な不整地走行時における操作性を向上することができる。   Moreover, since the control circuit 22 can determine the optimum starting swash plate angle when the automatic centrifugal clutch 16 is in the disconnected state, and can control the angle of the swash plate 19a to the starting swash plate angle. Excellent acceleration at start-up, especially in rough terrain vehicles, etc., which can realize smooth start acceleration that is imaged by the driver and improve operability during rough terrain where vehicle control is difficult Can do.

本発明の一実施形態に係る無段変速機を搭載した車両の模式図である。1 is a schematic diagram of a vehicle equipped with a continuously variable transmission according to an embodiment of the present invention. 本発明の一実施形態に係る無段変速機の説明図、Explanatory drawing of the continuously variable transmission which concerns on one Embodiment of this invention, 本発明の一実施形態に係る無段変速機における制御回路による制御ルーチンのフロー図、The flowchart of the control routine by the control circuit in the continuously variable transmission which concerns on one Embodiment of this invention, 本発明の一実施形態に係る無段変速機における変速比と斜板角度との相関のグラフ図である。It is a graph of the correlation between the transmission gear ratio and the swash plate angle in the continuously variable transmission according to an embodiment of the present invention. 従来に係る無段変速機を搭載した車両の模式図である。It is a schematic diagram of the vehicle carrying the conventional continuously variable transmission. 従来に係る他の無段変速機を搭載した車両の模式図である。It is a schematic diagram of the vehicle carrying the other continuously variable transmission which concerns on the past.

符号の説明Explanation of symbols

11…エンジン
12…駆動輪
11a…エンジン出力軸
13…機械式トランスミッション(MT)
14…静液圧式トランスミッション(HST)
15…ハイドロメカニカルトランスミッション(HMT)
16…クラッチ機構(遠心クラッチ機構)
18…遊星歯車機構
19…液圧ポンプ
19a…斜板
20…液圧モータ
20a…斜板
21…油圧機構
22…制御回路
24…ROM
25…メモリ
DESCRIPTION OF SYMBOLS 11 ... Engine 12 ... Drive wheel 11a ... Engine output shaft 13 ... Mechanical transmission (MT)
14 ... Hydrostatic transmission (HST)
15 ... Hydromechanical transmission (HMT)
16 ... Clutch mechanism (centrifugal clutch mechanism)
DESCRIPTION OF SYMBOLS 18 ... Planetary gear mechanism 19 ... Hydraulic pump 19a ... Swash plate 20 ... Hydraulic motor 20a ... Swash plate 21 ... Hydraulic mechanism 22 ... Control circuit 24 ... ROM
25 ... Memory

Claims (4)

エンジンから駆動輪に至る動力伝達経路のエンジン出力軸寄りに配置された機械式トランスミッションと、該機械式トランスミッションに並設され且つ前記エンジンの出力軸側に液圧ポンプ及び前記駆動輪の入力軸側に液圧モータをそれぞれ接続した流体の静圧エネルギーを利用する静液圧式トランスミッションと、によって無段階の変速を行うハイドロメカニカルトランスミッションを搭載した無段変速機において、
前記エンジンと前記ハイドロメカニカルトランスミッションとの間の前記エンジン出力軸に、自動遠心クラッチ機構を配置したことを特徴とする無段変速機。
A mechanical transmission arranged near the engine output shaft of the power transmission path from the engine to the drive wheels, and a hydraulic pump and an input shaft side of the drive wheels arranged in parallel with the mechanical transmission and on the output shaft side of the engine In a continuously variable transmission equipped with a hydromechanical transmission that uses a hydrostatic transmission that utilizes the hydrostatic energy of a fluid connected to each of the hydraulic motors and a continuously variable transmission,
A continuously variable transmission, wherein an automatic centrifugal clutch mechanism is disposed on the engine output shaft between the engine and the hydromechanical transmission.
車両走行状態の有無を検出する走行状態検出手段と、前記エンジンのエンジン回転数を検出するエンジン回転数検出手段と、前記ハイドロメカニカルトランスミッションの入力回転数及び出力回転数を検出するHMT入力回転数検出手段及びHMT出力回転数検出手段と、前記液圧ポンプの斜板傾斜角度を検出する斜板傾斜角度検出手段と、前記HMT入力回転数検出手段及びHMT出力回転数検出手段で検出した各回転数に基づいて変速比を算出した後に斜板傾斜角度を算出する演算手段と、前記自動遠心クラッチ機構が切断状態にあるときに前記斜板傾斜角度検出手段で検出した斜板傾斜角度と前記演算手段で算出した斜板傾斜角度とを比較して発進時斜板傾斜角度を修正する発進時斜板傾斜角度修正手段と、を備えていることを特徴とする請求項1に記載の無段変速機。   Traveling state detecting means for detecting the presence or absence of a vehicle traveling state, engine rotational speed detecting means for detecting the engine rotational speed of the engine, and HMT input rotational speed detection for detecting the input rotational speed and the output rotational speed of the hydromechanical transmission , A swash plate inclination angle detection means for detecting a swash plate inclination angle of the hydraulic pump, and each rotation speed detected by the HMT input rotation speed detection means and the HMT output rotation speed detection means. Calculating means for calculating the gear ratio after calculating the transmission ratio, and the swash plate inclination angle detected by the swash plate inclination angle detecting means when the automatic centrifugal clutch mechanism is in a disconnected state, and the calculating means. A starting swash plate inclination angle correcting means for correcting the starting swash plate inclination angle by comparing with the swash plate inclination angle calculated in Continuously variable transmission according to claim 1 that. 前記斜板傾斜角度検出手段で検出した斜板傾斜角度と前記演算手段で算出した斜板傾斜角度とを相関曲線に対応付けして記憶する記憶手段を備え、
前記発進時斜板傾斜角度修正手段は前記記憶手段に記憶された相関曲線に対応付けして発進時斜板傾斜角度を修正することを特徴とする請求項2に記載の無段変速機。
Storage means for storing the swash plate inclination angle detected by the swash plate inclination angle detection means and the swash plate inclination angle calculated by the calculation means in association with a correlation curve;
The continuously variable transmission according to claim 2, wherein the starting swash plate inclination angle correcting means corrects the starting swash plate inclination angle in association with the correlation curve stored in the storage means.
請求項1乃至請求項3に記載の無段変速機が搭載されていることを特徴とする不整地走行車両。   An uneven terrain vehicle equipped with the continuously variable transmission according to any one of claims 1 to 3.
JP2008132987A 2008-05-21 2008-05-21 Continuously variable transmission and irregular ground traveling vehicle Pending JP2009280040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132987A JP2009280040A (en) 2008-05-21 2008-05-21 Continuously variable transmission and irregular ground traveling vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132987A JP2009280040A (en) 2008-05-21 2008-05-21 Continuously variable transmission and irregular ground traveling vehicle

Publications (1)

Publication Number Publication Date
JP2009280040A true JP2009280040A (en) 2009-12-03

Family

ID=41450981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132987A Pending JP2009280040A (en) 2008-05-21 2008-05-21 Continuously variable transmission and irregular ground traveling vehicle

Country Status (1)

Country Link
JP (1) JP2009280040A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133442A1 (en) * 2011-03-31 2012-10-04 株式会社クボタ Speed change transmission device and driving transmission device
JP2012211672A (en) * 2011-03-31 2012-11-01 Kubota Corp Speed change transmission device
JP2012211671A (en) * 2011-03-31 2012-11-01 Kubota Corp Speed change transmission device
CN102963457A (en) * 2012-10-31 2013-03-13 中国煤炭科工集团太原研究院 Low-type combination-drive trackless rubber-tire carrier vehicle
JP2021076083A (en) * 2019-11-12 2021-05-20 ナブテスコ株式会社 Variable capacity pump control device, pump system, and variable capacity pump control method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101936448B1 (en) * 2011-03-31 2019-01-08 가부시끼 가이샤 구보다 Speed change transmission device and driving transmission device
JP2012211672A (en) * 2011-03-31 2012-11-01 Kubota Corp Speed change transmission device
JP2012211671A (en) * 2011-03-31 2012-11-01 Kubota Corp Speed change transmission device
CN103443507A (en) * 2011-03-31 2013-12-11 株式会社久保田 Speed change transmission device and driving transmission device
US9261182B2 (en) 2011-03-31 2016-02-16 Kubota Corporation Shift power transmission apparatus and travel power transmission device
CN105805267A (en) * 2011-03-31 2016-07-27 株式会社久保田 Speed change transmission device and driving transmission device
US9897185B2 (en) 2011-03-31 2018-02-20 Kubota Corporation Shift power transmission apparatus and travel power transmission device
US10113625B2 (en) 2011-03-31 2018-10-30 Kubota Corporation Shift power transmission apparatus and travel power transmission device
WO2012133442A1 (en) * 2011-03-31 2012-10-04 株式会社クボタ Speed change transmission device and driving transmission device
CN102963457A (en) * 2012-10-31 2013-03-13 中国煤炭科工集团太原研究院 Low-type combination-drive trackless rubber-tire carrier vehicle
JP2021076083A (en) * 2019-11-12 2021-05-20 ナブテスコ株式会社 Variable capacity pump control device, pump system, and variable capacity pump control method
CN112855482A (en) * 2019-11-12 2021-05-28 纳博特斯克有限公司 Variable displacement pump control device, pump system, and variable displacement pump control method
JP7411387B2 (en) 2019-11-12 2024-01-11 ナブテスコ株式会社 Variable displacement pump control device, pump system, and variable displacement pump control method

Similar Documents

Publication Publication Date Title
JP4928239B2 (en) Work vehicle
JP5827059B2 (en) Road friction coefficient estimation device, driving force distribution control device, and four-wheel drive vehicle
JP2009280040A (en) Continuously variable transmission and irregular ground traveling vehicle
US20130035833A1 (en) Driving force distribution control device and four-wheel-drive vehicle
KR101588751B1 (en) Control method for clutch of hybrid electirc vehicle
US9278697B2 (en) Vehicle running control apparatus and method
KR102376065B1 (en) Motor driven power steering system control method
US20170274904A1 (en) Vehicle speed control device for industrial vehicle
JP5128455B2 (en) Vehicle control device
JP4691134B2 (en) Control device for HST hydraulic traveling vehicle
US8241163B2 (en) Right-left driving force controller
US8751120B2 (en) Driving control system for vehicle
CN107107906B (en) Method for engine braking of a vehicle with a continuously variable transmission
US20130110366A1 (en) Left-right wheel drive force distribution control apparatus for a vehicle
JP4634172B2 (en) Anti-slip system
JP2009241663A (en) Working vehicle
JP2009208633A (en) Vehicle control device, and vehicle control method
JP5534573B2 (en) Working machine
JP4838071B2 (en) Shifting operation structure of work vehicle
KR101005762B1 (en) Active front steering system for car
JP2010144816A (en) Controller for vehicle
JP2004359213A (en) Driving force control device of four-wheel drive vehicle
US12013032B2 (en) Electromagnetic valve control device and work vehicle
US20240167565A1 (en) Electromagnetic valve control device and work vehicle
JP5364025B2 (en) Travel drive control system