JP2009278001A - Charged beam lithography system - Google Patents

Charged beam lithography system Download PDF

Info

Publication number
JP2009278001A
JP2009278001A JP2008129822A JP2008129822A JP2009278001A JP 2009278001 A JP2009278001 A JP 2009278001A JP 2008129822 A JP2008129822 A JP 2008129822A JP 2008129822 A JP2008129822 A JP 2008129822A JP 2009278001 A JP2009278001 A JP 2009278001A
Authority
JP
Japan
Prior art keywords
cooling pipe
sample
drawing apparatus
electron beam
charged beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008129822A
Other languages
Japanese (ja)
Inventor
Hiroyasu Saito
博保 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2008129822A priority Critical patent/JP2009278001A/en
Publication of JP2009278001A publication Critical patent/JP2009278001A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charged beam lithography system capable of performing precise lithography by uniformizing temperature in a uniform heating plate 19 to suppress a temperature difference depending on a position in a sample 12. <P>SOLUTION: The electron beam lithography system 11 has: an electron-optical barrel 16 for emitting electron beams; a uniform heating unit 17 comprising a uniform heating plate 19 formed at a lower portion of the electron-optical barrel 16, a first cooling pipe 21 disposed along the periphery of the uniform heating plate 19, and a second cooling pipe 21 that is disposed along the first cooling pipe 21 and has a coolant flowing in a direction opposite to that of a coolant flowing in the first cooling pipe; and a casing 14 having the electron-optical barrel 16 at an upper portion and an XY stage 13 for placing the sample 12 inside. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、荷電ビーム描画装置に関するものである。   The present invention relates to a charged beam drawing apparatus.

半導体デバイスの微細化に伴い、LSI等のマスクパターンの微細化が要求されている。この微細なマスクパターンの形成には、優れた解像度を有する電子ビーム描画装置が利用されている。   With the miniaturization of semiconductor devices, miniaturization of mask patterns such as LSIs is required. For the formation of this fine mask pattern, an electron beam lithography apparatus having an excellent resolution is used.

この電子ビーム描画装置は、主に、パターンが描画される試料を載置するステージと、このステージを内部に有する筐体と、この筐体の上部に設けられ、電子ビームを射出する電子ビーム発生源及び、試料上の所望の位置に所望のパターンを描画するために電子ビームを形成する電子ビーム制御系を有する電子光学鏡筒とで構成されている。   This electron beam writing apparatus mainly includes a stage on which a sample on which a pattern is drawn is placed, a housing having this stage inside, and an electron beam generating device that is provided on the housing and emits an electron beam. A source and an electron optical column having an electron beam control system for forming an electron beam for drawing a desired pattern at a desired position on the sample.

上述の電子ビーム描画装置において、試料は、電子ビーム描画装置のチャンバ側面からの輻射や、試料が載置されるステージからの熱伝導及び、この試料をステージに載置するまでの搬送過程等により、温度分布を有する。この結果、試料は熱膨張量の違いによって複雑に変形する。   In the above-described electron beam drawing apparatus, the sample is radiated from the side surface of the chamber of the electron beam drawing apparatus, heat conduction from the stage on which the sample is placed, and the transport process until the sample is placed on the stage. Has a temperature distribution. As a result, the sample is complicatedly deformed due to the difference in thermal expansion.

一方で、従来の電子ビーム描画装置による電子ビームの照射位置は、レーザー干渉計の測定値に基づいて高度に制御されるものである。しかし、この測定値は、熱による試料の変形までを検出して制御するものではない。従って、上述のように試料が熱により変形した場合には、電子ビームの照射位置がずれる。   On the other hand, the irradiation position of the electron beam by the conventional electron beam drawing apparatus is highly controlled based on the measured value of the laser interferometer. However, this measured value does not detect and control the deformation of the sample due to heat. Therefore, when the sample is deformed by heat as described above, the irradiation position of the electron beam is shifted.

そこで、内部に冷却水を循環させることで冷却された恒温化容器を電子光学鏡筒の下部に設置し、これを試料に近接させることで、恒常化容器の温度を試料に転写させ、試料温度の均一化を図った電子ビーム描画装置が知られている(例えば、特許文献1を参照)。
特開2003−195476号公報(段落0020、図1等)
Therefore, a constant temperature container cooled by circulating cooling water inside is installed in the lower part of the electron optical column, and by bringing it close to the sample, the temperature of the constant temperature container is transferred to the sample, and the sample temperature There is known an electron beam lithography apparatus that achieves uniformization (see, for example, Patent Document 1).
Japanese Patent Laying-Open No. 2003-195476 (paragraph 0020, FIG. 1, etc.)

しかし、近年の電子ビーム描画装置の高精度化に対して、従来の恒温化容器を有する電子ビーム描画装置では、十分に高い精度で試料の温度分布を均一化することが困難であるという問題がある。   However, in contrast to the recent increase in accuracy of electron beam lithography apparatus, there is a problem that it is difficult to make the temperature distribution of the sample uniform with sufficiently high accuracy in the conventional electron beam lithography apparatus having a thermostatic container. is there.

また、上述の問題は、電子ビーム描画装置に限らず、電子ビームやイオンビーム等を含む荷電ビーム描画装置においても同様であり、十分に高い精度で試料の温度分布を均一化することは困難である。   The above-mentioned problem is not limited to an electron beam lithography apparatus, but also applies to a charged beam lithography apparatus including an electron beam, an ion beam, etc., and it is difficult to make the temperature distribution of the sample uniform with sufficiently high accuracy. is there.

そこで、本発明は、均熱板の温度をより高い精度で均一化することで試料の変形を抑制し、より高精度な描画を行うことが可能な荷電ビーム描画装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a charged beam drawing apparatus capable of suppressing the deformation of the sample by equalizing the temperature of the soaking plate with higher accuracy and performing drawing with higher accuracy. To do.

本発明の荷電ビーム描画装置は、荷電ビームを出射する荷電粒子光学鏡筒と、この荷電粒子光学鏡筒の下部に形成される均熱板、この均熱板の周に沿って配置される第1の冷却管及び、この第1の冷却管に沿って配置され、第1の冷却管内を流れる冷媒と逆向きに冷媒が流れる第2の冷却管を有する均熱ユニットと、前記荷電粒子光学鏡筒を上部に有し、内部に試料を載置するXYステージを有する筐体と、を具備することを特徴とするものである。   A charged beam drawing apparatus according to the present invention includes a charged particle optical column that emits a charged beam, a heat equalizing plate formed at a lower portion of the charged particle optical column, and a first arranged along the circumference of the heat equalizing plate. A soaking unit, a soaking unit that is disposed along the first cooling pipe, and that has a second cooling pipe that flows in a direction opposite to the refrigerant that flows through the first cooling pipe, and the charged particle optical mirror. And a casing having an XY stage on which a sample is placed.

また、本発明の荷電ビーム描画装置において、冷媒は、第1冷却管の流入部より折り返し部を経て第2の冷却管に導入され、第2の冷却管の排出部から排出されることを特徴とするものである。   In the charged beam drawing apparatus of the present invention, the refrigerant is introduced from the inflow portion of the first cooling pipe to the second cooling pipe through the folded portion, and is discharged from the discharge portion of the second cooling pipe. It is what.

また、本発明の荷電ビーム描画装置において、折り返し部は、流入部または排出部と近接して設けられることが好ましい。   In the charged beam drawing apparatus of the present invention, it is preferable that the folded portion is provided in the vicinity of the inflow portion or the discharge portion.

また、本発明の荷電ビーム描画装置における均熱ユニットは、第1の冷却管と第2の冷却管とを複数有するものであってもよい。   Further, the soaking unit in the charged beam drawing apparatus of the present invention may have a plurality of first cooling pipes and second cooling pipes.

ここで、本発明の荷電ビーム描画装置における均熱板は、銅で形成されることが好ましい。   Here, the soaking plate in the charged beam drawing apparatus of the present invention is preferably formed of copper.

本発明によれば、均熱板の温度をより高い精度で均一化することで試料の変形を抑制し、より高精度な描画を行うことが可能な荷電ビーム描画装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the charged beam drawing apparatus which can suppress the deformation | transformation of a sample by equalizing the temperature of a soaking plate with higher precision, and can perform drawing with higher precision can be provided.

以下に、本発明の実施形態を、図面を参照して説明する。なお、本実施形態においては、荷電ビーム描画装置の一例として、電子ビーム描画装置を説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the present embodiment, an electron beam drawing apparatus will be described as an example of a charged beam drawing apparatus.

はじめに、本実施形態の電子ビーム描画装置について、図1を参照して説明する。   First, the electron beam drawing apparatus of this embodiment will be described with reference to FIG.

図1は、本発明の実施形態に係る電子ビーム描画装置の構成を模式的に示す構造断面図である。   FIG. 1 is a structural cross-sectional view schematically showing a configuration of an electron beam drawing apparatus according to an embodiment of the present invention.

図1に示すように、本実施形態による電子ビーム描画装置11は、試料12が載置されるXYステージ13を内部に有する筐体14と、この筐体14の上部に配置され、内部に電子銃(図示せず)及び電子ビームを形成するための電子ビーム制御系を有する電子光学鏡筒16と、この電子光学鏡筒16の下部に形成される均熱ユニット17とを有している。ここで電子ビーム制御系とは、例えば、コイル状の電磁レンズ15や、方形の開口または鍵穴形状の開口を有する第1、第2のアパーチャー(図示せず)等で構成される。   As shown in FIG. 1, the electron beam lithography apparatus 11 according to the present embodiment includes a housing 14 having an XY stage 13 on which a sample 12 is placed, and an upper portion of the housing 14. It has a gun (not shown) and an electron optical column 16 having an electron beam control system for forming an electron beam, and a heat equalizing unit 17 formed below the electron optical column 16. Here, the electron beam control system includes, for example, a coiled electromagnetic lens 15, first and second apertures (not shown) having a square opening or a keyhole-shaped opening.

図2は、この均熱ユニット17を示す斜視図である。図2に示すように、均熱ユニット17は、中央に電子ビームが通過する開口18が形成された均熱板19と、この均熱板19の周に沿って形成された径小部20と、この径小部20上に形成され、内部に冷却管21を有する径大部22とで構成されている。ここで径大、径小とは外径の大小を意味するものである。径大部22には、均熱ユニット17内に均熱板を冷却するための冷媒を流入、排出するための流入口23及び排出口24が設けられている。   FIG. 2 is a perspective view showing the soaking unit 17. As shown in FIG. 2, the soaking unit 17 includes a soaking plate 19 in which an opening 18 through which an electron beam passes is formed in the center, and a small-diameter portion 20 formed along the circumference of the soaking plate 19. The large-diameter portion 22 is formed on the small-diameter portion 20 and has a cooling pipe 21 inside. Here, large diameter and small diameter mean large and small outer diameters. The large diameter portion 22 is provided with an inlet 23 and an outlet 24 for injecting and discharging a refrigerant for cooling the soaking plate into the soaking unit 17.

図3は、図2に示す均熱ユニット17の径大部22の断面図である。図3に示すように、径大部22の側壁22aには、冷媒の流入口23及び冷媒の排出口24が貫通して形成されている。また、冷却管21は、折り返し部21´を有する1本の管で形成されており、この両端の流入部21in、排出部21outは、それぞれ流入口23及び排出口24に接続されている。ここで、冷却管21の折り返し部21´とは、冷却管21の内部を流れる冷媒の流れる向きが反転する箇所をいう。このような冷却管21は、折り返し部21´が排出部21outの近傍に配置されるように形成されている。すなわち、この冷却管21は、径大部22に沿った大部分においては2重に配置されており、流入部21inと排出部21outとの間においては、1重に配置されている。   FIG. 3 is a cross-sectional view of the large diameter portion 22 of the soaking unit 17 shown in FIG. As shown in FIG. 3, a refrigerant inlet 23 and a refrigerant outlet 24 are formed through the side wall 22 a of the large diameter portion 22. The cooling pipe 21 is formed by a single pipe having a folded portion 21 ′, and the inflow portion 21 in and the discharge portion 21 out at both ends are connected to the inflow port 23 and the discharge port 24, respectively. Here, the folded portion 21 ′ of the cooling pipe 21 refers to a place where the flow direction of the refrigerant flowing inside the cooling pipe 21 is reversed. Such a cooling pipe 21 is formed such that the folded portion 21 ′ is disposed in the vicinity of the discharge portion 21 out. That is, most of the cooling pipes 21 are arranged in a double manner along the large diameter portion 22, and are arranged in a single manner between the inflow portion 21in and the discharge portion 21out.

このような電子ビーム描画装置11において、電子光学鏡筒16の上方に形成される電子銃(図示せず)から出射された電子ビームは、電磁レンズ15に電流を流すことで発生する磁界によって、第1、第2のアパーチャー(図示せず)がそれぞれ有する開口の所望の位置に偏向させて通過させることで所望の形状に形成され、さらに試料12の所望の位置に照射されるように制御される。このような電子ビーム照射を、レーザー干渉計(図示せず)で試料12の位置を測定し、この測定値に基づいてXYステージ13を移動させながら行うことで、所望のパターンを形成する。   In such an electron beam drawing apparatus 11, an electron beam emitted from an electron gun (not shown) formed above the electron optical column 16 is caused by a magnetic field generated by passing a current through the electromagnetic lens 15. The first and second apertures (not shown) are formed to have a desired shape by being deflected and passed to desired positions of the openings of the first and second apertures, and further controlled to be irradiated to the desired position of the sample 12. The Such electron beam irradiation is performed by measuring the position of the sample 12 with a laser interferometer (not shown) and moving the XY stage 13 based on the measured value, thereby forming a desired pattern.

ここで、本実施形態の電子ビーム描画装置11が有する均熱ユニット17は、均熱板19を試料12に隣接させることで、均熱板19の温度を試料12に転写する。この均熱板19は、例えば銅または、銅を含む金属で形成されたものである。しかし、均熱板19は、これらに限るものではなく、熱伝導率の高い材料であればよい。このとき、均熱板19に設置された流入口23と接続された冷却管21の流入部21inより冷媒が流入され、冷却管21内を循環して、排出部21outより排出される。この冷媒は、例えば水である。   Here, the soaking unit 17 included in the electron beam lithography apparatus 11 of the present embodiment transfers the temperature of the soaking plate 19 to the sample 12 by causing the soaking plate 19 to be adjacent to the sample 12. The soaking plate 19 is made of, for example, copper or a metal containing copper. However, the soaking plate 19 is not limited to these, and any material having high thermal conductivity may be used. At this time, the refrigerant flows in from the inflow portion 21in of the cooling pipe 21 connected to the inlet 23 provided in the soaking plate 19, circulates in the cooling pipe 21, and is discharged from the discharge portion 21out. This refrigerant is, for example, water.

この均熱ユニット17に配置される冷却管21を循環する冷媒の温度は、図3の矢印で示す向きに均熱板19を循環するに従って上昇する。例えば、流入口23付近での冷媒の温度から順に、図3に示す8箇所(21a、21b、21c、21d、21e、21f、21g、21h)の冷媒の温度は、それぞれ、20.000℃、20.143℃、20.286℃、20.429℃、20.571℃、20.714℃、20.857℃、21.000℃であり、流入部21in付近の位置21aの冷媒の温度と、排出部21out付近の位置21hの冷媒の温度とでは、1.000℃程度の差が生じる。   The temperature of the refrigerant circulating through the cooling pipe 21 arranged in the soaking unit 17 increases as it circulates through the soaking plate 19 in the direction indicated by the arrow in FIG. For example, the refrigerant temperatures at eight locations (21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h) shown in FIG. 20.143 ° C., 20.286 ° C., 20.429 ° C., 20.571 ° C., 20.714 ° C., 20.857 ° C., 21.000 ° C., and the temperature of the refrigerant at the position 21 a near the inflow portion 21 in; A difference of about 1.000 ° C. occurs with the temperature of the refrigerant at the position 21 h in the vicinity of the discharge portion 21 out.

しかし、冷却管21は、冷媒が均熱板19の周に沿って1周した後、折り返し部21´で折り返して逆向きに1周するように配置されるため、均熱板19の各位置における冷媒の平均温度は20.500℃程度となり、ほぼ同一になる。さらに、流入口23と排出口24との間にも冷却管21が1重に配置されているため、均熱板19における流入口23と排出口24との間の領域も、冷却される。従って、均熱板19の温度はほぼ同一に保たれるため、試料12は、位置によらずほぼ同一の温度になる。従って、試料12の変形を抑制することが可能となるため、試料12の変形による描画精度の劣化を抑制することが可能となる。   However, since the cooling pipe 21 is arranged so that the refrigerant makes one round along the circumference of the heat equalizing plate 19 and then turns back at the turn-back portion 21 ′ and makes one round in the opposite direction, each position of the heat equalizing plate 19 The average temperature of the refrigerant is about 20.500 ° C., which is almost the same. Furthermore, since the cooling pipe 21 is also arranged in a single manner between the inlet 23 and the outlet 24, the region between the inlet 23 and the outlet 24 in the soaking plate 19 is also cooled. Therefore, since the temperature of the soaking plate 19 is kept substantially the same, the sample 12 has almost the same temperature regardless of the position. Accordingly, since deformation of the sample 12 can be suppressed, it is possible to suppress deterioration in drawing accuracy due to deformation of the sample 12.

以上に、本実施形態の電子ビーム描画装置11について説明したが、本発明において、冷却管21は、内部を循環する冷媒が互いに逆向きに流れる1組の管で形成されていればよく、様々に変形可能である。   Although the electron beam drawing apparatus 11 of the present embodiment has been described above, in the present invention, the cooling pipe 21 may be formed of a set of pipes in which the refrigerant circulating inside flows in opposite directions. It can be deformed.

図4に、冷却管の配置の変形例を示す。図4に示すように、冷却管31、32は、2本の管で構成されており、径大部22に沿って内周に冷却管31が、その外周に冷却管32がそれぞれ配置されている。また、2本の冷却管31、32の両端にはそれぞれ、流入部31in、32in及び排出部31out、32outが形成され、それぞれ流入口33、33´、排出口34、34´と接続されている。このとき、図中の矢印で示すように、2本の冷却管31を流れる冷媒の流れる向きが互いに逆向きであれば、上述と同様の効果を得ることが可能である。さらに、図示はしないが、図3または図4に示す冷却管は、内部を循環する冷媒が互いに逆向きに流れる1組の管が複数形成された構成であっていてもよい。また、冷却管の流入部と排出部とが形成される位置は、互いに逆であっても上述と同様の効果が得られることは、言うまでもない。   FIG. 4 shows a modification of the arrangement of the cooling pipes. As shown in FIG. 4, the cooling pipes 31 and 32 are composed of two pipes, and the cooling pipe 31 is arranged on the inner circumference along the large diameter portion 22, and the cooling pipe 32 is arranged on the outer circumference thereof. Yes. Further, inflow portions 31in and 32in and discharge portions 31out and 32out are formed at both ends of the two cooling pipes 31 and 32, respectively, and are connected to the inflow ports 33 and 33 ′ and the discharge ports 34 and 34 ′, respectively. . At this time, as indicated by the arrows in the figure, the same effects as described above can be obtained if the flow directions of the refrigerants flowing through the two cooling pipes 31 are opposite to each other. Further, although not shown, the cooling pipe shown in FIG. 3 or 4 may have a configuration in which a plurality of sets of pipes in which the refrigerant circulating inside flows in opposite directions are formed. Needless to say, the same effect as described above can be obtained even if the positions where the inlet and outlet of the cooling pipe are formed are opposite to each other.

また、冷媒は、上述の実施形態においては水であったが、吸熱効果が得られる他の流体であってもよく、冷媒の種類は限定されない。   Moreover, although the refrigerant | coolant was water in the above-mentioned embodiment, the other fluid from which the endothermic effect is acquired may be sufficient, and the kind of refrigerant | coolant is not limited.

以上に、本発明に係る電子ビーム描画装置について説明した。しかし、本発明は、上述の電子ビーム描画装置に限るものではなく、本発明の趣旨を逸脱しない範囲で様々に適用可能である。例えば、イオンビームをマスク基板に照射することで描画を行うイオンビーム描画装置及び、これらを含めた荷電ビーム描画装置が有する荷電粒子光学鏡筒に対して、本発明を適用することが可能である。ここで荷電粒子光学鏡筒とは、上述の電子ビーム描画装置が有する電子光学鏡筒に対応するものであり、鏡筒内部に、荷電粒子発生源及び、荷電ビームを制御する荷電ビーム制御系を有するものである。 The electron beam drawing apparatus according to the present invention has been described above. However, the present invention is not limited to the above-described electron beam drawing apparatus, and can be variously applied without departing from the spirit of the present invention. For example, the present invention can be applied to an ion beam drawing apparatus that performs drawing by irradiating a mask substrate with an ion beam and a charged particle optical column included in a charged beam drawing apparatus including the ion beam drawing apparatus. . Here, the charged particle optical column corresponds to the electron optical column included in the electron beam drawing apparatus described above, and a charged particle generation source and a charged beam control system for controlling the charged beam are provided inside the column. It is what you have.

本実施形態の電子ビーム描画装置を示す構造断面図である。It is a structure sectional view showing the electron beam drawing apparatus of this embodiment. 本実施形態に係る均熱ユニットを示す斜視図である。It is a perspective view which shows the soaking | uniform-heating unit which concerns on this embodiment. 図2に示す均熱ユニットの径大部を示す断面図である。It is sectional drawing which shows the large diameter part of the soaking | uniform-heating unit shown in FIG. 冷却管の配置の変形例を示す均熱ユニットの径大部を示す断面図である。It is sectional drawing which shows the large diameter part of the soaking | uniform-heating unit which shows the modification of arrangement | positioning of a cooling pipe.

符号の説明Explanation of symbols

11・・・電子ビーム描画装置、12・・・試料、13・・・XYステージ、14・・・筐体、15・・・電磁レンズ、16・・・電子光学鏡筒、17・・・均熱ユニット、18・・・開口、19・・・均熱板、20・・・均熱ユニットの径小部、21、31、32・・・冷却管、21´・・・冷却管の折り返し部、21in、31in、32in…流入部、21out、31out、32out…排出部、21a〜21h・・・冷却管の各位置、22・・・均熱ユニットの径大部、22a・・・径大部の側壁、23、33、33´・・・流入口、24、34、34´・・・排出口。   DESCRIPTION OF SYMBOLS 11 ... Electron beam drawing apparatus, 12 ... Sample, 13 ... XY stage, 14 ... Housing, 15 ... Electromagnetic lens, 16 ... Electro-optic lens barrel, 17 ... Uniformity Heat unit, 18 ... opening, 19 ... soaking plate, 20 ... small diameter part of soaking unit, 21, 31, 32 ... cooling pipe, 21 '... folding part of cooling pipe , 21in, 31in, 32in ... inflow part, 21out, 31out, 32out ... discharge part, 21a to 21h ... each position of the cooling pipe, 22 ... large diameter part of the soaking unit, 22a ... large diameter part Side walls, 23, 33, 33 '... inlet, 24, 34, 34' ... outlet.

Claims (5)

荷電ビームを出射する荷電粒子光学鏡筒と、
この荷電粒子光学鏡筒の下部に形成される均熱板、この均熱板の周に沿って配置される第1の冷却管及び、この第1の冷却管に沿って配置され、第1の冷却管内を流れる冷媒と逆向きに冷媒が流れる第2の冷却管を有する均熱ユニットと、
前記荷電粒子光学鏡筒を上部に有し、内部に試料を載置するXYステージを有する筐体と、
を具備することを特徴とする荷電ビーム描画装置。
A charged particle optical column that emits a charged beam;
A soaking plate formed in a lower portion of the charged particle optical column; a first cooling pipe arranged along the circumference of the soaking plate; and a first cooling pipe arranged along the first cooling pipe. A soaking unit having a second cooling pipe in which the refrigerant flows in a direction opposite to the refrigerant flowing in the cooling pipe;
A housing having an XY stage for placing the sample therein, the charged particle optical column at the top;
A charged beam drawing apparatus comprising:
前記冷媒は、前記第1冷却管の流入部より折り返し部を経て前記第2の冷却管に導入され、前記第2の冷却管の排出部から排出されることを特徴とする請求項1に記載の荷電ビーム描画装置。   The said refrigerant | coolant is introduce | transduced into the said 2nd cooling pipe through the return part from the inflow part of the said 1st cooling pipe, and is discharged | emitted from the discharge part of the said 2nd cooling pipe. Charged beam lithography system. 前記折り返し部は、前記流入部または前記排出部と近接して設けられることを特徴とする請求項2に記載の荷電ビーム描画装置。   The charged beam drawing apparatus according to claim 2, wherein the folding portion is provided in proximity to the inflow portion or the discharge portion. 前記均熱ユニットは、前記第1の冷却管と前記第2の冷却管とを複数有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の荷電ビーム描画装置。   4. The charged beam drawing apparatus according to claim 1, wherein the soaking unit includes a plurality of the first cooling pipes and the second cooling pipes. 5. 前記均熱板は、銅で形成されることを特徴とする請求項1乃至請求項4のいずれか1項に記載の荷電ビーム描画装置。   The charged beam drawing apparatus according to claim 1, wherein the soaking plate is made of copper.
JP2008129822A 2008-05-16 2008-05-16 Charged beam lithography system Pending JP2009278001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008129822A JP2009278001A (en) 2008-05-16 2008-05-16 Charged beam lithography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008129822A JP2009278001A (en) 2008-05-16 2008-05-16 Charged beam lithography system

Publications (1)

Publication Number Publication Date
JP2009278001A true JP2009278001A (en) 2009-11-26

Family

ID=41443134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008129822A Pending JP2009278001A (en) 2008-05-16 2008-05-16 Charged beam lithography system

Country Status (1)

Country Link
JP (1) JP2009278001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065421A (en) * 2018-08-07 2018-12-21 核工业理化工程研究院 Built-in water route formula electron gun gun body and cooling means
WO2023076315A1 (en) * 2021-10-29 2023-05-04 Kla Corporation Systems and methods for uniform cooling of electromagnetic coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065421A (en) * 2018-08-07 2018-12-21 核工业理化工程研究院 Built-in water route formula electron gun gun body and cooling means
CN109065421B (en) * 2018-08-07 2023-12-26 核工业理化工程研究院 Built-in waterway type electron gun body and cooling method
WO2023076315A1 (en) * 2021-10-29 2023-05-04 Kla Corporation Systems and methods for uniform cooling of electromagnetic coil

Similar Documents

Publication Publication Date Title
KR101135232B1 (en) Microlithographic projection exposure apparatus
TW490705B (en) Actively-cooled distribution plate for reducing reactive gas temperature in a plasma processing system
KR101170005B1 (en) Temperature adjusting mechanism and semiconductor manufacturing apparatus using temperature adjusting mechanism
CN104321702B (en) Sensor, lithographic equipment and device making method
KR101280399B1 (en) Lithographic apparatus and lithographic apparatus cooling method
JP2009502033A (en) Charged particle beam exposure system and beam manipulation device
JP7324768B2 (en) Reflective optical element for radiation beam
JP2009510695A (en) Cooling module for charged particle beam column elements
TW202032739A (en) Reticle sub-field thermal control
TWI632586B (en) Charged particle beam lens device, charged particle beam cylinder, and charged particle beam exposure device
JP2017508176A (en) Lithographic apparatus and device manufacturing method
Namura et al. Gold Micropetals Self‐Assembled by Shadow‐Sphere Lithography for Optofluidic Control
JP2009278001A (en) Charged beam lithography system
TWI459154B (en) Gas manifold, module for a lithographic apparatus, lithographic apparatus and device manufacturing method
KR20120040667A (en) Gas manifold, module for a lithographic apparatus, lithographic apparatus and device manufacturing method
KR20220020961A (en) Methods and apparatus for post-exposure processing
JP5607907B2 (en) Charged particle beam lithography system
JP2008010259A (en) Apparatus using electron beam
JP6161430B2 (en) Electron lens and charged particle beam device
US20140273536A1 (en) Charged particle beam writing apparatus, aperture unit, and charged particle beam writing method
JP6387421B2 (en) Lithographic apparatus and device manufacturing method
KR20040020419A (en) Bake apparatus
KR101204606B1 (en) Microlithographic projection exposure apparatus and measuring device for a projection lens
KR20240086605A (en) System and method for uniform cooling of electromagnetic coils
Amano et al. Micromachining Using Soft X‐Rays from Laser‐Produced Xe Plasma