JP2009277749A - Height measuring device and method - Google Patents

Height measuring device and method Download PDF

Info

Publication number
JP2009277749A
JP2009277749A JP2008125538A JP2008125538A JP2009277749A JP 2009277749 A JP2009277749 A JP 2009277749A JP 2008125538 A JP2008125538 A JP 2008125538A JP 2008125538 A JP2008125538 A JP 2008125538A JP 2009277749 A JP2009277749 A JP 2009277749A
Authority
JP
Japan
Prior art keywords
psd
height
psds
measurement object
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008125538A
Other languages
Japanese (ja)
Other versions
JP4911113B2 (en
Inventor
Hiroyoshi Minamide
裕喜 南出
Kanki Ogura
環樹 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008125538A priority Critical patent/JP4911113B2/en
Publication of JP2009277749A publication Critical patent/JP2009277749A/en
Application granted granted Critical
Publication of JP4911113B2 publication Critical patent/JP4911113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a height measuring device and method that eliminates an effect of noise due to an excessive quantity of light as much as possible. <P>SOLUTION: In a 3D sensor 2 comprising a laser oscillator 10 which perpendicularly projects laser beams onto an electronic component 17, and a 15 degree PSD and a 35 degree PSD which receive the laser beams reflected on the surface of the electronic component 17 at positions making different angles to the perpendicular direction respectively, either one of PSD receiving no excessive quantity of light is selected out of the 15 degree PSD and the 35 degree PSD based on reflection characteristics of the electronic component 17, and the height of the electronic component 17 is measured based on an electric signal sent from the selected PSD. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子部品等の表面の高さを計測する装置および方法に関するものである。   The present invention relates to an apparatus and a method for measuring the height of a surface of an electronic component or the like.

電子部品の実装分野においては、電子部品を基板に搭載する前に、3Dセンサを用いて電子部品の表面形状を計測している。3Dセンサは、電子部品等の測定対象にレーザ光を投射し、反射したレーザ光を所定の位置に配置したPSDと呼ばれる位置検出素子上で受け、反射光が入射した素子から発せられる電気信号に基づいて測定対象の高さを測定する装置である(特許文献1参照)。
特開2004−235671号公報
In the field of electronic component mounting, the surface shape of an electronic component is measured using a 3D sensor before the electronic component is mounted on a substrate. The 3D sensor projects a laser beam onto a measurement target such as an electronic component, receives the reflected laser beam on a position detection element called PSD arranged at a predetermined position, and generates an electric signal emitted from the element on which the reflected light is incident. This is a device for measuring the height of a measurement object based on the reference (see Patent Document 1).
JP 2004-235671 A

3Dセンサによる測定対象が金属製の電極を備えた電子部品である場合、電極の材質や向きによってはPSDに入射する反射光の光量が過大になり、受光した素子に生成される電荷が飽和してしまうことがある。このとき隣接する素子に影響が伝播することがあり、実際には受光していない素子から発せされた電気信号がノイズとなって電極部分の形状を正確に測定することが困難であった。   When the measurement object by the 3D sensor is an electronic component having a metal electrode, the amount of reflected light incident on the PSD becomes excessive depending on the material and orientation of the electrode, and the charge generated in the received element is saturated. May end up. At this time, the influence may be propagated to the adjacent elements, and it is difficult to accurately measure the shape of the electrode portion due to noise caused by an electric signal emitted from an element that is not actually receiving light.

本発明は、光量過多によるノイズの影響を極力排する高さ測定装置および高さ測定方法を提供することを目的とする。   An object of the present invention is to provide a height measuring device and a height measuring method that eliminate as much as possible the influence of noise due to excessive light quantity.

請求項1に記載の高さ測定装置は、測定対象に向けて鉛直方向にレーザ光を投射するレーザ発振器と、測定対象の表面で反射したレーザ光を鉛直方向に対して異なる角度をなす位置でそれぞれ受光する複数のPSDと、測定対象の反射特性に基づいて、前記複数のPSDから特定のPSDを選択する手段と、前記特定のPSDから発せられた電気信号に基づいて測定対象の高さを計測する手段を備えた。   The height measuring device according to claim 1 is a laser oscillator that projects laser light in a vertical direction toward a measurement target, and a position at which the laser light reflected on the surface of the measurement target forms a different angle with respect to the vertical direction. A plurality of PSDs each receiving light, a means for selecting a specific PSD from the plurality of PSDs based on reflection characteristics of the measurement object, and a height of the measurement object based on an electric signal emitted from the specific PSD A means for measuring was provided.

請求項2に記載の高さ測定装置は請求項1に記載の高さ測定装置であって、前記反射特性が、電極の形状に起因するレーザ光の反射方向である。   A height measuring apparatus according to a second aspect is the height measuring apparatus according to the first aspect, wherein the reflection characteristic is a reflection direction of the laser light caused by a shape of the electrode.

請求項3に記載の高さ測定装置は請求項1に記載の高さ測定装置であって、前記反射特性が、電極の表面状態に起因するレーザ光の反射光量である。   A height measuring apparatus according to a third aspect is the height measuring apparatus according to the first aspect, wherein the reflection characteristic is a reflected light amount of laser light caused by a surface state of the electrode.

請求項4に記載の高さ測定装置は、測定対象に向けて鉛直方向にレーザ光を投射するレーザ発振器と、測定対象の表面で反射したレーザ光を鉛直方向に対して異なる角度をなす位置でそれぞれ受光する複数のPSDと、前記複数のPSDから測定対象の個体毎に予め選択された特定のPSDから発せられた電気信号に基づいて測定対象の高さを計測する手段を備えた。   The height measuring device according to claim 4 is a laser oscillator that projects laser light in a vertical direction toward a measurement target, and a position at which the laser light reflected on the surface of the measurement target forms a different angle with respect to the vertical direction. A plurality of PSDs each receiving light, and means for measuring the height of the measurement object based on an electrical signal emitted from a specific PSD previously selected for each individual measurement object from the plurality of PSDs.

請求項5に記載の高さ測定方法は、測定対象の表面で反射したレーザ光を鉛直方向に対して異なる角度をなす位置でそれぞれ受光する複数のPSDを用いて測定対象の高さを測定する方法であって、測定対象の反射特性に基づいて、前記複数のPSDから特定のPSDを選択する工程と、前記選択した特定のPSDから発せられた電気信号に基づいて測定対象の高さを測定する工程を含む。   The height measurement method according to claim 5 measures the height of the measurement object using a plurality of PSDs that respectively receive the laser light reflected by the surface of the measurement object at positions that form different angles with respect to the vertical direction. A method of selecting a specific PSD from the plurality of PSDs based on a reflection characteristic of the measurement target, and measuring a height of the measurement target based on an electrical signal emitted from the selected specific PSD The process of carrying out.

測定対象の反射特性に基づいて、受光素子の電荷が飽和しない位置に配されたPSDを選択することで、ノイズの影響を排した画像を生成することができる。   By selecting a PSD arranged at a position where the charge of the light receiving element is not saturated based on the reflection characteristic of the measurement target, an image that eliminates the influence of noise can be generated.

添付した図面を参照しながら本発明の実施の形態について説明する。最初に図1と図2を参照しながら表面形状測定装置について説明する。図1は表面形状測定装置のブロック図、図2は3Dセンサの模式図である。表面形状測定装置1は、3Dセンサ2と電子部品情報データベース3とPSD選択部4と画像処理部5で構成されている。3Dセンサ2は、レーザ発振器10と、15度PSD11、12と35度PSD13、14で構成されている。   Embodiments of the present invention will be described with reference to the accompanying drawings. First, the surface shape measuring apparatus will be described with reference to FIGS. FIG. 1 is a block diagram of a surface shape measuring apparatus, and FIG. 2 is a schematic diagram of a 3D sensor. The surface shape measuring apparatus 1 includes a 3D sensor 2, an electronic component information database 3, a PSD selection unit 4, and an image processing unit 5. The 3D sensor 2 includes a laser oscillator 10, 15 degree PSDs 11 and 12, and 35 degree PSDs 13 and 14.

15度PSD11、12はレーザ発振器10から鉛直上方に投射されるレーザ光の光線軸16とそれぞれ15度の角度をなして対称に配置されている。35度PSD13、14も同様にレーザ光の光線軸16とそれぞれ35度の角度をなして対称に配置されている。15度PSD11、12および35度PSD13、14は、測定対象である電子部品17によって拡散反射したレーザ光18を集束レンズ19によって集光したものを受光する。電子部品17の下面(電極が形成されている面)の凹凸により反射地点の高さが異なり、これが各PSD11〜14上での受光位置の差になって表れる。   The 15-degree PSDs 11 and 12 are symmetrically arranged at an angle of 15 degrees with the beam axis 16 of the laser beam projected vertically upward from the laser oscillator 10. Similarly, the 35-degree PSDs 13 and 14 are symmetrically arranged at an angle of 35 degrees with the beam axis 16 of the laser beam. The 15-degree PSDs 11 and 12 and the 35-degree PSDs 13 and 14 receive the laser light 18 diffused and reflected by the electronic component 17 that is the measurement target and collected by the focusing lens 19. The height of the reflection point differs depending on the unevenness of the lower surface (surface on which the electrode is formed) of the electronic component 17, and this appears as a difference in the light receiving position on each PSD 11 to 14.

各PSD11〜14は受光した光電素子が電荷を生成し、光電素子の位置と受光量に応じて電気信号を画像処理部5に出力する。画像処理部5は、各PSD11〜14から発せられた電気信号を解析し、反射地点の3次元座標値を取得する(反射地点のXY座標値(水平方向の座標値)はレーザ光の投射地点であり、予め分かっているので、実際に取得するのは反射地点のZ座標値(高さ方向の座標値)になる。)。電子部品17の下面にレーザ光を走査させることで電子部品17の下面の全体の3次元座標値を取得することができる。   Each of the PSDs 11 to 14 generates a charge from the received photoelectric element, and outputs an electrical signal to the image processing unit 5 according to the position of the photoelectric element and the amount of received light. The image processing unit 5 analyzes the electrical signals emitted from the PSDs 11 to 14 and acquires the three-dimensional coordinate value of the reflection point (the XY coordinate value (horizontal coordinate value) of the reflection point is the projection point of the laser beam. Since it is known in advance, what is actually acquired is the Z coordinate value (the coordinate value in the height direction) of the reflection point.) By scanning the lower surface of the electronic component 17 with laser light, the entire three-dimensional coordinate value of the lower surface of the electronic component 17 can be acquired.

画像処理部5は、電子部品17の下面の全体について取得した3次元座標値を解析し、その表面形状を表す2次元画像を生成する。ここでは、Z座標値が大きくなるほど濃色に小さくなるほど淡色にすることで、下面の表面形状をグレースケールの濃淡の分布で表す。   The image processing unit 5 analyzes the three-dimensional coordinate values acquired for the entire lower surface of the electronic component 17 and generates a two-dimensional image representing the surface shape. Here, the surface shape of the lower surface is represented by a gray-scale light / dark distribution by making the color lighter as the Z coordinate value increases and becomes darker.

PSD11〜14は光線軸16から離れたところに配置されているため、反射地点の形状が水平であれば直接反射光を受光することはなく、拡散反射光を受光するようになっている。一般には拡散角度が小さい15度PSD11、12の方が35度PSD13、14より大きな電荷を生成することになる。1つの反射地点に対して15度PSD11、12と35度PSD13、14がそれぞれ拡散反射光を受光するので、画像処理部5は1つの電子部品17に対し2つの画像(15度PSD11、12によって取得された3次元座標値による画像と35度PSD13、14によって取得された3次元座標値による画像)を生成することができる。   Since the PSDs 11 to 14 are arranged away from the light axis 16, the reflected light is not received directly if the shape of the reflection point is horizontal, and diffuse reflected light is received. In general, 15 ° PSDs 11 and 12 having a smaller diffusion angle generate charges larger than 35 ° PSDs 13 and 14. Since the 15 degree PSDs 11 and 12 and the 35 degree PSDs 13 and 14 respectively receive diffuse reflected light with respect to one reflection point, the image processing unit 5 applies two images (one 15 degree PSDs 11 and 12 to one electronic component 17). An image based on the acquired three-dimensional coordinate values and an image based on the three-dimensional coordinate values acquired by the 35-degree PSDs 13 and 14 can be generated.

電子部品情報データベース3は、測定対象となる電子部品の反射特性を記憶している。ここに記憶されている反射特性は、レーザ光の反射方向に影響する電極の形状、レーザ光の反射光量に影響する電極の表面状態である。レーザ光の反射の方向や光量によっては、直接反射光もしくはそれに近い強力な反射光が15度PSD11、12もしくは35度PSD13、14に受光されることがある。反射特性は電子部品の品種によって異なるので、電子部品情報データベース3は、これらの反射特性に関する情報を電子部品の固有情報と関連付けて記憶しており、測定しようとする電子部品の固有情報から関連する反射特性に関する情報を読み出すことができるようになっている。   The electronic component information database 3 stores the reflection characteristics of the electronic component to be measured. The reflection characteristics stored here are the shape of the electrode that affects the reflection direction of the laser beam and the surface state of the electrode that affects the amount of reflected laser beam. Depending on the direction and amount of reflection of the laser light, the direct reflected light or strong reflected light close to it may be received by the 15 degree PSD 11, 12 or 35 degree PSD 13, 14. Since the reflection characteristics vary depending on the type of electronic component, the electronic component information database 3 stores information relating to these reflection characteristics in association with the unique information of the electronic component, and is related to the unique information of the electronic component to be measured. Information about reflection characteristics can be read out.

PSD選択部4は、電子部品情報データベース3から読み出した反射特性に基づいて、15度PSD11、12もしくは35度PSD13、14の何れかを選択する。画像処理部5はPSD選択部4による選択結果に基づいて画像処理を行い、PSD選択部4が15度PSD11、12を選択すると、15度PSD11、12よって取得された3次元座標値に基づいて表面形状の画像を生成し、35度PSD13、14を選択すると、35度PSD13、14によって取得された3次元座標値に基づいて表面形状の画像を生成する。   The PSD selection unit 4 selects either 15 degree PSD 11 or 12 or 35 degree PSD 13 or 14 based on the reflection characteristic read from the electronic component information database 3. The image processing unit 5 performs image processing based on the selection result by the PSD selection unit 4, and when the PSD selection unit 4 selects 15 degree PSDs 11 and 12, based on the three-dimensional coordinate values acquired by the 15 degree PSDs 11 and 12. When a surface shape image is generated and 35-degree PSDs 13 and 14 are selected, an image of the surface shape is generated based on the three-dimensional coordinate values acquired by the 35-degree PSDs 13 and 14.

次に図3乃至図5を参照しながらPSD選択部が実行する処理フローについて説明する。図3はPSD選択部が実行する処理フロー図、図4はPSD選択部が実行する処理フロー図、図5は電子部品の電極の形状を示す模式図である。   Next, a processing flow executed by the PSD selection unit will be described with reference to FIGS. 3 is a process flow diagram executed by the PSD selection unit, FIG. 4 is a process flow diagram executed by the PSD selection unit, and FIG. 5 is a schematic diagram showing the shape of the electrodes of the electronic component.

PSD選択部4が実行する処理フローは2通りあり、1つは図3に示す反射特性として電極の形状を用いる場合の処理フローであり、もう1つは図4に示す電極の表面状態を用いる場合の処理フローである。図5に示すように電子部品の電極であるリード20が水平方向に対して角度αで取り付けられている場合、レーザ光は光線軸16に対して角度2αをなす方向に反射する。PSDは光線軸16に対して15度と35度をなす位置に配置されているため、角度2αが15度もしくは35度の何れかと同じか非常に近い場合、PSDは直接反射光を受光することになる。直接反射光はエネルギが非常に大きく、これを受光した素子は電荷が飽和した状態となり、隣接する素子にも影響が伝播することがある。   There are two types of processing flows executed by the PSD selection unit 4. One is a processing flow when the shape of the electrode is used as the reflection characteristic shown in FIG. 3, and the other is the surface state of the electrode shown in FIG. It is a processing flow in the case. As shown in FIG. 5, when the lead 20, which is an electrode of an electronic component, is attached at an angle α with respect to the horizontal direction, the laser light is reflected in a direction that forms an angle 2α with respect to the beam axis 16. Since the PSD is arranged at positions of 15 degrees and 35 degrees with respect to the light axis 16, when the angle 2α is the same as or very close to either 15 degrees or 35 degrees, the PSD receives the reflected light directly. become. Directly reflected light has a very large energy, and an element that receives the light becomes saturated in charge, and the influence may propagate to adjacent elements.

PSD選択部4は、図3においてリード20の取り付け角度αとPSDの配置角度との比較を行い(ST1)、α≒7.5度の場合には直接反射光を受光しない35度PSDを選択する(ST2)。これに対し、α≒17.5度の場合には直接反射光を受光しない15度PSDを選択する(ST3)。また、どちらのPSDも直接反射光を受光しない場合には、より大きな電荷を生成することができる(つまりS/N比が大きい)15度PSDを選択する。   In FIG. 3, the PSD selection unit 4 compares the mounting angle α of the lead 20 and the PSD arrangement angle (ST1), and selects a 35 ° PSD that does not directly receive reflected light when α≈7.5 °. (ST2). On the other hand, when α≈17.5 degrees, a 15-degree PSD that does not directly receive reflected light is selected (ST3). Further, when neither PSD receives the reflected light directly, a 15 degree PSD capable of generating a larger charge (that is, having a large S / N ratio) is selected.

電極は、その表面状態である材質や表面仕上げの精度等によって反射率が異なる。反射率が高い電極の場合、15度PSDは電荷が飽和してしまうことがあるため、よりS/N比が小さい35度PSDの方が有利となる。PSD選択部4は、図4において測定対象となる電子部品の電極の反射率と予め定めた規定値とを比較し(ST1)、規定値を超えている場合には35度PSDを選択する(ST2)。規定値を超えていない場合には15度PSDを選択する(ST3)。   The reflectivity of the electrode varies depending on the material of the surface state, the accuracy of the surface finish, and the like. In the case of an electrode having a high reflectivity, the 15 degree PSD may saturate the electric charge, so the 35 degree PSD having a smaller S / N ratio is more advantageous. The PSD selection unit 4 compares the reflectance of the electrode of the electronic component to be measured in FIG. 4 with a predetermined specified value (ST1), and if it exceeds the specified value, selects the 35 degree PSD (see FIG. 4). ST2). If the specified value is not exceeded, 15 degree PSD is selected (ST3).

画像処理部5は、PSD選択部4が電極の反射特性に基づいて選択した15度PSD11、12もしくは35度PSD13、14の何れか1つのみから取得された3次元座標値に基づいて表面形状の画像を生成することになるので、処理すべきデータ数が減少し、画像生成に要する時間を短縮することができる。   The image processing unit 5 determines the surface shape based on a three-dimensional coordinate value acquired from any one of 15 degrees PSD11, 12 or 35 degrees PSD13, 14 selected by the PSD selection unit 4 based on the reflection characteristics of the electrodes. Therefore, the number of data to be processed is reduced, and the time required for image generation can be shortened.

なお、電子部品の個体情報と15度PSD11、12もしくは35度PSD13、14の何れかのPSDの対応関係を予め電子部品情報データベース3に記憶させておき、測定しようとする電子部品の個体情報から一義的に何れかのPSDが選択できるようにしてもよい。この両者の対応関係は予め定めておいてもよいし、PSD選択部4における実際の処理結果を個体情報と関連付けてデータベース化してもよい。   Note that the correspondence between the individual information of the electronic component and the PSD of 15 degrees PSD11, 12 or 35 degrees PSD13, 14 is stored in advance in the electronic component information database 3, and from the individual information of the electronic component to be measured. Any PSD may be selected uniquely. The correspondence between the two may be determined in advance, or the actual processing results in the PSD selection unit 4 may be associated with the individual information and made into a database.

また、本発明の高さ測定装置は、上述した電子部品の下面(電極形成面)の形状測定に好適であるが、それ以外に、特定の位置における高さをピンポイントで計測することも可能である。   In addition, the height measuring device of the present invention is suitable for measuring the shape of the lower surface (electrode forming surface) of the electronic component described above, but in addition, it is possible to measure the height at a specific position pinpoint. It is.

本発明は電子部品の電極形成面の形状を測定する分野において特に有用である。   The present invention is particularly useful in the field of measuring the shape of the electrode forming surface of an electronic component.

本発明の実施の形態の表面形状測定装置のブロック図The block diagram of the surface shape measuring apparatus of embodiment of this invention 本発明の実施の形態の3Dセンサの模式図Schematic diagram of 3D sensor according to an embodiment of the present invention 本発明の実施の形態のPSD選択部が実行する処理フロー図Process flow diagram executed by PSD selection unit according to the embodiment of the present invention 本発明の実施の形態のPSD選択部が実行する処理フロー図Process flow diagram executed by PSD selection unit according to the embodiment of the present invention 本発明の実施の形態の電子部品の電極の形状を示す模式図The schematic diagram which shows the shape of the electrode of the electronic component of embodiment of this invention

符号の説明Explanation of symbols

1 表面形状測定装置
2 3Dセンサ
4 PSD選択部
5 画像処理部
10 レーザ発振器
11、12 15度PSD
13、14 35度PSD
DESCRIPTION OF SYMBOLS 1 Surface shape measuring apparatus 2 3D sensor 4 PSD selection part 5 Image processing part 10 Laser oscillator 11, 12 15 degree | times PSD
13, 14 35 degree PSD

Claims (5)

測定対象に向けて鉛直方向にレーザ光を投射するレーザ発振器と、
測定対象の表面で反射したレーザ光を鉛直方向に対して異なる角度をなす位置でそれぞれ受光する複数のPSDと、
測定対象の反射特性に基づいて、前記複数のPSDから特定のPSDを選択する手段と、
前記特定のPSDから発せられた電気信号に基づいて測定対象の高さを計測する手段を備えた高さ測定装置。
A laser oscillator that projects laser light in a vertical direction toward the measurement object;
A plurality of PSDs respectively receiving laser beams reflected from the surface of the measurement object at positions at different angles with respect to the vertical direction;
Means for selecting a specific PSD from the plurality of PSDs based on the reflection characteristics of the measurement object;
A height measuring device comprising means for measuring the height of a measurement object based on an electrical signal emitted from the specific PSD.
前記反射特性が、電極の形状に起因するレーザ光の反射方向である請求項1に記載の高さ測定装置。   The height measurement apparatus according to claim 1, wherein the reflection characteristic is a reflection direction of laser light caused by an electrode shape. 前記反射特性が、電極の表面状態に起因するレーザ光の反射光量である請求項1に記載の高さ測定装置。   The height measuring apparatus according to claim 1, wherein the reflection characteristic is a reflected light amount of laser light caused by a surface state of the electrode. 測定対象に向けて鉛直方向にレーザ光を投射するレーザ発振器と、
測定対象の表面で反射したレーザ光を鉛直方向に対して異なる角度をなす位置でそれぞれ受光する複数のPSDと、
前記複数のPSDから測定対象の個体毎に予め選択された特定のPSDから発せられた電気信号に基づいて測定対象の高さを計測する手段を備えた高さ測定装置。
A laser oscillator that projects laser light in a vertical direction toward the measurement object;
A plurality of PSDs respectively receiving laser beams reflected from the surface of the measurement object at positions at different angles with respect to the vertical direction;
A height measuring device comprising means for measuring the height of a measurement object based on an electrical signal emitted from a specific PSD preselected for each individual to be measured from the plurality of PSDs.
測定対象の表面で反射したレーザ光を鉛直方向に対して異なる角度をなす位置でそれぞれ受光する複数のPSDを用いて測定対象の高さを測定する方法であって、
測定対象の反射特性に基づいて、前記複数のPSDから特定のPSDを選択する工程と、前記選択した特定のPSDから発せられた電気信号に基づいて測定対象の高さを測定する工程を含む高さ測定方法。
A method for measuring the height of a measurement object using a plurality of PSDs that respectively receive laser light reflected from the surface of the measurement object at positions that form different angles with respect to the vertical direction,
A step including: selecting a specific PSD from the plurality of PSDs based on a reflection characteristic of the measurement target; and measuring a height of the measurement target based on an electrical signal emitted from the selected specific PSD. Measuring method.
JP2008125538A 2008-05-13 2008-05-13 Height measuring apparatus and height measuring method Active JP4911113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125538A JP4911113B2 (en) 2008-05-13 2008-05-13 Height measuring apparatus and height measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125538A JP4911113B2 (en) 2008-05-13 2008-05-13 Height measuring apparatus and height measuring method

Publications (2)

Publication Number Publication Date
JP2009277749A true JP2009277749A (en) 2009-11-26
JP4911113B2 JP4911113B2 (en) 2012-04-04

Family

ID=41442933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125538A Active JP4911113B2 (en) 2008-05-13 2008-05-13 Height measuring apparatus and height measuring method

Country Status (1)

Country Link
JP (1) JP4911113B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084929A1 (en) 2009-01-22 2010-07-29 三菱化学株式会社 Process for preparing bisphenol
JP2012173188A (en) * 2011-02-23 2012-09-10 Panasonic Corp Image forming apparatus, image forming method, and component mounting device
JP2012229964A (en) * 2011-04-26 2012-11-22 Panasonic Corp Image forming device, image forming method, and part mounting apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399207A (en) * 1989-09-12 1991-04-24 Matsushita Electric Ind Co Ltd Inspection apparatus for mounting board
JPH04219999A (en) * 1990-12-20 1992-08-11 Matsushita Electric Ind Co Ltd Component mounting machine
JPH06265320A (en) * 1993-03-11 1994-09-20 Mitsubishi Heavy Ind Ltd Outer shape inspection method
JP2001144500A (en) * 1999-08-27 2001-05-25 Shinko Electric Ind Co Ltd Inspection system for semiconductor device and part mounting machine
JP2004235671A (en) * 1996-04-23 2004-08-19 Matsushita Electric Ind Co Ltd Electronic component mounting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399207A (en) * 1989-09-12 1991-04-24 Matsushita Electric Ind Co Ltd Inspection apparatus for mounting board
JPH04219999A (en) * 1990-12-20 1992-08-11 Matsushita Electric Ind Co Ltd Component mounting machine
JPH06265320A (en) * 1993-03-11 1994-09-20 Mitsubishi Heavy Ind Ltd Outer shape inspection method
JP2004235671A (en) * 1996-04-23 2004-08-19 Matsushita Electric Ind Co Ltd Electronic component mounting device
JP2001144500A (en) * 1999-08-27 2001-05-25 Shinko Electric Ind Co Ltd Inspection system for semiconductor device and part mounting machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084929A1 (en) 2009-01-22 2010-07-29 三菱化学株式会社 Process for preparing bisphenol
JP2012173188A (en) * 2011-02-23 2012-09-10 Panasonic Corp Image forming apparatus, image forming method, and component mounting device
JP2012229964A (en) * 2011-04-26 2012-11-22 Panasonic Corp Image forming device, image forming method, and part mounting apparatus

Also Published As

Publication number Publication date
JP4911113B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
TWI420081B (en) Distance measuring system and distance measuring method
CN102818528B (en) Apparatus and method for inspecting an object with increased depth of field
US8451878B2 (en) Surface profile inspection device
US8493570B2 (en) Three-dimensional shape measuring apparatus
JP2014006134A (en) Optical measurement device
JP6037254B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP4911113B2 (en) Height measuring apparatus and height measuring method
JP2015108582A (en) Three-dimensional measurement method and device
JP6781969B1 (en) Measuring device and measuring method
KR20070091236A (en) Defective particle measuring apparatus and defective particle measuring method
JP4683270B2 (en) Lens meter
JP2010197143A (en) Measuring apparatus and measuring method for measuring axis tilt of shaft of motor for polygon mirror
JP2017125707A (en) Measurement method and measurement device
JP2009210509A (en) Three-dimensional shape measuring device and three-dimensional shape measuring computer program
JP2008157955A (en) Displacement measuring method, displacement measuring device, and target for displacement measuring
TWI472801B (en) 3d information generator for use in interactive interface and method for 3d information generation
JP5133095B2 (en) Inspection method and apparatus for ultrasonic gas meter parts
JP6604514B2 (en) Surface shape measuring apparatus and surface shape measuring method
CN105676596B (en) Exposure device
JP2005224901A (en) Edge detector
JP7332417B2 (en) Measuring device and measuring method
JP2009186216A (en) Three-dimensional shape measuring device
JP2010112819A (en) Method of correcting measurement sensitivity in oblique incidence interferometer
JP2006184091A (en) In-plane direction displacement gauge
JP2006189390A (en) Optical displacement measuring method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R151 Written notification of patent or utility model registration

Ref document number: 4911113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3