JP2009278249A - Monitoring system - Google Patents

Monitoring system Download PDF

Info

Publication number
JP2009278249A
JP2009278249A JP2008125977A JP2008125977A JP2009278249A JP 2009278249 A JP2009278249 A JP 2009278249A JP 2008125977 A JP2008125977 A JP 2008125977A JP 2008125977 A JP2008125977 A JP 2008125977A JP 2009278249 A JP2009278249 A JP 2009278249A
Authority
JP
Japan
Prior art keywords
infrared
imaging device
water vapor
glass
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008125977A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakamura
和彦 中村
Akinori Kouchi
秋典 小内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2008125977A priority Critical patent/JP2009278249A/en
Publication of JP2009278249A publication Critical patent/JP2009278249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a moving object body distinguishable from the background of a railroad crossing without being affected by sunshine even in a state where sunlight passed through the atmosphere in fine weather impinges directly on the object, in order to solve the problem that the temperature of the pavement rises above the body temperature under blazing heat of summer and radiation intensity of the human body and an object are equalized for 8-15 μm and becomes indistinguishable. <P>SOLUTION: A monitoring system includes an infrared bandpass optical filter of light of wavelength of 1.4 μm or 1.9 μm which glass transmits but moisture vapor absorbs using an infrared glass lens, and a solid-state imaging element having sensitivity of light in wavelength of 1.4 μm or 1.9 μm, wherein an image is imaged by using the lighting consisting of an array of laser diodes having an emission light of a band which glass transmits but steam absorbs, and an image is imaged from short distance by removing the bandpass optical filter and using the halogen lamp lighting at the time of rainfall. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

赤外線固体撮像素子を用いた撮像装置を有する監視システムの改良に関するものである。   The present invention relates to an improvement of a monitoring system having an imaging device using an infrared solid-state imaging device.

近赤外線と中赤外線と遠赤外線との定義は、目的や業界により様々なので、以下赤外線の定量的な区別を大気中の透過性の概略波長で行う。   Since the definitions of near infrared, mid infrared, and far infrared vary depending on the purpose and industry, the following is a quantitative distinction between infrared rays using the approximate wavelength of transparency in the atmosphere.

図4は従来の動作を示す模式図で可視光と赤外線の大気中の透過性の概略である。図4において、太陽光は大気の窓と称される特定波長0.4μm−1.3μm(可視光と近赤外線の短波長側)と1.5μm−1.8μm(近赤外線の中央波長)と2μm−2.6μm(近赤外線の長波長側)と3μm−4.2μmと4.4μm−5μm(中赤外線)と8−15μm(遠赤外線)で1.8kmの大気を通過する。1.4μmと1.9μmは水蒸気に吸収され、湿度で大きく変化するがおおよそ100m以内で半減する。(非特許文献1参照)
ところで8−15μm(遠赤外線)では放射強度と30℃前後の物体温度とが比例し、太陽光が低レベルである。(非特許文献2参照)
つまり、5μm以下の赤外線固体撮像素子を用いた撮像装置を有する監視システムでは、被写体に直接当たる状態では太陽光の影響を受け、背景と移動物体との区別が困難である。したがって、従来の撮像装置の全体構成を示すブロック図の図3の様に、8−15μmの固体撮像素子とカルコゲナイド(S,Se,Te,Ge,As,Sb)等8−15μmの遠赤外線透過光学系を用い、被写体の8−15μmの放射強度を温度で色分けして映像出力する撮像装置を用いる。
FIG. 4 is a schematic diagram showing a conventional operation, and is an outline of transparency of visible light and infrared light in the atmosphere. In FIG. 4, the sunlight has a specific wavelength of 0.4 μm to 1.3 μm (short wavelength side of visible light and near infrared) and 1.5 μm to 1.8 μm (center wavelength of near infrared), which are called atmospheric windows. It passes through the atmosphere of 1.8 km at 2 μm-2.6 μm (long infrared side long wavelength side), 3 μm-4.2 μm, 4.4 μm-5 μm (middle infrared) and 8-15 μm (far infrared). 1.4 μm and 1.9 μm are absorbed by water vapor and change greatly with humidity, but are halved within about 100 m. (See Non-Patent Document 1)
By the way, in 8-15 micrometers (far infrared rays), a radiation intensity and the object temperature of about 30 degreeC are proportional, and sunlight is a low level. (See Non-Patent Document 2)
That is, in a monitoring system having an imaging device using an infrared solid-state imaging device of 5 μm or less, it is difficult to distinguish between a background and a moving object due to the influence of sunlight when directly hitting a subject. Therefore, as shown in FIG. 3 of the block diagram showing the entire configuration of the conventional imaging apparatus, the 8-15 μm far-infrared transmission such as 8-15 μm solid-state imaging device and chalcogenide (S, Se, Te, Ge, As, Sb) etc. An imaging device is used that uses an optical system and outputs an image by color-coding the 8-15 μm radiant intensity of a subject by temperature.

しかし、夏の晴天では、直射日光が当たり続けた舗装面温度が、体温以上に上昇し、人体と被写体の8−15μmの放射強度が同等以上になり、区別が付かない。具体的には従来の撮像装置の全体構成を示すブロック図の図3の体温と同等温度の背景の19と、人物6との区別が付かない。2007年には40度以上の気温も熊谷等の複数個所で複数回記録した。そこで、体温より高温の背景の20もある。   However, in clear weather in summer, the pavement surface temperature that has been exposed to direct sunlight rises above body temperature, and the radiant intensity of 8-15 μm between the human body and the subject becomes equal to or greater, making it indistinguishable. Specifically, the background 19 having the same temperature as the body temperature in FIG. 3 of the block diagram showing the entire configuration of the conventional imaging apparatus cannot be distinguished from the person 6. In 2007, temperatures over 40 ° C were recorded several times at multiple locations such as Kumagaya. So there are also 20 backgrounds that are hotter than body temperature.

そのため、そのため、侵入物体を検出するセンサ17が、可視光のガラスレンズ12と可視光の固体撮像素子とを用いる撮像装置13と8−15μmの遠赤外線撮像装置11とに併用されていた。   Therefore, the sensor 17 for detecting the intruding object is used in combination with the imaging device 13 using the visible light glass lens 12 and the visible light solid-state imaging device and the 8-15 μm far-infrared imaging device 11.

ところで、1400nm以上の赤外線は眼の硝子体の液体によって伝達されないため、その出力が網膜に送られる可能性は低く、角膜の表面が損傷する可能性はあっても、目の焦点合わせ機能によって出力密度が拡大されることはない。したがって、非常に大きな出力でない限り、損傷が発生することはない。そのため、新しいIEC 60825-1修正2基準に基づいた、クラス1およびクラス1Mレーザー・システムの出力レベル制限は、IEC/CDRH Class 1 で近赤外線の850nmは0.78mWで、近赤外線の1550nmは10 mWとなっている。(非特許文献3参照)
CO2による吸収の少い波長についてのエネルギー強度と、CO2吸収帯波長のエネルギー強度とを計測し、計測対象物からの放射エネルギーを求め事も行われていた。(特許文献1参照)
R.D.Hudson.Jr「INFRADRED SYSTEM ENGINEERINGS」(John Willey & Son.1969) 日本建築学会計画系論文集第459号 IEC 60825-1 特開平5−306956
By the way, infrared rays of 1400 nm or more are not transmitted by the vitreous fluid of the eye, so the output is unlikely to be sent to the retina, and even though the surface of the cornea may be damaged, it is output by the eye focusing function The density is never increased. Therefore, no damage will occur unless the output is very large. Therefore, based on the new IEC 60825-1 modified 2 standard, the power level limits for Class 1 and Class 1M laser systems are IEC / CDRH Class 1 near infrared 850nm 0.78mW and near infrared 1550nm 10mW It has become. (See Non-Patent Document 3)
In some cases, the energy intensity of a wavelength with little absorption by CO2 and the energy intensity of a CO2 absorption band wavelength are measured to obtain the radiation energy from the measurement object. (See Patent Document 1)
RDHudson.Jr `` INFRADRED SYSTEM ENGINEERINGS '' (John Willey & Son.1969) Architectural Institute of Japan Planning Series 459 IEC 60825-1 JP 5-306695

単一系の固体撮像装置を用いて、夏の炎天下で大気を通過した太陽光が被写体に直接当たり続けた状態でも、太陽光の影響を受けずに、踏切内の背景と移動物体と区別を付け、検出することが本発明の目的である。   Using a single-system solid-state imaging device, it is possible to distinguish between the background and moving objects in a railroad crossing without being affected by sunlight, even when sunlight that has passed through the atmosphere under the hot summer sun continues to hit the subject directly. It is the object of the present invention to attach and detect.

上記課題を達成するため、本発明では、ガラス製赤外線光学系とガラスが透過する水蒸気の吸収帯の約1.4μmと約1.9μmの少なくとも一方の赤外線の帯域通過光学フィルタと上記赤外線に感度を有する固体撮像素子とからなる固体撮像装置と、(並列レーザーダイオードまたはLEDまたはハロゲンランプ他の)上記赤外線を発生する照明とを有し、上記赤外線で100m以内の被写体を撮像することを特徴とする監視システムである。   In order to achieve the above object, in the present invention, at least one infrared bandpass optical filter of about 1.4 μm and about 1.9 μm of an absorption band of water vapor transmitted through glass and an infrared ray made of glass and sensitivity to the above infrared rays are used. A solid-state imaging device comprising: a solid-state imaging device having a light source; and an illumination that generates the infrared rays (parallel laser diode or LED or halogen lamp, etc.), and images a subject within 100 m with the infrared rays. Monitoring system.

また上記において、(LEDまたはハロゲンランプ他の)大気を通過する赤外線の照明を有し、降雨や霧や他の空中水蒸気が飽和水蒸気に近い場合は、水蒸気の吸収帯の赤外線の帯域通過光学フィルタを外し、ガラスが透過する水蒸気の吸収帯の約1.4μmと約1.9μmの発生を停止し、約1μmから約2μmの赤外線の照明を用い、約1μmから約2μmの赤外線で30m以内の被写体を撮像することを特徴とする監視システムである。   Also, in the above, when there is infrared illumination that passes through the atmosphere (such as LED or halogen lamp), and rain, fog, and other aerial water vapor are close to saturated water vapor, an infrared band-pass optical filter in the water vapor absorption band The generation of about 1.4 μm and about 1.9 μm of the water vapor absorption band through which the glass permeates is stopped, the infrared illumination of about 1 μm to about 2 μm is used, and the infrared light of about 1 μm to about 2 μm is used within 30 m. A monitoring system is characterized by imaging a subject.

本発明の監視システムでは、太陽光が直接被写体に当たる場合は、太陽光が1.8kmの大気を通過しない水蒸気の吸収帯の、約1.4μmと約1.9μmで照明し撮影するので、太陽光の影響を受けずに、1.4μmと1.9μmは湿度で大きく変化するがおおよそ100m以内で半減するので、おおよそ100m以内の背景と移動物体と区別し、移動物体の検出が容易になる。   In the monitoring system of the present invention, when sunlight directly hits a subject, the sunlight illuminates and shoots at about 1.4 μm and about 1.9 μm of the absorption band of water vapor that does not pass through the atmosphere of 1.8 km. 1.4 μm and 1.9 μm change greatly with humidity without being affected by light, but are halved within approximately 100 m. Therefore, it is easy to detect moving objects by distinguishing the background from moving objects within approximately 100 m. .

また、降雨や霧や他の空中水蒸気が飽和水蒸気に近い場合は1.4μmと1.9μmの減衰が激しいが、太陽光が直接被写体に当たらないので、水蒸気の吸収帯の赤外線の帯域通過光学フィルタを外し、ガラスが透過する水蒸気の吸収帯の約1.4μmと約1.9μmの発生を停止し、大気を通過する約1μmから約2μmの赤外線の照明を用い、大気を通過する中赤外線で30m以内の被写体を撮像することにより、水蒸気の影響を受けずに、近距離の背景と移動物体と区別し、移動物体の検出が容易になる。   In addition, when rain, fog, or other aerial water vapor is close to saturated water vapor, the attenuation of 1.4 μm and 1.9 μm is severe, but sunlight does not directly hit the subject, so the infrared bandpass optics of the water vapor absorption band Remove the filter, stop the generation of about 1.4 μm and about 1.9 μm of the water vapor absorption band that passes through the glass, and use the infrared illumination of about 1 μm to about 2 μm that passes through the atmosphere, and the mid-infrared that passes through the atmosphere By picking up an image of a subject within 30 m, it is possible to distinguish between a short-distance background and a moving object without being affected by water vapor, and to easily detect the moving object.

その結果、侵入物体を検出するセンサや、8−15μmの遠赤外線撮像装置が不要になる。   As a result, a sensor for detecting an intruding object and an 8-15 μm far-infrared imaging device are not required.

また、可視光と同様のガラスの光学系を使用できるので、フレアやゴーストが少なくコントラストや変調度の高い画像が取得でき、可視光の固体撮像素子とガラスレンズを用いる撮像装置も不要になる。   In addition, since a glass optical system similar to that of visible light can be used, an image with little flare and ghost and high contrast and modulation can be obtained, and an imaging device using a visible light solid-state imaging device and a glass lens becomes unnecessary.

以上により、単一系の固体撮像装置を用いて、夏の炎天下で大気を通過した太陽光が被写体に直接当たる状態でも、太陽光の影響を受けずに、近距離の背景と移動物体と区別を付けることが可能となる。   As described above, using a single-system solid-state imaging device, even when sunlight that has passed through the atmosphere under the hot summer sun hits the subject directly, it is not affected by sunlight and can be distinguished from short-distance backgrounds and moving objects. It becomes possible to attach.

本発明の1実施例の撮像装置の全体構成を示すブロック図の図1と本発明の1実施例の動作を示す模式図の図2とを用いて本発明の1実施例を説明する。   An embodiment of the present invention will be described with reference to FIG. 1 which is a block diagram showing the overall configuration of an imaging apparatus according to an embodiment of the present invention, and FIG. 2 which is a schematic diagram showing the operation of the embodiment of the present invention.

本発明の1実施例の撮像装置の全体構成を示すブロック図の図1と従来の撮像装置の全体構成を示すブロック図の図3との大きな相違は、1.4μmまたは1.9μmの並列レーザーダイオードまたはLEDとハロゲンランプと撮像装置の一組の検出系で、8−15μmの固体撮像素子とカルコゲナイド(S,Se,Te,Ge,As,Sb)等8−15μmの遠赤外線透過光学系を用いる撮像装置と、可視光の固体撮像素子とガラスレンズを用いる撮像装置と侵入物体を検出するセンサの3組の検出系の機能をさせたことである。   The major difference between FIG. 1 of the block diagram showing the overall configuration of the imaging apparatus of one embodiment of the present invention and FIG. 3 of the block diagram showing the overall configuration of the conventional imaging apparatus is a parallel laser of 1.4 μm or 1.9 μm. A detection system consisting of a diode or LED, a halogen lamp, and an imaging device, with a solid-state imaging device of 8-15 μm and a far-infrared transmission optical system of 8-15 μm such as chalcogenide (S, Se, Te, Ge, As, Sb) This is because the functions of three detection systems, that is, an imaging apparatus to be used, an imaging apparatus using a solid-state imaging element for visible light and a glass lens, and a sensor for detecting an intruding object are provided.

本発明の1実施例の撮像装置の全体構成を示すブロック図の図1において、1はガラス製2μm以下の近赤外線透過光学系、2はInGaAsやSi等1−2μm検出撮像素子を用いた近赤外線撮像装置であり、3は侵入者検知や不審行動検出等の移動物体画像処理装置、4は映像表示装置(ピクチャモニタ)、5は録画装置であり、6は人物等の移動物体、7は踏切の路面等の背景であり、8は1.4μmまたは1.9μmのレーザーダイオードまたはLED照明、9は1.4μmまたは1.9μmの少なくとも一方の近赤外線のみを透過する光学帯域通過フィルタ(Band Pass Filter:BPF)である。また、18はハロゲンランプやLED等の大気を通過する近赤外線の照明である。8は1.4μmまたは1.9μmの少なくとも一方の近赤外線のみを透過する光学BPF付きハロゲンランプでもかまわない。   FIG. 1 is a block diagram showing the overall configuration of an image pickup apparatus according to an embodiment of the present invention. 3 is a moving object image processing device for detecting intruders and detecting suspicious behavior, 4 is a video display device (picture monitor), 5 is a recording device, 6 is a moving object such as a person, and 7 is an infrared imaging device. It is a background of a road surface of a railroad crossing, etc., 8 is a laser diode or LED illumination of 1.4 μm or 1.9 μm, 9 is an optical bandpass filter (Band that transmits at least one near infrared ray of 1.4 μm or 1.9 μm) Pass Filter: BPF). Reference numeral 18 denotes near-infrared illumination that passes through the atmosphere, such as a halogen lamp or LED. No. 8 may be a halogen lamp with an optical BPF that transmits only near infrared rays of at least one of 1.4 μm and 1.9 μm.

本発明の1実施例の動作を示す模式図の図2において、(a)は可視光と赤外線の大気中の透過性の概略、(b)は赤外線用ガラス中の透過性の概略、(c)は個体撮像素子の近赤外線分光感度の概略である。   In FIG. 2 which is a schematic diagram showing the operation of one embodiment of the present invention, (a) is an outline of the transparency of visible light and infrared rays in the atmosphere, (b) is an outline of the permeability in infrared glass, (c ) Is an outline of the near-infrared spectral sensitivity of the individual image sensor.

本発明の1実施例の動作を示す模式図の図2(a)は従来の動作を示す模式図の図4の5μm以下を拡大したものである。本発明の1実施例の動作を示す模式図の図2(a)と(b)とを比較して見れば、ガラス製2μm以下の近赤外線透過光学系は、1.4μmおよび1.9μmの近赤外線の透過に余裕があることが判る。   FIG. 2A, which is a schematic diagram showing the operation of one embodiment of the present invention, is an enlarged view of 5 μm or less of FIG. 4 showing the conventional operation. 2A and 2B, which are schematic diagrams showing the operation of one embodiment of the present invention, the near-infrared transmission optical system made of glass having a thickness of 2 μm or less is 1.4 μm and 1.9 μm. It can be seen that there is room for transmission of near infrared rays.

本発明の1実施例の動作を示す模式図の図2の(c)は個体撮像素子の近赤外線分光感度の概略で、鎖線はSiシリコン製の深くフォトダイオードを形成した撮像素子の分光感度例で、実線はInGaAsインジウムガリウム砒素製の撮像素子の1.7μmを重視した分光感度例で、点線はInGaAs製の撮像素子の2.2μmを重視した分光感度例である。ここで、1.4μmはSi製の撮像素子でもフレームトランスファーCCDや横型オーバーフロードレインCCDで深くフォトダイオードを形成した撮像素子なら撮像可能である。深いフォトダイオードで発生しやすい暗電流のばらつきと経時劣化とを低減するため、CCD撮像素子の結晶欠陥を低減し、電界集中を低減し、CCD撮像素子を冷却するのが好ましい。   FIG. 2C of the schematic diagram showing the operation of one embodiment of the present invention is an outline of the near-infrared spectral sensitivity of the solid-state imaging device, and the chain line is an example of spectral sensitivity of the imaging device in which a photodiode made of Si silicon is deeply formed. The solid line is an example of spectral sensitivity focusing on 1.7 μm of an imaging device made of InGaAs indium gallium arsenide, and the dotted line is an example of spectral sensitivity focusing on 2.2 μm of an imaging device made of InGaAs. Here, an image pickup element of 1.4 μm can be picked up even if it is an image pickup element made of Si and formed with a photodiode deeply by a frame transfer CCD or a horizontal overflow drain CCD. In order to reduce dark current variations and deterioration with time, which are likely to occur in deep photodiodes, it is preferable to reduce crystal defects in the CCD image sensor, reduce electric field concentration, and cool the CCD image sensor.

本発明の1実施例の撮像装置の全体構成を示すブロック図の図1と本発明の1実施例の動作を示す模式図の図2において、湿度で大きく変化するが1.8kmの大気を全く透過しないでおおよそ100m以内で半減する1.4μmまたは1.9μmを用いているので、太陽の影響を全く受けないで安定におおよそ100m以内の踏切の路面等の背景と区別して人物等の移動物体が検出できる。   FIG. 1 is a block diagram showing the overall configuration of an image pickup apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing the operation of the embodiment of the present invention. Because it uses 1.4μm or 1.9μm, which does not pass through and halves within about 100m, it is not affected by the sun at all, and it is stably distinguished from the background such as the road surface of railroad crossings within about 100m. Can be detected.

ところで、1.4μm以上の光は眼の硝子体の液体によって伝達されないため、その出力が網膜に送られる可能性は低く、角膜の表面が損傷する可能性はあっても、目の焦点合わせ機能によって出力密度が拡大されることはない。したがって、非常に大きな出力でない限り、損傷が発生することはない。しかし指向性の低い拡散させたレーザーダイオードまたはLEDを多数並列させた照明が好ましい。   By the way, since the light of 1.4 μm or more is not transmitted by the vitreous fluid of the eye, its output is unlikely to be sent to the retina, and even though the surface of the cornea may be damaged, the focusing function of the eye Does not increase the power density. Therefore, no damage will occur unless the output is very large. However, illumination in which a number of diffused laser diodes or LEDs with low directivity are arranged in parallel is preferable.

また、降雨や霧や他の空中水蒸気が飽和水蒸気に近い場合は1.4μmと1.9μmの減衰が激しいが、太陽光が直接被写体に当たらないので、水蒸気の吸収帯の赤外線の1.4μmまたは1.9μm透過フィルタの9を外し、1.4μmまたは1.9μmの照明8の発光を停止し、大気を通過する約1μmから約2μmのハロゲンランプやLED等の赤外線の照明18を用い、大気を通過する近赤外線で30m以内を撮像することにより、水蒸気の影響を受けずに、近距離の踏切内の路面等の背景と人物等の移動物体と区別し、人物等の移動物体の検出が容易になる。   In addition, when rain, fog, or other aerial water vapor is close to saturated water vapor, the attenuation of 1.4 μm and 1.9 μm is severe, but sunlight does not directly hit the subject, so the infrared absorption of water vapor is 1.4 μm. Alternatively, remove 9 of the 1.9 μm transmission filter, stop emission of the 1.4 μm or 1.9 μm illumination 8, and use an infrared illumination 18 such as a halogen lamp or LED of about 1 μm to about 2 μm that passes through the atmosphere, Detects moving objects such as people by imaging within 30m with near infrared rays that pass through the atmosphere, without being affected by water vapor, and distinguishing backgrounds such as road surfaces within a short distance crossing and moving objects such as people Becomes easier.

その結果、侵入物体を検出するセンサや、8−15μmの遠赤外線撮像装置が不要になる。   As a result, a sensor for detecting an intruding object and an 8-15 μm far-infrared imaging device are not required.

また、可視光と同様のガラスの光学系を使用できるので、フレアやゴーストが少なくコントラストや変調度の高い画像が取得でき、可視光の固体撮像素子とガラスレンズを用いる撮像装置も不要になる。   In addition, since a glass optical system similar to that of visible light can be used, an image with little flare and ghost and high contrast and modulation can be obtained, and an imaging device using a visible light solid-state imaging device and a glass lens becomes unnecessary.

以上により、単一系の固体撮像装置を用いて、夏の炎天下で大気を通過した太陽光が被写体に直接当たる状態でも、太陽光の影響を受けずに、近距離の踏切内の路面等の背景と人物等の移動物体と区別を付けることが可能となる。   As described above, using a single-system solid-state imaging device, even in the state where sunlight that has passed through the atmosphere under the summer sun hits the subject directly, it is not affected by sunlight, such as the road surface in a short-distance railroad crossing A background and a moving object such as a person can be distinguished from each other.

そのため、侵入者検知や不審行動検出等の移動物体画像処理装置3は、侵入物体を検出するセンサや、8−15μmの遠赤外線撮像装置の情報を参考にすることなく、InGaAsやSi等1−2μm検出撮像素子を用いた近赤外線撮像装置2の映像信号を、侵入者検知や不審行動検出等の移動物体画像処理装置3に入力して処理するだけで良く、監視システムが簡便で安定となる。   For this reason, the moving object image processing apparatus 3 for detecting intruders and detecting suspicious behaviors, such as InGaAs, Si, etc., without referring to the sensor for detecting the intruding object and the information about the 8-15 μm far-infrared imaging device, is used. It is only necessary to input and process the video signal of the near infrared imaging device 2 using the 2 μm detection imaging device to the moving object image processing device 3 such as intruder detection or suspicious behavior detection, and the monitoring system is simple and stable. .

本発明の1実施例の撮像装置の全体構成を示すブロック図1 is a block diagram showing the overall configuration of an imaging apparatus according to an embodiment of the present invention. 本発明の1実施例の動作を示す模式図((a) 可視光と赤外線の大気中の透過性の概略 (b) 赤外線用ガラス中の透過性の概略 (c) 個体撮像素子の近赤外線分光感度の概略)Schematic diagram showing the operation of one embodiment of the present invention ((a) Outline of transmission of visible light and infrared light in the atmosphere (b) Outline of transmission in infrared glass (c) Near-infrared spectroscopy of individual imaging device (Summary of sensitivity) 従来の撮像装置の全体構成を示すブロック図The block diagram which shows the whole structure of the conventional imaging device 従来の動作を示す模式図Schematic diagram showing conventional operation

符号の説明Explanation of symbols

1:ガラス製2μm以下の近赤外線透過光学系
2:InGaAs等1−2μm検出撮像素子を用いた近赤外線撮像装置
3,14:侵入者検知や不審行動検出等の移動物体画像処理装置
4,15:映像表示装置(ピクチャモニタ)
5,16:録画装置
6:移動物体 7:背景
19:体温と同等温度の背景 20:体温より高温の背景
8:1.4μmまたは1.9μmの少なくとも一方の近赤外線照明
9:1.4μmまたは1.9μmの少なくとも一方の近赤外線のみを透過する光学帯域通過フィルタ(BPF)
10:カルコゲナイド等8−15μmの遠赤外線透過光学系
11:集電素子等8−15μm検出撮像素子を用いた遠赤外線撮像装置
12:ガラス製可視光線透過光学系
13:可視光線撮像装置
17:センサ
18:ハロゲンランプやLED等の大気を通過する近赤外線の照明
1: Near-infrared transmission optical system 2 [mu] m or less made of glass 2: Near-infrared imaging device 3 or 14 using 1-2 [mu] m detection imaging device such as InGaAs: Moving object image processing device 4, 15 for detecting intruders or detecting suspicious behavior : Video display device (picture monitor)
5, 16: Recording device 6: Moving object 7: Background
19: Background of temperature equivalent to body temperature 20: Background higher than body temperature 8: Near-infrared illumination of at least one of 1.4 μm or 1.9 μm 9: Transmits only near-infrared of at least one of 1.4 μm or 1.9 μm Optical bandpass filter (BPF)
10: 8-15 μm far-infrared transmission optical system 11 such as chalcogenide 11: Far-infrared imaging device 12: glass-made visible light transmission optical system 13: visible light imaging device 17: sensor 18: Near-infrared illumination that passes through the atmosphere such as halogen lamps and LEDs

Claims (2)

ガラス製赤外線光学系とガラスが透過する水蒸気の吸収帯の約1.4μmと約1.9μmの少なくとも一方の赤外線の帯域通過光学フィルタと上記赤外線に感度を有する固体撮像素子とからなる固体撮像装置と、上記赤外線を発生する照明とを有し、上記赤外線で100m以内の被写体を撮像することを特徴とする監視システム。 A solid-state imaging device comprising a glass infrared optical system, at least one infrared band-pass optical filter having a water vapor absorption band of about 1.4 μm and about 1.9 μm, and a solid-state imaging device having sensitivity to the infrared rays. And an illumination that generates the infrared rays, and images a subject within 100 m with the infrared rays. 請求項1の監視システムにおいて、大気を通過する赤外線の照明を有し、降雨や霧や他の空中水蒸気が飽和水蒸気に近い場合は、水蒸気の吸収帯の赤外線の帯域通過光学フィルタを外し、ガラスが透過する水蒸気の吸収帯の約1.4μmと約1.9μmの発生を停止し、約1μmから約2μmの赤外線の照明を用い、約1μmから約2μmの赤外線で30m以内の被写体を撮像することを特徴とする監視システム。
2. The monitoring system according to claim 1, further comprising an infrared illumination that passes through the atmosphere, and when rain, fog, or other airborne water vapor is close to saturated water vapor, the infrared bandpass optical filter of the water vapor absorption band is removed, and glass Stops the generation of about 1.4 μm and about 1.9 μm in the absorption band of water vapor that passes through, and uses an infrared illumination of about 1 μm to about 2 μm to image a subject within 30 m with an infrared of about 1 μm to about 2 μm. A monitoring system characterized by that.
JP2008125977A 2008-05-13 2008-05-13 Monitoring system Pending JP2009278249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125977A JP2009278249A (en) 2008-05-13 2008-05-13 Monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125977A JP2009278249A (en) 2008-05-13 2008-05-13 Monitoring system

Publications (1)

Publication Number Publication Date
JP2009278249A true JP2009278249A (en) 2009-11-26

Family

ID=41443286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125977A Pending JP2009278249A (en) 2008-05-13 2008-05-13 Monitoring system

Country Status (1)

Country Link
JP (1) JP2009278249A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102478528A (en) * 2010-11-23 2012-05-30 湖北新华光信息材料有限公司 Infrared tester for internal quality of glass and test method thereof
JP2012109768A (en) * 2010-11-17 2012-06-07 Sumitomo Electric Ind Ltd Imaging apparatus and imaging system
EP2997520A4 (en) * 2013-05-17 2017-01-25 International Electronic Machines Corp. Operations monitoring in an area
CN111426395A (en) * 2020-05-07 2020-07-17 山东天用智能技术有限公司 Outdoor infrared thermometer with function of eliminating sunlight interference

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109768A (en) * 2010-11-17 2012-06-07 Sumitomo Electric Ind Ltd Imaging apparatus and imaging system
CN102478528A (en) * 2010-11-23 2012-05-30 湖北新华光信息材料有限公司 Infrared tester for internal quality of glass and test method thereof
EP2997520A4 (en) * 2013-05-17 2017-01-25 International Electronic Machines Corp. Operations monitoring in an area
US10202135B2 (en) 2013-05-17 2019-02-12 International Electronic Machines Corp. Operations monitoring in an area
US10970851B2 (en) 2013-05-17 2021-04-06 International Electronic Machines Corp. Operations monitoring in an area
CN111426395A (en) * 2020-05-07 2020-07-17 山东天用智能技术有限公司 Outdoor infrared thermometer with function of eliminating sunlight interference
CN111426395B (en) * 2020-05-07 2021-07-23 山东天用智能技术有限公司 Outdoor infrared thermometer with function of eliminating sunlight interference

Similar Documents

Publication Publication Date Title
US8085157B2 (en) Smoke detectors
KR20200095547A (en) Spectrometer devices and systems
US8841617B2 (en) Flame detectors and methods of detecting flames
WO2001017264A1 (en) Optical observation device and method for observing articles at elevated temperatures
JP2005214974A (en) Method and apparatus for detecting contaminant on window surface of viewing system utilizing light
JP2016035398A (en) Distance measurement apparatus and distance measuring method
JP5876347B2 (en) Hydrogen flame visualization apparatus and method
JP2009278249A (en) Monitoring system
CN105911072A (en) Optical rapid detection device for minor flaws on surfaces of spheres
CN206741006U (en) Dangerous matter sources detection means
Bolduc et al. THz imaging and radiometric measurements using a microbolometer-based camera
JP2012080524A (en) Monitoring system
US9413989B2 (en) Dual band imager
CN104459698A (en) Laser monitor detection device based on infrared scanning monitoring technology
CN108957573A (en) Danger source detection device and method
JP2010217334A (en) Filter for light receiving element and light receiving device
CN108240801A (en) A kind of fire field environment detection method and device
CN105241818A (en) Photoelectric probe for oil monitoring on water surface
US10379040B2 (en) Detecting moisture in solar cells
ES2952565T3 (en) System and method for detecting glass ceramics
JP2010237029A (en) Apparatus and method of evaluating infrared optical system
JP2011205623A (en) Imaging apparatus and imaging method
JP5240085B2 (en) Object identification device
CN102650549B (en) FPA (focal plane array)-based uncooled thermal imaging optical system modulated by point grid beamsplitter
CN102650551B (en) Optical readout method of point grid beamsplitter of FPA (focal plane array)-based uncooled thermal imaging optical system