JP2009277667A - Method of manufacturing active material for battery - Google Patents

Method of manufacturing active material for battery Download PDF

Info

Publication number
JP2009277667A
JP2009277667A JP2009188932A JP2009188932A JP2009277667A JP 2009277667 A JP2009277667 A JP 2009277667A JP 2009188932 A JP2009188932 A JP 2009188932A JP 2009188932 A JP2009188932 A JP 2009188932A JP 2009277667 A JP2009277667 A JP 2009277667A
Authority
JP
Japan
Prior art keywords
solid
active material
secondary battery
manufacturing
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009188932A
Other languages
Japanese (ja)
Inventor
Atsushi Yamaguchi
敦 山口
Masatake Ito
正剛 伊藤
Kenji Nakane
堅次 中根
Hironori Nishida
裕紀 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009188932A priority Critical patent/JP2009277667A/en
Publication of JP2009277667A publication Critical patent/JP2009277667A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To excellently reproducibly and industrially advantageously provide an active material useful as a positive electrode material of a nonaqueous electrolyte secondary battery such as a lithium secondary battery. <P>SOLUTION: This manufacturing method is provided for a powder-solid for manufacturing the active material for the nonaqueous electrolyte secondary battery characterized by atomizing and drying a sold-liquid mixture provided after crushing a lithium compound and a transition metal compound in an aqueous medium. The manufacturing method is provided so that crushing is performed until an average particle size of a sold included in the solid-liquid mixture becomes 3 μm or less. In the manufacturing method written in the above, an atomizing drier used for atomization and drying is a drier having a rotary disk type atomizer or a nozzle atomizer. The manufacturing method of the active material for the nonaqueous electrolyte secondary battery is characterized by baking the powder-solid in the presence of oxygen by providing the power-solid for manufacturing the active material for the nonaqueous electrolyte secondary battery by the manufacturing method written in the above. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電池用活物質に関し、特にリチウム二次電池の正極材料に用いる活物質に関するものである。   The present invention relates to a battery active material, and more particularly to an active material used for a positive electrode material of a lithium secondary battery.

近年、AV機器又はパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する非水電解液二次電池、特に、高電圧、高エネルギー密度を有するリチウム二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers have been rapidly becoming portable and cordless, and these non-aqueous electrolyte secondary batteries, particularly high voltage, are small, light, and have high energy density as power sources for driving these devices. A lithium secondary battery having a high energy density has attracted attention.

従来、リチウム二次電池の正極材料には、マンガン、ニッケル又はコバルト等の遷移金属とリチウムを主体とする複合金属酸化物が活物質として用いられており、この活物質は、遷移金属の化合物とリチウム化合物等の混合物を乾式粉砕し、得られた粉末を酸素の存在下で焼成することにより製造されていた。(例えば、特許文献1を参照。)   Conventionally, as a positive electrode material of a lithium secondary battery, a transition metal such as manganese, nickel, or cobalt and a composite metal oxide mainly composed of lithium are used as an active material. It has been produced by dry-grinding a mixture of lithium compounds and the like, and firing the obtained powder in the presence of oxygen. (For example, see Patent Document 1.)

特開平6−231767号公報JP-A-6-231767

しかしながら、従来技術により得られる活物質を用いてリチウム二次電池を作製しても、所望の性能を有する電池を再現性良く得られないという問題がある。又、本発明者らの知見によれば、リチウム化合物及び遷移金属化合物の混合物を湿式法で粉砕したとしても、焼成前に、湿式粉砕後の混合物を例えば、熱伝導型乾燥機や流動層乾燥機を用いて乾燥すると、均一な乾燥混合物が得られず、前記の場合と同様に、所望の性能を有するリチウム二次電池が再現性良く得られないという問題がある。   However, even if a lithium secondary battery is manufactured using an active material obtained by a conventional technique, there is a problem that a battery having desired performance cannot be obtained with good reproducibility. Further, according to the knowledge of the present inventors, even when the mixture of the lithium compound and the transition metal compound is pulverized by a wet method, the mixture after the wet pulverization is, for example, a heat conduction dryer or fluidized bed dryer before firing. When dried using a machine, there is a problem that a uniform dry mixture cannot be obtained, and a lithium secondary battery having desired performance cannot be obtained with good reproducibility, as in the case described above.

本発明者らは、上記問題点等を解決すべく鋭意研究した結果、リチウム化合物及び遷移金属化合物の混合物の粉砕を湿式法で行い、得られた固液混合物を特定の乾燥方法により乾燥した後で焼成すると、得られた活物質の粉砕品を用いて作製されたリチウム二次電池が再現性良く所望の性能を有すること、及び、活物質が工業的有利に得られることを見出して、本発明を完成した。   As a result of diligent research to solve the above-mentioned problems and the like, the present inventors performed a pulverization of a mixture of a lithium compound and a transition metal compound by a wet method and dried the obtained solid-liquid mixture by a specific drying method When the material is baked, the lithium secondary battery produced using the pulverized product of the active material has the desired performance with good reproducibility, and the active material can be obtained industrially advantageously. Completed the invention.

即ち、本発明は、リチウムと遷移金属を主体とする非水電解液二次電池用活物質製造用粉末固体の製造方法および該粉末固体を焼成することにより得られる非水電解液二次電池用活物質の製造方法であって、リチウム化合物と遷移金属化合物とを液体媒体中で粉砕し、次いで、得られた固液混合物を噴霧乾燥することを特徴とする粉末固体の製造方法および該粉末固体を酸素の存在下に焼成することを特徴とする非水電解液二次電池用活物質の製造方法を提供するものである。   That is, the present invention relates to a method for producing a powder solid for producing an active material for a non-aqueous electrolyte secondary battery mainly composed of lithium and a transition metal, and a non-aqueous electrolyte secondary battery obtained by firing the powder solid. A method for producing an active material, wherein a lithium compound and a transition metal compound are pulverized in a liquid medium, and then the obtained solid-liquid mixture is spray-dried, and the powder solid is produced. Is produced in the presence of oxygen to provide a method for producing an active material for a non-aqueous electrolyte secondary battery.

本発明によれば、非水電解液二次電池用活物質が工業的有利に得られ、また、本発明により得られる活物質を用いて作製した非水電解液二次電池は、起電力、理論的エネルギー密度、サイクル性等の基本性能の再現性に優れている。   According to the present invention, an active material for a non-aqueous electrolyte secondary battery can be obtained industrially advantageously, and a non-aqueous electrolyte secondary battery produced using the active material obtained by the present invention has an electromotive force, Excellent reproducibility of basic performance such as theoretical energy density and cycle performance.

液体媒体としては、例えばエタノール、プロパノール、イソプロパノールやブタノール等の低級脂肪族アルコール、メチルイソブチルケトンやメチルエチルケトン等の脂肪族ケトン、酢酸ブチルや乳酸エチル等の脂肪族エステル、トルエンやキシレン等の芳香族炭化水素、水及びこれらの液体の混合物が挙げられる。
これらの液体媒体の内、水、水と低級脂肪族アルコールの混合物、水と脂肪族ケトンの混合物、及び水と低級脂肪族アルコールと脂肪族ケトンの混合物等の水性媒体が好ましい。これらの水性媒体の内、水が特に好ましい。
液体媒体の使用量は、遷移金属化合物に対して通常1〜10重量倍、好ましくは1〜5重量倍である。
Examples of liquid media include lower aliphatic alcohols such as ethanol, propanol, isopropanol and butanol, aliphatic ketones such as methyl isobutyl ketone and methyl ethyl ketone, aliphatic esters such as butyl acetate and ethyl lactate, and aromatic carbonization such as toluene and xylene. Hydrogen, water and mixtures of these liquids are mentioned.
Among these liquid media, aqueous media such as water, a mixture of water and a lower aliphatic alcohol, a mixture of water and an aliphatic ketone, and a mixture of water, a lower aliphatic alcohol and an aliphatic ketone are preferable. Of these aqueous media, water is particularly preferred.
The usage-amount of a liquid medium is 1-10 weight times normally with respect to a transition metal compound, Preferably it is 1-5 weight times.

遷移金属化合物としては、マンガン、コバルト及びニッケル等の遷移金属の炭酸塩、硝酸塩、水酸化物又は酸化物が挙げられる。特に、コバルト及びニッケルの炭酸塩が好ましい。ニッケルの炭酸塩としては、例えば、炭酸ニッケルNiCO3・wH2O(式中、w≧0)や、NiCO3・2Ni(OH)2・4H2 O及び2NiCO3・3Ni(OH)2・4H2O等の塩基性炭酸ニッケルが挙げられる。 Examples of the transition metal compound include carbonates, nitrates, hydroxides or oxides of transition metals such as manganese, cobalt and nickel. In particular, cobalt and nickel carbonates are preferred. Examples of nickel carbonates include nickel carbonate NiCO 3 · wH 2 O (where w ≧ 0), NiCO 3 · 2Ni (OH) 2 · 4H 2 O, and 2NiCO 3 · 3Ni (OH) 2 · 4H. Examples thereof include basic nickel carbonate such as 2 O.

リチウム化合物としては、水酸化リチウム又は硝酸リチウム及びこれらの混合物等が好ましい。
上記のリチウム化合物又は遷移金属化合物として硝酸塩のような危険物を用いるときは、液体媒体として水を用いることが好ましい。
As the lithium compound, lithium hydroxide or lithium nitrate and a mixture thereof are preferable.
When a hazardous material such as nitrate is used as the lithium compound or transition metal compound, it is preferable to use water as the liquid medium.

遷移金属化合物及びリチウム化合物の使用量は、正極材料中の両者の原子比の近辺の割合で選択される。例えば、活物質がLiCoO2やLiNiO2の場合は原子比が1:1近辺で選択される。また、必要に応じて、少量のアルミニウム、ガリウム、インジウム又はスズ等の金属の化合物を湿式粉砕時に添加してもよい。湿式粉砕時に添加する場合の金属の化合物としては、ガリウムの硝酸塩等が好ましい。 The amount of the transition metal compound and the lithium compound used is selected at a ratio in the vicinity of the atomic ratio of both in the positive electrode material. For example, when the active material is LiCoO 2 or LiNiO 2 , the atomic ratio is selected around 1: 1. If necessary, a small amount of a metal compound such as aluminum, gallium, indium or tin may be added during wet grinding. As the metal compound to be added at the time of wet pulverization, gallium nitrate is preferable.

液体媒体中での粉砕は、例えば攪拌ミル、ポットミル、遠心ミル、ローラーミル及び遊星ボールミル等の湿式ミルを用いて行われる。粉砕は、固液混合物中に含まれる固体の平均粒径が通常3μm以下、好ましくは2μm以下、より好ましくは1.5μm以下になる迄行われる。   The pulverization in the liquid medium is performed using a wet mill such as a stirring mill, a pot mill, a centrifugal mill, a roller mill, and a planetary ball mill. The pulverization is performed until the average particle size of the solid contained in the solid-liquid mixture is usually 3 μm or less, preferably 2 μm or less, more preferably 1.5 μm or less.

上記の湿式粉砕により得られた固液混合物は噴霧乾燥に供されるが、該乾燥に用いられる乾燥機としては、一般にスプレードライヤーと称されている市販の装置が挙げられる。これらのスプレードライヤーは、少なくともa)固液混合物の噴霧、b)噴霧された固液混合物と熱風との接触、c)固液混合物中の液体の蒸発及びd)乾燥品の分離補集の4つの機能を有するものであればよい。
a)の噴霧は、回転円盤型のアトマイザー(ロータリーアトマイザーやデイスクアトマイザーとも呼ばれる)、又はノズルアトマイザーにより行われるが、スプレードライヤーとしては回転円盤型のアトマイザーを備えた乾燥機が特に好ましい。また、回転円盤型のアトマイザーを備えたスプレードライヤーで固液混合物を噴霧する場合には、遠心力が20000〜30000G(ジー)の範囲になるように、アトマイザーの円盤の回転数を調節することが更に好ましい。このような噴霧により、リチウム化合物と遷移金属化合物の混合物を、より均一な混合状態で乾燥することが可能になる。
乾燥は常圧で行われ、供給する熱風の温度は通常150〜300℃(好ましくは200〜270℃)の範囲であり、乾燥機出口の温度は通常85〜200℃(好ましくは100〜150℃)の範囲である。
The solid-liquid mixture obtained by the above-described wet pulverization is subjected to spray drying. Examples of the dryer used for the drying include commercially available apparatuses generally called spray dryers. These spray dryers are at least a) spraying a solid-liquid mixture, b) contacting the sprayed solid-liquid mixture with hot air, c) evaporating the liquid in the solid-liquid mixture, and d) separating and collecting the dried product. Any one having one function may be used.
The spray of a) is performed by a rotary disk type atomizer (also called a rotary atomizer or a disk atomizer) or a nozzle atomizer, and a spray dryer provided with a rotary disk type atomizer is particularly preferable. In addition, when spraying a solid-liquid mixture with a spray dryer equipped with a rotating disk type atomizer, the rotational speed of the atomizer disk can be adjusted so that the centrifugal force is in the range of 20000 to 30000 G (G). Further preferred. By such spraying, the mixture of the lithium compound and the transition metal compound can be dried in a more uniform mixed state.
Drying is performed at normal pressure, the temperature of the hot air supplied is usually in the range of 150 to 300 ° C (preferably 200 to 270 ° C), and the temperature at the outlet of the dryer is usually 85 to 200 ° C (preferably 100 to 150 ° C). ).

乾燥により得られた粉末固体は焼成に供されるが、焼成炉は連続式のものでも回分式のものでもよい。又、焼成炉の炉材又は焼成物と接触する部材としては、例えばアルミナ製、金製、白金製等が挙げられ、工業的にはアルミナ製殊に純度98.5%以上の高純度アルミナ製が好ましく用いられる。焼成炉中には酸素が存在することが必須であるが、強制的に通気してもよい。焼成炉としては、例えばマッフル炉、トンネル炉及びローラーハースキルン等が挙げられる。焼成温度は通常約350〜約1100℃の範囲であり、焼成時間は温度により異なるが、通常は数時間〜数十時間である。焼成中、例えばリチウム化合物として硝酸リチウムを、遷移金属化合物として炭酸塩を各々用いたときは、NOx及びCO2が副生する。これらの副生ガスは焼成炉外へ排気される。 The powdered solid obtained by drying is subjected to firing, and the firing furnace may be a continuous type or a batch type. Further, examples of the member that comes into contact with the furnace material or the fired product of the firing furnace include alumina, gold, platinum, etc., and industrially made of alumina, especially high purity alumina having a purity of 98.5% or more. Is preferably used. It is essential that oxygen be present in the firing furnace, but it may be forced to vent. Examples of the firing furnace include a muffle furnace, a tunnel furnace, and a roller hearth kiln. The firing temperature is usually in the range of about 350 to about 1100 ° C., and the firing time varies depending on the temperature, but is usually several hours to several tens of hours. During firing, for example, when lithium nitrate is used as the lithium compound and carbonate is used as the transition metal compound, NOx and CO 2 are by-produced. These by-product gases are exhausted outside the firing furnace.

上述のようにして非水電解液二次電池用活物質が得られるが、本発明で得られる好ましい活物質としては、例えば、LiCoO2、LiNiO2、LixCoyz2(式中、Tはアルミニウム、ガリウム又はスズを表し、xは0.05以上1.1以下の数を表し、yは0.85以上1以下の数を表し、zは0.001以上0.2以下の数を表す。)、LixNiyz2(式中、T、x、y及びzは各々前記と同じ意味を表す。)及びLiCoaNib2(式中、aとbの和は1である。)等の複合金属酸化物が挙げられる。特に、LiNiO2、LixNiyT'z2(T'はガリウム等を表す。)及びLiCoaNib2が好ましい。 A non-aqueous electrolyte secondary battery active material can be obtained as described above. Preferred active materials obtained in the present invention include, for example, LiCoO 2 , LiNiO 2 , Li x Co y T z O 2 (wherein , T represents aluminum, gallium or tin, x represents a number from 0.05 to 1.1, y represents a number from 0.85 to 1, and z represents from 0.001 to 0.2. Li x Ni y T z O 2 (wherein T, x, y and z each represent the same meaning as described above) and LiCo a Ni b O 2 (where a and b are The sum is 1.) and the like. In particular, LiNiO 2 , Li x Ni y T ′ z O 2 (T ′ represents gallium or the like) and LiCo a Ni b O 2 are preferable.

本発明により得られる非水電解液二次電池用活物質を、リチウム二次電池の正極板とするには、例えば特開平5−54886号公報記載の衝突式ジェット粉砕機又は気流吸い込み型粉砕機等のジエット粉砕機を用いて乾式粉砕後、粉末状活物質を導電材と混合し、次いで、バインダーの溶液と混練してペースト状とし、さらに該ペーストを集電体に塗布し、その後乾燥すればよい。このようにして得られる正極板、天然黒鉛からなる負極板、及び、エチレンカーボネート、ジメチルカーボネートやエチルメチルカーボネートにLiPF6などの電解質を溶解させたもの等の非水電解液を用いて、例えば特開平5−54886号公報等に記載の公知の方法により、リチウム二次電池が作製される。 In order to use the active material for a non-aqueous electrolyte secondary battery obtained by the present invention as a positive electrode plate of a lithium secondary battery, for example, a collision type jet pulverizer or an air current suction type pulverizer described in JP-A-5-54886 After dry pulverization using a jet pulverizer, etc., the powdered active material is mixed with a conductive material, then kneaded with a binder solution to form a paste, and the paste is further applied to a current collector and then dried. That's fine. Using a non-aqueous electrolyte such as a positive electrode plate obtained in this way, a negative electrode plate made of natural graphite, and an electrolyte such as LiPF 6 dissolved in ethylene carbonate, dimethyl carbonate or ethyl methyl carbonate, for example, A lithium secondary battery is produced by a known method described in, for example, Kaihei 5-54886.

次に実施例を挙げて本発明をより具体的に説明するが、本発明は該実施例により何ら限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this invention is not limited at all by this Example.

実施例1
イオン交換水中に硝酸ガリウム、水酸化リチウム及び硝酸リチウムを加えて溶解し、水溶液を得た。次いで、得られた水溶液及び炭酸ニッケルを充分に混合後、流通管型ミル中で粉砕した。硝酸ガリウム、水酸化リチウム、硝酸リチウム及び炭酸ニッケルの混合割合は、複合金属酸化物を構成する各金属の原子比で表すと、下記の組成になるように調整した。又、水酸化リチウム及び硝酸リチウムの割合は、ビーズミル中の混合物のpHが約11になるように調整した。
Li:Ni:Ga=1.05:0.98:0.02
得られたスラリー〔固体である炭酸ニッケルの割合は約35重量%であり、平均粒径は1.5μm以下であった。なお、平均粒径は、商品名Darvan821A(R.T.Vanderbilt社製)の0.2%水溶液を分散媒として用い、レーザー散乱式粒度分布測定装置SALD1100(株式会社島津製作所製)により測定した粒度分布を体積基準で微粒側から積算した場合の50%粒子径(メディアン径)である〕を、ロータリーアトマイザー付きのスプレードライヤー(ニロ社製:モービルマイナー型、アトマイザーの遠心力は25000Gであった。)で乾燥し、金属化合物の混合粉体(平均粒径は約40μm)を得た。熱風の供給温度は約230℃、乾燥機の出口温度は約130℃であった。純度99.5%のアルミナ製炉心管を用いた焼成炉中で、得られた金属化合物の混合粉体を酸素雰囲気中約660℃で約15時間焼成した。
Example 1
Gallium nitrate, lithium hydroxide and lithium nitrate were added and dissolved in ion-exchanged water to obtain an aqueous solution. Next, the obtained aqueous solution and nickel carbonate were sufficiently mixed and then pulverized in a flow tube mill. The mixing ratio of gallium nitrate, lithium hydroxide, lithium nitrate and nickel carbonate was adjusted so as to have the following composition when expressed by the atomic ratio of each metal constituting the composite metal oxide. The ratio of lithium hydroxide and lithium nitrate was adjusted so that the pH of the mixture in the bead mill was about 11.
Li: Ni: Ga = 1.05: 0.98: 0.02
The obtained slurry [the proportion of solid nickel carbonate was about 35% by weight, and the average particle size was 1.5 μm or less. The average particle size is a particle size measured by a laser scattering particle size distribution analyzer SALD1100 (manufactured by Shimadzu Corporation) using a 0.2% aqueous solution of a trade name Darvan 821A (manufactured by RT Vanderbilt) as a dispersion medium. The spray dryer with a rotary atomizer (manufactured by Niro Co., Ltd .: mobile minor type, atomizer centrifugal force) was 25000 G. The distribution was 50% particle diameter (median diameter) when the distribution was integrated from the fine particle side on a volume basis. ) To obtain a mixed powder of metal compounds (average particle size is about 40 μm). The supply temperature of hot air was about 230 ° C., and the outlet temperature of the dryer was about 130 ° C. In a firing furnace using an alumina furnace tube having a purity of 99.5%, the obtained mixed powder of metal compounds was fired in an oxygen atmosphere at about 660 ° C. for about 15 hours.

電池の作製例1
焼成後、得られた活物質LiNi0.98Ga0.022を特開平5−54886号公報記載の実施例1の方法に準じて粉砕した。この活物質とアセチレンブラック(導電材)の混合物に、ポリフッ化ビニリデンの1−メチル−2−ピロリドン溶液(バインダー)を、活物質:導電材:バインダー=91:6:3(重量比)の組成となるように加えて混練することによりペーストとし、集電体となる#200ステンレスメッシュに該ペーストを塗布し、150℃で8時間真空乾燥を行って電極を得た。
Battery production example 1
After firing, the obtained active material LiNi 0.98 Ga 0.02 O 2 was pulverized according to the method of Example 1 described in JP-A No. 5-54886. To the mixture of this active material and acetylene black (conductive material), a 1-methyl-2-pyrrolidone solution (binder) of polyvinylidene fluoride is composed of active material: conductive material: binder = 91: 6: 3 (weight ratio). In addition, the paste was kneaded and applied to a # 200 stainless mesh as a current collector. The paste was vacuum-dried at 150 ° C. for 8 hours to obtain an electrode.

この電極に、電解液としてプロピレンカーボネートと1,2−ジメトキシエタンの1:1混合液にLiClO4を1モル/リットルとなるように溶解したもの又はエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの30:35:35混合液にLiPF6を1モル/リットルとなるように溶解したもの、セパレーターとしてポリプロピレン多孔質膜を、又負極として金属リチウムを組み合わせて平板型電池を作製した。 In this electrode, a solution obtained by dissolving LiClO 4 in a 1: 1 mixed solution of propylene carbonate and 1,2-dimethoxyethane as an electrolytic solution so as to be 1 mol / liter or 30 of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate. A flat battery was prepared by combining LiPF 6 in a mixed solution of 35:35 so as to be 1 mol / liter, a polypropylene porous membrane as a separator, and metallic lithium as a negative electrode.

このようにして得た電池の負荷特性は優れた(大電流での放電の際の容量低下が小さい)ものであり、サイクル性も良好であった。そして、実施例1の操作を数回繰り返し、それぞれ得られた活物質を用いて、作製例1と同様にして作製した電池はいずれも優れた負荷特性及び良好なサイクル性を示した。
このように、本発明により得られる活物質はリチウム二次電池の正極材料として好適であることが判る。
The battery thus obtained had excellent load characteristics (small capacity drop during discharge at a large current) and good cycleability. Then, the operation of Example 1 was repeated several times, and the batteries produced in the same manner as in Production Example 1 using the obtained active materials each showed excellent load characteristics and good cycle characteristics.
Thus, it turns out that the active material obtained by this invention is suitable as a positive electrode material of a lithium secondary battery.

比較例1
ロータリーアトマイザー付きのスプレードライヤー(ニロ社製:モービルマイナー型)の代わりにジャケット付きの熱伝導型乾燥機(神鋼パンテック社製のSVドライヤー)を用いる以外は、実施例1と同様にして金属化合物の混合粉体を得た。ジャケット内には熱媒として100〜130℃のスチームを通した。得られた粉体の平均粒径は実施例1と同程度であったが、上記混合粉体を取り出した後のSVドライヤー内壁にはリチウム化合物がスケーリングしていた。
Comparative Example 1
A metal compound was used in the same manner as in Example 1 except that a thermal conduction dryer with jacket (SV dryer manufactured by Shinko Pantech Co., Ltd.) was used instead of a spray dryer with a rotary atomizer (Niro Co., Ltd .: mobile minor type). Of mixed powder was obtained. Steam at 100 to 130 ° C. was passed through the jacket as a heat medium. The average particle size of the obtained powder was about the same as that of Example 1, but the lithium compound was scaled on the inner wall of the SV dryer after taking out the mixed powder.

このように、熱伝導型乾燥機を用いると、水媒体に対して溶解度の大きいリチウム化合物が乾燥機内壁にスケーリングし、スケーリングしたリチウム化合物は乾燥機内壁に付着したまま遷移金属化合物と混合されないので、乾燥機内における遷移金属化合物及びリチウム化合物の全体的な混合割合はバラツキやすく、所望の性能を有する二次電池を再現性良く得ることができなくなる。又、このようなスケーリングは熱伝導の効率を悪化させるので、工業的規模での製造には非常に不都合である。   In this way, when using a heat-conducting dryer, a lithium compound that is highly soluble in an aqueous medium scales on the inner wall of the dryer, and the scaled lithium compound adheres to the inner wall of the dryer and is not mixed with the transition metal compound. The overall mixing ratio of the transition metal compound and the lithium compound in the dryer is likely to vary, making it impossible to obtain a secondary battery having desired performance with good reproducibility. In addition, since such scaling deteriorates the efficiency of heat conduction, it is very inconvenient for manufacturing on an industrial scale.

Claims (7)

リチウム化合物と遷移金属化合物とを水性媒体中で粉砕し、次いで、得られた固液混合物を噴霧乾燥することを特徴とする非水電解液二次電池用活物質製造用粉末固体の製造方法。   A method for producing a powder solid for producing an active material for a non-aqueous electrolyte secondary battery, comprising pulverizing a lithium compound and a transition metal compound in an aqueous medium and then spray-drying the obtained solid-liquid mixture. 粉砕を、固液混合物中に含まれる固体の平均粒径が3μm以下になるまで行う請求項1記載の粉末固体の製造方法。   The method for producing a powder solid according to claim 1, wherein the pulverization is performed until the average particle size of the solid contained in the solid-liquid mixture becomes 3 µm or less. リチウム化合物が水酸化リチウム及び/又は硝酸リチウムである請求項1又は2に記載の粉末固体の製造方法。   The method for producing a powder solid according to claim 1 or 2, wherein the lithium compound is lithium hydroxide and / or lithium nitrate. 遷移金属化合物がマンガン、コバルト及びニッケルからなる群より選ばれる1種以上の遷移金属の炭酸塩、硝酸塩、水酸化物又は酸化物である請求項1〜3のいずれかに記載の粉末固体の製造方法。   The powder solid production according to any one of claims 1 to 3, wherein the transition metal compound is one or more transition metal carbonates, nitrates, hydroxides or oxides selected from the group consisting of manganese, cobalt and nickel. Method. 水性媒体が水、水と低級脂肪族アルコールの混合物、水と脂肪族ケトンの混合物、及び水と低級脂肪族アルコールと脂肪族ケトンの混合物から選ばれる請求項1〜4のいずれかに記載の粉末固体の製造方法。   The powder according to any one of claims 1 to 4, wherein the aqueous medium is selected from water, a mixture of water and a lower aliphatic alcohol, a mixture of water and an aliphatic ketone, and a mixture of water, a lower aliphatic alcohol and an aliphatic ketone. Solid manufacturing method. 噴霧乾燥に用いる噴霧乾燥機が回転円盤型のアトマイザー、又はノズルアトマイザーを備えた乾燥機である請求項1〜5のいずれかに記載の粉末固体の製造方法。   The method for producing a powder solid according to any one of claims 1 to 5, wherein the spray dryer used for spray drying is a rotary disk type atomizer or a dryer provided with a nozzle atomizer. 請求項1〜6のいずれかに記載の製造方法により、非水電解液二次電池用活物質製造用粉末固体を得て、該粉末固体を酸素の存在下に焼成することを特徴とする非水電解液二次電池用活物質の製造方法。   A powder solid for producing an active material for a non-aqueous electrolyte secondary battery is obtained by the production method according to claim 1, and the powder solid is fired in the presence of oxygen. A method for producing an active material for a water electrolyte secondary battery.
JP2009188932A 2009-08-18 2009-08-18 Method of manufacturing active material for battery Pending JP2009277667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009188932A JP2009277667A (en) 2009-08-18 2009-08-18 Method of manufacturing active material for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009188932A JP2009277667A (en) 2009-08-18 2009-08-18 Method of manufacturing active material for battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005245513A Division JP2006019310A (en) 2005-08-26 2005-08-26 Active substance for battery

Publications (1)

Publication Number Publication Date
JP2009277667A true JP2009277667A (en) 2009-11-26

Family

ID=41442870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009188932A Pending JP2009277667A (en) 2009-08-18 2009-08-18 Method of manufacturing active material for battery

Country Status (1)

Country Link
JP (1) JP2009277667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788155A (en) * 2018-03-01 2020-10-16 住友化学株式会社 Method for producing lithium hydroxide powder, method for producing positive electrode active material for lithium secondary battery, and package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714581A (en) * 1993-06-25 1995-01-17 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JPH08130011A (en) * 1994-09-05 1996-05-21 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08138673A (en) * 1994-11-07 1996-05-31 Dowa Mining Co Ltd Positive active material for non-aqueous lithium secondary battery and lithium secondary battery
JPH08185861A (en) * 1994-12-27 1996-07-16 Mitsui Toatsu Chem Inc Manufacture of positive electrode active material of nonaqueous electrolyte battery
JPH1036120A (en) * 1996-05-09 1998-02-10 Japan Energy Corp Production of lithium cobaltate, lithium nickelate or lithium manganate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714581A (en) * 1993-06-25 1995-01-17 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JPH08130011A (en) * 1994-09-05 1996-05-21 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08138673A (en) * 1994-11-07 1996-05-31 Dowa Mining Co Ltd Positive active material for non-aqueous lithium secondary battery and lithium secondary battery
JPH08185861A (en) * 1994-12-27 1996-07-16 Mitsui Toatsu Chem Inc Manufacture of positive electrode active material of nonaqueous electrolyte battery
JPH1036120A (en) * 1996-05-09 1998-02-10 Japan Energy Corp Production of lithium cobaltate, lithium nickelate or lithium manganate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009031191; 高橋芳夫編: 続微粒子設計工学 , 19881101, p.193〜198, (株)粉体工業社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788155A (en) * 2018-03-01 2020-10-16 住友化学株式会社 Method for producing lithium hydroxide powder, method for producing positive electrode active material for lithium secondary battery, and package
US11932548B2 (en) 2018-03-01 2024-03-19 Sumitomo Chemical Company, Limited Method for manufacturing lithium hydroxide powder, method for manufacturing positive electrode active material for lithium secondary cell, and package

Similar Documents

Publication Publication Date Title
JP2006019310A (en) Active substance for battery
TWI740864B (en) Method of preparing lithium ion battery cathode material
JP6098612B2 (en) COMPOSITE PARTICLE, SOLID BATTERY ELECTRODE AND METHOD FOR PRODUCING COMPOSITE PARTICLE
JP5612857B2 (en) TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
JP5352736B2 (en) Lithium manganese solid solution cathode material
JP4954451B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP5218782B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
WO2012046854A1 (en) Positive electrode material precursor for lithium secondary cell and method for producing positive electrode material
WO2007037235A1 (en) Process for producing lithium-containing composite oxide
WO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
JP6251843B2 (en) Method for producing lithium metal composite oxide having layer structure
JP2005347134A (en) Manufacturing method of positive electrode active material for lithium ion secondary battery
KR20110044375A (en) Manufacturing method of lithium-nickel-cobalt-manganese complex oxide, lithium-nickel-cobalt-manganese complex oxide manufactured thereby and lithium secondary battery with the same
JP2016122546A (en) Positive electrode active material for lithium ion battery and manufacturing method of positive electrode active material for lithium ion battery
JP5594663B2 (en) Alkali metal titanate compound, method for producing the same, electrode active material containing the alkali metal titanate compound, and electricity storage device using the electrode active material
JP5567742B2 (en) Method for producing positive electrode active material for lithium ion battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2002104826A (en) Method of manufacturing lithium transition metal composite oxide
JP3733659B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery
JP6098670B2 (en) Method for producing titanium dioxide
JP2012248333A (en) Electrode active substance, manufacturing method thereof and power storage device employing electrode active substance
JP6008578B2 (en) Method for producing positive electrode active material for secondary battery and secondary battery
JP2009277667A (en) Method of manufacturing active material for battery
JP6013435B2 (en) ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113