JP2005224901A - Edge detector - Google Patents

Edge detector Download PDF

Info

Publication number
JP2005224901A
JP2005224901A JP2004036634A JP2004036634A JP2005224901A JP 2005224901 A JP2005224901 A JP 2005224901A JP 2004036634 A JP2004036634 A JP 2004036634A JP 2004036634 A JP2004036634 A JP 2004036634A JP 2005224901 A JP2005224901 A JP 2005224901A
Authority
JP
Japan
Prior art keywords
line sensor
light
edge
light receiving
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004036634A
Other languages
Japanese (ja)
Other versions
JP4465676B2 (en
Inventor
Yoshihiko Okayama
喜彦 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2004036634A priority Critical patent/JP4465676B2/en
Publication of JP2005224901A publication Critical patent/JP2005224901A/en
Application granted granted Critical
Publication of JP4465676B2 publication Critical patent/JP4465676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an edge detector simply and highly precisely detecting the edge position of a shield material positioned in an optical path from an output of a line sensor and simplifying a light source. <P>SOLUTION: This edge detector is provided with a line sensor 1, a point light source 2 projecting a monochrome light having a flare angle toward the line sensor reaching its whole light receiving width, and a computing part analyzing the output of the line sensor to find the edge position of the shield material 7 positioned in the optical path of the monochrome light by; magnifies and detects an optical diffraction pattern formed in a shadow and the edge part of a detection object (shield material) positioned in the optical path; and simultaneously simplifies the constitution of the light source. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ラインセンサの出力からその光路中に位置付けられた遮蔽物のエッジ位置を、簡易にして精度良く検出することのできるエッジ検出装置に関する。   The present invention relates to an edge detection device that can easily and accurately detect an edge position of a shield positioned in an optical path from an output of a line sensor.

近時、プリント回路基板の高密度実装化に伴い、その多層化が図られており、またプリント回路基板にスルーホールを形成して複数の層間を電気的に接続することも行われている。このようなスルーホールは、専ら、例えば直径が50〜100μm程度の微小なドリル刃を用い、このドリル刃を高速回転させてプリント回路基板を所定深さの孔を穿いて形成される。この際、所定径のドリル刃を選択して用いることは勿論のこと、このドリル刃を芯ぶれのない状態でドリルのチャックに装着し、更にはドリル刃の先端位置を正確に把握して所定の深さまで孔を穿つことが重要である。しかしながらこの種の微小径のドリル刃の径(ドリル径)を機械的に計測したり、チャックへの装着状態等を機械的に確認することは一般的には非常に困難であり、通常、光学的な計測手段が用いられる(例えば特許文献1,2,3を参照)。   Recently, the printed circuit board has been multi-layered with high density mounting, and through holes are formed in the printed circuit board to electrically connect a plurality of layers. Such a through hole is exclusively formed by using a fine drill blade having a diameter of about 50 to 100 μm, for example, and rotating the drill blade at a high speed to form a hole of a predetermined depth in the printed circuit board. At this time, it is of course possible to select and use a drill blade of a predetermined diameter, attach this drill blade to the chuck of the drill without any runout, and further accurately grasp the tip position of the drill blade to determine the predetermined diameter. It is important to drill holes to the depth of. However, it is generally very difficult to mechanically measure the diameter (drill diameter) of this kind of small-diameter drill blade and to check the mounting state on the chuck, etc. A typical measuring means is used (for example, see Patent Documents 1, 2, and 3).

しかしながら特許文献1,2,3に示されるようなドリル刃の光学的な計測手法は、ドリル刃による光の遮光を利用してその遮光幅をラインセンサ等により計測しているだけであり、直径が200μm以下の微小径のドリル刃の径等を正確に計測することが困難であった。即ち、この種の計測には、専ら、その光源としてレーザ光等の単色平行光が用いられる。しかしドリル刃により遮光されるエッジ部において光の回折が生じるので、この回折の影響によりドリル刃の径等を正確に計測することが困難であると言う問題がある。   However, the optical measuring method of a drill blade as shown in Patent Documents 1, 2, and 3 only measures the light shielding width by a line sensor or the like using light shielding of the drill blade, and has a diameter. However, it is difficult to accurately measure the diameter of a drill blade having a small diameter of 200 μm or less. That is, monochromatic parallel light such as laser light is exclusively used as the light source for this type of measurement. However, since diffraction of light occurs at the edge portion shielded by the drill blade, there is a problem that it is difficult to accurately measure the diameter of the drill blade due to the influence of this diffraction.

これに対して本発明者は先にフレネル回折を生じた光の回折パターン(強度分布)をハイパボリックセカンド関数sech(x)を用いて近似した近似式を用いて、そのエッジ位置を簡易にしかも高精度に求める手法を提唱した(例えば特許文献4を参照)。
特開2003−170335号公報 特開平7−306020号公報 特開平7−260425号公報 特願2002−345958号
On the other hand, the present inventor uses the approximate expression obtained by approximating the diffraction pattern (intensity distribution) of the light previously generated by Fresnel diffraction using the hyperbolic second function sech (x) to easily and highly increase the edge position. A method for obtaining accuracy was proposed (see, for example, Patent Document 4).
JP 2003-170335 A Japanese Patent Application Laid-Open No. 7-306020 JP 7-260425 A Japanese Patent Application No. 2002-345958

ところで特許文献1,2,3,4にそれぞれ示される光学的な計測手法においては、専ら、その光源としてレーザ光等の単色平行光を用いている。具体的にはレーザダイオード(LD)から発せられたレーザ光を、投光レンズ(コリメータレンズ)を介して平行光線束に変換してラインセンサの受光面に向けて投射している。そして上記光路中に位置付けられた検出対象物(遮蔽物)の影や、該検出対象物(遮蔽物)のエッジ部分にて生じたフレネル回折の光パターンを前記ラインセンサにて検出するようにしている。   Incidentally, in the optical measurement methods shown in Patent Documents 1, 2, 3, and 4, monochromatic parallel light such as laser light is exclusively used as the light source. Specifically, laser light emitted from a laser diode (LD) is converted into a parallel light beam via a light projection lens (collimator lens) and projected onto the light receiving surface of the line sensor. The line sensor detects the shadow of the detection object (shielding object) positioned in the optical path and the Fresnel diffraction light pattern generated at the edge of the detection object (shielding object). Yes.

しかしながら単色平行光を投射する光源は、上述した投光レンズ(コリメータレンズ)等の光学素子を必要とするので、その構成が大掛かりとなる上、製作コスト上昇の要因ともなっている。しかも単色平行光の光線束幅を拡げようとした場合、例えば大径の投光レンズ(コリメータレンズ)が必要となり、また一般的にはLDと投光レンズとの光学距離を長く設定することが必要となるので、光源が大型化する等の不具合がある。   However, since the light source for projecting monochromatic parallel light requires an optical element such as the above-described light projecting lens (collimator lens), the configuration becomes large and the manufacturing cost is increased. In addition, when trying to widen the beam bundle width of monochromatic parallel light, for example, a large-diameter projection lens (collimator lens) is required, and generally the optical distance between the LD and the projection lens can be set long. Since this is necessary, there is a problem such as an increase in the size of the light source.

本発明はこのような事情を考慮してなされたもので、その目的は、光源の構成の複雑化を招来することなしにラインセンサの出力からその光路中に位置付けられた遮蔽物のエッジ位置を、簡易にして精度良く検出することのできるエッジ検出装置を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to determine the edge position of the shield positioned in the optical path from the output of the line sensor without incurring the complexity of the configuration of the light source. An object of the present invention is to provide an edge detection device that can be simply and accurately detected.

上述した目的を達成するべく本発明は、LDから発せられたレーザ光(単色光)を、投光レンズ(コリメータレンズ)を介することなくそのまま投射した場合、上記レーザ光(単色光)の拡がりによってその光路中に位置付けられた検出対象物(遮蔽物)の影が拡大されてラインセンサの受光面に投影されること、またそのエッジ部分においては厳密には光のフレネル回折が生じないが、ラインセンサの受光面に投影される光パターンを実質的にフレネル回折パターンとして捉え得ることに着目している。   In order to achieve the above-described object, the present invention is based on the spread of the laser light (monochromatic light) when the laser light (monochromatic light) emitted from the LD is projected as it is without passing through the projection lens (collimator lens). The shadow of the detection object (shield) positioned in the optical path is enlarged and projected onto the light receiving surface of the line sensor, and strictly speaking, no Fresnel diffraction of light occurs at the edge portion. The focus is on the fact that the light pattern projected onto the light receiving surface of the sensor can be substantially regarded as a Fresnel diffraction pattern.

そこで本発明に係るエッジ検出装置は、
<a> 複数の受光セルを一方向に所定のピッチで配列したラインセンサと、
<b> このラインセンサの上記複数の受光セルに向けて該ラインセンサの全受光幅に到達する拡がり角を有する単色光を投光する点光源と、
<c> 上記単色光の光路に位置付けられた遮蔽物のエッジ位置を前記ラインセンサの出力を解析して求める演算部と
を具備することで、上記光路中に位置付けられた検出対象物(遮蔽物)の影や、該検出対象物(遮蔽物)のエッジ部分にて生じた光回折パターンを拡大して検出し、同時に光源の構成の簡素化を図ったことを特徴としている。
Therefore, the edge detection apparatus according to the present invention is
<a> a line sensor in which a plurality of light receiving cells are arranged at a predetermined pitch in one direction;
<b> A point light source that projects monochromatic light having a divergence angle that reaches the entire light receiving width of the line sensor toward the plurality of light receiving cells of the line sensor;
<c> An arithmetic unit that obtains an edge position of the shielding object positioned in the optical path of the monochromatic light by analyzing the output of the line sensor, thereby detecting a detection object (shielding object) positioned in the optical path. ) And the light diffraction pattern generated at the edge of the detection object (shielding object) are enlarged and detected, and at the same time, the configuration of the light source is simplified.

好ましくは請求項2に記載するように前記演算部は、前記点光源と前記ラインセンサとの距離SD、および前記遮蔽物と前記ラインセンサとの距離WDに応じて求められる光学系の拡大率SD/(SD−WD)に従って前記ラインセンサの出力を解析して求められる受光パターンのエッジ位置を補正して前記遮蔽物のエッジ位置を求めるように構成される。   Preferably, as described in claim 2, the arithmetic unit calculates the optical system enlargement ratio SD according to the distance SD between the point light source and the line sensor and the distance WD between the shield and the line sensor. / (SD-WD) is configured to obtain the edge position of the shielding object by correcting the edge position of the light receiving pattern obtained by analyzing the output of the line sensor.

特に請求項3に記載するように前記遮蔽物が丸棒状体であり、この丸棒状体の影の幅を前記ラインセンサの出力から求めるとき、
前記演算部においては前記ラインセンサ上で求められた上記丸棒状体の影の幅2aを、前記点光源と前記ラインセンサとの距離SD、前記遮蔽物と前記ラインセンサとの距離WD、および上記影の幅2aに基づいて補正して前記丸棒状体の径2rを
2r=2a(SD−WD)/{(2a)2+SD21/2
として求めることを特徴としている。
In particular, as described in claim 3, the shield is a round bar, and when the width of the shadow of the round bar is obtained from the output of the line sensor,
The calculation unit calculates the shadow width 2a of the round bar-like body obtained on the line sensor, the distance SD between the point light source and the line sensor, the distance WD between the shield and the line sensor, and the above The diameter 2r of the round bar is corrected based on the shadow width 2a, and 2r = 2a (SD−WD) / {(2a) 2 + SD 2 } 1/2
It is characterized by asking.

尚、前記演算部においては、例えば前記遮蔽部のエッジにてフレネル回折が生じていると看做して前記ラインセンサの受光面に生じた影のエッジ位置を検出するようにすれば良い。   Note that the calculation unit may detect the edge position of the shadow generated on the light receiving surface of the line sensor, assuming that Fresnel diffraction occurs at the edge of the shielding unit, for example.

上述した構成のエッジ検出装置によれば、光源としてラインセンサの全受光幅に到達する拡がり角を有する単色光を投光する点光源を用いるだけで良いので、例えば投光レンズ(コリメータレンズ)を用いることなくレーザダイオード(LD)から発せられた単色光(レーザ光)をそのままラインセンサに向けて投光すれば良く、その構成の大幅な簡素化と製作コストの低減を図ることができる。また光路に位置付けられた検出対象物(遮蔽物)の影が拡大されてラインセンサに投影されるので、その拡大率の分、上記影のエッジ位置の検出精度を高めることができる。   According to the edge detection apparatus having the above-described configuration, it is only necessary to use a point light source that projects monochromatic light having a divergence angle that reaches the entire light receiving width of the line sensor as a light source. The monochromatic light (laser light) emitted from the laser diode (LD) may be projected as it is toward the line sensor without being used, and the configuration can be greatly simplified and the manufacturing cost can be reduced. Further, since the shadow of the detection object (shielding object) positioned in the optical path is enlarged and projected onto the line sensor, the detection accuracy of the shadow edge position can be increased by the enlargement ratio.

従って装置の全体構成(特に光源の構成)の簡素化を図りながら、その検出精度を高め得る等の実用上多大なる効果が奏せられる。   Therefore, it is possible to achieve a great practical effect such that the detection accuracy can be improved while simplifying the overall configuration of the apparatus (particularly the configuration of the light source).

以下、図面を参照して本発明の一実施形態に係るエッジ検出装置について、微小径のドリル刃の径(ドリル径)を測定する装置を例に説明する。
図1はこの径測定に用いられるエッジ検出装置の要部概略構成を示している。このエッジ検出装置は、概略的には一方向に所定のピッチwで配列した複数の受光セルを備えたラインセンサ(受光部)1と、このラインセンサ1の受光面に対峙して設けられて該ラインセンサ1の複数の受光セル1aの全幅に向けて単色光4を投光する投光部2とを備える。ラインセンサ1は、例えば102個の受光セルを85μmのピッチで配列し、長辺8.7mm×短辺0.08mmの受光面を形成したものからなる。またマイクロコンピュータ等により実現される装置本体3は、前記ラインセンサ1の出力(各受光セルの受光量)を解析することで前記単色光4の光路に位置付けられた、遮蔽物(検出対象物)7の前記受光セル1aの配設方向におけるエッジ位置を高精度に検出する役割を担う。
Hereinafter, an edge detection apparatus according to an embodiment of the present invention will be described with reference to the drawings, taking as an example an apparatus for measuring a diameter of a very small drill blade (drill diameter).
FIG. 1 shows a schematic configuration of a main part of an edge detection apparatus used for the diameter measurement. The edge detection device is generally provided so as to be opposed to a line sensor (light receiving unit) 1 including a plurality of light receiving cells arranged at a predetermined pitch w in one direction, and a light receiving surface of the line sensor 1. A light projecting unit 2 that projects monochromatic light 4 toward the entire width of the plurality of light receiving cells 1a of the line sensor 1 is provided. The line sensor 1 includes, for example, 102 light receiving cells arranged at a pitch of 85 μm and a light receiving surface having a long side of 8.7 mm and a short side of 0.08 mm. In addition, the apparatus main body 3 realized by a microcomputer or the like analyzes the output of the line sensor 1 (the amount of light received by each light receiving cell) and is positioned in the optical path of the monochromatic light 4 to be a shield (detection target). 7 plays a role of detecting the edge position in the arrangement direction of the light receiving cell 1a with high accuracy.

ちなみに投光部2は、所定の拡がり角を有する単色光(レーザ光)をそのまま前記ラインセンサ1に向けて投光するレーザダイオード(LD)等の点光源2aを備えて構成される。このような投光部2は、例えば前述したラインセンサ1と共に所定の隙間(空間部)Lを形成したコの字状の筐体5に上記隙間Lを挟んで互いに対峙させて一体に組み込まれて、1つのセンシングユニットとして形成される。尚、点光源2aとしてレーザダイオード(LD)を用いた場合、LDは楕円状の強度分布を有するレーザ光を射出するので、このレーザ光の長軸方向がラインセンサ1の長手方向となるように、その光学系を設定することが望ましい。   Incidentally, the light projecting unit 2 includes a point light source 2a such as a laser diode (LD) that projects monochromatic light (laser light) having a predetermined divergence angle toward the line sensor 1 as it is. Such a light projecting unit 2 is integrated into a U-shaped housing 5 having a predetermined gap (space part) L together with the above-described line sensor 1 so as to face each other with the gap L interposed therebetween. And formed as one sensing unit. When a laser diode (LD) is used as the point light source 2a, the LD emits laser light having an elliptical intensity distribution so that the long axis direction of the laser light is the longitudinal direction of the line sensor 1. It is desirable to set the optical system.

さて前記装置本体3は、前記ラインセンサ1の出力(各受光セルの受光量)を取り込んで該ラインセンサ1の受光面上における光強度分布を求める入力バッファ3aを備える。特に装置本体3は、その初期設定処理として予め前記投光部2から投光された所定の光線束幅の単色光を前記ラインセンサ1にて受光し、このときの光強度分布に基づいて前記投光部2が投光する単色光の回折パターンを求めると共に、後述するようにこの回折パターンの逆数に従って前記各受光セル1aの受光量に対する正規化パラメータを求める回折パターン検出手段3bを備える。   The apparatus body 3 includes an input buffer 3a that takes in the output of the line sensor 1 (the amount of light received by each light receiving cell) and obtains the light intensity distribution on the light receiving surface of the line sensor 1. In particular, the apparatus main body 3 receives monochromatic light having a predetermined light bundle width projected from the light projecting unit 2 in advance as the initial setting process by the line sensor 1, and based on the light intensity distribution at this time, A diffraction pattern detection unit 3b is provided for obtaining a diffraction pattern of monochromatic light projected by the light projecting unit 2 and obtaining a normalization parameter for the amount of light received by each light receiving cell 1a according to the reciprocal of the diffraction pattern as will be described later.

更に装置本体3は、上記回折パターン検出手段3bにより求められた正規化パラメータに従って前記ラインセンサ1の出力を正規化する正規化手段3cと、この正規化手段3cにて正規化処理した前記ラインセンサ1の出力(正規化出力)に従って前記遮蔽物(検出対象物)7の端部(エッジ)の位置、具体的にはラインセンサ1での受光パターンの受光セルの配列方向におけるエッジ位置を検出するエッジ検出部3bとを備える。このエッジ検出部3bは、遮蔽物(検出対象物)7の端部(エッジ)において単色光のフレネル回折が生じ、その回折パターンがラインセンサ1の受光面に投影されているとして、後述するようにその回折パターンの光強度分布を解析してエッジ位置を求めるものである。またこのエッジ検出装置においては上記装置本体3は、更に上記エッジ検出部3dの出力を利用して、検査対象物としてのドリル刃の径(ドリル径)を測定するドリル径測定部3e、またドリル刃の芯ぶれを検出する芯ぶれ検出部3f、およびドリル刃の先端位置を検出する先端位置検出部3gを備えて構成される。   Further, the apparatus main body 3 includes a normalizing means 3c for normalizing the output of the line sensor 1 according to the normalization parameter obtained by the diffraction pattern detecting means 3b, and the line sensor normalized by the normalizing means 3c. 1, the position of the end (edge) of the shielding object (detection target) 7, specifically, the edge position of the light receiving pattern of the line sensor 1 in the array direction of the light receiving cells is detected. And an edge detector 3b. As will be described later, this edge detection unit 3b assumes that Fresnel diffraction of monochromatic light occurs at the end (edge) of the shield (detection target) 7 and that the diffraction pattern is projected onto the light receiving surface of the line sensor 1. The edge position is obtained by analyzing the light intensity distribution of the diffraction pattern. In this edge detection apparatus, the apparatus main body 3 further uses a drill diameter measuring section 3e for measuring the diameter of a drill blade (drill diameter) as an inspection object by using the output of the edge detection section 3d. It is configured to include a runout detector 3f that detects the runout of the blade and a tip position detector 3g that detects the tip position of the drill blade.

ここでエッジ検出部3dにおけるエッジ位置の検出処理について説明する。エッジ検出部3dは、基本的には単色平行光の一部が遮蔽物(検出対象物)7にて遮られたとき、その端部(エッジ)においてフレネル回折が生じること、そしてフレネル回折を生じて前記ラインセンサ1の受光面に到達する光の強度が、以下に説明するようにエッジ位置近傍で急峻に立ち上がり、エッジ位置から離れるに従って振動しながら収束する分布特性を持つことに着目して、ラインセンサ1の受光面上での光強度分布に従って前記遮蔽物7の端部(エッジ)の位置を高精度に検出するように構成される。   Here, the edge position detection processing in the edge detection unit 3d will be described. The edge detection unit 3d basically generates Fresnel diffraction at its end (edge) when a part of monochromatic parallel light is blocked by the shielding object (detection object) 7, and causes Fresnel diffraction. Paying attention to the distribution characteristic that the intensity of light reaching the light receiving surface of the line sensor 1 rises steeply in the vicinity of the edge position as described below and converges while oscillating as the distance from the edge position increases. According to the light intensity distribution on the light receiving surface of the line sensor 1, the position of the end (edge) of the shield 7 is detected with high accuracy.

即ち、前記遮蔽物7がラインセンサ1の一端側から前記単色光4の光路を遮る板状のものである場合、該遮蔽物7のエッジにおけるフレネル回折による光強度分布は、図2に示すようにエッジ位置近傍で急峻に立ち上がり、エッジ位置から離れるに従って振動しながら収束する。このような光強度分布の特性は、単色平行光の波長をλ[nm]、検査対象物(遮蔽物7)のエッジから受光面までの距離をz[mm]、受光面上でのエッジ位置x[μm]を[0]としたとき、∫を[x=0]から[(2/λz)1/2・x]までの積分を示す演算記号として
光強度 =(1/2){[1/2+S(x)]2+[1/2+C(x)]2
S(x) =∫sin(π/2)・U2dU
C(x) =∫cos(π/2)・U2dU
として表される。但し、Uは仮の変数である。
That is, when the shielding object 7 has a plate shape that blocks the optical path of the monochromatic light 4 from one end side of the line sensor 1, the light intensity distribution due to Fresnel diffraction at the edge of the shielding object 7 is as shown in FIG. It rises sharply near the edge position and converges while vibrating as it moves away from the edge position. Such light intensity distribution characteristics are as follows: the wavelength of monochromatic parallel light is λ [nm], the distance from the edge of the inspection object (shield 7) to the light receiving surface is z [mm], and the edge position on the light receiving surface Assuming that x [μm] is [0], ∫ is an operation symbol indicating an integration from [x = 0] to [(2 / λz) 1/2 · x]. Light intensity = (1/2) {[ 1/2 + S (x)] 2 + [1/2 + C (x)] 2 }
S (x) = ∫sin (π / 2) · U 2 dU
C (x) = ∫cos (π / 2) · U 2 dU
Represented as: However, U is a temporary variable.

また上式中の関数S(x),C(x)については、専ら数学公式集に示されるようにフレネル関数を用いて、xが大きいところでは
S(x)’≒(1/2)−(1/πx)cos(πx2/2)
C(x)’≒(1/2)+(1/πx)sin(πx2/2)
としてそれぞれ近似することができる。従って基本的には上記近似式S(x)’,C(x)’を用いることにより、前記ラインセンサ1の各受光セルによる受光強度から前述したエッジ位置を計算することができる。
As for the functions S (x) and C (x) in the above equation, the Fresnel function is used exclusively as shown in the mathematical formulas, and S (x) ′ ≈ (1/2) − where x is large. (1 / πx) cos (πx 2/2)
C (x) '≒ (1/2 ) + (1 / πx) sin (πx 2/2)
Can be approximated respectively. Therefore, basically, by using the approximate expressions S (x) ′ and C (x) ′, the edge position described above can be calculated from the received light intensity of each light receiving cell of the line sensor 1.

しかしながら実際に計算してみると、図3に示すように関数S(x),C(x)とその近似式S(x)’,C(x)’とは、その立ち上がり以降の収束部分(2山目以降)において非常に良好に近似するものの、最初の立ち上がり部分(1山目)において大きなずれがあることが否めない。特にこの最初の立ち上がり部分の特性はエッジ検出において重要な役割を担うものであり、その特性のずれはエッジ位置の検出精度の低下の要因となる。   However, when actually calculated, as shown in FIG. 3, the functions S (x) and C (x) and the approximate expressions S (x) ′ and C (x) ′ are converged after the rise ( Although it approximates very well in the second and subsequent peaks, it cannot be denied that there is a large shift in the first rising portion (first mountain). In particular, the characteristic of the first rising portion plays an important role in edge detection, and the deviation of the characteristic causes a decrease in the detection accuracy of the edge position.

そこで本発明者は先に特許文献4にて単色平行光のフレネル回折による受光面上での光強度分布の最初の立ち上がり部分、特にその1山目の分布特性が、a,b,cをそれぞれ係数として
y=a・sech(bx+c)
なるハイパボリックセカンド関数sech(x)に極めて良好に近似することを見出し、このハイパボリックセカンド関数sech(x)を用いて前記ラインセンサの出力(光強度)を解析し、前記フレネル回折による受光面上での光強度分布において光強度(相対値)が0.25となる位置xoを前記遮蔽物7の前記受光セルの配列方向におけるエッジ位置として検出することを提唱した。
Therefore, the present inventor previously described in Patent Document 4 that the first rising portion of the light intensity distribution on the light receiving surface by Fresnel diffraction of monochromatic parallel light, particularly the distribution characteristics of the first mountain, a, b, c respectively. As coefficient y = a · sech (bx + c)
It is found that the hyperbolic second function sech (x) approximates very well, and the output (light intensity) of the line sensor is analyzed using the hyperbolic second function sech (x) on the light receiving surface by the Fresnel diffraction. It was proposed that the position xo where the light intensity (relative value) is 0.25 in the light intensity distribution is detected as the edge position of the shield 7 in the arrangement direction of the light receiving cells.

具体的には、上述したハイパボリックセカンド関数を前述したフレネル回折による光強度分布の式に当て嵌めて該光強度分の最初の立ち上がり部分(1山目)までを近似すると、そのハイパボリックセカンド関数sech(x)は
光強度 =1.37sech{1.98(2/λz)1/2x−2.39}
として示される。この近似式は3桁程度の精度で光強度分布の理論式に一致する。但し、λは光の波長[nm]、zはエッジから受光面までの距離[mm]、xは受光面上でのエッジ位置を[0]とする座標[μm]であり、これらの実用的な単位の下で上記各係数を設定している。
Specifically, when the above-described hyperbolic second function is applied to the above-described formula of the light intensity distribution by Fresnel diffraction and approximated to the first rising portion (first mountain) of the light intensity, the hyperbolic second function sech ( x) is the light intensity = 1.37 sech {1.98 (2 / λz) 1/2 x−2.39}
As shown. This approximate expression agrees with the theoretical expression of the light intensity distribution with an accuracy of about three digits. Where λ is the wavelength of light [nm], z is the distance from the edge to the light receiving surface [mm], and x is the coordinate [μm] where the edge position on the light receiving surface is [0]. The above coefficients are set under various units.

このようなハイパボリックセカンド関数sech(x)を用いたエッジ位置の検出処理のアルゴリズムについて説明すると、ハイパボリックセカンド関数sech(x)を用いて近似される光強度の逆関数を計算すると、
Y=(y/1.37)
X=1.98(2/λz)1/2
とおいて、
X=2.39−ln{[1+(1−Y2)1/2]/Y}
として表すことができる。
The algorithm of edge position detection processing using such a hyperbolic second function sech (x) will be described. When an inverse function of light intensity approximated using the hyperbolic second function sech (x) is calculated,
Y = (y / 1.37)
X = 1.98 (2 / λz) 1/2 x
Anyway,
X = 2.39−ln {[1+ (1−Y 2 ) 1/2 ] / Y}
Can be expressed as

そこで前述したエッジ検出部3dにおいては、基本的には、例えば図4に示す手順に従って先ずラインセンサ1における複数(m個)の受光セル1aから求められる正規化された各受光強度y1,y2,〜ymから、互いに隣接して前述した基準光強度[0.25]よりも大きい受光強度を得た受光セルCnと、上記基準光強度[0.25]よりも小さい受光強度を得た受光セルCn-1とをそれぞれ求めている(ステップS1)。つまり複数の受光セル1a(C1,C2,〜Cm)間のそれぞれにおいて受光強度が[0.25]となる、互いに隣接する2つの受光セルCn,Cn-1を求める。そしてこれらの各受光セルCn,Cn-1の受光強度yn,yn-1を上述した係数[1.37]で除算してX-Y座標上での光強度Yn,Yn-1に変換する(ステップS2)。   Therefore, in the edge detection unit 3d described above, each normalized received light intensity y1, y2, which is first obtained from a plurality (m) of light receiving cells 1a in the line sensor 1 according to the procedure shown in FIG. To ym, a light receiving cell Cn that obtains a light receiving intensity larger than the above-mentioned reference light intensity [0.25] and a light receiving cell that obtains a light receiving intensity smaller than the above-mentioned reference light intensity [0.25]. Cn-1 is obtained (step S1). That is, two adjacent light receiving cells Cn and Cn-1 having a light receiving intensity of [0.25] in each of the plurality of light receiving cells 1a (C1, C2, to Cm) are obtained. Then, the received light intensity yn, yn-1 of each of the light receiving cells Cn, Cn-1 is divided by the coefficient [1.37] described above to be converted into light intensity Yn, Yn-1 on the XY coordinates ( Step S2).

しかる後、これらの各受光セルCn,Cn-1の受光強度Yn,Yn-1が得られる該受光セルCn,Cn-1の受光面上での位置Xn,Xn-1を、前述した近似式に従って
Xn=2.39−ln{[1+(1−Yn2)1/2]/Yn}
Xn-1=2.39−ln{[1+(1−Yn-12)1/2]/Yn-1}
としてそれぞれ逆変換によりX軸上の相対位置を計算し(受光位置算出手段;ステップS3)、これらの位置Xn,Xn-1から図5にその概念を示すように受光セルCnの位置と、受光強度が[0.25]となるエッジ位置との差Δxを
Δx=W・[Xn/(Xn−Xn-1)]
なる補間演算により計算する(補間演算手段;ステップS4)。尚、上記差Δxは、受光強度が[0.25]となるエッジ位置xoから受光セルCnの位置までの距離であるので、ラインセンサ1の受光面全体において1番目の受光セルC1から測ったときのエッジの絶対位置xは、nを光量Y2を得た受光セル1aのセル番号、受光セル1aの配列ピッチをWとしたとき
x=n・W−Δx
として求めることが可能となる。また上記逆変換において求められる相対位置Xn,Xn-1は、
X=1.98(2/λz)1/2
として示されるように[1.98(2/λz)1/2]倍された値であるが、上記補間演算で比をとることにより実質的にこの項は削除される。
Thereafter, the positions Xn and Xn-1 on the light receiving surface of the light receiving cells Cn and Cn-1 from which the light receiving intensities Yn and Yn-1 of the light receiving cells Cn and Cn-1 are obtained are expressed by the above-described approximate expression. Xn = 2.39-ln accordance {[1+ (1-Yn 2 ) 1/2] / Yn}
Xn-1 = 2.39-ln {[1+ (1-Yn-1 2 ) 1/2 ] / Yn-1}
As shown in FIG. 5, the relative position on the X axis is calculated by inverse transformation (light receiving position calculating means; step S3), and the position of the light receiving cell Cn and the light receiving position are shown in FIG. The difference Δx from the edge position where the intensity is [0.25] is expressed as Δx = W · [Xn / (Xn−Xn−1)]
(Interpolation calculation means; step S4). The difference Δx is the distance from the edge position xo where the light receiving intensity is [0.25] to the position of the light receiving cell Cn, and is thus measured from the first light receiving cell C1 on the entire light receiving surface of the line sensor 1. When the absolute position x of the edge is defined as n, where n is the cell number of the light receiving cell 1a from which the light quantity Y2 is obtained, and W is the arrangement pitch of the light receiving cells 1a,
Can be obtained as The relative positions Xn and Xn-1 obtained in the inverse transformation are
X = 1.98 (2 / λz) 1/2 x
As shown, the value is multiplied by [1.98 (2 / λz) 1/2 ], but this term is substantially eliminated by taking the ratio in the above-described interpolation calculation.

この補間演算については前述した近似式を用いて実行しても良いが、上述した2つの受光セルCn,Cn-1間での光強度の変化が直線的であると見なし得る場合には、単純な直線補間であっても良い。またここでは隣接する受光セル1a間で光強度が[0.25]となる位置を見出し、その位置をセル境界とする2つの受光セルCn,Cn-1を特定したが、単に上記位置を挟む2つ以上の受光セルを特定しても良い。但し、この場合には必ず前述した近似式を用いて補間演算を行うことで、その演算精度の低下を防止するようにすれば良い。また上述した逆変換については、例えば予めその計算値を記憶したテーブルを用いることで、その演算処理負担を大幅に軽減して瞬時に実行することが可能である。   This interpolation calculation may be executed using the above-described approximate expression. However, if the change in light intensity between the two light receiving cells Cn and Cn-1 can be regarded as linear, it is simple. Simple linear interpolation may be used. Here, a position where the light intensity is [0.25] is found between adjacent light receiving cells 1a, and two light receiving cells Cn and Cn-1 having the position as a cell boundary are specified, but the above position is simply sandwiched. Two or more light receiving cells may be specified. However, in this case, it is only necessary to prevent the calculation accuracy from being lowered by performing the interpolation calculation using the approximate expression described above. Further, the inverse transformation described above can be executed instantaneously, for example, by using a table in which the calculated values are stored in advance, thereby greatly reducing the calculation processing load.

尚、前記受光セルCn,Cn-1の受光面上での相対位置Xn,Xn-1と、受光強度が[0.25]となる位置(エッジ位置)xoと受光セルCnの位置との差Δx、また受光セルCnでの受光強度、および前記単色平行光の波長λとに着目すれば、前記ハイパボリックセカンド関数sech(x)から遮蔽物7のエッジとラインセンサ1の受光面との距離、即ち、光路方向の距離zを求めることも可能である(ステップS5)。具体的にこの距離計算は、基本的には前述した1山目のフレネル回折を近似した前述した式
光強度A(x)=1.37・sech{1.98(2/λz)1/2x−2.39}
から距離zについて解き、
z=(2/λ){1.98・x/[arcsech(A(x)/1.37)+2.39]}2
として遮蔽物7のエッジとラインセンサ1の受光面との距離zを計算することによって行うことができる。
The difference between the relative positions Xn, Xn-1 on the light receiving surface of the light receiving cells Cn, Cn-1 and the position (edge position) xo where the light receiving intensity is [0.25] and the position of the light receiving cell Cn. Paying attention to Δx, the light receiving intensity at the light receiving cell Cn, and the wavelength λ of the monochromatic parallel light, the distance between the edge of the shield 7 and the light receiving surface of the line sensor 1 from the hyperbolic second function sech (x), That is, the distance z in the optical path direction can also be obtained (step S5). Specifically, this distance calculation is basically performed by using the above-described formula approximating the above-mentioned Fresnel diffraction at the first peak. Light intensity A (x) = 1.37 · sech {1.98 (2 / λz) 1/2 x-2.39}
Solve for the distance z from
z = (2 / λ) {1.98 · x / [arcsech (A (x) /1.37) +2.39]} 2
As described above, the distance z between the edge of the shield 7 and the light receiving surface of the line sensor 1 can be calculated.

この場合、前述した受光セルの配列方向のエッジ位置を求める際に、光強度が[0.25]よりも大きい強度が得られた受光セルCnの位置を利用して、この位置とエッジ位置との差Δxから、
z=(2/λ){1.98・Δx/[arcsech(yn/1.37)+2.39]}2
として計算すれば、遮蔽物7のエッジとラインセンサ1の受光面との距離zを簡単に求めることができる。特に上式中の分母の項は、前述した
Xn=2.39−ln{[1+(1−Yn2)1/2]/Yn}
に相当するので、上述した演算を
z=(2/λ){1.98・Δx/Xn}2
として更に簡単に計算することが可能となる。
In this case, when the edge position in the arrangement direction of the light receiving cells described above is obtained, the position of the light receiving cell Cn where the light intensity is higher than [0.25] is used, and this position and the edge position are determined. From the difference Δx,
z = (2 / λ) {1.98 · Δx / [arcsech (yn / 1.37) +2.39]} 2
As a result, the distance z between the edge of the shield 7 and the light receiving surface of the line sensor 1 can be easily obtained. Especially denominator term in the above equation, the aforementioned Xn = 2.39-ln {[1+ (1-Yn 2) 1/2] / Yn}
Therefore, the above calculation is performed by z = (2 / λ) {1.98 · Δx / Xn} 2
It becomes possible to calculate more simply as follows.

ところで遮蔽物7が前述したように微小径の棒状体、例えばドリル刃である場合、ドリル刃の両側部において単色平行光4のフレネル回折が生じるので、ラインセンサ1の受光面におけるフレネル回折パターンは、例えば図6(a)に示すようにドリル刃の中心位置の両側においてそれぞれ振動しながら収束するような対称性を有するパターンとなり、またラインセンサ1の各受光セルでの受光強度は図6(b)に示すようになる。しかもドリル径が200μm以下である場合、その受光強度が[0.25]まで低下しなくなることがある。これ故、前述したようにしてフレネル回折の近似式を用いて光量が[0.25]となる位置を正確に求めることができなくなる。   By the way, when the shielding object 7 is a small-diameter rod-like body as described above, for example, a drill blade, Fresnel diffraction of the monochromatic parallel light 4 occurs at both side portions of the drill blade, so the Fresnel diffraction pattern on the light receiving surface of the line sensor 1 is For example, as shown in FIG. 6 (a), the pattern has a symmetry that converges while vibrating on both sides of the center position of the drill blade, and the light receiving intensity at each light receiving cell of the line sensor 1 is as shown in FIG. As shown in b). Moreover, when the drill diameter is 200 μm or less, the received light intensity may not decrease to [0.25]. Therefore, as described above, it is impossible to accurately obtain the position where the light amount is [0.25] using the approximate expression of Fresnel diffraction.

しかしながら図6(a)に示す回折パターンは、図6(c)に示すように近似的には遮蔽物(ドリル刃)7の両側においてそれぞれ生じたフレネル回折が合成したものであると看做すことができる。従って、例えば半径rの遮蔽物(ドリル刃)7を通過した光の強度A(x)は、その左側の回折パターンの光強度A(x)Lと、右側の回折パターンの光強度A(x)Rとを合成した
A(x)=A(x)L+A(x)R
=1.37sech{−1.98(2/λz)1/2(x+r)−2.39}
+1.37sech{1.98(2/λz)1/2(x−r)−2.39}
として捉えることができる。しかしドリル径が細くなると、左側および右側の回折パターンの光強度A(x)L,A(x)Rにおける[0.25]付近での重なりが大きく影響し、ラインセンサ1の受光面上での光強度が[0.25]を大きく上回るようになるので、前述したように光量が[0.25]となる位置をそのエッジ位置として直接検出することはできなくなる。
However, the diffraction pattern shown in FIG. 6 (a) is considered to be a combination of Fresnel diffractions generated on both sides of the shield (drilling blade) 7 approximately as shown in FIG. 6 (c). be able to. Therefore, for example, the light intensity A (x) that has passed through the shield (drilling blade) 7 having the radius r is the light intensity A (x) L of the left diffraction pattern and the light intensity A (x) of the right diffraction pattern. ) R and A (x) = A (x) L + A (x) R
= 1.37 sech {-1.98 (2 / λz) 1/2 (x + r) -2.39}
+1.37 sech {1.98 (2 / λz) 1/2 (x−r) −2.39}
Can be understood as However, as the drill diameter becomes smaller, the overlap in the vicinity of [0.25] in the light intensities A (x) L and A (x) R of the left and right diffraction patterns greatly affects the light receiving surface of the line sensor 1. Therefore, the position where the light amount is [0.25] cannot be directly detected as the edge position as described above.

そこで前記ドリル径計測部3eにおいては、上述した左側および右側の回折パターンの光強度A(x)L,A(x)Rにおいて、その最初の立ち上がり部分における他方の回折パターンの影響を殆ど受けることのない部位、具体的には光強度(光量)が[0.5〜0.9]となる部位に着目し、例えば図7にその処理手順を示すように光強度(光量)が[0.75]となる概略的なエッジ位置XR,XLをそれぞれ求めるようにしている(ステップS11,12)。そしてこれらの左右の概略的なエッジ位置XR,XLから回折パターンA(x)においてその光量が[0.75]となる遮光幅2aを求め(ステップS13)、この遮光幅2aに従って前述したドリル刃の半径rを逆算することでそのドリル径を求めるものとなっている(ステップS14)。 Therefore, in the drill diameter measuring unit 3e, the light intensity A (x) L, A (x) R of the left and right diffraction patterns described above is almost affected by the other diffraction pattern at the first rising portion. Particular attention is paid to a region where the light intensity (light quantity) is [0.5 to 0.9]. For example, the light intensity (light quantity) is [0. 75], the rough edge positions X R and X L are obtained (steps S11 and S12). Then, a light shielding width 2a having a light quantity of [0.75] in the diffraction pattern A (x) is obtained from these left and right rough edge positions X R and X L (step S13), and the above-described operation is performed according to the light shielding width 2a. The drill diameter is obtained by calculating back the radius r of the drill blade (step S14).

具体的には右側の回折パターンA(x)Rから、光量が[0.75]となるエッジ位置XRを次のようにして求める。即ち、光強度y
y=1.37sech{1.98(2/λz)1/2X−1.21}
において、
Y=y/1.37
と置くと、
sech-1(Y)=±ln[{1+(1−Y2)1/2}/Y]
=X’−1.21
但し、0<y≦1.37 ,0<Y≦1.0,X’=1.98(2/λz)1/2
となる。
Specifically, the edge position X R where the light intensity is [0.75] is obtained from the right diffraction pattern A (x) R as follows. That is, the light intensity y
y = 1.37 sech {1.98 (2 / λz) 1/2 X−1.21}
In
Y = y / 1.37
And put
sech −1 (Y) = ± ln [{1+ (1−Y 2 ) 1/2 } / Y]
= X'-1.21
However, 0 <y ≦ 1.37, 0 <Y ≦ 1.0, X ′ = 1.98 (2 / λz) 1/2 X
It becomes.

そこで今、102セルからなるラインセンサ1の各受光セルでの計測値(正規化したデータy0,y1,y2,…y101)で、[n−1]番目のセルとn番目のセルとの間に光強度が[0.75]となる位置が存在し、上記[n−1]番目およぴn番目のセルでの光強度がyn-1,ynであったとすると、
Yn-1=yn-1/1.37 ,Yn=yn/1.37
として、前述した図5に示した場合と同様に光強度が[0.75]となる位置を
X’n-1=1.21−ln[{1+(1−Yn-12)1/2}/Yn-1]
X’n=1.21−ln[{1+(1−Yn2)1/2}/Yn]
としてそれぞれ写像することができる。この結果、これらの写像位置からそのエッジ位置XR
R[μm]=w{n−X’n/(X’n−X’n-1)}
として補間処理により簡単に、しかも正確に求めることができる。但し、wはセルの幅である。尚、前述したようにX’n,X’n-1は、本来のセルの位置ではなく、1.98(2/λz)1/2倍された値であるが、上述したように比を求めることで実質的にはこの項が消去されるので、距離zが不明であっても正確に補間処理を行い得る。
Therefore, the measured value (normalized data y0, y1, y2,..., Y101) in each light receiving cell of the line sensor 1 composed of 102 cells is between the [n−1] th cell and the nth cell. Where the light intensity is [0.75], and the light intensity in the [n-1] -th and n-th cells is yn-1, yn,
Yn-1 = yn-1 / 1.37, Yn = yn / 1.37
As in the case shown in FIG. 5, the position where the light intensity is [0.75] is expressed as X′n−1 = 1.21−ln [{1+ (1−Yn−1 2 ) 1/2 } / Yn-1]
X′n = 1.21−ln [{1+ (1−Yn 2 ) 1/2 } / Yn]
Can be mapped respectively. As a result, the edge position X R is changed from these mapping positions to X R [μm] = w {n−X′n / (X′n−X′n−1)}.
Can be obtained easily and accurately by interpolation processing. Where w is the width of the cell. As described above, X′n and X′n−1 are not original cell positions but are values multiplied by 1.98 (2 / λz) 1/2. Since this term is substantially eliminated by obtaining, the interpolation process can be performed accurately even if the distance z is unknown.

また同様にして左側の回折パターンA(x)Lから、光量が[0.75]となるエッジ位置XLを求める。そしてこれらの各回折パターンA(x)R,A(x)Lからそれぞれ求めたエッジ位置XR,XLに従って、光量[0.75]となる位置での遮光幅2aを
2a=XR−XL
として求める。
Similarly, an edge position X L at which the light amount is [0.75] is obtained from the left diffraction pattern A (x) L. Then, according to the edge positions X R and X L obtained from these diffraction patterns A (x) R and A (x) L, the light shielding width 2a at the position where the light quantity is [0.75] is set to 2a = X R − X L
Asking.

次いで前述した右側および左側の回折パターンの光強度A(x)R,A(x)Lを合成した回折パターンを表す式に上記光量[0.75]と遮光幅2aの半分の値aとを代入し、ドリル刃の半径rを逆算して求める。このrの逆算については、例えばニュートン法を利用して数値計算するようにすれば良い。
具体的には
f(r)=1.37sech{−1.98(2/λz)1/2(a+r)−2.39}
+1.37sech{1.98(2/λz)1/2(a−r)−2.39}−0.75
とすれば、その微分は
f'(r)=−2.71(2/λz)1/2
×sech{−1.98(2/λz)1/2(a+r)−2.39}
×tanh{−1.98(2/λz)1/2(a+r)−2.39}
−2.71(2/λz)1/2
×sech{1.98(2/λz)1/2(a−r)−2.39}
×tanh{1.98(2/λz)1/2(a−r)−2.39}
となる。
Next, the above light quantity [0.75] and half the value a of the light-shielding width 2a are added to the equation representing the diffraction pattern obtained by combining the light intensities A (x) R and A (x) L of the right and left diffraction patterns. Substituting and calculating the radius r of the drill blade in reverse. For the reverse calculation of r, for example, numerical calculation may be performed using the Newton method.
Specifically, f (r) = 1.37 sech {-1.98 (2 / λz) 1/2 (a + r) -2.39}
+1.37 sech {1.98 (2 / λz) 1/2 (ar) -2.39} −0.75
Then, the derivative is f ′ (r) = − 2.71 (2 / λz) 1/2
Xsech {-1.98 (2 / λz) 1/2 (a + r) -2.39}
Xtanh {-1.98 (2 / λz) 1/2 (a + r) -2.39}
-2.71 (2 / λz) 1/2
× sech {1.98 (2 / λz) 1/2 (ar) -2.39}
X tanh {1.98 (2 / λz) 1/2 (ar) -2.39}
It becomes.

そこでrの初期値r0を
r0={2a−0.845(λz)1/2}/2
とし、
n=rn-1−f(rn-1)/f'(rn-1)
n=1,2,3,…
として[rn−rn-1]の絶対値が、例えば0.01以下となるまで繰り返し計算すれば、その収束したrをドリルの半径として求めることが可能となる。従ってドリル径については、上記半径rの2倍として、具体的には2rとして求めることが可能となる。
Therefore, the initial value r0 of r is set to r0 = {2a−0.845 (λz) 1/2 } / 2
age,
r n = r n−1 −f (r n−1 ) / f ′ (r n−1 )
n = 1,2,3, ...
If it is repeatedly calculated until the absolute value of [r n −r n−1 ] is, for example, 0.01 or less, the converged r can be obtained as the radius of the drill. Therefore, the drill diameter can be obtained as twice the radius r, specifically as 2r.

尚、このようにして計算されるドリル径(半径r)については、ドリル刃とラインセンサ1との距離zが予め分かっている場合には、例えば図8に示すように遮光幅2aと直径2rとの関係として予めテーブル化して記憶しておくようにすれば良い。このようなテーブル3hを用いれば、その都度、上述したニュートン法を用いた逆算処理が不要となるので、ドリル径の計測を簡単に行うことが可能となる。   As for the drill diameter (radius r) calculated in this way, when the distance z between the drill blade and the line sensor 1 is known in advance, for example, as shown in FIG. 8, the light shielding width 2a and the diameter 2r. As a relationship, the table may be stored in advance. If such a table 3h is used, since the back-calculation process using the Newton method mentioned above becomes unnecessary each time, it becomes possible to measure a drill diameter easily.

尚、ドリル径が或る程度太く、右側および左側の回折パターンの光強度A(x)R,A(x)L間の干渉が無視できる場合には、片方の回折パターンの光強度A(x)R,A(x)Lを用いるだけで、例えば
0.75=1.37sech{1.98(2/λz)1/2(a-r)−2.39}
を解くだけで、
2r=2a−0.845(λz)1/2
としてその半径rを求めることができる。即ち光量[0.75]での遮光幅2aからその光学系の規定値である[0.845(λz)1/2]を引くだけで簡単にドリル刃の直径(ドリル径)2rを求めることができる。
When the drill diameter is somewhat thick and the interference between the light intensities A (x) R and A (x) L of the right and left diffraction patterns is negligible, the light intensity A (x ) R, A (x) L, for example, 0.75 = 1.37 sech {1.98 (2 / λz) 1/2 (ar) -2.39}
Just solve
2r = 2a-0.845 (λz) 1/2
The radius r can be obtained as follows. That is, the diameter (drill diameter) 2r of the drill blade can be easily obtained by simply subtracting [0.845 (λz) 1/2 ], which is the specified value of the optical system, from the light shielding width 2a at the light amount [0.75]. Can do.

ところで本発明に係るエッジ検出装置は、前述したように点光源2から発せられた単色光をそのままラインセンサ1に向けて投光するように構成されている。そして光源2からラインセンサ1に向けて投光される単色光が所定の拡がり角を有しており、平行光ではないので厳密な意味では遮蔽物(検出対象物)7の端部(エッジ)においてフレネル回折は生じない。しかしLDから発せられるレーザ光の拡がり角は、一般的には17°程度と比較的狭いので、これを平行光と看做して、つまりフレネル回折が生じていると看做して前述したようにエッジ検出を行っても殆ど計測誤差が生じない。   The edge detection apparatus according to the present invention is configured to project monochromatic light emitted from the point light source 2 toward the line sensor 1 as it is, as described above. The monochromatic light projected from the light source 2 toward the line sensor 1 has a predetermined divergence angle and is not parallel light. Therefore, in a strict sense, the end (edge) of the shielding object (detection target) 7 is used. In Fresnel diffraction does not occur. However, since the divergence angle of the laser beam emitted from the LD is generally as narrow as about 17 °, this is regarded as parallel light, that is, considering that Fresnel diffraction occurs, as described above. Even if edge detection is performed, almost no measurement error occurs.

またドリル刃の径を測定するような場合、通常、単色光の光路の予め定められた位置にドリル刃(検出対象物)7をセットしてその計測を行うので、ドリル刃(検出対象物)7とラインセンサ1との距離zが問題となることもない。換言すればドリル刃(検出対象物)7とラインセンサ1との距離zを固定的に与えてその径の計測を行い得る。するとこのエッジ検出装置における検出光学系は、例えば図9に模式的に示すように点光源2から発せられた単色光(レーザ光)の影が拡大されてラインセンサ1の受光面に投影される拡大光学系として表すことが可能となる。そしてドリル刃(検出対象物)7による影(ドリル径)は、点光源2とラインセンサ1との距離SDと、ドリル刃(検出対象物)7とラインセンサ1との距離WDとの比により定まる拡大率にてラインセンサ1上に投影されることになる。   When measuring the diameter of a drill blade, the drill blade (detection target) 7 is usually set at a predetermined position in the optical path of monochromatic light and the measurement is performed. The distance z between 7 and the line sensor 1 does not become a problem. In other words, the diameter z can be measured by giving a fixed distance z between the drill blade (detection target) 7 and the line sensor 1. Then, the detection optical system in this edge detection apparatus enlarges the shadow of monochromatic light (laser light) emitted from the point light source 2 and projects it onto the light receiving surface of the line sensor 1 as schematically shown in FIG. It can be expressed as a magnifying optical system. The shadow (drill diameter) by the drill blade (detection target) 7 is determined by the ratio of the distance SD between the point light source 2 and the line sensor 1 and the distance WD between the drill blade (detection target) 7 and the line sensor 1. The image is projected onto the line sensor 1 at a fixed magnification.

具体的には単色平行光を用いた場合におけるドリル刃7の影は該ドリル刃7の径に相当して、例えば図10(a)に示すようにラインセンサ1に投影されるが、点光源2からの所定の拡がり角を持つ単色光を用いた場合には、図10(b)に示すようにドリル刃7の影が拡大されてラインセンサ1に投影される。従ってこの拡大されたドリル刃7の影の幅2aを前述した如く求めれば、その計測値(影の幅)2aから前記拡大率の分だけ計測精度を高くして真のドリル径を求めることが可能となる。   Specifically, the shadow of the drill blade 7 when monochromatic parallel light is used corresponds to the diameter of the drill blade 7 and is projected onto the line sensor 1, for example, as shown in FIG. When monochromatic light having a predetermined divergence angle from 2 is used, the shadow of the drill blade 7 is enlarged and projected onto the line sensor 1 as shown in FIG. Therefore, if the shadow width 2a of the enlarged drill blade 7 is obtained as described above, the true drill diameter can be obtained by increasing the measurement accuracy from the measured value (shadow width) 2a by the enlargement ratio. It becomes possible.

即ち、ドリル刃7の直径が2rである場合、前述した光学系によれば該ドリル刃7の影の幅aを
2a=2r・SD/(SD−WD)
と拡大して検出することができる。従ってドリル刃7の影の幅2aを前述した如く計測すれば、ドリル刃7の真の径を、その拡大率から逆算して
2r=2a(SD−WD)/SD
として計測することが可能となり、同時にその計測誤差も[(SD−WD)/SD]だけ小さくして計測精度を高めることが可能となる。
That is, when the diameter of the drill blade 7 is 2r, according to the optical system described above, the shadow width a of the drill blade 7 is 2a = 2r · SD / (SD−WD).
And can be detected. Therefore, if the shadow width 2a of the drill blade 7 is measured as described above, the true diameter of the drill blade 7 is calculated back from the enlargement ratio, and 2r = 2a (SD-WD) / SD.
At the same time, and at the same time, the measurement error can be reduced by [(SD−WD) / SD] to increase the measurement accuracy.

尚、厳密にはドリル刃7は略丸棒状なので、図9に示すように単色光に対するエッジ位置は点光源2を通る接線上の位置になる。これ故、ラインセンサ1上で求められる影の幅2aは、実際のドリル刃7の径よりも若干狭くなる。しかし点光源2とラインセンサ1との距離SD、およびドリル刃(検出対象物)7とラインセンサ1との距離WDがそれぞれ明らかであるので、
2r=2a(SD−WD)/{(2a)2+SD21/2
として容易にドリル刃7の真の径2rを計算することができる。
Strictly speaking, since the drill blade 7 has a substantially round bar shape, the edge position with respect to monochromatic light is a position on a tangent line passing through the point light source 2 as shown in FIG. Therefore, the shadow width 2 a obtained on the line sensor 1 is slightly narrower than the actual diameter of the drill blade 7. However, since the distance SD between the point light source 2 and the line sensor 1 and the distance WD between the drill blade (detection target) 7 and the line sensor 1 are clear, respectively.
2r = 2a (SD-WD) / {(2a) 2 + SD 2 } 1/2
As a result, the true diameter 2r of the drill blade 7 can be easily calculated.

次表はSDを50mm、WDを25mmとした光学系において、径の異なる電線を上述したようにして計測した実験結果を示している。   The following table shows the experimental results obtained by measuring wires having different diameters as described above in an optical system with SD of 50 mm and WD of 25 mm.

Figure 2005224901
Figure 2005224901

この実験例に示されるように上述した拡大光学系を用い、フレネル回折パターンであると看做してドリル刃7の径を測定しても十分に高い計測精度でドリル径を求め得ることが確認できた。しかもこのエッジ検出装置においては、LDから発せられた単色光(レーザ光)をそのままラインセンサ1に投光しているだけで、従来のように投光レンズ(コリメータレンズ)を用いて単色平行光に変換していないので光源2の構成の大幅な簡素化を図ることができ、その部品コストも大きく低減し得る。しかもLDとラインセンサ1との間の光学的な調整を行うだけで良く、格別な位置合わせ精度も不要なので、例えば上記LDおよびラインセンサ1をそれぞれプリント回路基板に実装した程度の精度で、実用上十分な計測精度を有するエッジ検出装置を実現することができる。   As shown in this experimental example, it is confirmed that the drill diameter can be obtained with sufficiently high measurement accuracy even if the diameter of the drill blade 7 is measured by considering the above-described magnifying optical system as a Fresnel diffraction pattern. did it. In addition, in this edge detection device, the monochromatic light (laser light) emitted from the LD is simply projected onto the line sensor 1 as it is, and the monochromatic parallel light using a light projecting lens (collimator lens) as in the prior art. Therefore, the configuration of the light source 2 can be greatly simplified, and the component cost can be greatly reduced. In addition, it is only necessary to perform optical adjustment between the LD and the line sensor 1, and no special alignment accuracy is required. For example, the LD and the line sensor 1 are practically accurate enough to be mounted on a printed circuit board. In addition, an edge detection apparatus having sufficient measurement accuracy can be realized.

また上述した構成のエッジ検出装置によれば、ドリル刃7の芯ぶれを検出するに際しても、その芯ぶれ状体を拡大して検出することができるので、僅かな芯ぶれであっても、これを逸早く高感度に検出することができる。尚、ドリル径が太い場合には、その影がラインセンサ1の受光幅に入らなくなることが予想される。この場合には2つのラインセンサ1をその長手方向に並べて設け、これらのラインセンサ1の設置間隔を予め出荷検査時等に計測しておくようにすれば良い。そして上記2つのラインセンサ1を用いてドリル刃7の影の片側ずつ計測し、これらの各エッジ計測位置と上記ラインセンサ1の設置間隔とからドリル刃7の影の幅2aを求めるようにすれば良い。そしてドリル刃7の径が細い場合には、その軸心位置を一方のラインセンサ側寄せ、この一方のラインセンサ1だけを用いてドリル刃7の影の幅2aを計測するようにすれば良い。また1つのラインセンサ1だけを用い、その拡大率を変えてドリル径を測定することもできる。具体的にはドリル径の細いものについてはドリル刃(検出対象物)7とラインセンサ1との距離WDを長くし(投光器2に近付ける)、逆にドリル径が太いものについては上記距離WDを短くして(ラインセンサ1に近付ける)その影の幅2aを計測するようにすれば良い。   Further, according to the edge detection device having the above-described configuration, when detecting the runout of the drill blade 7, the runout can be detected in an enlarged manner. Can be detected quickly and with high sensitivity. If the drill diameter is large, it is expected that the shadow will not enter the light receiving width of the line sensor 1. In this case, two line sensors 1 may be provided side by side in the longitudinal direction, and the installation interval of these line sensors 1 may be measured in advance at the time of shipping inspection or the like. Then, one side of the shadow of the drill blade 7 is measured using the two line sensors 1, and the shadow width 2a of the drill blade 7 is obtained from each edge measurement position and the installation interval of the line sensor 1. It ’s fine. When the diameter of the drill blade 7 is thin, the axial center position is shifted to one line sensor side, and the shadow width 2a of the drill blade 7 is measured using only this one line sensor 1. . It is also possible to use only one line sensor 1 and measure the drill diameter while changing the enlargement ratio. Specifically, the distance WD between the drill blade (detection target) 7 and the line sensor 1 is lengthened (closer to the projector 2) for those with a small drill diameter, and conversely the distance WD for those with a large drill diameter. The shadow width 2a may be measured by shortening (closer to the line sensor 1).

尚、本発明は上述した実施形態に限定されるものではない。例えば点光源2とラインセンサ1との距離SD、およびドリル刃(検出対象物)7とラインセンサ1との距離WDは、予め計測対象とするドリル刃の径幅等の仕様に応じて定めておけば良い。またここではドリル刃の径を測定する場合を例に説明したが、各種線材の径を測定する場合や、所定の計測位置に位置付けられるシート状物体のエッジ位置を検出する場合等にも同様に適用することができる。但し、検出対象物7とラインセンサ1との距離WDが変化するような場合には、その拡大率自体も変化するので前述した点光源からの拡大光学系を採用することは好ましくなく、単色平行光を用いるべきである。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. For example, the distance SD between the point light source 2 and the line sensor 1 and the distance WD between the drill blade (detection target) 7 and the line sensor 1 are determined in advance according to specifications such as the diameter width of the drill blade to be measured. It ’s fine. In addition, here, the case of measuring the diameter of the drill blade has been described as an example, but the same applies to the case of measuring the diameter of various wire rods, the case of detecting the edge position of a sheet-like object positioned at a predetermined measurement position, etc. Can be applied. However, when the distance WD between the detection object 7 and the line sensor 1 changes, the enlargement ratio itself also changes. Therefore, it is not preferable to employ the above-described enlargement optical system from the point light source, and the monochrome parallelism. Light should be used. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

本発明の一実施形態に係るエッジ検出装置の要部概略構成を示す図。The figure which shows the principal part schematic structure of the edge detection apparatus which concerns on one Embodiment of this invention. 遮蔽物のエッジによりフレネル回折を生じた光の強度パターンを示す図。The figure which shows the intensity | strength pattern of the light which produced the Fresnel diffraction by the edge of the shield. フレネル回折による光強度分布の理論値と、関数を用いた近似特性とを対比して示す図。The figure which contrasts the theoretical value of the light intensity distribution by a Fresnel diffraction, and the approximate characteristic using a function. フレネル回折パターンからのエッジ検出処理の手順の一例を示す図。The figure which shows an example of the procedure of the edge detection process from a Fresnel diffraction pattern. 図4に示すエッジ検出の処理概念を示す図。The figure which shows the processing concept of the edge detection shown in FIG. 微小径のドリル刃により生じる回折パターンとエッジ径の計測原理を説明する為の図。The figure for demonstrating the measurement principle of the diffraction pattern and edge diameter which arise with a micro diameter drill blade. エッジ径の測定処理手順の例を示す図。The figure which shows the example of the measurement processing procedure of edge diameter. 光量[0.75]の位置での遮光幅とドリルの半径との関係を示すテーブルの構成例を示す図。The figure which shows the structural example of the table which shows the relationship between the light-shielding width in the position of light quantity [0.75], and the radius of a drill. 本発明に係るエッジ検出装置の光学系を模式的に示す図。The figure which shows typically the optical system of the edge detection apparatus which concerns on this invention. 単色平行光を用いた場合のドリル刃の影の光強度パターンと、所定の拡がり角を有する単色光を用いた場合のドリル刃の影の光強度パターンとを対比して示す図。The figure which shows the light intensity pattern of the shadow of a drill blade at the time of using monochromatic parallel light, and the light intensity pattern of the shadow of a drill blade at the time of using the monochromatic light which has a predetermined divergence angle.

符号の説明Explanation of symbols

1 ラインセンサ
2 投光部(光源)
3 装置本体
3a 回折パターン検出部
3d エッジ検出部
3e ドリル径計測部
3h テーブル
7 遮蔽物(ドリル刃)
1 Line sensor 2 Light emitter (light source)
3 Device body 3a Diffraction pattern detection unit 3d Edge detection unit 3e Drill diameter measurement unit 3h Table 7 Shield (drill blade)

Claims (4)

複数の受光セルを一方向に所定のピッチで配列したラインセンサと、
このラインセンサの上記複数の受光セルに向けて該ラインセンサの全受光幅に到達する拡がり角を有する単色光を投光する点光源と、
上記単色光の光路に位置付けられた遮蔽物のエッジ位置を前記ラインセンサの出力を解析して求める演算部とを具備したことを特徴とするエッジ検出装置。
A line sensor in which a plurality of light receiving cells are arranged at a predetermined pitch in one direction;
A point light source that projects monochromatic light having a divergence angle that reaches the entire light receiving width of the line sensor toward the plurality of light receiving cells of the line sensor;
An edge detection apparatus comprising: an arithmetic unit that obtains an edge position of the shielding object positioned in the optical path of the monochromatic light by analyzing an output of the line sensor.
前記演算部は、前記点光源と前記ラインセンサとの距離SD、および前記遮蔽物と前記ラインセンサとの距離WDに応じて求められる光学系の拡大率SD/(SD−WD)に従って前記ラインセンサの出力を解析して求められる受光パターンのエッジ位置を補正して前記遮蔽物のエッジ位置を求めるものである請求項1に記載のエッジ検出装置。   The arithmetic unit is configured to detect the line sensor according to a distance SD between the point light source and the line sensor and a magnification ratio SD / (SD−WD) of an optical system determined according to a distance WD between the shielding object and the line sensor. The edge detection apparatus according to claim 1, wherein the edge position of the light-shielding pattern obtained by analyzing the output is corrected to obtain the edge position of the shielding object. 前記遮蔽物が丸棒状体であり、この丸棒状体の影の幅を前記ラインセンサの出力から求めるとき、前記演算部はラインセンサ上で求められた上記丸棒状体の影の幅2aを、前記点光源と前記ラインセンサとの距離SD、前記遮蔽物と前記ラインセンサとの距離WD、および上記影の幅2aに基づいて補正して前記丸棒状体の径2rを
2r=2a(SD−WD)/{(2a)2+SD21/2
として求めるものである請求項1に記載のエッジ検出装置。
When the shielding object is a round bar-like body, and the shadow width of the round bar-like body is obtained from the output of the line sensor, the calculation unit calculates the shadow width 2a of the round bar-like body obtained on the line sensor, Based on the distance SD between the point light source and the line sensor, the distance WD between the shielding object and the line sensor, and the shadow width 2a, the diameter 2r of the round bar-like body is set to 2r = 2a (SD− WD) / {(2a) 2 + SD 2 } 1/2
The edge detection device according to claim 1, which is obtained as follows.
前記演算部は、前記遮蔽部のエッジにてフレネル回折が生じていると看做して前記ラインセンサの受光面に生じた影のエッジ位置を検出するものである請求項1に記載のエッジ検出装置。   2. The edge detection according to claim 1, wherein the calculation unit is configured to detect an edge position of a shadow generated on a light receiving surface of the line sensor on the assumption that Fresnel diffraction is generated at an edge of the shielding unit. apparatus.
JP2004036634A 2004-02-13 2004-02-13 Edge detection method Expired - Fee Related JP4465676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036634A JP4465676B2 (en) 2004-02-13 2004-02-13 Edge detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036634A JP4465676B2 (en) 2004-02-13 2004-02-13 Edge detection method

Publications (2)

Publication Number Publication Date
JP2005224901A true JP2005224901A (en) 2005-08-25
JP4465676B2 JP4465676B2 (en) 2010-05-19

Family

ID=35000004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036634A Expired - Fee Related JP4465676B2 (en) 2004-02-13 2004-02-13 Edge detection method

Country Status (1)

Country Link
JP (1) JP4465676B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101976A (en) * 2006-10-18 2008-05-01 Yamatake Corp Edge detector
JP2014021067A (en) * 2012-07-23 2014-02-03 Ohbayashi Corp Reinforcing-bar arrangement information acquisition method
WO2014072144A1 (en) * 2012-11-08 2014-05-15 Sikora Ag Method for determining the position of at least one edge of an object by evaluating fresnel diffraction border profiles
US10189137B2 (en) * 2015-06-30 2019-01-29 Big Daishowa Co., Ltd. Tool shape measuring apparatus
JP2020530405A (en) * 2017-08-07 2020-10-22 フランツ・ハイマー・マシーネンバウ・カーゲー Generation of digital twins in the processing center

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101976A (en) * 2006-10-18 2008-05-01 Yamatake Corp Edge detector
JP2014021067A (en) * 2012-07-23 2014-02-03 Ohbayashi Corp Reinforcing-bar arrangement information acquisition method
WO2014072144A1 (en) * 2012-11-08 2014-05-15 Sikora Ag Method for determining the position of at least one edge of an object by evaluating fresnel diffraction border profiles
JP2015534086A (en) * 2012-11-08 2015-11-26 シコラ アーゲー A method to evaluate the boundary profile of Fresnel diffraction
RU2616070C2 (en) * 2012-11-08 2017-04-12 Сикора Аг Method for determining position of, at least, one object edge by assessment of fresnel diffraction border profiles
US9797712B2 (en) 2012-11-08 2017-10-24 Sikora Ag Method for evaluating Fresnel diffraction border profiles
US10189137B2 (en) * 2015-06-30 2019-01-29 Big Daishowa Co., Ltd. Tool shape measuring apparatus
JP2020530405A (en) * 2017-08-07 2020-10-22 フランツ・ハイマー・マシーネンバウ・カーゲー Generation of digital twins in the processing center

Also Published As

Publication number Publication date
JP4465676B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
JP7117189B2 (en) Optical displacement meter
JP2007305971A (en) Overlay metrology using x-rays
US20140067316A1 (en) Measuring apparatus, detector deviation monitoring method and measuring method
JP2008046037A (en) Optical method and device for measuring angle/displacement
JP4316643B2 (en) Shape measuring device and shape measuring method
US20140250679A1 (en) Optical inspection apparatus and optical inspection system
JP4465676B2 (en) Edge detection method
JPH09114588A (en) Pen type input device
JP4239202B2 (en) Measuring method of rod diameter
US11013482B2 (en) Phase contrast X-ray imaging system
JP5725528B2 (en) Beam parallelism measuring device
JP4911113B2 (en) Height measuring apparatus and height measuring method
JP4509593B2 (en) Detection method of rod runout
JP2006112964A (en) Optical sensor device
JP4415344B2 (en) How to detect the tip of a drill blade
JP4085409B2 (en) Position detection method and apparatus
JP2011196766A (en) Method for measuring shape of measured object having light transmittance
JP6339333B2 (en) Dry etching apparatus and etching amount measuring method
KR102547422B1 (en) Imaging device, imaging system comprising the same, imaging method using the imaging device and imaging system, a method for fabricating a semiconductor device using the imaging device and imaging system
JP5751514B2 (en) Sphere diameter measuring method and measuring device
JP4726063B2 (en) Edge detection method and edge detection apparatus
JP4218880B2 (en) Edge sensor diagnostic method and diagnostic apparatus
JP4197440B2 (en) Position detection method and apparatus
KR101321058B1 (en) Thickness Measuring Method of Film Using Laser
KR0181993B1 (en) Apparatus and method for measuring visual size of material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100212

R150 Certificate of patent or registration of utility model

Ref document number: 4465676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees