JP2009279922A - Manufacturing process of foaming resin laminated plate - Google Patents

Manufacturing process of foaming resin laminated plate Download PDF

Info

Publication number
JP2009279922A
JP2009279922A JP2009043310A JP2009043310A JP2009279922A JP 2009279922 A JP2009279922 A JP 2009279922A JP 2009043310 A JP2009043310 A JP 2009043310A JP 2009043310 A JP2009043310 A JP 2009043310A JP 2009279922 A JP2009279922 A JP 2009279922A
Authority
JP
Japan
Prior art keywords
temperature
laminate
foamed resin
heating
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009043310A
Other languages
Japanese (ja)
Other versions
JP5280248B2 (en
Inventor
Hironobu Nakanishi
裕信 中西
Naoki Kikuchi
直樹 菊池
Akio Sugimoto
明男 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009043310A priority Critical patent/JP5280248B2/en
Publication of JP2009279922A publication Critical patent/JP2009279922A/en
Application granted granted Critical
Publication of JP5280248B2 publication Critical patent/JP5280248B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process of a foaming resin laminated plate which can improve the plate-thickness accuracy of a laminated plate after heating and foaming. <P>SOLUTION: This laminated plate is heated in the heating step in order that the temperature of the laminated plate satisfies a formula: T<SB>f</SB>-100°C≤Ts≤T<SB>f</SB>-50°C (T<SB>f</SB>: the decomposition temperature of a foaming agent, Ts: the temperature of the laminated plate) and the temperature difference between the respective parts of the laminated plate satisfies a formula: ΔTs≤30°C (ΔTs: the temperature difference between the respective parts of the laminated plate). Thereafter, the laminated plate is heated and foamed by heating this laminated plate at the decomposition temperature or higher of the foaming agent included in a foamable resin layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、少なくとも硬質層と発泡樹脂層とからなる発泡樹脂積層板の製造方法に関する。   The present invention relates to a method for producing a foamed resin laminate comprising at least a hard layer and a foamed resin layer.

発泡樹脂積層板の製造方法に関する技術としては、例えば特許文献1に記載されているようなものがある。特許文献1に記載された発泡樹脂積層防音板の製造方法は、まず発泡温度より低い温度で未発泡状態の発泡可能樹脂と硬質板とを積層一体化し、積層一体化された積層板をプレス加工などにより所定形状とする。そのあと所定形状とされた積層板を加熱して発泡樹脂層を内部に形成し、防音性を有する発泡樹脂積層防音板とするものである。特許文献1において、積層板を所定形状としたのち加熱して発泡樹脂層を形成することにより、積層板として形状・施工場所などの制約を受けることがなくなる、と称されている。   As a technique regarding the manufacturing method of a foamed resin laminated board, there exist some which are described in patent document 1, for example. In the manufacturing method of a foamed resin laminated soundproof board described in Patent Document 1, first, an unfoamable foamable resin and a hard board are laminated and integrated at a temperature lower than the foaming temperature, and the laminated board that is laminated and integrated is pressed. A predetermined shape is obtained. Thereafter, the laminated board having a predetermined shape is heated to form a foamed resin layer inside, and a foamed resin laminated soundproof board having soundproofing properties is obtained. In Patent Document 1, it is said that forming a foamed resin layer by heating a laminated plate to a predetermined shape eliminates restrictions on the shape and construction location of the laminated plate.

特開2004−42649号公報JP 2004-42649 A

しかしながら、発泡樹脂積層板の製造工程における加熱発泡において、一般に発泡樹脂積層板の板厚が拘束されることはない。そのため、発泡後の発泡樹脂積層板の板厚がバラつき、所望の板厚精度が得られないという問題があった。特に、熱風対流加熱により加熱発泡させる場合において単純に炉内に積層板を設置するだけでは、積層板における熱風の接触の仕方によって温度ムラが生じ、所望の板厚精度を得ることが困難であった。   However, in the heat foaming in the manufacturing process of the foamed resin laminate, the thickness of the foamed resin laminate is generally not restricted. For this reason, there is a problem that the thickness of the foamed resin laminate after foaming varies, and a desired plate thickness accuracy cannot be obtained. In particular, in the case of heating and foaming by hot air convection heating, simply placing the laminated plate in the furnace causes temperature unevenness depending on how hot air contacts the laminated plate, and it is difficult to obtain a desired thickness accuracy. It was.

本発明は、上記実情に鑑みてなされたものであって、その目的は、加熱発泡後における積層板の板厚精度を向上させることができる発泡樹脂積層板の製造方法を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the manufacturing method of the foaming resin laminated board which can improve the board | plate thickness precision of the laminated board after heat foaming.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明は、未発泡状態の発泡可能樹脂層と硬質層とを積層して積層板を形成する積層工程と、前記積層板の温度が以下の(A)式を満たすとともに当該積層板の各部間の温度差が以下の(B)式を満たすように当該積層板を加熱した後、前記発泡可能樹脂層に含まれる発泡剤の分解温度以上に当該積層板を加熱する加熱工程と、を備える発泡樹脂積層板の製造方法である。
(数1)
−100℃≦Ts≦T−50℃ ・・・(A)
:発泡剤の分解温度、Ts:積層板の温度
(数2)
ΔTs≦30℃ ・・・(B)
ΔTs:積層板の各部間の温度差
The present invention provides a laminating step in which a non-foamable foamable resin layer and a hard layer are laminated to form a laminated board, and the temperature of the laminated board satisfies the following formula (A) and between the parts of the laminated board And a heating step of heating the laminate to a temperature equal to or higher than the decomposition temperature of the foaming agent contained in the foamable resin layer after heating the laminate so that the temperature difference satisfies the following formula (B): It is a manufacturing method of a resin laminated board.
(Equation 1)
T f −100 ° C. ≦ Ts ≦ T f −50 ° C. (A)
T f : Decomposition temperature of the foaming agent, Ts: Temperature of the laminate (Equation 2)
ΔTs ≦ 30 ℃ (B)
ΔTs: Temperature difference between each part of the laminate

本発明者らは、前記目的を達成すべく鋭意検討した結果、積層板の加熱工程における途中段階において、上記のように積層板の温度および積層板の各部間の温度差が所定条件((A)式、(B)式)を満たすように積層板の加熱をコントロールしてやり、そのあと加熱発泡させることで加熱発泡後における積層板の板厚精度を向上させることができることを見出した。   As a result of intensive studies to achieve the above object, the inventors of the present invention have determined that the temperature of the laminated plate and the temperature difference between each part of the laminated plate are predetermined conditions ((A It was found that by controlling the heating of the laminated plate so as to satisfy the formulas (B) and (B), and then heating and foaming, the thickness accuracy of the laminated plate after heating and foaming can be improved.

また好適には、前記硬質層が金属板からなることである。さらに好適には、前記金属板がアルミニウム板またはアルミニウム合金板からなることである。この構成によると、アルミニウム板またはアルミニウム合金板からなる硬質層とすることで、発泡樹脂積層板の剛性および軽量性を高めることができる。   Preferably, the hard layer is made of a metal plate. More preferably, the metal plate is made of an aluminum plate or an aluminum alloy plate. According to this structure, the rigidity and lightness of a foamed resin laminated board can be improved by setting it as the hard layer which consists of an aluminum plate or an aluminum alloy plate.

さらに好適には、前記発泡可能樹脂層のマトリック樹脂がポリオレフィン系樹脂からなることである。この構成によると、発泡可能樹脂層の均一な発泡性を向上させることができ、積層板の板厚精度がより向上する。   More preferably, the matrix resin of the foamable resin layer is made of a polyolefin resin. According to this structure, the uniform foamability of the foamable resin layer can be improved, and the thickness accuracy of the laminate is further improved.

さらに好適には、前記加熱工程は、前記積層板の温度Tsがさらに以下の(C)式を満たすように当該積層板を加熱した後、前記発泡可能樹脂層に含まれる発泡剤の分解温度以上に当該積層板を加熱する工程であることである。この構成によると、未発泡状態での積層板の変形を防止することができ、加熱発泡後における積層板の板厚精度をより向上させることができる。
(数3)
Ts≦Tm ・・・(C)
Tm:未発泡状態の積層板の荷重たわみ温度
More preferably, after the heating step is performed such that the temperature Ts of the laminate further satisfies the following formula (C), the heating step is performed at a temperature equal to or higher than the decomposition temperature of the foaming agent contained in the foamable resin layer. And the step of heating the laminate. According to this configuration, deformation of the laminate in an unfoamed state can be prevented, and the thickness accuracy of the laminate after heating and foaming can be further improved.
(Equation 3)
Ts ≦ Tm (C)
Tm: deflection temperature under load of unfoamed laminate

発泡樹脂積層板の一形態を示す斜視図である。It is a perspective view which shows one form of a foamed resin laminated board. 温度測定位置を示すための発泡樹脂積層板の平面図である。It is a top view of the foaming resin laminated board for showing a temperature measurement position. 発泡樹脂積層板の各部間の温度差と、発泡した発泡樹脂層の厚さの標準偏差との関係を示すグラフである。It is a graph which shows the relationship between the temperature difference between each part of a foamed resin laminated board, and the standard deviation of the thickness of the foamed foamed resin layer. 本発明の一実施形態に係る発泡樹脂積層板の製造方法を示すためのフロー図である。It is a flowchart for showing the manufacturing method of the foamed resin laminated board which concerns on one Embodiment of this invention. 実験で用いた発泡樹脂積層板の形態および実験形態を示す図である。It is a figure which shows the form and experimental form of the foamed resin laminated board used in experiment.

以下、本発明を実施するための形態について図面を参照しつつ説明する。尚、本発明に係る製造方法で得られる発泡樹脂積層板は、例えば、新幹線、飛行機などの本体を構成する構造体の材料として用いられる。また、この発泡樹脂積層板は、建築物の床、壁、天井などの材料としても広く利用することができるものである。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The foamed resin laminate obtained by the production method according to the present invention is used as a material for a structure constituting a main body such as a bullet train or an airplane. In addition, this foamed resin laminate can be widely used as a material for building floors, walls, ceilings and the like.

(発泡樹脂積層板の構成)
図1は、発泡樹脂積層板の一形態を示す斜視図である。図1(a)は、発泡前(未発泡状態)の発泡樹脂積層板1の斜視図であり、図1(b)は、発泡後の発泡樹脂積層板1の斜視図である。
(Configuration of foamed resin laminate)
FIG. 1 is a perspective view showing one embodiment of a foamed resin laminate. Fig.1 (a) is a perspective view of the foamed resin laminated board 1 before foaming (non-foamed state), and FIG.1 (b) is a perspective view of the foamed resin laminated board 1 after foaming.

図1(a)に示すように、発泡前の発泡樹脂積層板1は、未発泡状態の発泡可能樹脂層4aと、この発泡可能樹脂層4aの両側に配置された2枚のアルミニウム板2とからなる。発泡可能樹脂層4aが加熱されて発泡させられることで発泡樹脂層4bとなり、図1(b)に示す発泡後の発泡樹脂積層板1となる。   As shown in FIG. 1A, the foamed resin laminate 1 before foaming includes an unfoamed foamable resin layer 4a, and two aluminum plates 2 disposed on both sides of the foamable resin layer 4a. Consists of. When the foamable resin layer 4a is heated and foamed, the foamed resin layer 4b is formed, and the foamed resin laminate 1 after foaming shown in FIG.

なお、発泡樹脂積層板1は、発泡樹脂層4bと、発泡樹脂層4bの両側に配置された2つの硬質層2とからなるが、このような形態に限られることはなく、発泡樹脂層4bと硬質層2との間に発泡しない樹脂層をさらに配置してもよいし、単に1つの発泡樹脂層4bと1つの硬質層2とを隣接させて配置するのみであってもよいし、並列配置した3つの硬質層2の間に2つの発泡樹脂層4bを配置してもよい。すなわち、少なくとも硬質層と発泡樹脂層とからなる発泡樹脂積層板であればよい。   The foamed resin laminate 1 includes the foamed resin layer 4b and the two hard layers 2 disposed on both sides of the foamed resin layer 4b. However, the present invention is not limited to such a configuration, and the foamed resin layer 4b A resin layer that does not foam may be further disposed between the hard layer 2 and the hard layer 2, or only one foamed resin layer 4b and one hard layer 2 may be disposed adjacent to each other, or in parallel. Two foamed resin layers 4b may be disposed between the three hard layers 2 disposed. That is, it may be a foamed resin laminate having at least a hard layer and a foamed resin layer.

発泡可能樹脂層4aは、マトリックス樹脂と発泡剤とを有している。マトリックス樹脂としては、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂などがある。ポリオレフィン系樹脂としては、ポリプロピレン樹脂、ポリエチレン樹脂、ポリオレフィン樹脂、EPR、EPDMなどがある。ポリスチレン系樹脂としては、ポリスチレン樹脂、熱可塑性エラストマー、ABS樹脂、AS樹脂などがある。これらの樹脂は熱可塑性樹脂であり加熱により軟化し可塑性が高くなる性質がある。   The foamable resin layer 4a has a matrix resin and a foaming agent. Examples of the matrix resin include polyolefin resin, polystyrene resin, polyurethane resin, and polyester resin. Examples of the polyolefin resin include polypropylene resin, polyethylene resin, polyolefin resin, EPR, and EPDM. Examples of the polystyrene resin include polystyrene resin, thermoplastic elastomer, ABS resin, and AS resin. These resins are thermoplastic resins and have the property of being softened by heating and having high plasticity.

発泡剤としては、有機発泡剤、無機発泡剤がある。有機発泡剤としては、アゾ化合物、ニトロソ化合物、スルホニルヒドラジド化合物などがあり、具体的には、アゾジカルボンアミド(ADCA)、アゾジカルボン酸バリウム、アゾビスイソブチロニトリル、N,N’−ジニトロソペンタメチレンテトラミン、p−トルエンスルホニルヒドラジド、p、p’−オキシビス(ベンゼンスルホニルヒドラジド)などが挙げられる。無機発泡剤としては、炭酸水素ナトリウム、炭酸亜鉛、熱膨張性マイクロカプセルなどがある。なお、発泡剤は、その発泡温度(分解温度)が、マトリックス樹脂の融点よりも20℃程度高い温度となるものを選択する必要がある。また、1種の発泡剤を単独で使用してもよく、2種以上の発泡剤を組み合わせて使用してもよい。   Examples of the foaming agent include an organic foaming agent and an inorganic foaming agent. Examples of organic foaming agents include azo compounds, nitroso compounds, sulfonyl hydrazide compounds, and the like. Specifically, azodicarbonamide (ADCA), barium azodicarboxylate, azobisisobutyronitrile, N, N′-dinitroso Examples include pentamethylenetetramine, p-toluenesulfonyl hydrazide, p, p′-oxybis (benzenesulfonyl hydrazide), and the like. Examples of the inorganic foaming agent include sodium hydrogen carbonate, zinc carbonate, and thermally expandable microcapsules. The foaming agent must be selected such that the foaming temperature (decomposition temperature) is about 20 ° C. higher than the melting point of the matrix resin. Moreover, one type of foaming agent may be used alone, or two or more types of foaming agents may be used in combination.

硬質層2は、アルミニウム板2に限定されることはなく、アルミニウム合金板、ステンレス板、めっき鋼板などの金属板であってもよいし、樹脂板であってもよい。   The hard layer 2 is not limited to the aluminum plate 2, and may be a metal plate such as an aluminum alloy plate, a stainless plate, a plated steel plate, or a resin plate.

発泡可能樹脂層4aとアルミニウム板2とは接着剤を用いて接着させてもよいし、発泡可能樹脂層4aの発泡温度よりも低温で溶着させてもよい。   The foamable resin layer 4a and the aluminum plate 2 may be bonded using an adhesive, or may be welded at a temperature lower than the foaming temperature of the foamable resin layer 4a.

次に、本発明の一実施形態に係る発泡樹脂積層板の製造方法に関して説明する。   Next, the manufacturing method of the foaming resin laminated board which concerns on one Embodiment of this invention is demonstrated.

(加熱工程の検討)
まず、本発明者らが実施した、発泡樹脂積層板の製造工程における加熱工程の検討について記載する。図2は、温度測定位置を示すための発泡樹脂積層板1の平面図である。
(Examination of heating process)
First, it describes about the examination of the heating process in the manufacturing process of a foamed resin laminated board which the present inventors implemented. FIG. 2 is a plan view of the foamed resin laminate 1 for showing a temperature measurement position.

加熱工程の検討実験において使用した発泡樹脂積層板1は、長さ1.0m×幅1.0mの正方形の板である。この発泡樹脂積層板1は、厚さ0.9mmの発泡可能樹脂層4aの両面に、厚さ0.15mmのアルミニウム板2を接着したものである。発泡可能樹脂層4aは、マトリックス樹脂にポリプロピレン樹脂を用い、発泡剤としてADCA系発泡剤(分解温度195℃、永和化成工業株式会社製)を用いた。なお、加熱発泡後の発泡樹脂層4bの最終厚さが2.7mm(発泡前の3倍の厚さ)となるように設計されている。   The foamed resin laminate 1 used in the examination experiment of the heating step is a square plate having a length of 1.0 m and a width of 1.0 m. The foamed resin laminate 1 is obtained by bonding an aluminum plate 2 having a thickness of 0.15 mm to both surfaces of a foamable resin layer 4a having a thickness of 0.9 mm. For the foamable resin layer 4a, a polypropylene resin was used as a matrix resin, and an ADCA foaming agent (decomposition temperature 195 ° C., manufactured by Eiwa Chemical Industry Co., Ltd.) was used as a foaming agent. The final thickness of the foamed resin layer 4b after heat foaming is designed to be 2.7 mm (three times the thickness before foaming).

また、加熱手段としては、ガス加熱式連続加熱炉(炉長10m、炉幅2.2m)を使用した。発泡樹脂積層板1の温度は、図2に示したように、9箇所(ポイントP1〜P9)測定した。発泡樹脂積層板1のアルミニウム板2の表面に直接カプトンテープで熱電対を貼り付けて、データロガー(グラフテック株式会社製、midi LOGGER GL200)で温度データを採取した。   As a heating means, a gas heating type continuous heating furnace (furnace length 10 m, furnace width 2.2 m) was used. As shown in FIG. 2, the temperature of the foamed resin laminate 1 was measured at nine locations (points P1 to P9). A thermocouple was directly attached to the surface of the aluminum plate 2 of the foamed resin laminate 1 with Kapton tape, and temperature data was collected with a data logger (manufactured by Graphtec Corporation, midi LOGGER GL200).

加熱工程の検討実験は、ガス加熱式連続加熱炉の炉内設定温度を200℃とし、送り速度を0.8m/minとして、発泡樹脂積層板1をガス加熱式連続加熱炉内に入れ、炉内を進行させていった。図2に示した方向Aは、ガス加熱式連続加熱炉内における発泡樹脂積層板1の進行方向である。   The examination experiment of the heating process was conducted by setting the in-furnace temperature of the gas heating type continuous heating furnace to 200 ° C., setting the feed rate to 0.8 m / min, and placing the foamed resin laminate 1 in the gas heating type continuous heating furnace. The inside was progressing. A direction A shown in FIG. 2 is a traveling direction of the foamed resin laminate 1 in the gas heating type continuous heating furnace.

図3は、実験結果を示すグラフであり、発泡樹脂積層板1の各部間の温度差と、発泡した発泡樹脂層4bの厚さの標準偏差との関係を示している。図3(a)および図3(b)の縦軸は、いずれも発泡した発泡樹脂層4bの厚さ(最終厚さ)の標準偏差(mm)である。図3(a)の横軸は、発泡樹脂積層板1の平均板温度(温度)が発泡剤の分解温度(195℃)よりも低い100℃のときの、発泡樹脂積層板1の各部間の温度差(℃)であり、図3(b)の横軸は、発泡樹脂積層板1の平均板温度(温度)が195℃のときの、発泡樹脂積層板1の各部間の温度差(℃)である。ここで、発泡樹脂積層板1の平均板温度とは、図2に示した9箇所の温度測定位置(ポイントP1〜P9)で測定された温度データの平均値のことをいう。また、発泡樹脂積層板1の各部間の温度差とは、図2に示した9箇所の温度測定位置(ポイントP1〜P9)で測定された温度データのうち最大値データと最小値データとの差の値のこと、すなわち最大温度差のことをいう。   FIG. 3 is a graph showing the experimental results, and shows the relationship between the temperature difference between each part of the foamed resin laminate 1 and the standard deviation of the thickness of the foamed foamed resin layer 4b. The vertical axis | shaft of Fig.3 (a) and FIG.3 (b) is a standard deviation (mm) of the thickness (final thickness) of both the foamed resin layers 4b. The horizontal axis of Fig.3 (a) is between each part of the foamed resin laminated board 1 when the average board temperature (temperature) of the foamed resin laminated board 1 is 100 degreeC lower than the decomposition temperature (195 degreeC) of a foaming agent. 3 is a temperature difference (° C.), and the horizontal axis of FIG. 3B represents a temperature difference (° C.) between each part of the foamed resin laminate 1 when the average plate temperature (temperature) of the foamed resin laminate 1 is 195 ° C. ). Here, the average board temperature of the foamed resin laminate 1 refers to the average value of the temperature data measured at the nine temperature measurement positions (points P1 to P9) shown in FIG. Moreover, the temperature difference between each part of the foamed resin laminate 1 is the maximum value data and the minimum value data among the temperature data measured at the nine temperature measurement positions (points P1 to P9) shown in FIG. The difference value, that is, the maximum temperature difference.

図3(a)に示すように、発泡樹脂積層板1の平均板温度が発泡剤の分解温度(195℃)よりも低い100℃のとき、発泡樹脂積層板1の各部間の温度差と、最終的な(発泡後の)発泡樹脂層4bの厚さのバラツキとの相関が高い。一方、図3(b)に示すように、発泡樹脂積層板1の平均板温度が発泡剤の分解温度(195℃)になると(平均板温度が分解温度付近になると)、発泡樹脂積層板1における各部間の温度のバラツキは小さくなるが、発泡樹脂積層板1の各部間の温度差と、最終的な発泡樹脂層4bの厚さのバラツキとの相関はほとんどない。   As shown in FIG. 3A, when the average plate temperature of the foamed resin laminate 1 is 100 ° C. lower than the decomposition temperature of the foaming agent (195 ° C.), the temperature difference between each part of the foamed resin laminate 1; The correlation with the thickness variation of the final foamed resin layer 4b (after foaming) is high. On the other hand, as shown in FIG. 3B, when the average plate temperature of the foamed resin laminate 1 becomes the decomposition temperature of the foaming agent (195 ° C.) (when the average plate temperature is close to the decomposition temperature), the foamed resin laminate 1 However, there is almost no correlation between the temperature difference between the portions of the foamed resin laminate 1 and the variation in the thickness of the final foamed resin layer 4b.

上記実験結果より、例えば発泡樹脂層4bの厚さの標準偏差を0.4mm以下に抑えるには、図3(a)より、発泡樹脂積層板1の平均板温度(温度)が発泡剤の分解温度(195℃)よりも低い場合における発泡樹脂積層板1各部間の温度差を30℃以下にすればよいことがわかる。すなわち、本発明者らは、加熱工程における途中段階において、発泡樹脂積層板1の温度および発泡樹脂積層板1の各部間の温度差をコントロールしてやり、その後に発泡可能樹脂層4aを加熱発泡させることで、加熱発泡後における発泡樹脂積層板1の板厚精度を向上させることができることを見出した。   From the above experimental results, for example, in order to suppress the standard deviation of the thickness of the foamed resin layer 4b to 0.4 mm or less, the average plate temperature (temperature) of the foamed resin laminate 1 is determined from the decomposition of the foaming agent from FIG. It can be seen that the temperature difference between each part of the foamed resin laminate 1 when the temperature is lower than 195 ° C. should be 30 ° C. or less. That is, the inventors control the temperature difference between the foamed resin laminate 1 and each part of the foamed resin laminate 1 in the middle of the heating process, and then heat and foam the foamable resin layer 4a. Thus, it was found that the thickness accuracy of the foamed resin laminate 1 after heating and foaming can be improved.

(発泡樹脂積層板の製造方法)
次に、上記実験結果に基づいた本発明の一実施形態に係る発泡樹脂積層板の製造方法に関して、フロー図に基づき説明する。図4は、本発明の一実施形態に係る発泡樹脂積層板の製造方法を示すためのフロー図である。
(Method for producing foamed resin laminate)
Next, a method for manufacturing a foamed resin laminate according to an embodiment of the present invention based on the above experimental results will be described based on a flowchart. FIG. 4 is a flowchart for illustrating a method for producing a foamed resin laminate according to an embodiment of the present invention.

図4に示すように、まず、未発泡状態の発泡可能樹脂層4aとアルミニウム板2(硬質層2)とを積層して積層板(未発泡状態の発泡樹脂積層板1)を形成する(積層工程、ステップ1、以下S1と記載する。他のステップも同様)。S1では発泡可能樹脂層4aの両面にアルミニウム板2を接着して積層板とする。   As shown in FIG. 4, first, an unfoamed foamable resin layer 4a and an aluminum plate 2 (hard layer 2) are laminated to form a laminate (unfoamed foamed resin laminate 1) (lamination). Process, Step 1, hereinafter referred to as S1, and other steps are also the same). In S1, the aluminum plate 2 is bonded to both surfaces of the foamable resin layer 4a to form a laminated plate.

尚、積層板(未発泡状態の発泡樹脂積層板1)は、厚さ0.9mmの発泡可能樹脂層4aの両面に、厚さ0.15mmのアルミニウム板2を接着したものである。発泡可能樹脂層4aは、マトリックス樹脂にポリプロピレン樹脂を用い、発泡剤としてADCA系発泡剤(分解温度195℃、永和化成工業株式会社製)を用いている。加熱発泡後の発泡樹脂層4bの最終厚さは2.7mm(発泡前の3倍の厚さ)となるように設計されている。   The laminate (unfoamed foamed resin laminate 1) is obtained by adhering an aluminum plate 2 having a thickness of 0.15 mm to both surfaces of a foamable resin layer 4a having a thickness of 0.9 mm. The foamable resin layer 4a uses a polypropylene resin as a matrix resin, and uses an ADCA foaming agent (decomposition temperature 195 ° C., manufactured by Eiwa Kasei Kogyo Co., Ltd.) as a foaming agent. The final thickness of the foamed resin layer 4b after heat foaming is designed to be 2.7 mm (three times the thickness before foaming).

次に、積層板の加熱工程に移行する。この加熱工程をS2〜S4のステップに分けて説明する。まず、熱風対流加熱炉(例えば、前記ガス加熱式連続加熱炉)に積層板を入れ、積層板の加熱を開始する(S2)。積層板の加熱を開始すると、積層板の温度が上昇していく。   Next, it transfers to the heating process of a laminated board. This heating process will be described in steps S2 to S4. First, a laminated board is put into a hot-air convection heating furnace (for example, the said gas heating type continuous heating furnace), and the heating of a laminated board is started (S2). When heating of the laminated plate is started, the temperature of the laminated plate rises.

次に、積層板の温度Tsが以下の(A)式を満たすとともに当該積層板の各部間の温度差ΔTsが以下の(B)式を満たすように当該積層板を加熱する(S3)。前記ガス加熱式連続加熱炉を例にとり具体的に説明すると、発泡可能樹脂層4aに含まれる発泡剤の分解温度Tに対し、積層板の温度Tsが以下の(A)式を満たし、かつ、その時の積層板の各部間の温度差ΔTsが以下の(B)式を満たすように、当該ガス加熱式連続加熱炉の加熱制御および送り制御を、積層板の加熱を開始する前に(S2の前に)あらかじめ調整・設定しておく。そして、ガス加熱式連続加熱炉にて積層板を加熱するのである。積層板の温度Tsとは、本実施形態では、積層板のうちのアルミニウム板2(硬質層2)の温度(表面温度)のことをいう。 Next, the laminated plate is heated so that the temperature Ts of the laminated plate satisfies the following formula (A) and the temperature difference ΔTs between each part of the laminated plate satisfies the following formula (B) (S3). When the gas heating type continuous heating furnace is specifically described as an example, the temperature Ts of the laminate satisfies the following formula (A) with respect to the decomposition temperature Tf of the foaming agent contained in the foamable resin layer 4a, and Before the heating of the laminated plate is started, the heating control and the feed control of the gas heating type continuous heating furnace are performed so that the temperature difference ΔTs between each part of the laminated plate satisfies the following formula (B) (S2 Adjust and set in advance. And a laminated board is heated in a gas heating type continuous heating furnace. In this embodiment, the temperature Ts of a laminated board means the temperature (surface temperature) of the aluminum plate 2 (hard layer 2) of the laminated boards.

(数1)
−100℃≦Ts≦T−50℃ ・・・(A)
:発泡剤の分解温度、Ts:積層板(発泡樹脂積層板)の温度
(数2)
ΔTs≦30℃ ・・・(B)
ΔTs:積層板(発泡樹脂積層板)の各部間の温度差
(Equation 1)
T f −100 ° C. ≦ Ts ≦ T f −50 ° C. (A)
T f : decomposition temperature of foaming agent, Ts: temperature of laminate (foamed resin laminate) (Equation 2)
ΔTs ≦ 30 ℃ (B)
ΔTs: Temperature difference between each part of the laminate (foamed resin laminate)

尚、ガス加熱式連続加熱炉の加熱制御および送り制御に関しては、積層板の温度Tsを(A)式で示される範囲まで一旦加熱してその温度範囲を保ち、かつ、その時の積層板の各部間の温度差ΔTsが(B)式で示される範囲になるようにする(温度バラツキを抑制する)制御としてもよいし、積層板の温度Tsが(A)式、(B)式をほぼ同時に満たすような制御としてもよい。   In addition, regarding the heating control and feed control of the gas heating type continuous heating furnace, the temperature Ts of the laminated plate is once heated to the range shown by the formula (A) to keep the temperature range, and each part of the laminated plate at that time The temperature difference ΔTs between them may be controlled so as to fall within the range represented by the equation (B) (temperature variation is suppressed), or the temperature Ts of the laminated plate may be substantially the same as the equations (A) and (B). It is good also as control to satisfy | fill.

また、積層板の温度Tsが(A)式を満たすように加熱するとは、積層板の各部の平均温度Tsmが(A)式を満たすようにガス加熱式連続加熱炉の加熱制御および送り制御を調整・設定して加熱する場合のことも意味するし、測定した積層板の各部の温度が全て(A)式を満たすように加熱制御および送り制御を調整・設定して加熱する場合のことも意味する。   In addition, when heating is performed so that the temperature Ts of the laminated plate satisfies the formula (A), the heating control and the feed control of the gas heating type continuous heating furnace are performed so that the average temperature Tsm of each part of the laminated plate satisfies the formula (A). It also means the case of heating by adjusting and setting, and the case of heating by adjusting and setting the heating control and feed control so that all the temperatures of each part of the measured laminate satisfy the formula (A) means.

また、積層板の各部間の温度差ΔTsが(B)式を満たすように加熱するとは、積層板の各部間の最大温度差ΔTsmaxが(B)式を満たすようにガス加熱式連続加熱炉の加熱制御および送り制御を調整・設定して加熱することをいう。   In addition, heating is performed so that the temperature difference ΔTs between the respective parts of the laminated plate satisfies the formula (B). In the gas heating type continuous heating furnace, the maximum temperature difference ΔTsmax between the respective parts of the laminated plate satisfies the formula (B). This refers to heating by adjusting and setting the heating control and feed control.

そして、積層板の温度Tsが(A)式を満たすとともに当該積層板の各部間の温度差ΔTsが(B)式を満たすように当該積層板を加熱した後、発泡剤の分解温度T以上に当該積層板を加熱して、発泡可能樹脂層4aを発泡させる(S4)。そして、積層板の加熱が終了する(S5)。 And after heating the said laminated board so that temperature Ts of a laminated board may satisfy | fill (A) Formula, and the temperature difference (DELTA) Ts between each part of the said laminated board may satisfy | fill (B) Formula, it is more than decomposition temperature Tf of a foaming agent The laminate is heated to foam the foamable resin layer 4a (S4). And the heating of a laminated board is complete | finished (S5).

このように、発泡可能樹脂層4aを有する積層板の加熱工程における途中段階において、積層板の温度および積層板の各部間の温度差が、それぞれ上記の(A)式および(B)式を満たすように積層板の加熱をコントロールしてやり、その後に発泡可能樹脂層4aを加熱発泡させることで、対流伝熱加熱方式で積層板を加熱発泡させる場合であっても、加熱発泡後の積層板(加熱発泡後の発泡樹脂積層板1)の板厚精度を向上させることができるのである。   Thus, in the middle stage in the heating process of the laminated board having the foamable resin layer 4a, the temperature of the laminated board and the temperature difference between each part of the laminated board satisfy the above-mentioned formulas (A) and (B), respectively. Thus, even if the laminated plate is heated and foamed by the convection heat transfer heating method by controlling the heating of the laminated plate and then foaming the foamable resin layer 4a, the laminated plate after heating and foaming (heating The thickness accuracy of the foamed resin laminate 1) after foaming can be improved.

(発泡剤の分解温度以上に積層板を加熱する前における積層板の温度Tsのさらなる条件)
前記ステップ3(S3)において、前記積層板の温度Tsがさらに以下の(C)式を満たすように当該積層板を加熱することが好ましい。すなわち、ステップ3(S3)においてTsがTm(未発泡状態の積層板の荷重たわみ温度)を超えないようにすることが好ましい。
(数3)
Ts≦Tm ・・・(C)
Tm:未発泡状態の積層板の荷重たわみ温度
(Further conditions for the temperature Ts of the laminate before heating the laminate above the decomposition temperature of the foaming agent)
In step 3 (S3), it is preferable to heat the laminate so that the temperature Ts of the laminate further satisfies the following expression (C). That is, in step 3 (S3), it is preferable that Ts does not exceed Tm (the deflection temperature under load of the unfoamed laminate).
(Equation 3)
Ts ≦ Tm (C)
Tm: deflection temperature under load of unfoamed laminate

ここで、前記した内容と同様に、ガス加熱式連続加熱炉の加熱制御および送り制御に関しては、積層板の温度Tsを(A)式および(C)式で示される範囲まで一旦加熱してその温度範囲を保ち、かつ、その時の積層板の各部間の温度差ΔTsが(B)式で示される範囲になるようにする(温度バラツキを抑制する)制御としてもよいし、積層板の温度Tsが(A)式、(B)式、および(C)式をほぼ同時に満たすような制御としてもよい。   Here, similarly to the above-described contents, regarding the heating control and feed control of the gas heating type continuous heating furnace, the temperature Ts of the laminated plate is once heated to the range shown by the formulas (A) and (C). Control may be performed such that the temperature range is maintained and the temperature difference ΔTs between the respective parts of the laminated board at that time is within the range represented by the formula (B) (temperature variation is suppressed), or the laminated board temperature Ts. May be controlled so that the expressions (A), (B), and (C) are satisfied almost simultaneously.

また、積層板の温度Tsが(C)式を満たすように加熱するとは、積層板の各部の平均温度Tsmが(C)式を満たすようにガス加熱式連続加熱炉の加熱制御および送り制御を調整・設定して加熱する場合のことも意味するし、測定した積層板の各部の温度が全て(C)式を満たすように加熱制御および送り制御を調整・設定して加熱する場合のことも意味する。   In addition, when heating is performed so that the temperature Ts of the laminated plate satisfies the formula (C), the heating control and the feed control of the gas heating type continuous heating furnace are performed so that the average temperature Tsm of each part of the laminated plate satisfies the formula (C). It also means the case of heating by adjusting and setting, and the case of heating by adjusting and setting the heating control and feed control so that the temperature of each part of the measured laminate meets all the formula (C) means.

そして、積層板の温度Tsが(A)式および(C)式を満たすとともに当該積層板の各部間の温度差ΔTsが(B)式を満たすように当該積層板を加熱した後、発泡剤の分解温度T以上に当該積層板を加熱して、発泡可能樹脂層4aを発泡させる(S4)。そして、積層板の加熱が終了する(S5)。 Then, after heating the laminate so that the temperature Ts of the laminate satisfies the formulas (A) and (C) and the temperature difference ΔTs between each part of the laminate satisfies the formula (B), The laminate is heated to the decomposition temperature Tf or higher to foam the foamable resin layer 4a (S4). And the heating of a laminated board is complete | finished (S5).

このように、ステップ3での温度制御に上記(C)式の条件を加えることで、未発泡状態での積層板の変形を防止することができ、その結果、加熱発泡後における積層板の板厚精度をより向上させることができる。   Thus, by adding the condition of the above formula (C) to the temperature control in step 3, it is possible to prevent the deformation of the laminated board in the unfoamed state, and as a result, the laminated board after heating and foaming. Thickness accuracy can be further improved.

(Ts≦Tmとすることについて)
荷重たわみ温度とは、試験片に所定の荷重を与えた状態で、試験片の温度を上げていき、試験片のたわみの大きさが一定の値に達したときの温度のことをいう。試験法はJIS K7191などで定められている。
(About Ts ≦ Tm)
The deflection temperature under load refers to the temperature when the temperature of the test piece reaches a certain value by raising the temperature of the test piece with a predetermined load applied to the test piece. The test method is defined in JIS K7191.

ここで、実験例として、図5(a)に示す発泡樹脂積層板11を用いた。発泡樹脂積層板11は、幅15mm×長さ200mmの長方形の板である。この発泡樹脂積層板11は、厚さ0.9mmの発泡可能樹脂層14aの両面に、厚さ0.3mmのアルミニウム板12(5182−O材)を接着したものである。発泡可能樹脂層14aは、マトリックス樹脂にポリプロピレン樹脂を用い、発泡剤としてADCA系発泡剤(分解温度195℃、永和化成工業株式会社製)を用いた。なお、加熱発泡後の発泡樹脂層の最終厚さが2.7mm(発泡前の3倍の厚さ)となるように設計されている。   Here, as an experimental example, a foamed resin laminate 11 shown in FIG. 5A was used. The foamed resin laminate 11 is a rectangular plate having a width of 15 mm and a length of 200 mm. The foamed resin laminate 11 is obtained by bonding an aluminum plate 12 (5182-O material) having a thickness of 0.3 mm to both surfaces of a foamable resin layer 14a having a thickness of 0.9 mm. For the foamable resin layer 14a, a polypropylene resin was used as the matrix resin, and an ADCA foaming agent (decomposition temperature 195 ° C., manufactured by Eiwa Kasei Kogyo Co., Ltd.) was used as the foaming agent. The final thickness of the foamed resin layer after heat foaming is designed to be 2.7 mm (three times the thickness before foaming).

また、この発泡樹脂積層板11(未発泡状態)の荷重たわみ温度は138℃である(JIS K7191−1、K7191−2に準じて測定。曲げ応力:1.8MPa、フラットワイズ、試験片寸法:長さ80mm×幅10mm、曲げ歪み:0.2%、昇温速度:120℃/h)。   Further, the deflection temperature under load of the foamed resin laminate 11 (unfoamed state) is 138 ° C. (measured according to JIS K7191-1 and K7191-2. Bending stress: 1.8 MPa, flat width, test piece dimensions: Length 80 mm × width 10 mm, bending strain: 0.2%, temperature increase rate: 120 ° C./h).

次に、実験形態を図5(b)に示したように、幅15mm×長さ200mmの発泡樹脂積層板11(未発泡状態)を恒温槽15の中のステージ16上に載せ、所定の温度条件で発泡樹脂積層板11を加熱し、そのときの変形量を測定した。測定結果を表1に示す。   Next, as shown in FIG. 5 (b), the experimental form was placed on a stage 16 in a thermostatic bath 15 on a foamed resin laminate 11 (non-foamed state) having a width of 15 mm × length of 200 mm, and a predetermined temperature. The foamed resin laminate 11 was heated under the conditions, and the amount of deformation at that time was measured. The measurement results are shown in Table 1.

Figure 2009279922
Figure 2009279922

表1からわかるように、発泡樹脂積層板11(未発泡状態)の荷重たわみ温度Tm(138℃)以下で発泡樹脂積層板11を5分間加熱した場合は、その変形量は2mm以下という良好な結果であった。一方、発泡樹脂積層板11(未発泡状態)の荷重たわみ温度Tm(138℃)を超える温度で発泡樹脂積層板11を5分間加熱した場合は、その変形量は25mm以上という不良な結果であった。これより、図4に示したステップ3(S3)において、積層板の温度Tsが、その荷重たわみ温度Tmを超えないように調整すると、未発泡状態での積層板の変形を防止することができ、加熱発泡後における積層板の板厚精度をより向上させ得ることがわかる。   As can be seen from Table 1, when the foamed resin laminate 11 is heated for 5 minutes at a load deflection temperature Tm (138 ° C.) or less of the foamed resin laminate 11 (unfoamed state), the deformation amount is 2 mm or less. It was a result. On the other hand, when the foamed resin laminate 11 is heated for 5 minutes at a temperature exceeding the load deflection temperature Tm (138 ° C.) of the foamed resin laminate 11 (unfoamed state), the deformation amount is 25 mm or more. It was. Accordingly, in step 3 (S3) shown in FIG. 4, when the temperature Ts of the laminate is adjusted so as not to exceed the deflection temperature Tm, the deformation of the laminate in the unfoamed state can be prevented. It can be seen that the thickness accuracy of the laminate after heating and foaming can be further improved.

以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能なものである。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims. .

また、上記実施形態においては、積層板の温度Tsが(A)式を満たすとともに積層板の各部間の温度差ΔTsが30℃以下になるようにしているが、温度差ΔTsが25℃以下になるようにしてもよいし、20℃以下になるようにしてもよい。尚、このように温度差ΔTsは小さいほうが好ましく、望ましくは0℃、すなわち、温度差が存在しない状態である。   In the above embodiment, the temperature Ts of the laminated plate satisfies the formula (A) and the temperature difference ΔTs between each part of the laminated plate is 30 ° C. or less, but the temperature difference ΔTs is 25 ° C. or less. You may make it become, and you may make it become 20 degrees C or less. In addition, it is preferable that the temperature difference ΔTs is small as described above. Desirably, the temperature difference is 0 ° C., that is, there is no temperature difference.

1:発泡樹脂積層板
2:アルミニウム板(硬質層)
4a:発泡可能樹脂層
4b:発泡樹脂層
1: Foamed resin laminate 2: Aluminum plate (hard layer)
4a: Foamable resin layer 4b: Foamed resin layer

Claims (5)

未発泡状態の発泡可能樹脂層と硬質層とを積層して積層板を形成する積層工程と、
前記積層板の温度が以下の(A)式を満たすとともに当該積層板の各部間の温度差が以下の(B)式を満たすように当該積層板を加熱した後、前記発泡可能樹脂層に含まれる発泡剤の分解温度以上に当該積層板を加熱する加熱工程と、
を備えることを特徴とする、発泡樹脂積層板の製造方法。
(数1)
−100℃≦Ts≦T−50℃ ・・・(A)
:発泡剤の分解温度、Ts:積層板の温度
(数2)
ΔTs≦30℃ ・・・(B)
ΔTs:積層板の各部間の温度差
A laminating step of laminating an unfoamable foamable resin layer and a hard layer to form a laminate;
Included in the foamable resin layer after heating the laminate so that the temperature of the laminate satisfies the following formula (A) and the temperature difference between the parts of the laminate satisfies the following formula (B): A heating step of heating the laminate above the decomposition temperature of the foaming agent,
A method for producing a foamed resin laminate, comprising:
(Equation 1)
T f −100 ° C. ≦ Ts ≦ T f −50 ° C. (A)
T f : Decomposition temperature of the foaming agent, Ts: Temperature of the laminate (Equation 2)
ΔTs ≦ 30 ℃ (B)
ΔTs: Temperature difference between each part of the laminate
前記硬質層が金属板からなることを特徴とする、請求項1に記載の発泡樹脂積層板の製造方法。   The said hard layer consists of a metal plate, The manufacturing method of the foamed resin laminated board of Claim 1 characterized by the above-mentioned. 前記金属板がアルミニウム板またはアルミニウム合金板からなることを特徴とする、請求項2に記載の発泡樹脂積層板の製造方法。   The method for producing a foamed resin laminate according to claim 2, wherein the metal plate is made of an aluminum plate or an aluminum alloy plate. 前記発泡可能樹脂層のマトリック樹脂がポリオレフィン系樹脂からなることを特徴とする、請求項1乃至請求項3のいずれか1項に記載の発泡樹脂積層板の製造方法。   The method for producing a foamed resin laminate according to any one of claims 1 to 3, wherein the matrix resin of the foamable resin layer is made of a polyolefin resin. 前記加熱工程は、前記積層板の温度Tsがさらに以下の(C)式を満たすように当該積層板を加熱した後、前記発泡可能樹脂層に含まれる発泡剤の分解温度以上に当該積層板を加熱する工程であることを特徴とする、請求項1乃至請求項4のいずれか1項に記載の発泡樹脂積層板の製造方法。
(数3)
Ts≦Tm ・・・(C)
Tm:未発泡状態の積層板の荷重たわみ温度
The heating step heats the laminated plate so that the temperature Ts of the laminated plate further satisfies the following formula (C), and then brings the laminated plate to a temperature equal to or higher than the decomposition temperature of the foaming agent contained in the foamable resin layer. The method for producing a foamed resin laminate according to any one of claims 1 to 4, wherein the method is a heating step.
(Equation 3)
Ts ≦ Tm (C)
Tm: deflection temperature under load of unfoamed laminate
JP2009043310A 2008-04-21 2009-02-26 Manufacturing method of foamed resin laminate Expired - Fee Related JP5280248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009043310A JP5280248B2 (en) 2008-04-21 2009-02-26 Manufacturing method of foamed resin laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008110450 2008-04-21
JP2008110450 2008-04-21
JP2009043310A JP5280248B2 (en) 2008-04-21 2009-02-26 Manufacturing method of foamed resin laminate

Publications (2)

Publication Number Publication Date
JP2009279922A true JP2009279922A (en) 2009-12-03
JP5280248B2 JP5280248B2 (en) 2013-09-04

Family

ID=41450882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009043310A Expired - Fee Related JP5280248B2 (en) 2008-04-21 2009-02-26 Manufacturing method of foamed resin laminate

Country Status (1)

Country Link
JP (1) JP5280248B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030664A1 (en) 2012-08-24 2014-02-27 株式会社神戸製鋼所 Method and apparatus for manufacturing foamed resin metal laminated sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227328A (en) * 1987-03-18 1988-09-21 新日本製鐵株式会社 Precoated steel plate for automobile
JP2001150616A (en) * 1999-11-26 2001-06-05 Sekisui Chem Co Ltd Laminated composite and method of manufacturing the same
JP2004042649A (en) * 2002-07-05 2004-02-12 Kobe Steel Ltd Expanded resin laminated soundproof sheet and its manufacturing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227328A (en) * 1987-03-18 1988-09-21 新日本製鐵株式会社 Precoated steel plate for automobile
JP2001150616A (en) * 1999-11-26 2001-06-05 Sekisui Chem Co Ltd Laminated composite and method of manufacturing the same
JP2004042649A (en) * 2002-07-05 2004-02-12 Kobe Steel Ltd Expanded resin laminated soundproof sheet and its manufacturing process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030664A1 (en) 2012-08-24 2014-02-27 株式会社神戸製鋼所 Method and apparatus for manufacturing foamed resin metal laminated sheet
US10016965B2 (en) 2012-08-24 2018-07-10 Kobe Steel, Ltd. Method and apparatus for manufacturing foamed resin metal laminated sheet

Also Published As

Publication number Publication date
JP5280248B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US20070059516A1 (en) Fire resistant insulated building panels utilizing intumescent coatings
JP4904340B2 (en) Polyurethane or polyisocyanurate foam composition
JP5792695B2 (en) Manufacturing method and manufacturing apparatus for foamed resin metal laminate
EP2560818B1 (en) A method for joining thermoplastic polymer material
JP2009539652A5 (en)
US9095050B2 (en) Plate member for housing, housing, and method of fabricating the same
JP2007230130A (en) Sound absorption laminate structure using foam honeycomb core
CN108291399A (en) The method that heat-insulating material is arranged and is used to form heat-insulating material
JP5280248B2 (en) Manufacturing method of foamed resin laminate
JP2012180679A (en) Heat insulating laminate
JP2022031785A (en) Building panel
KR102333683B1 (en) A foam and the floor comprising the foam
JP2007137045A (en) Composite foamed sheet, laminated structure thereof, and honeycomb sound-absorbing structure using the same
WO2007058947A3 (en) Multi-density flexible foam
JP2006289678A (en) Honeycomb sound absorbing structure
JP6117972B1 (en) Manufacturing method for non-combustible panels
JP6657763B2 (en) How to make wallpaper
JP2009051180A (en) Multi-layer rigid polyurethane foam panel
US20230083603A1 (en) Flooring underlayment material, and related methods and systems
JP7310799B2 (en) SKIN, METHOD FOR MANUFACTURING SKIN, AND LAMINATES
JP2007331177A (en) Panel for heating treatment apparatus and method for producing panel
JP2001150616A (en) Laminated composite and method of manufacturing the same
JP2004154698A (en) Manufacture method of stereoscopic pattern printing plate
ES2277738A1 (en) Strong, light-weight, fire-resistant construction panels with sandwich structure, useful e.g. in facades, consist of external sheets of aluminum and central core of closed-cell aluminum foam
JP2007303067A (en) Heat-insulating and fire-resistant sandwich panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees