WO2012046854A1 - Positive electrode material precursor for lithium secondary cell and method for producing positive electrode material - Google Patents

Positive electrode material precursor for lithium secondary cell and method for producing positive electrode material Download PDF

Info

Publication number
WO2012046854A1
WO2012046854A1 PCT/JP2011/073257 JP2011073257W WO2012046854A1 WO 2012046854 A1 WO2012046854 A1 WO 2012046854A1 JP 2011073257 W JP2011073257 W JP 2011073257W WO 2012046854 A1 WO2012046854 A1 WO 2012046854A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
positive electrode
electrode material
transition metal
drying
Prior art date
Application number
PCT/JP2011/073257
Other languages
French (fr)
Japanese (ja)
Inventor
直之 後藤
泰賀 大林
武弘 大谷
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012046854A1 publication Critical patent/WO2012046854A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material precursor for a lithium secondary battery and a method for producing the positive electrode material.
  • Lithium secondary batteries have already been put to practical use as power sources for mobile phones and laptop computers, and are also being applied to medium and large applications such as automobile applications and power storage applications.
  • a lithium composite metal oxide is used as a positive electrode active material contained in the positive electrode.
  • the method for producing a lithium composite metal oxide is based on a transition metal hydroxide by bringing a solution containing a transition metal element such as Ni or Mn into contact with a base.
  • a slurry containing a solid content is obtained, and the resulting slurry is solid-liquid separated by filtration to obtain a transition metal hydroxide wet cake, and the wet cake is dried to obtain a transition metal as a positive electrode material precursor.
  • a method is known in which a hydroxide is obtained, and the resulting transition metal hydroxide is mixed with a lithium compound and calcined.
  • the transition metal hydroxide that is the raw material of the positive electrode material for the lithium secondary battery that is, the positive electrode material precursor is obtained as a raw material slurry containing a solid content based on the transition metal hydroxide, and the obtained slurry was solid-liquid separated by filtration to obtain a transition metal hydroxide wet cake, and this wet cake was dried.
  • this method is not necessarily suitable for mass production.
  • the positive electrode material precursor obtained by such a method did not necessarily have favorable characteristics.
  • the present invention provides a high-quality positive electrode material precursor and a method for manufacturing a positive electrode material with high productivity on an industrial scale.
  • the present invention relates to the following inventions.
  • ⁇ 4> In the concentration step, by adding a diluent to the concentrated slurry and removing at least a part of the liquid portion in the concentrated slurry to which the diluent has been added, the particles based on the transition metal hydroxide are removed.
  • ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 4>, wherein in the drying step, the powder is dried to a powder having a water content of 40% by weight or less within 60 minutes.
  • ⁇ 6> The method according to ⁇ 5>, wherein in the drying step, the powder is dried to a powder having a water content of 15% by weight or less within 10 minutes.
  • ⁇ 7> The method according to any one of ⁇ 1> to ⁇ 6>, wherein drying is performed using a high-temperature gas of 100 ° C. or higher in the drying step.
  • ⁇ 8> The method according to any one of ⁇ 1> to ⁇ 7>, wherein the air dryer is a fluidized bed dryer.
  • ⁇ 9> The method according to any one of ⁇ 1> to ⁇ 8>, wherein the inlet temperature of the high-temperature gas for drying is 150 ° C. or higher and 500 ° C. or lower in the airflow dryer.
  • the outlet temperature of the hot gas for drying is 50 ° C. or higher and 200 ° C.
  • the high-temperature gas for drying is a gas obtained by burning a combustible gas.
  • the powder is collected using a bag filter in the air dryer.
  • a high-quality positive electrode material precursor and positive electrode material can be obtained with high productivity on an industrial scale.
  • FIG. 1 It is a conceptual diagram of a crossflow filtration apparatus. It is a schematic diagram of an example of the crossflow filtration system using a crossflow filtration apparatus. It is a schematic diagram of the other example of the crossflow filtration system using a crossflow filtration apparatus. It is a schematic diagram of the fluidized bed drying apparatus which concerns on this invention. It is a schematic diagram for demonstrating the drying mechanism in the fluidized-bed drying apparatus which concerns on this invention, (A) is a mode that the slurry adhered to the medium, (B) is a solvent evaporating from the slurry adhering to the medium. (C) is a figure which shows a mode that a dried material peels, powderizes, and is blown up.
  • FIG. 2 is an X-ray diffraction pattern of a positive electrode material precursor of Example 1.
  • FIG. 3 is an X-ray diffraction pattern of a positive electrode material precursor of Comparative Example 1.
  • FIG. 2 is an X-ray diffraction pattern of a positive electrode material precursor of Reference Example 1. It is a figure for demonstrating the conventional method of manufacturing a positive electrode material precursor.
  • the method of the present invention for producing a positive electrode material precursor for a lithium secondary battery comprises: (1) contacting a solution containing a transition metal element with a base to produce a solid content based on a transition metal hydroxide. Generating a raw slurry, a raw slurry generating step, (2) removing at least part of the liquid portion of the raw slurry, generating a concentrated slurry, and (3) the concentrated slurry. It has the drying process of drying to a powder in an air dryer, and obtaining a positive electrode material precursor.
  • a high-quality positive electrode material precursor can be obtained. Although not limited to theory, this is considered to be due to the following principle.
  • a slurry containing a solid content (110) based on a transition metal hydroxide and a liquid portion (120) such as water is filtered and wetted. A cake was formed. In this wet cake, a thin liquid portion film (120a) is formed around the solid content (110) based on the transition metal hydroxide (as shown in FIG. 9B). While being maintained in this state, it is considered that the transition metal hydroxide was oxidized, thereby forming the transition metal oxide.
  • the transition metal oxide thus produced is less reactive than the transition metal hydroxide when mixed with a lithium compound and fired to produce a positive electrode material for a lithium secondary battery. Therefore, the performance of the finally obtained battery was not preferable.
  • the concentrated slurry is obtained by removing at least a part of the liquid portion of the raw slurry, it is considered that the generation of transition metal oxides is suppressed.
  • the transition slurry is formed by drying the concentrated slurry in a short time using an airflow dryer. Therefore, in the method of the present invention, a thin liquid portion film (120a) is formed around the solid content (110) based on the transition metal hydroxide (as shown in FIG. 9B). It is considered that a certain period is relatively short, and thereby the generation of transition metal oxide is suppressed.
  • Raw material slurry production process In the raw material slurry generation step of the method of the present invention, a raw material slurry is generated by bringing a solution containing a transition metal element into contact with a base to generate a solid content based on the transition metal hydroxide.
  • the “raw slurry” is a slurry containing a solid content (precipitate) based on a transition metal hydroxide and a liquid portion such as water, and the raw material remaining in the process of obtaining the raw slurry, K 2 SO 4 Such by-product salts, additives, organic solvents and the like may be included.
  • the “solid content (precipitate) based on the transition metal hydroxide” is such that the proportion of the transition metal element in the metal element constituting the solid content is 50 atomic% or more, 60 atomic% or more, 70 atomic% or more, 80 It means at least atomic percent, 90 atomic percent or more, 95 atomic percent or more, or 99 atomic percent or more.
  • the “solid content (precipitate) based on the transition metal hydroxide” may contain a transition metal carbonate or the like along with the transition metal hydroxide.
  • the transition metal element is not limited as long as the hydroxide can be mixed with a lithium compound and fired to become a positive electrode active material of a secondary battery.
  • Ni, Mn, Co, Fe, Cr, Ti, etc. can be mentioned.
  • the transition metal element preferably contains one or more elements selected from the group consisting of Ni and Mn. Further, from the viewpoint of obtaining a positive electrode for a secondary battery having a higher capacity, the transition metal element is selected from the group consisting of Co and Fe in addition to one or more elements selected from the group consisting of Ni and Mn. Preferably it contains one or more elements.
  • the production method of the present invention is particularly preferably used when a transition metal element containing at least Mn is used as a raw material. Since hydroxide of Mn is more easily oxidized in oxidizing atmospheres such as air than other transition metal hydroxides, it is a byproduct when the transition metal element as a raw material contains Mn. Manganese oxide (Mn 3 O 4 ) is easily generated. On the other hand, in the method of the present invention, even when the transition metal element as a raw material contains Mn, the production of a transition metal oxide as a by-product is suppressed, thereby producing a high-quality positive electrode material precursor. can do.
  • the solution containing a transition metal element is a metal and / or compound of each transition metal element, such as an oxide, hydroxide, oxyhydroxide, carbonate, sulfate, nitrate, acetate, halide, ammonium salt. It can be prepared by dissolving oxalate, alkoxide and the like in a solvent such as water and / or an organic solvent such as alcohol capable of dissolving them.
  • a solvent for such a solution water is usually used, and pure water or ion exchange water is preferably used.
  • the transition metal element may be dissolved in a solution containing hydrochloric acid, sulfuric acid, nitric acid, acetic acid, etc. to prepare a solution containing the transition metal element. Good.
  • the transition metal element-containing solution is an aqueous solution obtained by dissolving a transition metal element sulfate in water, for example, Ni sulfate, Mn sulfate, Co sulfate and Fe sulfate in water. It is preferable that it is the aqueous solution obtained by melt
  • the Fe sulfate a divalent Fe sulfate can be preferably used.
  • the base that can be used to obtain the raw slurry is at least one selected from the group consisting of alkali metal hydroxides, alkaline earth metal hydroxides, and anhydrides and hydrates of alkali metal carbonates, For example, LiOH (lithium hydroxide), NaOH (sodium hydroxide), KOH (potassium hydroxide), Li 2 CO 3 (lithium carbonate), Na 2 CO 3 (sodium carbonate), and K 2 CO 3 (potassium carbonate).
  • the at least 1 sort (s) chosen from the group which consists of an anhydride and a hydrate can be mentioned.
  • (NH 4) 2 CO 3 ammonium salts such as (ammonium carbonate), and at least one selected from the group consisting of ammonia.
  • the base is usually used as an aqueous solution.
  • concentration of the base in this basic aqueous solution is usually about 0.5 to 10 mol / L, preferably about 1 to 8 mol / L. From the viewpoint of production cost, it is preferable to use NaOH and KOH anhydrides and / or hydrates thereof as the base to be used. Two or more of the above-mentioned bases may be used in combination.
  • the water used as the solvent is preferably pure water and / or ion exchange water.
  • the aqueous solution of a base may contain an organic solvent other than water such as alcohol, a pH adjuster, and the like as long as the effects of the present invention are not impaired.
  • Contact method As a method for bringing a solution containing a transition metal element into contact with a base, a method in which a basic aqueous solution is added to a solution containing a transition metal element and mixing, a solution containing a transition metal element in a basic aqueous solution is added. Examples thereof include a method of mixing, a method of adding a solution containing a transition metal element and a basic aqueous solution to a solvent such as water and mixing. In mixing these, it is preferable to involve stirring.
  • a method in which water is used as a solvent and an aqueous solution containing a transition metal element is added to a basic aqueous solution and mixed is preferable in that the pH is easily maintained in a certain range.
  • the pH of the mixed solution tends to decrease, but this pH is 9 or more, preferably 10 or more. It is preferable to add an aqueous solution containing a transition metal element while adjusting so as to be.
  • a slurry containing a solid content based on a transition metal hydroxide having a more uniform composition either one or both of an aqueous solution containing a transition metal element and a basic aqueous solution are used. It is preferable to make contact while maintaining the temperature at 40 to 80 ° C.
  • Concentration process In the concentration step of the method of the present invention, a concentrated slurry is generated by removing at least part of the liquid portion in the raw slurry. Accordingly, in the context of the present invention, “concentrated slurry” means a slurry whose solid content is higher than that of the raw slurry, by removing at least a part of the liquid portion in the raw slurry. .
  • the solid content concentration in the concentrated slurry is preferably 3% by weight or more, more preferably 5% by weight or more, or 10% by weight or more from the viewpoint of improving the efficiency of the drying step which is a subsequent step. Further, the solid content concentration in the concentrated slurry is preferably 50% by weight or less, and preferably 40% by weight or less, or 30% by weight or less, from the viewpoint of handleability as a slurry and / or after the prevention of solid content oxidation. .
  • the slurry may be concentrated by any method.
  • cross flow filtration is preferably used for the concentration of the slurry in the present invention.
  • Cross flow filtration is a filtration method that concentrates the solids in the raw material slurry by supplying the raw material slurry as the liquid to be filtered to the filter medium and removing the liquid part that has passed through the filter medium as the filtrate. is there.
  • the solid content in the raw slurry can be concentrated, and at the same time, the solid content can be washed to obtain a transition metal hydroxide with less impurities.
  • the solid content is washed by crossflow filtration to remove a part of the liquid portion from the raw slurry to form a concentrated slurry, and then add a diluent to the concentrated slurry, and then crossflow again. This can be achieved by filtration. In order to further reduce the impurity concentration in the concentrated slurry, washing can be repeated.
  • the degree of progress of washing can be managed, for example, by measuring the conductivity of the filtrate and measuring the concentration of the electrolyte.
  • the cleaning is terminated and concentrated again to obtain a concentrated slurry having the target impurity concentration.
  • the diluting solution the same solvent as that used for forming the raw material slurry is usually used, but the diluting solution is not limited to this and any solvent can be used as long as it can be removed in a subsequent drying step.
  • the diluent include water and alcohols such as ethanol.
  • any membrane filter and / or filter cloth having a pore size smaller than the particle size of the solid content contained in the raw slurry can be used.
  • the membrane filter may be either a ceramic membrane filter or an organic membrane filter, but a ceramic membrane filter is preferred with respect to corrosion resistance, heat resistance, and durability.
  • a ceramic membrane filter those produced by molding and sintering ceramic raw material powders such as alumina, silica, alumina, zirconia and the like by a known technique can be used.
  • the filter cloth has an air permeability that prevents particles from leaking through the filter cloth according to the particle size of the solid content in the slurry, specifically 1 mL / cm 2 / min or less, preferably 0.3 mL.
  • a filter cloth having an air permeability of / cm 2 / min or less can be used.
  • the conditions for performing the cross flow filtration are appropriately determined so as to obtain a target concentrated slurry, and are not particularly limited.
  • FIG. 1 shows a conceptual diagram of a cross flow filtration apparatus using a cylindrical membrane filter.
  • the raw material slurry as the liquid to be filtered is supplied to the inside of the cylindrical membrane filter, and the filtrate that has passed through the membrane filter is recovered from the outside of the membrane filter, Concentrate the solids.
  • the cylindrical membrane filter is usually used in a fixed manner.
  • the cake layer is hardly deposited on the inner wall of the filter due to the shearing force of the slurry flowing in parallel with the inner wall of the filter by performing filtration while flowing the raw slurry parallel to the inner wall of the filter. can do. According to this, there is an advantage that clogging hardly occurs even when the raw slurry contains a relatively high concentration of solids. Moreover, in such a crossflow filtration apparatus, stable filtration can be performed for a long time even if the solid content concentration of the raw material slurry fluctuates.
  • FIG. 2 shows an example of a cross flow filtration system using a cross flow filtration device.
  • a cylindrical membrane filter is used.
  • the crossflow filtration system 10 shown in FIG. 2 includes a slurry storage tank 11 for storing raw material slurry, and a crossflow filtration apparatus having a tubular membrane filter 12 (see FIG. 1).
  • the membrane filter 12 filters the raw material slurry from the slurry storage tank 11 and separates it into a filtrate and a concentrated slurry.
  • the cross-flow filtration system 10 can be designed to avoid contact between the slurry and the outside air as much as possible in order to suppress oxidation by solid air in the slurry.
  • the slurry storage tank 11 can be a sealed tank, and the internal atmosphere can be replaced with an inert gas.
  • the raw material slurry is supplied from the slurry storage tank 11 to the inside of the cylindrical membrane filter 12, and the liquid part contained in the raw material slurry is used as a filtrate to the outside of the membrane filter 12.
  • the solid is concentrated to obtain a concentrated slurry.
  • At least a part of impurities other than solid content in the raw slurry for example, a raw material remaining in the process of obtaining the raw slurry, a by-product salt such as K 2 SO 4 , an additive, an organic solvent, etc. is a liquid part And can be removed.
  • FIG. 3 shows another example of a cross flow filtration system using a cross flow filtration device.
  • a stirring plate that generates a shearing force in the vicinity of the surface of the filter medium by stirring and thereby promotes separation of the solid content layer (cake layer) is used.
  • 3 includes a crossflow filtration device 20, a slurry storage tank 31, a liquid feed pump 32, and a dilution water supply facility 33 as main parts.
  • the cross-flow filtration device 20 includes a filtration chamber 22, a plurality of filtration plates 23 arranged at predetermined intervals in the filtration chamber 22, a plurality of stirring plates 24 arranged adjacent to the filtration plate, and a plurality of And an electric motor 25 which is a drive mechanism for rotating the stirring plate 24.
  • the filter plate 23 functions as a filter medium by sticking a filter cloth on both surfaces of a plate provided with a filtrate discharge groove.
  • the cross-flow filtration system 30 can be designed to avoid contact between the slurry and the outside air as much as possible in order to suppress oxidation by solid air in the slurry.
  • the crossflow filtration system 30 can make the crossflow filtration apparatus 20 and / or the slurry storage tank 31 hermetically sealed, and replace their internal atmosphere with an inert gas.
  • the raw material slurry is stored in the slurry storage tank 31 and pressurized and supplied to the filtration chamber 22 of the cross flow filtration device 20 by the liquid feed pump 32. .
  • the raw material slurry supplied under pressure passes through the space partitioned by the filter plate 23 and moves from the slurry supply port 26 of the filtration chamber 22 toward the slurry discharge port 27.
  • the raw material slurry is filtered by the filter plate 23 when passing through the space partitioned by the filter plate 23, and the solid content concentration gradually increases toward the slurry discharge port 27.
  • the stirring plate 24 between the filter plates 23 is always rotating during the filtration, and the supplied slurry is stirred to forcibly generate a shearing force in the vicinity of the surface of the filter plate 23, thereby the filter plate.
  • the cake layer formed on the surface of 23 is peeled off.
  • the slurry (concentrated slurry) having reached the slurry discharge port 27 and having a high solid content concentration is discharged from the slurry discharge port 27 and collected in the slurry storage tank 31.
  • the solid content concentration of the concentrated slurry can be arbitrarily adjusted as long as the fluidity of the concentrated slurry is maintained.
  • transition metal water with less impurities is obtained by adding dilution water from the dilution water supply facility 33 to the concentrated slurry recovered in the slurry storage tank 31 and performing crossflow filtration again to wash the solid content in the raw material slurry.
  • An oxide can be obtained.
  • the air dryer is a device that exchanges heat between the object to be dried and the supplied high-temperature gas to dry the object to be dried.
  • the air dryer is a device that dries with a high-temperature gas on an object to be dried and transports it together.
  • the high temperature gas is, for example, a gas of 100 ° C. or higher, 150 ° C. or higher, or 200 ° C. or higher.
  • gas species supplied as the high-temperature gas air or an inert gas such as nitrogen or argon is usually used. These are heated to the target temperature outside the air dryer and then supplied to the air dryer.
  • the high-temperature gas is preferably a gas obtained by burning a combustible substance, particularly a combustible gas.
  • the combustible gas can be burned with a gas containing oxygen (O 2 ), such as oxygen gas or air. Oxygen may remain in the exhaust gas after combustion. In this case, the exhaust gas may be reused as a gas containing oxygen.
  • a gas obtained by burning a combustible substance with air is also preferable in that it has a lower oxygen concentration than air, thereby suppressing oxidation of the positive electrode material precursor.
  • the combustible gas examples include hydrogen, methane, ethane, propane, butane, acetylene, or a mixed gas thereof.
  • liquefied petroleum gas (LPG) and natural gas can also be used as combustible gas.
  • LPG is preferably used because it has a large amount of heat during combustion and is relatively inexpensive.
  • the air flow dryer since the contact area between the object to be dried and the high-temperature gas that is the heat source is large, drying can be performed quickly. Specifically, for example, within 60 minutes, within 10 minutes, within 5 minutes, within 3 minutes, or within 1 minute, the concentrated slurry has a water content of 40% by weight or less, 15% by weight or less, or 10% by weight or less. It can be dried to a powder.
  • the concentrated slurry can be dried continuously, so that the positive electrode material precursor can be obtained with high productivity.
  • the expression “dried to a powder having a water content of 40% by weight or less within 60 minutes” means that the concentrated slurry is supplied to the air dryer and then the dried powder (positive electrode material) from the air dryer. It means that the residence time until the precursor) is discharged is within 60 minutes, and the moisture content of the discharged powder is 40% by weight or less.
  • the bag filter can be made of a material having heat resistance so as not to be deteriorated by the discharged high temperature gas.
  • a fluidized bed dryer having a medium for attaching and drying the supplied concentrated slurry is suitable.
  • a fluidized bed dryer supplies a hot gas from below to a medium in a drying chamber, particularly a spherical medium to form a fluidized bed, and a slurry is dropped into the fluidized bed to obtain a dried product.
  • the material to be dried can be dried by heat conduction from a heated medium and convective heat transfer from a high-temperature gas, and since a fluidized bed is used, drying with less unevenness can be achieved.
  • the fluidized bed dryer for example, a slurry dryer SFD series manufactured by Okawara Manufacturing Co., Ltd. can be used.
  • a concentrated slurry storage tank 41 in which the concentrated slurry obtained in the concentration step is stored, and a water storage tank 42 in which dilution water is stored are a slurry supply pipe 43 and a slurry supply pump 44. Is connected to the body portion of the apparatus main body 45.
  • an intake pipe 47 provided with an intake filter 46 at the intake port has an intake fan 48 for taking in the gas, and a heat exchanger 49 with a filter unit as a heat source for heating the gas. It is connected with the intervening.
  • a discharge pipe 51 connected to the body of the bag filter 50 is connected to the upper part of the apparatus main body 45.
  • An exhaust pipe 53 exhausted by an exhaust fan 52 is connected to the upper portion of the bag filter 50.
  • the medium M may be any medium that can efficiently exchange heat with the slurry to be supplied, and ceramics such as alumina and zirconia, and heat-resistant resin materials such as polytetrafluoroethylene are appropriately used.
  • the average diameter of the medium M is usually 1 mm to 5 mm, preferably 2 mm to 3 mm.
  • the concentrated slurry is attached to the medium, and the solvent is evaporated from the concentrated slurry attached to the medium, thereby drying in a short time by heat conduction from the medium and convective heat transfer of the hot gas. Processing can be performed.
  • the air sucked by the suction fan 48 is heated from the heat exchanger 49 and then supplied from the lower part of the apparatus main body 45.
  • the supplied air blows up the medium M to form a fluidized bed F.
  • the concentrated slurry stored in the raw material storage tank 41 is dropped by the slurry supply pump 44 into the fluidized bed F formed in the apparatus main body 45 through the raw material supply pipe 43.
  • the dripped concentrated slurry adheres to the surface of the medium M constituting the fluidized bed F in the form of a thin film (see FIG. 5A).
  • the concentrated slurry adhering to the surface of the medium M has a solvent (moisture) evaporated and removed by heat conduction from the heated medium M and convection heat transfer of the hot gas to be blown, and becomes a dried product (FIG. 5B). reference).
  • the media M collide with each other in the fluidized bed F, and the dried material on the surface of the media M is peeled off, pulverized, and blown upward together with high-temperature air (see FIG. 5C).
  • the dried product blown up is sent to the bag filter 50 which is a powder recovery portion through the discharge pipe 51.
  • a dry substance which is a positive electrode material precursor in powder form, is stored in a container 54 provided at the lower end, and high-temperature air is discharged to the outside through an exhaust pipe 53.
  • the powder can reach the bag filter 50 in a dry state.
  • the expression “within 60 minutes” means that the concentrated slurry is supplied into the apparatus main body 45, and then is sent to the bag filter 50 as a powder. It means that the average residence time to reach is within 60 minutes.
  • the speed at which the concentrated slurry stored in the raw material storage tank 41 is dropped into the apparatus main body 45 is, for example, such that the gas temperature at the outlet of the apparatus main body 45 is 50 ° C. or higher and 200 ° C. or lower, preferably 110 ° C. or higher and 150 ° C. or lower. Can be adjusted.
  • the flow rate of the high-temperature gas can be arbitrarily set, and the lower limit of the flow rate can be a flow rate at which the medium M flows in the apparatus main body 45.
  • the upper limit of the flow rate is the medium M scattered from the apparatus main body 45. Can be mentioned.
  • the heat exchanger 49 that is a heating device is set so that the temperature of the high-temperature gas at the inlet of the air dryer before contacting the concentrated slurry is 150 ° C. or higher and 500 ° C. or lower, preferably 180 ° C. or higher and 350 ° C. or lower. Can do.
  • the heat exchanger 49 which is a heating device is set so that the temperature of the high-temperature gas at the outlet of the air dryer after contacting the concentrated slurry is 50 ° C. or higher and 200 ° C. or lower, preferably 110 ° C. or higher and 150 ° C. or lower. can do.
  • the temperature of the hot gas after contact with the concentrated slurry is preferably 100 ° C. or higher, and more preferably 110 ° C. or higher for stable operation.
  • the temperature of the high-temperature gas after contacting the concentrated slurry must not exceed the upper limit of the heat resistance of the bag filter 50 that collects the dry powder. Therefore, for example, when water is used as the solvent of the slurry.
  • a suitable drying rate can be obtained by adjusting the temperature of the hot gas after contact with the concentrated slurry to 150 ° C. or lower.
  • a transition metal hydroxide as a positive electrode material precursor is mixed with a lithium compound and baked to obtain a lithium composite metal oxide as a positive electrode material.
  • lithium compound examples include one or more selected from the group consisting of lithium hydroxide, lithium chloride, lithium nitrate and lithium carbonate, and anhydrides and hydrates thereof.
  • the mixing may be either dry mixing or wet mixing, but from the viewpoint of simplicity, dry mixing is preferable.
  • Examples of the mixing device include stirring and mixing, a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, a ball mill, and the like.
  • the holding temperature in firing is preferably in the range of 650 ° C. or higher and 900 ° C. or lower.
  • the holding time at this holding temperature is usually 0.1 to 20 hours, preferably 0.5 to 8 hours.
  • the rate of temperature rise to the holding temperature is usually 50 ° C. to 400 ° C./hour, and the rate of temperature drop from the holding temperature to room temperature is usually 10 ° C. to 400 ° C./hour.
  • As the firing atmosphere air, oxygen, nitrogen, argon, or a mixed gas thereof can be used, but an air atmosphere is preferable.
  • reaction accelerator When the transition metal hydroxide as the positive electrode material precursor is mixed with the lithium compound, a reaction accelerator may be further mixed.
  • reaction accelerator examples include chlorides such as NaCl, KCl, RbCl, CsCl, CaCl 2 , MgCl 2 , SrCl 2 , BaCl 2 and NH 4 Cl; Na 2 CO 3 , K 2 CO 3 , Rb Carbonates such as 2 CO 3 , Cs 2 CO 3 , CaCO 3 , MgCO 3 , SrCO 3 and BaCO 3 ; sulfates such as K 2 SO 4 and Na 2 SO 4 ; fluorides such as NaF, KF and NH 4 F Is mentioned.
  • chlorides such as NaCl, KCl, RbCl, CsCl, CaCl 2 , MgCl 2 , SrCl 2 , BaCl 2 and NH 4 Cl
  • Na 2 CO 3 , K 2 CO 3 , Rb Carbonates such as 2 CO 3 , Cs 2 CO 3 , CaCO 3 , MgCO 3 , SrCO 3 and BaCO 3
  • a chloride, carbonate or sulfate of one or more elements selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr and Ba can be preferably used.
  • KCl, K 2 CO 3 and K 2 SO 4 can be preferably used.
  • Two or more reaction accelerators can be used in combination.
  • reaction accelerator when used, for example, the reaction accelerator may be added when the transition metal hydroxide is mixed with the lithium compound.
  • the reaction accelerator may remain in the fired composite metal oxide or may be removed by washing, evaporation or the like.
  • the mixing ratio of the mixture and the reaction accelerator is preferably 0.1 parts by weight or more and 100 parts by weight, more preferably 1.0 parts by weight with respect to 100 parts by weight of the mixture of transition metal hydroxide and lithium compound. More than 25 parts by weight.
  • the composite metal oxide obtained by firing may be pulverized using a ball mill or a jet mill. Moreover, you may repeat a grinding
  • the composite metal oxide obtained by the above method is usually composed of primary particles having an average particle diameter of 0.05 ⁇ m or more and 1 ⁇ m or less, and is formed by agglomeration of primary particles and primary particles of 0.1 ⁇ m or more and 100 ⁇ m or less. It consists of a mixture with secondary particles of average particle size.
  • the average particle diameter of the primary particles and the secondary particles can be obtained as a number average value by observing with an SEM (scanning electron microscope).
  • the composite metal oxide obtained by the above method usually has an ⁇ -NaFeO 2 type crystal structure, that is, a crystal structure belonging to the R-3m space group.
  • the crystal structure can be identified from a powder X-ray diffraction pattern obtained by powder X-ray diffraction measurement using CuK ⁇ as a radiation source.
  • the molar ratio of Li in the composite metal oxide obtained by the above method is usually 0.5 or more and 1.5 or less with respect to the total amount of transition metal elements M such as Ni, Mn, Fe, and Co. In order to further increase the capacity retention rate, it is preferably 0.95 or more and 1.5 or less, more preferably 1.0 or more and 1.4 or less.
  • the composite metal oxide obtained by the above method can be represented, for example, by the following formula (A): Li y (Ni 1-x M x ) O 2 (A) (here, M represents one or more transition metal elements other than Ni, for example, one or more transition metal elements selected from the group consisting of Mn, Fe, Co, and combinations thereof; x is 0 ⁇ x ⁇ 1 and y is usually 0.5 or more and 1.5 or less, preferably 0.95 or more and 1.5 or less, more preferably 1.0 or more and 1.4 or less) .
  • a part of the transition metal element may be substituted with another element within a range not impairing the effects of the present invention.
  • B Al, Ga, In, Si, Ge, Sn, Mg, Sc, Y, Zr, Hf, Nb, Ta, Mo, W, Tc, Ru, Rh, Ir, Pd
  • Examples of the element include Cu, Ag, and Zn.
  • a compound different from the lithium composite metal oxide may be attached to the surface of the particles constituting the lithium composite metal oxide obtained by the above method.
  • Specific examples of such compounds include oxides, hydroxides, oxyhydroxides, carbonates, nitrates, and organic acid salts of the above-mentioned elements.
  • oxides, hydroxides, Oxyhydroxide is Moreover, you may use these compounds in mixture.
  • a particularly preferred compound is alumina. Moreover, you may heat after adhesion.
  • the composite metal oxide obtained by the above method that is, the lithium composite metal oxide is suitably used as a positive electrode active material for a secondary battery, particularly as a positive electrode active material for a nonaqueous electrolyte secondary battery.
  • Positive electrode for secondary battery is prepared by a known method, for example, the method described in International Publication No. 09/041722, using the lithium composite metal oxide obtained by the above method as a positive electrode active material. can do.
  • the moisture content was measured using a heat drying moisture meter MX-50 manufactured by A & D Co., Ltd. Specifically, after leaving about 5 g of powder sample in the sample dish in the device, the lid of the device is closed and the sample dish temperature is set to 130 ° C. to evaporate the water contained in the powder sample. When the weight loss was not recognized, it was regarded as a completely dry state, that is, a water content of 0. The ratio of the reduced weight with respect to the weight of the powder sample placed on the sample dish was taken as the moisture content of the powder sample.
  • Example 1 Provide of positive electrode material precursor> (1) Raw material slurry production
  • the raw material slurry was charged into the slurry storage tank 31, and the raw material slurry was circulated to the slurry storage tank 31 via the cross-flow filtration device 20 by the pump 32 to perform a filtration operation. This filtration operation was continued until 50 parts by weight of the filtrate was extracted to concentrate the slurry.
  • the slurry supply inlet pressure of the crossflow filtration apparatus 20 is 0.4 MPaG, and P2560C (made by Shikishima canvas) was used for the filter cloth.
  • the solid content concentration of the concentrated slurry obtained in the slurry storage tank 31 was 12% by weight.
  • the heat exchanger 49 was adjusted so that the temperature of the high temperature gas at the inlet of the apparatus main body 45 in FIG. Further, the slurry supply amount was adjusted to 2.4 kg / h by the slurry supply pump 44.
  • the temperature of the hot gas at the outlet of the apparatus main body 45 was 143 ° C., and the flow rate of the hot gas was 3.3 m / s.
  • the drying time (the residence time from when the concentrated slurry was supplied into the apparatus main body 45 until reaching the bag filter 50 as powder) was within 1 minute on average.
  • the water content of the dried product P 1 was 3.5 wt%.
  • the resulting calcined product was pulverized, filtered and washed with distilled water, dried for 6 hours at 0.99 ° C., and is annealed for 6 hours at 300 ° C., to obtain a powder B 1.
  • the powder B 1 When measuring the powder X-ray diffraction pattern, the powder B 1 represents, it was found to have a crystal structure belonging to the space group R-3m.
  • ⁇ Comparative Example 1 >> ⁇ Production of positive electrode material precursor>
  • the concentrated slurry was charged into a drying vat and dried with a shelf dryer (general-purpose dryer AT-20 (manufacturer: Asahi Kagaku Corporation)). otherwise in the same manner as in example 1 to obtain a dry product R 1. Drying conditions by the shelf dryer were 120 ° C. and 8 hours. The resulting moisture content of the dried product R 1 was 8% by weight.
  • Reference Example 1 a positive electrode material precursor was manufactured by a conventional method in which a raw cake slurry was solid-liquid separated to form a wet cake, and this wet cake was dried.
  • the slurry obtained by a filter press was subjected to solid-liquid separation.
  • a “roll fit filter press dryer” (distributor: Eurotech Co., Ltd.) was used. 100 parts by weight of the slurry was supplied to a filter press and filtered under conditions of room temperature at a filtration pressure of 0.4 MPaG and a filtration time of 50 minutes.
  • distilled water was supplied at a washing pressure of 0.4 to 0.6 MPaG at room temperature to perform washing with water. After washing with water, pressing and dewatering was performed at a pressing pressure of 0.7 MPaG for 15 minutes.
  • the pressure inside the filtration chamber of the vacuum filter press was set to 10 kPa, and 90 ° C.
  • the obtained wet cake was charged into a drying vat and dried using a shelf dryer (general-purpose dryer AT-20 (manufacturer: Asahi Kagaku Corporation)) at 120 ° C. for 8 hours. Thereafter, feather mill pulverized to obtain a powdery dried product X 1. The resulting moisture content of the dried product X 1 was 3 wt%.
  • N-methyl-2-pyrrolidone solution of PVdF as a binder is mixed with a mixture of a positive electrode active material (powder B 1 to B 3 ) and a conductive material (a mixture of acetylene black and graphite at a weight ratio of 9: 1).
  • Material: Conductive material: Binder 87: 10: 3 (weight ratio)
  • the paste was kneaded and kneaded to form a paste, and the paste was applied to an Al foil having a thickness of 40 ⁇ m serving as a current collector. Vacuum drying was performed at 0 ° C. for 8 hours to obtain a positive electrode.
  • a coin-type battery (R2032) was produced by combining the obtained positive electrode, electrolytic solution, laminated film as a separator, and metallic lithium as the negative electrode.
  • the electrolytic solution was a solution obtained by dissolving LiPF 6 in a 30:35:35 (volume ratio) mixed solution of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate so as to be 1 mol / liter.
  • Example 1 had a larger discharge capacity in both the first cycle (0.2C) and the second cycle (1C) as compared with Comparative Example 1. In addition, Example 1 showed a discharge capacity equal to or higher than that of Reference Example 1 using a positive electrode material derived from a conventional wet cake.
  • the production method of the present invention can be suitably used when a positive electrode material precursor is produced or when a positive electrode material is produced from this precursor.

Abstract

Provided is a high-quality positive electrode material precursor and a method for producing a positive electrode material. The method of the present invention for producing a positive electrode material precursor comprises the following steps: (1) a starting material slurry preparation step in which a starting material slurry is prepared by bringing a solution containing a transition metal element into contact with a base and generating a solid component based on a transition metal hydroxide; (2) a concentration step in which a concentrated slurry is produced by removing at least a portion of the liquid component of the starting slurry; and (3) a drying step in which a positive electrode material precursor is obtained by drying the concentrated slurry to a powder in a flash dryer.

Description

リチウム二次電池用の正極材料前駆体及び正極材料の製造方法Positive electrode material precursor for lithium secondary battery and method for producing positive electrode material
 本発明は、リチウム二次電池用の正極材料前駆体及び正極材料の製造方法に関するものである。 The present invention relates to a positive electrode material precursor for a lithium secondary battery and a method for producing the positive electrode material.
 リチウム二次電池は、既に、携帯電話やノートパソコン等の電源として実用化されており、更に、自動車用途や電力貯蔵用途等の中・大型用途においても、適用が試みられている。リチウム二次電池では、正極中に含まれる正極活物質としてリチウム複合金属酸化物が用いられている。 Lithium secondary batteries have already been put to practical use as power sources for mobile phones and laptop computers, and are also being applied to medium and large applications such as automobile applications and power storage applications. In a lithium secondary battery, a lithium composite metal oxide is used as a positive electrode active material contained in the positive electrode.
 リチウム複合金属酸化物の製造方法としては、特許文献1及び2に開示されているように、Ni、Mn等の遷移金属元素を含有する溶液を塩基と接触させて、遷移金属水酸化物に基づく固形分を含むスラリーを得、得られたスラリーを全量ろ過により固液分離して、遷移金属水酸化物のウェットケークを得、このウェットケークを乾燥させることによって、正極材料前駆体としての遷移金属水酸化物を得、そして得られた遷移金属水酸化物をリチウム化合物と混合し、焼成する方法が知られている。 As disclosed in Patent Documents 1 and 2, the method for producing a lithium composite metal oxide is based on a transition metal hydroxide by bringing a solution containing a transition metal element such as Ni or Mn into contact with a base. A slurry containing a solid content is obtained, and the resulting slurry is solid-liquid separated by filtration to obtain a transition metal hydroxide wet cake, and the wet cake is dried to obtain a transition metal as a positive electrode material precursor. A method is known in which a hydroxide is obtained, and the resulting transition metal hydroxide is mixed with a lithium compound and calcined.
国際公開第09/041722号International Publication No. 09/041722 特開2010-21125号公報JP 2010-21125 A
 上記のように、リチウム二次電池用の正極材料の原料となる遷移金属水酸化物、すなわち正極材料前駆体は、遷移金属水酸化物に基づく固形分を含む原料スラリーを得、得られたスラリーを全量ろ過により固液分離して、遷移金属水酸化物のウェットケークを得、このウェットケークを乾燥することによって製造されていた。しかしながら、この方法は、必ずしも大量生産に適しているとはいえなかった。また、このような方法によって得られる正極材料前駆体は、必ずしも好ましい特性を有していなかった。 As described above, the transition metal hydroxide that is the raw material of the positive electrode material for the lithium secondary battery, that is, the positive electrode material precursor is obtained as a raw material slurry containing a solid content based on the transition metal hydroxide, and the obtained slurry Was solid-liquid separated by filtration to obtain a transition metal hydroxide wet cake, and this wet cake was dried. However, this method is not necessarily suitable for mass production. Moreover, the positive electrode material precursor obtained by such a method did not necessarily have favorable characteristics.
 そこで本発明は、工業的スケールにおいて、高い生産性で、高品質な正極材料前駆体及び正極材料を製造する方法を提供する。 Therefore, the present invention provides a high-quality positive electrode material precursor and a method for manufacturing a positive electrode material with high productivity on an industrial scale.
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the following inventions meet the above-mentioned object, and have reached the present invention.
 すなわち、本発明は、以下の発明に係るものである。 That is, the present invention relates to the following inventions.
 〈1〉(1)遷移金属元素を含有する溶液を塩基と接触させて、遷移金属水酸化物に基づく固形分を生成することによって、原料スラリーを生成する、原料スラリー生成工程と、
 (2)上記原料スラリー中の液体部分の少なくとも一部を除去することによって、濃縮スラリーを生成する、濃縮工程、及び
 (3)上記濃縮スラリーを、気流乾燥機において粉末まで乾燥して、正極材料前駆体を得る、乾燥工程、
を有する、正極材料前駆体の製造方法。
 〈2〉上記遷移金属元素が、少なくともMnを含む、上記〈1〉項に記載の方法。
 〈3〉上記濃縮工程を、クロスフローろ過で行う、上記〈1〉又は〈2〉項に記載の方法。
 〈4〉上記濃縮工程において、上記濃縮スラリーに希釈液を添加し、希釈液を添加した上記濃縮スラリー中の液体部分の少なくとも一部を除去することによって、上記遷移金属水酸化物に基づく粒子の洗浄を行うことを更に含む、上記〈3〉項に記載の方法。
 〈5〉上記乾燥工程において、60分以内に含水率40重量%以下の粉末まで乾燥する、上記〈1〉~〈4〉項のいずれか一項に記載の方法。
 〈6〉上記乾燥工程において、10分以内に含水率15重量%以下の粉末まで乾燥する、上記〈5〉項に記載の方法。
 〈7〉上記乾燥工程において、100℃以上の高温気体を用いて乾燥を行う、上記〈1〉~〈6〉項のいずれか一項に記載の方法。
 〈8〉上記気流乾燥機が、流動層乾燥装置である、上記〈1〉~〈7〉項のいずれか一項に記載の方法。
 〈9〉上記気流乾燥機において、乾燥用の高温気体の入口温度が、150℃以上500℃以下である、上記〈1〉~〈8〉項のいずれか一項に記載の方法。
 〈10〉上記気流乾燥機において、乾燥用の高温気体の出口温度が、50℃以上200℃以下である、上記〈1〉~〈9〉項のいずれか一項に記載の方法。
 〈11〉上記気流乾燥機において、乾燥用の高温気体が、可燃性気体を燃焼させて得られる気体である、上記〈1〉~〈10〉項のいずれか一項に記載の方法。
 〈12〉上記気流乾燥機において、バグフィルタを使用して粉末を回収する、上記〈1〉~〈11〉項のいずれか一項に記載の方法。
 〈13〉上記〈1〉~〈12〉項のいずれか一項に記載の方法により正極材料前駆体を製造し、そして得られた上記正極材料前駆体をリチウム化合物と混合し、焼成することを含む、正極材料の製造方法。
<1> (1) A raw material slurry generation step of generating a raw slurry by bringing a solution containing a transition metal element into contact with a base to generate a solid content based on a transition metal hydroxide;
(2) A concentration step for producing a concentrated slurry by removing at least a part of the liquid portion in the raw slurry, and (3) drying the concentrated slurry to a powder in an air dryer, Obtaining a precursor, a drying step;
A method for producing a positive electrode material precursor, comprising:
<2> The method according to <1>, wherein the transition metal element contains at least Mn.
<3> The method according to <1> or <2>, wherein the concentration step is performed by crossflow filtration.
<4> In the concentration step, by adding a diluent to the concentrated slurry and removing at least a part of the liquid portion in the concentrated slurry to which the diluent has been added, the particles based on the transition metal hydroxide are removed. The method according to <3>, further comprising performing washing.
<5> The method according to any one of <1> to <4>, wherein in the drying step, the powder is dried to a powder having a water content of 40% by weight or less within 60 minutes.
<6> The method according to <5>, wherein in the drying step, the powder is dried to a powder having a water content of 15% by weight or less within 10 minutes.
<7> The method according to any one of <1> to <6>, wherein drying is performed using a high-temperature gas of 100 ° C. or higher in the drying step.
<8> The method according to any one of <1> to <7>, wherein the air dryer is a fluidized bed dryer.
<9> The method according to any one of <1> to <8>, wherein the inlet temperature of the high-temperature gas for drying is 150 ° C. or higher and 500 ° C. or lower in the airflow dryer.
<10> The method according to any one of <1> to <9>, wherein the outlet temperature of the hot gas for drying is 50 ° C. or higher and 200 ° C. or lower in the air flow dryer.
<11> The method according to any one of <1> to <10>, wherein in the air dryer, the high-temperature gas for drying is a gas obtained by burning a combustible gas.
<12> The method according to any one of <1> to <11> above, wherein the powder is collected using a bag filter in the air dryer.
<13> Producing a positive electrode material precursor by the method according to any one of <1> to <12> above, mixing the obtained positive electrode material precursor with a lithium compound, and firing the mixture. A method for producing a positive electrode material.
 本発明の方法によれば、工業的スケールにおいて、高い生産性で、高品質な正極材料前駆体及び正極材料を得ることができる。 According to the method of the present invention, a high-quality positive electrode material precursor and positive electrode material can be obtained with high productivity on an industrial scale.
クロスフローろ過装置の概念図である。It is a conceptual diagram of a crossflow filtration apparatus. クロスフローろ過装置を用いたクロスフローろ過システムの一例の模式図である。It is a schematic diagram of an example of the crossflow filtration system using a crossflow filtration apparatus. クロスフローろ過装置を用いたクロスフローろ過システムの他の例の模式図である。It is a schematic diagram of the other example of the crossflow filtration system using a crossflow filtration apparatus. 本発明に係る流動層乾燥装置の模式図である。It is a schematic diagram of the fluidized bed drying apparatus which concerns on this invention. 本発明に係る流動層乾燥装置における乾燥機構を説明するための模式図であり、(A)は、スラリーが媒体に付着した様子、(B)は、媒体に付着したスラリーから溶媒が蒸発して乾燥物になる様子、(C)は、乾燥物が剥離し粉化して吹き上げられる様子を示す図である。It is a schematic diagram for demonstrating the drying mechanism in the fluidized-bed drying apparatus which concerns on this invention, (A) is a mode that the slurry adhered to the medium, (B) is a solvent evaporating from the slurry adhering to the medium. (C) is a figure which shows a mode that a dried material peels, powderizes, and is blown up. 実施例1の正極材料前駆体のX線回折パターンである。2 is an X-ray diffraction pattern of a positive electrode material precursor of Example 1. FIG. 比較例1の正極材料前駆体のX線回折パターンである。3 is an X-ray diffraction pattern of a positive electrode material precursor of Comparative Example 1. FIG. 参考例1の正極材料前駆体のX線回折パターンである。2 is an X-ray diffraction pattern of a positive electrode material precursor of Reference Example 1. 正極材料前駆体を製造する従来の方法を説明するための図である。It is a figure for demonstrating the conventional method of manufacturing a positive electrode material precursor.
 《正極材料前駆体の製造方法》
 リチウム二次電池用の正極材料前駆体を製造する本発明の方法は、(1)遷移金属元素を含有する溶液を塩基と接触させて、遷移金属水酸化物に基づく固形分を生成することによって、原料スラリーを生成する、原料スラリー生成工程と、(2)上記原料スラリーの液体部分の少なくとも一部を除去することによって、濃縮スラリーを生成する、濃縮工程、及び(3)上記濃縮スラリーを、気流乾燥機において粉末まで乾燥して、正極材料前駆体を得る、乾燥工程を有する。
<< Method for Producing Positive Electrode Material Precursor >>
The method of the present invention for producing a positive electrode material precursor for a lithium secondary battery comprises: (1) contacting a solution containing a transition metal element with a base to produce a solid content based on a transition metal hydroxide. Generating a raw slurry, a raw slurry generating step, (2) removing at least part of the liquid portion of the raw slurry, generating a concentrated slurry, and (3) the concentrated slurry. It has the drying process of drying to a powder in an air dryer, and obtaining a positive electrode material precursor.
 このような本発明の方法によれば、高品質な正極材料前駆体を得ることができる。理論に限定されるものではないがこれは、下記のような原理によると考えられる。 According to such a method of the present invention, a high-quality positive electrode material precursor can be obtained. Although not limited to theory, this is considered to be due to the following principle.
 すなわち、従来の方法では、遷移金属水酸化物に基づく固形分(110)と水等の液体部分(120)とを含有するスラリー(図9(a)で示すような状態)をろ過し、ウェットケークを形成していた。このウェットケークでは、遷移金属水酸化物に基づく固形分(110)の周囲に薄い液体部分の膜(120a)が形成されている状態(図9(b)で示すような状態)となっており、この状態で維持されている間に、遷移金属水酸化物が酸化され、それによって遷移金属酸化物が形成されていたと考えられる。 That is, in the conventional method, a slurry containing a solid content (110) based on a transition metal hydroxide and a liquid portion (120) such as water (state shown in FIG. 9A) is filtered and wetted. A cake was formed. In this wet cake, a thin liquid portion film (120a) is formed around the solid content (110) based on the transition metal hydroxide (as shown in FIG. 9B). While being maintained in this state, it is considered that the transition metal hydroxide was oxidized, thereby forming the transition metal oxide.
 このようにして生成される遷移金属酸化物は、リチウム二次電池正極材料を生成するためにリチウム化合物と混合して焼成したときに、遷移金属水酸化物と比較して反応性に劣っており、したがって最終的に得られる電池の性能に関して好ましくなかった。 The transition metal oxide thus produced is less reactive than the transition metal hydroxide when mixed with a lithium compound and fired to produce a positive electrode material for a lithium secondary battery. Therefore, the performance of the finally obtained battery was not preferable.
 これに対して、本発明の方法では、原料スラリーの液体部分の少なくとも一部を除去することによって濃縮スラリーを得ているので、遷移金属酸化物の生成が抑制されていると考えられる。 On the other hand, in the method of the present invention, since the concentrated slurry is obtained by removing at least a part of the liquid portion of the raw slurry, it is considered that the generation of transition metal oxides is suppressed.
 また、本発明の方法では、ウェットケークを形成するのではなく、気流乾燥機を用いて、濃縮スラリーを短時間で乾燥して遷移金属水酸化物を形成している。したがって、本発明の方法では、遷移金属水酸化物に基づく固形分(110)の周囲に薄い液体部分の膜(120a)が形成されている状態(図9(b)で示すような状態)である期間が比較的短く、それによって遷移金属酸化物の生成が抑制されていると考えられる。 In the method of the present invention, instead of forming a wet cake, the transition slurry is formed by drying the concentrated slurry in a short time using an airflow dryer. Therefore, in the method of the present invention, a thin liquid portion film (120a) is formed around the solid content (110) based on the transition metal hydroxide (as shown in FIG. 9B). It is considered that a certain period is relatively short, and thereby the generation of transition metal oxide is suppressed.
 《(1)原料スラリー生成工程》
 本発明の方法の原料スラリー生成工程では、遷移金属元素を含有する溶液を塩基と接触させて、遷移金属水酸化物に基づく固形分を生成することによって、原料スラリーを生成する。
<< (1) Raw material slurry production process >>
In the raw material slurry generation step of the method of the present invention, a raw material slurry is generated by bringing a solution containing a transition metal element into contact with a base to generate a solid content based on the transition metal hydroxide.
 本発明に関して「原料スラリー」は、遷移金属水酸化物に基づく固形分(沈殿物)と水等の液体部分とを含むスラリーであり、原料スラリーを得る過程で残った原料、KSOのような副生塩、添加剤、有機溶剤等を含んでいてもよい。なお、「遷移金属水酸化物に基づく固形分(沈殿物)」は、固形分を構成する金属元素における遷移金属元素の割合が、50原子%以上、60原子%以上、70原子%以上、80原子%以上、90原子%以上、95原子%以上、又は99原子%以上であることを意味する。また、「遷移金属水酸化物に基づく固形分(沈殿物)」は、遷移金属水酸化物と並んで、遷移金属炭酸塩等を含有していてもよい。 In the present invention, the “raw slurry” is a slurry containing a solid content (precipitate) based on a transition metal hydroxide and a liquid portion such as water, and the raw material remaining in the process of obtaining the raw slurry, K 2 SO 4 Such by-product salts, additives, organic solvents and the like may be included. The “solid content (precipitate) based on the transition metal hydroxide” is such that the proportion of the transition metal element in the metal element constituting the solid content is 50 atomic% or more, 60 atomic% or more, 70 atomic% or more, 80 It means at least atomic percent, 90 atomic percent or more, 95 atomic percent or more, or 99 atomic percent or more. Further, the “solid content (precipitate) based on the transition metal hydroxide” may contain a transition metal carbonate or the like along with the transition metal hydroxide.
 遷移金属元素としては、その水酸化物が、リチウム化合物と混合され、焼成されることにより二次電池の正極活物質となりうるものであれば制限がなく、例えば、Ni、Mn、Co、Fe、Cr、Ti等を挙げることができる。 The transition metal element is not limited as long as the hydroxide can be mixed with a lithium compound and fired to become a positive electrode active material of a secondary battery. For example, Ni, Mn, Co, Fe, Cr, Ti, etc. can be mentioned.
 この中でも、高容量の二次電池用正極を得るという観点からは、遷移金属元素が、Ni及びMnからなる群から選ばれる1以上の元素を含むことが好ましい。また、より高容量の二次電池用正極を得るという観点からは、遷移金属元素が、Ni及びMnからなる群から選ばれる1以上の元素に加えて、さらにCo及びFeからなる群から選ばれる1以上の元素を含むことが好ましい。 Among these, from the viewpoint of obtaining a positive electrode for a secondary battery having a high capacity, the transition metal element preferably contains one or more elements selected from the group consisting of Ni and Mn. Further, from the viewpoint of obtaining a positive electrode for a secondary battery having a higher capacity, the transition metal element is selected from the group consisting of Co and Fe in addition to one or more elements selected from the group consisting of Ni and Mn. Preferably it contains one or more elements.
 また、本発明の製造方法は、少なくともMnを含有する遷移金属元素を原料とする場合に、特に好適に使用される。Mnの水酸化物は、他の遷移金属水酸化物と比較して、空気等の酸化性雰囲気において酸化されやすい性質があるため、原料となる遷移金属元素がMnを含む場合、副生物である酸化マンガン(Mn)が生成しやすい。これに対して、本発明の方法では、原料となる遷移金属元素がMnを含む場合にも、副生物である遷移金属酸化物の生成を抑制し、それによって高品質な正極材料前駆体を生成することができる。 The production method of the present invention is particularly preferably used when a transition metal element containing at least Mn is used as a raw material. Since hydroxide of Mn is more easily oxidized in oxidizing atmospheres such as air than other transition metal hydroxides, it is a byproduct when the transition metal element as a raw material contains Mn. Manganese oxide (Mn 3 O 4 ) is easily generated. On the other hand, in the method of the present invention, even when the transition metal element as a raw material contains Mn, the production of a transition metal oxide as a by-product is suppressed, thereby producing a high-quality positive electrode material precursor. can do.
 (遷移金属元素を含有する溶液)
 遷移金属元素を含有する溶液は、それぞれの遷移金属元素の金属及び/又は化合物、例えば酸化物、水酸化物、オキシ水酸化物、炭酸塩、硫酸塩、硝酸塩、酢酸塩、ハロゲン化物、アンモニウム塩、シュウ酸塩、アルコキシド等を、溶媒、例えば水及び/又はこれらを溶解することが可能なアルコール等の有機溶剤に溶解して作製することができる。このような溶液のための溶媒としては通常、水が用いられ、好ましくは純水又はイオン交換水が用いられる。
(Solution containing transition metal element)
The solution containing a transition metal element is a metal and / or compound of each transition metal element, such as an oxide, hydroxide, oxyhydroxide, carbonate, sulfate, nitrate, acetate, halide, ammonium salt. It can be prepared by dissolving oxalate, alkoxide and the like in a solvent such as water and / or an organic solvent such as alcohol capable of dissolving them. As a solvent for such a solution, water is usually used, and pure water or ion exchange water is preferably used.
 なお、遷移金属元素の単体又は化合物が溶媒に溶解し難い場合には、それらを塩酸、硫酸、硝酸、酢酸等を含有する溶液に溶解させて、遷移金属元素を含有する溶液を作製してもよい。 If the transition metal element alone or compound is difficult to dissolve in the solvent, the transition metal element may be dissolved in a solution containing hydrochloric acid, sulfuric acid, nitric acid, acetic acid, etc. to prepare a solution containing the transition metal element. Good.
 この中でも、遷移金属元素を含有する溶液は、遷移金属元素の硫酸塩を水に溶解して得られる水溶液、例えばNiの硫酸塩、Mnの硫酸塩、Coの硫酸塩及びFeの硫酸塩を水に溶解して得られる水溶液であることが好ましい。Feの硫酸塩としては、2価のFeの硫酸塩を好ましく用いることができる。 Among these, the transition metal element-containing solution is an aqueous solution obtained by dissolving a transition metal element sulfate in water, for example, Ni sulfate, Mn sulfate, Co sulfate and Fe sulfate in water. It is preferable that it is the aqueous solution obtained by melt | dissolving in. As the Fe sulfate, a divalent Fe sulfate can be preferably used.
 (塩基)
 原料スラリーを得るために用いることができる塩基としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、及びアルカリ金属炭酸塩の無水物及び水和物からなる群より選ばれる少なくとも1種、例えばLiOH(水酸化リチウム)、NaOH(水酸化ナトリウム)、KOH(水酸化カリウム)、LiCO(炭酸リチウム)、NaCO(炭酸ナトリウム)、及びKCO(炭酸カリウム)の無水物及び水和物からなる群より選ばれる少なくとも1種を挙げることができる。
(base)
The base that can be used to obtain the raw slurry is at least one selected from the group consisting of alkali metal hydroxides, alkaline earth metal hydroxides, and anhydrides and hydrates of alkali metal carbonates, For example, LiOH (lithium hydroxide), NaOH (sodium hydroxide), KOH (potassium hydroxide), Li 2 CO 3 (lithium carbonate), Na 2 CO 3 (sodium carbonate), and K 2 CO 3 (potassium carbonate). The at least 1 sort (s) chosen from the group which consists of an anhydride and a hydrate can be mentioned.
 また、塩基として、(NHCO(炭酸アンモニウム)のようなアンモニウム塩、及びアンモニアからなる群より選ばれる少なくとも1種を使用することもできる。 Further, as the base, it is also possible to use (NH 4) 2 CO 3 ammonium salts such as (ammonium carbonate), and at least one selected from the group consisting of ammonia.
 塩基は通常水溶液として用いられる。この塩基性水溶液における塩基の濃度は、通常0.5~10モル/L程度、好ましくは1~8モル/L程度である。また、製造コストの面から、用いる塩基としては、NaOH及びKOHの無水物及び/又はその水和物を用いることが好ましい。また、上述の塩基は2つ以上併用してもよい。 The base is usually used as an aqueous solution. The concentration of the base in this basic aqueous solution is usually about 0.5 to 10 mol / L, preferably about 1 to 8 mol / L. From the viewpoint of production cost, it is preferable to use NaOH and KOH anhydrides and / or hydrates thereof as the base to be used. Two or more of the above-mentioned bases may be used in combination.
 塩基を水溶液として用いる場合に溶媒として使用される水は、好ましくは純水及び/又はイオン交換水である。また、塩基の水溶液は、本発明の効果を損なわない範囲で、アルコール等の水以外の有機溶媒や、pH調整剤等を含んでいてもよい。 When the base is used as an aqueous solution, the water used as the solvent is preferably pure water and / or ion exchange water. Moreover, the aqueous solution of a base may contain an organic solvent other than water such as alcohol, a pH adjuster, and the like as long as the effects of the present invention are not impaired.
 (接触方法)
 遷移金属元素を含有する溶液を塩基と接触させる方法としては、遷移金属元素を含有する溶液に塩基性水溶液を添加して混合する方法、塩基性水溶液に遷移金属元素を含有する溶液を添加して混合する方法、水等の溶媒に遷移金属元素を含有する溶液及び塩基性水溶液を添加して混合する方法を挙げることができる。これらの混合時には、攪拌を伴うことが好ましい。
(Contact method)
As a method for bringing a solution containing a transition metal element into contact with a base, a method in which a basic aqueous solution is added to a solution containing a transition metal element and mixing, a solution containing a transition metal element in a basic aqueous solution is added. Examples thereof include a method of mixing, a method of adding a solution containing a transition metal element and a basic aqueous solution to a solvent such as water and mixing. In mixing these, it is preferable to involve stirring.
 また、上記の接触の方法の中でも、溶媒として水を使用して、塩基性水溶液に遷移金属元素を含有する水溶液を添加して混合する方法が、pHを一定範囲に保ちやすい点で好ましい。この場合、塩基性水溶液に、遷移金属元素を含有する水溶液を添加混合していくに従い、混合された液のpHが低下していく傾向にあるが、このpHが9以上、好ましくは10以上となるように調節しながら、遷移金属元素を含有する水溶液を添加することが好ましい。 Of the contact methods described above, a method in which water is used as a solvent and an aqueous solution containing a transition metal element is added to a basic aqueous solution and mixed is preferable in that the pH is easily maintained in a certain range. In this case, as the aqueous solution containing the transition metal element is added to and mixed with the basic aqueous solution, the pH of the mixed solution tends to decrease, but this pH is 9 or more, preferably 10 or more. It is preferable to add an aqueous solution containing a transition metal element while adjusting so as to be.
 また、より均一な組成の遷移金属水酸化物に基づく固形分が含有されているスラリーを得るためには、遷移金属元素を含有する水溶液及び塩基性水溶液のうち、いずれか一方又は両方の水溶液を40~80℃の温度に保持しながら接触させることが好ましい。 In order to obtain a slurry containing a solid content based on a transition metal hydroxide having a more uniform composition, either one or both of an aqueous solution containing a transition metal element and a basic aqueous solution are used. It is preferable to make contact while maintaining the temperature at 40 to 80 ° C.
 《(2)濃縮工程》
 本発明の方法の濃縮工程では、原料スラリー中の液体部分の少なくとも一部を除去することによって、濃縮スラリーを生成する。したがって、本発明に関して、「濃縮スラリー」は、原料スラリー中の液体部分の少なくとも一部が除去されることによって、原料スラリーと比較して、固形分が高濃度になったスラリーを意味している。
<< (2) Concentration process >>
In the concentration step of the method of the present invention, a concentrated slurry is generated by removing at least part of the liquid portion in the raw slurry. Accordingly, in the context of the present invention, “concentrated slurry” means a slurry whose solid content is higher than that of the raw slurry, by removing at least a part of the liquid portion in the raw slurry. .
 濃縮スラリー中の固形分濃度は、後工程である乾燥工程の効率を向上させる観点からは、3重量%以上が好ましく、5重量%以上、又は10重量%以上が好ましい。また、濃縮スラリー中の固形分濃度は、スラリーとしての取り扱い性、及び/又は固形分の酸化防止後の観点からは、50重量%以下が好ましく、40重量%以下、又は30重量%以下が好ましい。 The solid content concentration in the concentrated slurry is preferably 3% by weight or more, more preferably 5% by weight or more, or 10% by weight or more from the viewpoint of improving the efficiency of the drying step which is a subsequent step. Further, the solid content concentration in the concentrated slurry is preferably 50% by weight or less, and preferably 40% by weight or less, or 30% by weight or less, from the viewpoint of handleability as a slurry and / or after the prevention of solid content oxidation. .
 (クロスフローろ過システム)
 本発明において、スラリーの濃縮は、いかなる方法で行ってもよい。しかしながら、本発明におけるスラリーの濃縮のためには、クロスフローろ過が好適に使用される。なお、「クロスフローろ過」は、ろ過対象液としての原料スラリーをろ材に供給し、ろ材を透過した液体部分をろ液として除去することにより、原料スラリー中の固形分の濃縮を行うろ過方法である。
(Cross flow filtration system)
In the present invention, the slurry may be concentrated by any method. However, cross flow filtration is preferably used for the concentration of the slurry in the present invention. “Cross flow filtration” is a filtration method that concentrates the solids in the raw material slurry by supplying the raw material slurry as the liquid to be filtered to the filter medium and removing the liquid part that has passed through the filter medium as the filtrate. is there.
 また、このクロスフローろ過によれば、原料スラリー中の固形分の濃縮を行うと同時に、固形分の洗浄を行って不純物の少ない遷移金属水酸化物を得ることができる。 Further, according to this cross flow filtration, the solid content in the raw slurry can be concentrated, and at the same time, the solid content can be washed to obtain a transition metal hydroxide with less impurities.
 具体的には、固形分の洗浄は、クロスフローろ過を行って原料スラリーから液体部分の一部を除去して、濃縮スラリーを形成した後に、この濃縮スラリーに希釈液を添加し、再度クロスフローろ過を行って達成することができる。濃縮スラリー中の不純物濃度をより低減させるためには、洗浄を繰り返し行うことができる。 Specifically, the solid content is washed by crossflow filtration to remove a part of the liquid portion from the raw slurry to form a concentrated slurry, and then add a diluent to the concentrated slurry, and then crossflow again. This can be achieved by filtration. In order to further reduce the impurity concentration in the concentrated slurry, washing can be repeated.
 洗浄の進行度は例えば、ろ液の導電率を測定し、電解質の濃度を測定することによって管理することができる。目的の洗浄進行度になったところで洗浄を終了して、再度濃縮を行い、目的の不純物濃度の濃縮スラリーを得ることができる。 The degree of progress of washing can be managed, for example, by measuring the conductivity of the filtrate and measuring the concentration of the electrolyte. When the target degree of cleaning progress is reached, the cleaning is terminated and concentrated again to obtain a concentrated slurry having the target impurity concentration.
 希釈液としては、通常、原料スラリーを形成する際に使用した溶媒と同様のものが使用されるが、これに限定されず、後工程の乾燥工程にて除去できるものであればよい。具体的には、希釈液としては、水、及びエタノールのようなアルコール類等が挙げられる。 As the diluting solution, the same solvent as that used for forming the raw material slurry is usually used, but the diluting solution is not limited to this and any solvent can be used as long as it can be removed in a subsequent drying step. Specifically, examples of the diluent include water and alcohols such as ethanol.
 クロスフローろ過システムで使用される膜フィルター及び/又はろ布としては、原料スラリー中に含まれる固形分の粒子サイズよりも孔径が小さい任意の膜フィルター及び/又はろ布を使用することができる。 As the membrane filter and / or filter cloth used in the cross-flow filtration system, any membrane filter and / or filter cloth having a pore size smaller than the particle size of the solid content contained in the raw slurry can be used.
 膜フィルターは、セラミック膜フィルター及び有機膜フィルターのいずれもよいが、耐食性、耐熱性、耐久性に関して、セラミック膜フィルターが好ましい。セラミック膜フィルターとしては、アルミナ、シリカ、アルミナ、ジルコニア等のセラミックス原料粉末を、公知技術で成形及び焼結して製造されたものを使用できる。 The membrane filter may be either a ceramic membrane filter or an organic membrane filter, but a ceramic membrane filter is preferred with respect to corrosion resistance, heat resistance, and durability. As the ceramic membrane filter, those produced by molding and sintering ceramic raw material powders such as alumina, silica, alumina, zirconia and the like by a known technique can be used.
 ろ布としては、スラリー中の固形分の粒子サイズに応じて、粒子がろ布を通過して目漏れしない通気度、具体的には通常は1mL/cm/min以下、好ましくは0.3mL/cm/min以下の通気度を有するろ布を使用できる。 The filter cloth has an air permeability that prevents particles from leaking through the filter cloth according to the particle size of the solid content in the slurry, specifically 1 mL / cm 2 / min or less, preferably 0.3 mL. A filter cloth having an air permeability of / cm 2 / min or less can be used.
 なお、クロスフローろ過を行うときの条件は、目的とする濃縮スラリーを得ることができように適宜決定され、特に限定されない。 In addition, the conditions for performing the cross flow filtration are appropriately determined so as to obtain a target concentrated slurry, and are not particularly limited.
 図1に、筒状の膜フィルターを用いるクロスフローろ過装置の概念図を示す。 FIG. 1 shows a conceptual diagram of a cross flow filtration apparatus using a cylindrical membrane filter.
 図1に示すクロスフローろ過装置では、ろ過対象液としての原料スラリーを筒状の膜フィルターの内側に供給し、膜フィルターを透過したろ液を、膜フィルターの外側から回収して、原料スラリー中の固形分の濃縮を行う。ここで、筒状の膜フィルターは通常、固定して用いられる。 In the cross-flow filtration apparatus shown in FIG. 1, the raw material slurry as the liquid to be filtered is supplied to the inside of the cylindrical membrane filter, and the filtrate that has passed through the membrane filter is recovered from the outside of the membrane filter, Concentrate the solids. Here, the cylindrical membrane filter is usually used in a fixed manner.
 このようなクロスフローろ過装置では、フィルターの内壁に平行に原料スラリーを流しながらろ過を行うことによって、フィルター内壁に平行して流れるスラリーの剪断力で、ケーク層がフィルター内壁に堆積しにくいようにすることができる。これによれば、原料スラリーが比較的高濃度の固形分を含む場合においても、目詰まりを起こしにくいという利点がある。また、このようなクロスフローろ過装置では、原料スラリーの固形分濃度が変動しても長時間安定したろ過を行うことができる。 In such a cross-flow filtration device, the cake layer is hardly deposited on the inner wall of the filter due to the shearing force of the slurry flowing in parallel with the inner wall of the filter by performing filtration while flowing the raw slurry parallel to the inner wall of the filter. can do. According to this, there is an advantage that clogging hardly occurs even when the raw slurry contains a relatively high concentration of solids. Moreover, in such a crossflow filtration apparatus, stable filtration can be performed for a long time even if the solid content concentration of the raw material slurry fluctuates.
 図2に、クロスフローろ過装置を用いるクロスフローろ過システムの一例を示す。ここで、この例のクロスフローろ過装置では、筒状の膜フィルターを用いている。 FIG. 2 shows an example of a cross flow filtration system using a cross flow filtration device. Here, in the crossflow filtration apparatus of this example, a cylindrical membrane filter is used.
 図2に示すクロスフローろ過システム10は、原料スラリーを貯留するスラリー貯槽11と、筒状の膜フィルター12(図1参照)を有するクロスフローろ過装置とを備えている。ここで、この膜状の膜フィルター12は、スラリー貯槽11からの原料スラリーをろ過して、ろ液と濃縮スラリーとに分離する。 The crossflow filtration system 10 shown in FIG. 2 includes a slurry storage tank 11 for storing raw material slurry, and a crossflow filtration apparatus having a tubular membrane filter 12 (see FIG. 1). Here, the membrane filter 12 filters the raw material slurry from the slurry storage tank 11 and separates it into a filtrate and a concentrated slurry.
 クロスフローろ過システム10は、スラリー中の固形分の空気による酸化を抑制するために、スラリーと外気との接触を可能な限り回避するように設計できる。例えばクロスフローろ過システム10では、スラリー貯槽11を密閉式のタンクとし、その内部雰囲気を不活性ガスで置換することができる。 The cross-flow filtration system 10 can be designed to avoid contact between the slurry and the outside air as much as possible in order to suppress oxidation by solid air in the slurry. For example, in the cross-flow filtration system 10, the slurry storage tank 11 can be a sealed tank, and the internal atmosphere can be replaced with an inert gas.
 クロスフローろ過システム10にて原料スラリーの濃縮を行う場合、原料スラリーをスラリー貯槽11から筒状の膜フィルター12の内側に供給し、原料スラリーに含まれる液体部分をろ液として膜フィルター12の外側に排出することによって、固形分を濃縮して濃縮スラリーを得る。原料スラリー中の固形分以外の不純物の少なくとも一部、例えば原料スラリーを得る過程で残った原料、KSOのような副生塩、添加剤、有機溶剤等の少なくとも一部は、液体部分と共に除去することができる。 When the raw material slurry is concentrated in the cross flow filtration system 10, the raw material slurry is supplied from the slurry storage tank 11 to the inside of the cylindrical membrane filter 12, and the liquid part contained in the raw material slurry is used as a filtrate to the outside of the membrane filter 12. The solid is concentrated to obtain a concentrated slurry. At least a part of impurities other than solid content in the raw slurry, for example, a raw material remaining in the process of obtaining the raw slurry, a by-product salt such as K 2 SO 4 , an additive, an organic solvent, etc. is a liquid part And can be removed.
 図3に、クロスフローろ過装置を用いるクロスフローろ過システムの他の一例を示す。ここで、この例のクロスフローろ過装置では、撹拌を行うことによってろ材の表面近傍に剪断力を発生させ、それによって固形分の層(ケーク層)の剥離を促進する撹拌板を用いている。 FIG. 3 shows another example of a cross flow filtration system using a cross flow filtration device. Here, in the crossflow filtration device of this example, a stirring plate that generates a shearing force in the vicinity of the surface of the filter medium by stirring and thereby promotes separation of the solid content layer (cake layer) is used.
 このようなクロスフローろ過システムでは、高濃度の濃縮スラリーを得る場合等にも、ろ材の表面へケーク層が一定厚み以上に堆積することを回避することができ、また目詰まりを起こしにくいため、高いろ過効率を維持することができる。 In such a cross-flow filtration system, even when obtaining a concentrated slurry of high concentration, etc., it is possible to avoid the cake layer from being deposited to a certain thickness or more on the surface of the filter medium, and it is difficult to cause clogging, High filtration efficiency can be maintained.
 図3に示すクロスフローろ過システム30は、クロスフローろ過装置20と、スラリー貯槽31と、送液ポンプ32と、希釈水供給設備33とを主要部として構成される。 3 includes a crossflow filtration device 20, a slurry storage tank 31, a liquid feed pump 32, and a dilution water supply facility 33 as main parts.
 クロスフローろ過装置20は、ろ過室22と、ろ過室22内に所定の間隔をおいて配置された複数のろ過板23と、ろ過板に隣接して配置された複数の撹拌板24と、複数の撹拌板24を回転させる駆動機構である電動モータ25とを有している。なお、ろ過板23は、ろ液排出溝が設けられた板の両面にろ布を貼付けることによって、ろ材として機能するようにしたものである。 The cross-flow filtration device 20 includes a filtration chamber 22, a plurality of filtration plates 23 arranged at predetermined intervals in the filtration chamber 22, a plurality of stirring plates 24 arranged adjacent to the filtration plate, and a plurality of And an electric motor 25 which is a drive mechanism for rotating the stirring plate 24. In addition, the filter plate 23 functions as a filter medium by sticking a filter cloth on both surfaces of a plate provided with a filtrate discharge groove.
 クロスフローろ過システム30は、スラリー中の固形分の空気による酸化を抑制するために、スラリーと外気との接触を可能な限り回避するように設計できる。例えばクロスフローろ過システム30は、クロスフローろ過装置20及び/又はスラリー貯槽31を密閉式のものとし、それらの内部雰囲気を不活性ガスで置換することができる。 The cross-flow filtration system 30 can be designed to avoid contact between the slurry and the outside air as much as possible in order to suppress oxidation by solid air in the slurry. For example, the crossflow filtration system 30 can make the crossflow filtration apparatus 20 and / or the slurry storage tank 31 hermetically sealed, and replace their internal atmosphere with an inert gas.
 図3に示すクロスフローろ過システム30にて原料スラリーの濃縮を行う場合、原料スラリーを、スラリー貯槽31に貯留し、送液ポンプ32によって、クロスフローろ過装置20のろ過室22に加圧供給する。加圧供給された原料スラリーは、ろ過板23で区切られた空間を通過して、ろ過室22のスラリー供給口26からスラリー排出口27に向かって移動する。原料スラリーは、ろ過板23で区切られた空間を通過する際にろ過板23によってろ過され、スラリー排出口27に向かうに従って徐々に固形分濃度が高くなる。 When the raw material slurry is concentrated in the cross flow filtration system 30 shown in FIG. 3, the raw material slurry is stored in the slurry storage tank 31 and pressurized and supplied to the filtration chamber 22 of the cross flow filtration device 20 by the liquid feed pump 32. . The raw material slurry supplied under pressure passes through the space partitioned by the filter plate 23 and moves from the slurry supply port 26 of the filtration chamber 22 toward the slurry discharge port 27. The raw material slurry is filtered by the filter plate 23 when passing through the space partitioned by the filter plate 23, and the solid content concentration gradually increases toward the slurry discharge port 27.
 ろ過板23の間の撹拌板24は、ろ過の際には常時回転しており、供給されたスラリーを撹拌し、ろ過板23の表面近傍に強制的に剪断力を発生させ、それによってろ過板23の表面に生成するケーク層を剥離除去する。なお、撹拌板24の回転速度を制御することにより、ろ過板23の表面に生成するケーク層の厚みを一定として、ろ過速度を一定にすることができる。 The stirring plate 24 between the filter plates 23 is always rotating during the filtration, and the supplied slurry is stirred to forcibly generate a shearing force in the vicinity of the surface of the filter plate 23, thereby the filter plate. The cake layer formed on the surface of 23 is peeled off. By controlling the rotation speed of the stirring plate 24, the thickness of the cake layer generated on the surface of the filter plate 23 can be made constant, and the filtration speed can be made constant.
 スラリー排出口27に到達した固形分濃度が高くなったスラリー(濃縮スラリー)は、スラリー排出口27から排出され、スラリー貯槽31にて回収される。濃縮スラリーの固形分濃度は、濃縮スラリーの流動性が保たれる範囲で任意に調整することができる。 The slurry (concentrated slurry) having reached the slurry discharge port 27 and having a high solid content concentration is discharged from the slurry discharge port 27 and collected in the slurry storage tank 31. The solid content concentration of the concentrated slurry can be arbitrarily adjusted as long as the fluidity of the concentrated slurry is maintained.
 また、スラリー貯槽31に回収された濃縮スラリーに、希釈水供給設備33から希釈水を添加し、再度クロスフローろ過して、原料スラリー中の固形分を洗浄することによって、不純物の少ない遷移金属水酸化物を得ることができる。 Further, transition metal water with less impurities is obtained by adding dilution water from the dilution water supply facility 33 to the concentrated slurry recovered in the slurry storage tank 31 and performing crossflow filtration again to wash the solid content in the raw material slurry. An oxide can be obtained.
 《(3)乾燥工程》
 乾燥工程では、濃縮スラリーを、気流乾燥機において粉末まで乾燥して、正極材料前駆体を得る。
<< (3) Drying process >>
In the drying step, the concentrated slurry is dried to powder in an air dryer to obtain a positive electrode material precursor.
 本発明に関して、気流乾燥機は、被乾燥物と供給した高温気体との間で熱交換を行い、被乾燥物を乾燥させる装置である。特に、気流乾燥機は、高温気体で被乾燥体で乾燥し、かつ同伴して輸送する装置である。 In the present invention, the air dryer is a device that exchanges heat between the object to be dried and the supplied high-temperature gas to dry the object to be dried. In particular, the air dryer is a device that dries with a high-temperature gas on an object to be dried and transports it together.
 高温気体は例えば、100℃以上、150℃以上、又は200℃以上の気体である。高温気体として供給されるガス種としては通常、空気、又は不活性ガス、例えば窒素若しくはアルゴンが用いられる。これらは、気流乾燥機の外で目的の温度まで加熱された後、気流乾燥機に供給される。 The high temperature gas is, for example, a gas of 100 ° C. or higher, 150 ° C. or higher, or 200 ° C. or higher. As the gas species supplied as the high-temperature gas, air or an inert gas such as nitrogen or argon is usually used. These are heated to the target temperature outside the air dryer and then supplied to the air dryer.
 なお、加熱コストを減少させるという観点からは、高温気体は、可燃性物質、特に可燃性気体を燃焼させて得られる気体であることが好ましい。可燃性気体は、酸素(O)を含むガス、例えば酸素ガス又は空気で、燃焼させることができる。燃焼後の排出ガスには、酸素が残存している場合がある。この場合、排出ガスを、酸素を含むガスとして再利用してもよい。可燃性物質を空気で燃焼させて得られる気体は、空気よりも酸素濃度が低く、それによって正極材料前駆体の酸化が抑制される点でも好ましい。 From the viewpoint of reducing the heating cost, the high-temperature gas is preferably a gas obtained by burning a combustible substance, particularly a combustible gas. The combustible gas can be burned with a gas containing oxygen (O 2 ), such as oxygen gas or air. Oxygen may remain in the exhaust gas after combustion. In this case, the exhaust gas may be reused as a gas containing oxygen. A gas obtained by burning a combustible substance with air is also preferable in that it has a lower oxygen concentration than air, thereby suppressing oxidation of the positive electrode material precursor.
 可燃性気体としては、水素、メタン、エタン、プロパン、ブタン、アセチレン、又はそれらの混合ガスが挙げられる。また、可燃性気体としては、液化石油ガス(LPG)や天然ガスを用いることもできる。これらのガス種の中でも、LPGは燃焼時の熱量が大きく、かつ、比較的安価であるため好適に使用される。 Examples of the combustible gas include hydrogen, methane, ethane, propane, butane, acetylene, or a mixed gas thereof. Moreover, liquefied petroleum gas (LPG) and natural gas can also be used as combustible gas. Among these gas species, LPG is preferably used because it has a large amount of heat during combustion and is relatively inexpensive.
 気流乾燥機によれば、被乾燥物と熱源である高温気体との接触面積が大きいため、迅速に乾燥を行うことができる。具体的には例えば、60分以内、10分以内、5分以内、3分以内、又は1分以内に、濃縮スラリーを、含水率40重量%以下、15重量%以下、又は10重量%以下の粉末まで乾燥することができる。 According to the air flow dryer, since the contact area between the object to be dried and the high-temperature gas that is the heat source is large, drying can be performed quickly. Specifically, for example, within 60 minutes, within 10 minutes, within 5 minutes, within 3 minutes, or within 1 minute, the concentrated slurry has a water content of 40% by weight or less, 15% by weight or less, or 10% by weight or less. It can be dried to a powder.
 このように濃縮スラリーを急速に乾燥させることで、遷移金属水酸化物が酸化して遷移金属酸化物となることを抑制でき、それによって高品質な正極材料前駆体を得ることができる。 By rapidly drying the concentrated slurry in this way, it is possible to suppress the transition metal hydroxide from being oxidized to become a transition metal oxide, thereby obtaining a high-quality positive electrode material precursor.
 また、気流乾燥機によれば、濃縮スラリーを連続的に乾燥させることができるので、高い生産性にて正極材料前駆体を得ることができる。 Also, according to the air dryer, the concentrated slurry can be dried continuously, so that the positive electrode material precursor can be obtained with high productivity.
 なお、本発明に関して、「60分以内に含水率40重量%以下の粉末まで乾燥」との表現は、気流乾燥機に濃縮スラリーを供給してから、気流乾燥機から乾燥後の粉末(正極材料前駆体)が排出されるまでの滞留時間が60分以内であり、かつ排出される粉末の含水率が40重量%以下あることを意味する。 In the present invention, the expression “dried to a powder having a water content of 40% by weight or less within 60 minutes” means that the concentrated slurry is supplied to the air dryer and then the dried powder (positive electrode material) from the air dryer. It means that the residence time until the precursor) is discharged is within 60 minutes, and the moisture content of the discharged powder is 40% by weight or less.
 気流乾燥機のための粉末回収部分としては、バグフィルタを使用することが好ましい。バグフィルタは、排出される高温気体で劣化しないように耐熱性を有する素材からなるものを使用できる。 It is preferable to use a bag filter as the powder recovery part for the air dryer. The bag filter can be made of a material having heat resistance so as not to be deteriorated by the discharged high temperature gas.
 (流動層乾燥機)
 気流乾燥機としては、供給された濃縮スラリーを付着させて乾燥させるための媒体を有する流動層乾燥機が好適である。流動層乾燥機は、乾燥室内の媒体、特に球体状の媒体に下方から高温気体を供給して流動層を形成し、この流動層にスラリーを滴下して、乾燥物を得るものである。このような流動層乾燥機では、加熱された媒体からの熱伝導及び高温気体からの対流伝熱により、被乾燥物を乾燥することができ、また流動層を利用するため、ムラの少ない乾燥が可能であるという利点がある。流動層乾燥機としては例えば、株式会社大川原製作所製のスラリードライヤーSFDシリーズを使用することができる。
(Fluidized bed dryer)
As the airflow dryer, a fluidized bed dryer having a medium for attaching and drying the supplied concentrated slurry is suitable. A fluidized bed dryer supplies a hot gas from below to a medium in a drying chamber, particularly a spherical medium to form a fluidized bed, and a slurry is dropped into the fluidized bed to obtain a dried product. In such a fluidized bed dryer, the material to be dried can be dried by heat conduction from a heated medium and convective heat transfer from a high-temperature gas, and since a fluidized bed is used, drying with less unevenness can be achieved. There is an advantage that it is possible. As the fluidized bed dryer, for example, a slurry dryer SFD series manufactured by Okawara Manufacturing Co., Ltd. can be used.
 以下、乾燥工程の好適な実施形態として、気流乾燥機として流動層乾燥機を使用した例を、図4を参照して説明する。 Hereinafter, as a preferred embodiment of the drying process, an example in which a fluidized bed dryer is used as an air flow dryer will be described with reference to FIG.
 図4に示す流動層乾燥機40では、濃縮工程で得られた濃縮スラリーが貯留される濃縮スラリー貯槽41と、希釈水が貯留される水貯槽42とが、スラリー供給管43及びスラリー供給ポンプ44を介在させて、装置本体45の胴部に接続されている。 In the fluidized bed dryer 40 shown in FIG. 4, a concentrated slurry storage tank 41 in which the concentrated slurry obtained in the concentration step is stored, and a water storage tank 42 in which dilution water is stored are a slurry supply pipe 43 and a slurry supply pump 44. Is connected to the body portion of the apparatus main body 45.
 装置本体45の下部には、吸込口に吸気フィルター46が設けられた吸気管47が、気体を取り込むための吸込ファン48、及び気体を加熱するための熱源であるフィルターユニット付きの熱交換器49を介在させて接続されている。 In the lower part of the apparatus main body 45, an intake pipe 47 provided with an intake filter 46 at the intake port has an intake fan 48 for taking in the gas, and a heat exchanger 49 with a filter unit as a heat source for heating the gas. It is connected with the intervening.
 装置本体45の上部には、バグフィルタ50の胴部に接続された排出管51が接続されている。バグフィルタ50の上部には、排気ファン52により排気される排気管53が接続されている。 A discharge pipe 51 connected to the body of the bag filter 50 is connected to the upper part of the apparatus main body 45. An exhaust pipe 53 exhausted by an exhaust fan 52 is connected to the upper portion of the bag filter 50.
 装置本体45内には、複数の球体状の媒体M(ボール)が格納されている。媒体Mとしては、供給されるスラリーと熱交換を効率的に行えるものであればよく、アルミナやジルコニア等のセラミックス、ポリテトラフルオロエチレン等の耐熱性樹脂材料が適宜使用される。媒体Mの平均直径は、通常1mm~5mm、好ましくは2mm~3mmである。 In the apparatus main body 45, a plurality of spherical media M (balls) are stored. The medium M may be any medium that can efficiently exchange heat with the slurry to be supplied, and ceramics such as alumina and zirconia, and heat-resistant resin materials such as polytetrafluoroethylene are appropriately used. The average diameter of the medium M is usually 1 mm to 5 mm, preferably 2 mm to 3 mm.
 このような媒体を使用することにより、濃縮スラリーを媒体に付着させ、そして媒体に付着した濃縮スラリーから溶媒を蒸発させることで、媒体からの熱伝導及び高温気体の対流伝熱によって短時間で乾燥処理を行うことができる。 By using such a medium, the concentrated slurry is attached to the medium, and the solvent is evaporated from the concentrated slurry attached to the medium, thereby drying in a short time by heat conduction from the medium and convective heat transfer of the hot gas. Processing can be performed.
 乾燥工程における気流乾燥機40の動作及び乾燥工程について、図4と共に図5を参照しながら、詳細に説明する。 The operation of the air dryer 40 and the drying process in the drying process will be described in detail with reference to FIG. 5 together with FIG.
 装置本体45内には、吸込ファン48により吸引された空気が、熱交換器49によって加熱されたのちに装置本体45の下部から供給される。供給された空気は、媒体Mを吹き上げて流動層Fを形成する。 In the apparatus main body 45, the air sucked by the suction fan 48 is heated from the heat exchanger 49 and then supplied from the lower part of the apparatus main body 45. The supplied air blows up the medium M to form a fluidized bed F.
 次いで、原料貯槽41に貯留された濃縮スラリーが、スラリー供給ポンプ44により、原料供給管43を介して装置本体45内にて形成された流動層Fに滴下される。 Next, the concentrated slurry stored in the raw material storage tank 41 is dropped by the slurry supply pump 44 into the fluidized bed F formed in the apparatus main body 45 through the raw material supply pipe 43.
 滴下された濃縮スラリーは、流動層Fを構成する媒体Mの表面に薄膜状に付着する(図5(A)参照)。媒体Mの表面に付着した濃縮スラリーは、加熱された媒体Mからの熱伝導及び吹き付けられる高温気体の対流伝熱により溶媒(水分)が蒸発除去されて、乾燥物となる(図5(B)参照)。その後、流動層Fにおいて媒体M同士が衝突して、媒体Mの表面の乾燥物が剥離し、粉化して、高温空気と共に上方へ吹き上げられる(図5(C)参照)。 The dripped concentrated slurry adheres to the surface of the medium M constituting the fluidized bed F in the form of a thin film (see FIG. 5A). The concentrated slurry adhering to the surface of the medium M has a solvent (moisture) evaporated and removed by heat conduction from the heated medium M and convection heat transfer of the hot gas to be blown, and becomes a dried product (FIG. 5B). reference). Thereafter, the media M collide with each other in the fluidized bed F, and the dried material on the surface of the media M is peeled off, pulverized, and blown upward together with high-temperature air (see FIG. 5C).
 吹き上げられた乾燥物は、排出管51を介して粉末回収部分であるバグフィルタ50へ送出される。 The dried product blown up is sent to the bag filter 50 which is a powder recovery portion through the discharge pipe 51.
 バグフィルタ50では、粉状体となった正極材料前駆体である乾燥物が下端に設けられた容器54に収納され、高温空気は排気管53を介して外部へと排出される。 In the bag filter 50, a dry substance, which is a positive electrode material precursor in powder form, is stored in a container 54 provided at the lower end, and high-temperature air is discharged to the outside through an exhaust pipe 53.
 流動層乾燥機の適切な運転条件を選択することによって、粉末が乾燥した状態でバグフィルタ50に到達するようにできる。 By selecting appropriate operating conditions of the fluidized bed dryer, the powder can reach the bag filter 50 in a dry state.
 なお、気流乾燥機40の構成を有するスラリードライヤーSFDシリーズを使用する場合においては、「60分以内」との表現は、濃縮スラリーが装置本体45内に供給されてから、粉末としてバグフィルタ50へ到達するまでの平均滞留時間が、60分以内であることを意味する。 In the case of using the slurry dryer SFD series having the configuration of the air dryer 40, the expression “within 60 minutes” means that the concentrated slurry is supplied into the apparatus main body 45, and then is sent to the bag filter 50 as a powder. It means that the average residence time to reach is within 60 minutes.
 原料貯槽41に貯留された濃縮スラリーを装置本体45内に滴下する速度は例えば、装置本体45の出口における気体温度が、50℃以上200℃以下、好ましくは110℃以上150℃以下となるように調整することができる。 The speed at which the concentrated slurry stored in the raw material storage tank 41 is dropped into the apparatus main body 45 is, for example, such that the gas temperature at the outlet of the apparatus main body 45 is 50 ° C. or higher and 200 ° C. or lower, preferably 110 ° C. or higher and 150 ° C. or lower. Can be adjusted.
 高温気体の流速は任意に設定することができ、流速の下限としては、媒体Mが装置本体45内で流動する流速を挙げることができ、流速の上限としては、媒体Mが装置本体45から飛散しない流速を挙げることができる。 The flow rate of the high-temperature gas can be arbitrarily set, and the lower limit of the flow rate can be a flow rate at which the medium M flows in the apparatus main body 45. The upper limit of the flow rate is the medium M scattered from the apparatus main body 45. Can be mentioned.
 加熱装置である熱交換器49は、濃縮スラリーと接触する前の気流乾燥機入口における高温気体の温度が、150℃以上500℃以下、好ましくは180℃以上350℃以下であるように設定することができる。濃縮スラリーと接触する前の高温気体の温度が高いほど、スラリー供給速度を上げることができ、したがって乾燥速度を上げることができるが、温度が高すぎると、濃縮スラリーに含有される遷移金属水酸化物が変質するおそれがある。 The heat exchanger 49 that is a heating device is set so that the temperature of the high-temperature gas at the inlet of the air dryer before contacting the concentrated slurry is 150 ° C. or higher and 500 ° C. or lower, preferably 180 ° C. or higher and 350 ° C. or lower. Can do. The higher the temperature of the hot gas before contacting the concentrated slurry, the higher the slurry feed rate, and thus the higher the drying rate, but if the temperature is too high, the transition metal hydroxylation contained in the concentrated slurry There is a risk that things will be altered.
 また、加熱装置である熱交換器49は、濃縮スラリーと接触した後の気流乾燥機出口における高温気体の温度が、50℃以上200℃以下、好ましくは110℃以上150℃以下であるように設定することができる。濃縮スラリーと接触した後の高温気体の温度が低いほど、エネルギー効率が良好であるが、この温度は、スラリーの溶媒を十分に蒸発させる温度以上である必要がある。溶媒として水を用いる場合は、濃縮スラリーと接触した後の高温気体の温度は、100℃以上であることが好ましく、安定した運転を行うために110℃以上であることがより好ましい。 Further, the heat exchanger 49 which is a heating device is set so that the temperature of the high-temperature gas at the outlet of the air dryer after contacting the concentrated slurry is 50 ° C. or higher and 200 ° C. or lower, preferably 110 ° C. or higher and 150 ° C. or lower. can do. The lower the temperature of the hot gas after contacting the concentrated slurry, the better the energy efficiency, but this temperature needs to be above the temperature at which the solvent of the slurry is fully evaporated. When water is used as the solvent, the temperature of the hot gas after contact with the concentrated slurry is preferably 100 ° C. or higher, and more preferably 110 ° C. or higher for stable operation.
 なお、濃縮スラリーと接触した後の高温気体の温度は、乾燥粉末を回収するバグフィルタ50の耐熱性の上限を超えるものであってはならず、したがって例えばスラリーの溶媒として水を用いる場合においては、濃縮スラリーと接触した後の高温気体の温度が150℃以下になるようにすることによって好適な乾燥速度が得られる。 Note that the temperature of the high-temperature gas after contacting the concentrated slurry must not exceed the upper limit of the heat resistance of the bag filter 50 that collects the dry powder. Therefore, for example, when water is used as the solvent of the slurry. A suitable drying rate can be obtained by adjusting the temperature of the hot gas after contact with the concentrated slurry to 150 ° C. or lower.
 《正極材料の製造方法》
 正極材料を製造する本発明の方法では、正極材料前駆体としての遷移金属水酸化物をリチウム化合物と混合し、焼成することによって、正極材料としてのリチウム複合金属酸化物を得る。
<< Production Method of Positive Electrode Material >>
In the method of the present invention for producing a positive electrode material, a transition metal hydroxide as a positive electrode material precursor is mixed with a lithium compound and baked to obtain a lithium composite metal oxide as a positive electrode material.
 リチウム化合物としては、水酸化リチウム、塩化リチウム、硝酸リチウム及び炭酸リチウム、並びにそれらの無水物及び水和物からなる群より選ばれる1種以上を挙げることができる。 Examples of the lithium compound include one or more selected from the group consisting of lithium hydroxide, lithium chloride, lithium nitrate and lithium carbonate, and anhydrides and hydrates thereof.
 混合は、乾式混合、湿式混合のいずれによってもよいが、簡便性の観点では、乾式混合が好ましい。混合装置としては、攪拌混合、V型混合機、W型混合機、リボン混合機、ドラムミキサー、ボールミル等を挙げることができる。 The mixing may be either dry mixing or wet mixing, but from the viewpoint of simplicity, dry mixing is preferable. Examples of the mixing device include stirring and mixing, a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, a ball mill, and the like.
 焼成における保持温度は、650℃以上900℃以下の範囲であることが好ましい。この保持温度で保持する時間は、通常は0.1~20時間であり、好ましくは0.5~8時間である。保持温度までの昇温速度は、通常50℃~400℃/時間であり、保持温度から室温までの降温速度は、通常10℃~400℃/時間である。また、焼成の雰囲気としては、大気、酸素、窒素、アルゴン又はそれらの混合ガスを用いることができるが、大気雰囲気が好ましい。 The holding temperature in firing is preferably in the range of 650 ° C. or higher and 900 ° C. or lower. The holding time at this holding temperature is usually 0.1 to 20 hours, preferably 0.5 to 8 hours. The rate of temperature rise to the holding temperature is usually 50 ° C. to 400 ° C./hour, and the rate of temperature drop from the holding temperature to room temperature is usually 10 ° C. to 400 ° C./hour. As the firing atmosphere, air, oxygen, nitrogen, argon, or a mixed gas thereof can be used, but an air atmosphere is preferable.
 正極材料前駆体としての遷移金属水酸化物をリチウム化合物と混合する際に、更に反応促進剤を混合してもよい。 When the transition metal hydroxide as the positive electrode material precursor is mixed with the lithium compound, a reaction accelerator may be further mixed.
 反応促進剤としては、具体的には、NaCl、KCl、RbCl、CsCl、CaCl、MgCl、SrCl、BaCl及びNHCl等の塩化物;NaCO、KCO、RbCO、CsCO、CaCO、MgCO、SrCO及びBaCO等の炭酸塩;KSO、NaSO等の硫酸塩;NaF、KF、NHF等のフッ化物が挙げられる。この中でも、Na、K、Rb、Cs、Ca、Mg、Sr及びBaからなる群から選ばれる1種以上の元素の塩化物、炭酸塩又は硫酸塩を好ましく用いることができ、KCl、KCO、KSOを好ましく用いることができる。また、反応促進剤は、2種以上を併用することもできる。 Specific examples of the reaction accelerator include chlorides such as NaCl, KCl, RbCl, CsCl, CaCl 2 , MgCl 2 , SrCl 2 , BaCl 2 and NH 4 Cl; Na 2 CO 3 , K 2 CO 3 , Rb Carbonates such as 2 CO 3 , Cs 2 CO 3 , CaCO 3 , MgCO 3 , SrCO 3 and BaCO 3 ; sulfates such as K 2 SO 4 and Na 2 SO 4 ; fluorides such as NaF, KF and NH 4 F Is mentioned. Among these, a chloride, carbonate or sulfate of one or more elements selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr and Ba can be preferably used. KCl, K 2 CO 3 and K 2 SO 4 can be preferably used. Two or more reaction accelerators can be used in combination.
 反応促進剤を用いる場合には例えば、遷移金属水酸化物をリチウム化合物と混合するときに、反応促進剤を添加すればよい。 When a reaction accelerator is used, for example, the reaction accelerator may be added when the transition metal hydroxide is mixed with the lithium compound.
 反応促進剤は、焼成後の複合金属酸化物に残留していてもよいし、洗浄、蒸発等により除去されていてもよい。 The reaction accelerator may remain in the fired composite metal oxide or may be removed by washing, evaporation or the like.
 なお、混合物と反応促進剤との混合割合は、遷移金属水酸化物及びリチウム化合物の混合物100重量部に対して、好ましくは0.1重量部以上100重量部であり、より好ましくは1.0重量部以上25重量部である。 The mixing ratio of the mixture and the reaction accelerator is preferably 0.1 parts by weight or more and 100 parts by weight, more preferably 1.0 parts by weight with respect to 100 parts by weight of the mixture of transition metal hydroxide and lithium compound. More than 25 parts by weight.
 焼成により得られる複合金属酸化物は、ボールミルやジェットミル等を用いて粉砕してもよい。また、粉砕と焼成を2回以上繰り返してもよい。また、複合金属酸化物は、必要に応じて洗浄及び/又は分級することもできる。 The composite metal oxide obtained by firing may be pulverized using a ball mill or a jet mill. Moreover, you may repeat a grinding | pulverization and baking twice or more. The composite metal oxide can be washed and / or classified as necessary.
 上記の方法により得られる複合金属酸化物は、通常、0.05μm以上1μm以下の平均粒径の一次粒子から構成され、一次粒子と、一次粒子が凝集して形成された0.1μm以上100μm以下の平均粒径の二次粒子との混合物からなる。一次粒子及び二次粒子の平均粒径は、それぞれSEM(走査型電子顕微鏡)で観察することにより、数平均の値として得ることができる。 The composite metal oxide obtained by the above method is usually composed of primary particles having an average particle diameter of 0.05 μm or more and 1 μm or less, and is formed by agglomeration of primary particles and primary particles of 0.1 μm or more and 100 μm or less. It consists of a mixture with secondary particles of average particle size. The average particle diameter of the primary particles and the secondary particles can be obtained as a number average value by observing with an SEM (scanning electron microscope).
 上記の方法により得られる複合金属酸化物は、その構造が通常、α-NaFeO型結晶構造、すなわちR-3mの空間群に帰属される結晶構造である。結晶構造は、CuKαを線源とする粉末X線回折測定で得られる粉末X線回折図形から同定することができる。 The composite metal oxide obtained by the above method usually has an α-NaFeO 2 type crystal structure, that is, a crystal structure belonging to the R-3m space group. The crystal structure can be identified from a powder X-ray diffraction pattern obtained by powder X-ray diffraction measurement using CuKα as a radiation source.
 上記の方法により得られる複合金属酸化物におけるLiのモル比は、Ni、Mn、Fe,Co等の遷移金属元素Mの合計量に対して、通常は0.5以上1.5以下であり、容量維持率をより高めるためには、好ましくは0.95以上1.5以下、より好ましくは1.0以上1.4以下である。 The molar ratio of Li in the composite metal oxide obtained by the above method is usually 0.5 or more and 1.5 or less with respect to the total amount of transition metal elements M such as Ni, Mn, Fe, and Co. In order to further increase the capacity retention rate, it is preferably 0.95 or more and 1.5 or less, more preferably 1.0 or more and 1.4 or less.
 上記の方法により得られる複合金属酸化物は例えば、以下の式(A)で表すことができる:
 Li(Ni1-x)O   (A)
(ここで、
 Mは、Ni以外の1種以上の遷移金属元素、例えばMn、Fe,Co及びそれらの組合せからなる群より選択される1種以上の遷移金属元素を表し、
 xは、0<x<1であり
 yは、通常0.5以上1.5以下であり、好ましくは0.95以上1.5以下、より好ましくは1.0以上1.4以下である)。
The composite metal oxide obtained by the above method can be represented, for example, by the following formula (A):
Li y (Ni 1-x M x ) O 2 (A)
(here,
M represents one or more transition metal elements other than Ni, for example, one or more transition metal elements selected from the group consisting of Mn, Fe, Co, and combinations thereof;
x is 0 <x <1 and y is usually 0.5 or more and 1.5 or less, preferably 0.95 or more and 1.5 or less, more preferably 1.0 or more and 1.4 or less) .
 また、本発明の効果を損なわない範囲で、上記の方法により得られる本発明のリチウム複合金属酸化物は、上記の遷移金属元素の一部を、他元素で置換してもよい。ここで、他元素としては、B、Al、Ga、In、Si、Ge、Sn、Mg、Sc、Y、Zr、Hf、Nb、Ta、Mo、W、Tc、Ru、Rh、Ir、Pd、Cu、Ag、Zn等の元素を挙げることができる。 In addition, in the lithium composite metal oxide of the present invention obtained by the above method, a part of the transition metal element may be substituted with another element within a range not impairing the effects of the present invention. Here, as other elements, B, Al, Ga, In, Si, Ge, Sn, Mg, Sc, Y, Zr, Hf, Nb, Ta, Mo, W, Tc, Ru, Rh, Ir, Pd, Examples of the element include Cu, Ag, and Zn.
 上記の方法により得られるリチウム複合金属酸化物を構成する粒子の表面に、リチウム複合金属酸化物とは異なる化合物を付着させてもよい。このような化合物としては、例えば、B、Al、Ga、In、Si、Ge、Sn、Mg及び遷移金属元素からなる群より選ばれる1種以上の元素を含有する化合物、好ましくはB、Al、Mg、Ga、In及びSnからなる群より選ばれる1種以上の元素を含有する化合物、より好ましくはAlの化合物を挙げることができる。このような化合物として具体的には、上記の元素の酸化物、水酸化物、オキシ水酸化物、炭酸塩、硝酸塩、有機酸塩を挙げることができ、好ましくは、酸化物、水酸化物、オキシ水酸化物である。また、これらの化合物を混合して用いてもよい。これら化合物の中でも、特に好ましい化合物はアルミナである。また、付着後に加熱を行ってもよい。 A compound different from the lithium composite metal oxide may be attached to the surface of the particles constituting the lithium composite metal oxide obtained by the above method. As such a compound, for example, a compound containing one or more elements selected from the group consisting of B, Al, Ga, In, Si, Ge, Sn, Mg and a transition metal element, preferably B, Al, A compound containing one or more elements selected from the group consisting of Mg, Ga, In and Sn, more preferably an Al compound. Specific examples of such compounds include oxides, hydroxides, oxyhydroxides, carbonates, nitrates, and organic acid salts of the above-mentioned elements. Preferably, oxides, hydroxides, Oxyhydroxide. Moreover, you may use these compounds in mixture. Among these compounds, a particularly preferred compound is alumina. Moreover, you may heat after adhesion.
 上記の方法により得られる複合金属酸化物、すなわちリチウム複合金属酸化物は、二次電池用の正極活物質、特に非水電解質二次電池用の正極活物質として好適に使用される。 The composite metal oxide obtained by the above method, that is, the lithium composite metal oxide is suitably used as a positive electrode active material for a secondary battery, particularly as a positive electrode active material for a nonaqueous electrolyte secondary battery.
 《二次電池用の正極》
 なお、二次電池用の正極は、上記の方法により得られたリチウム複合金属酸化物を正極活物質として用いて、公知の方法、例えば国際公開第09/041722号パンフレットに記載の方法にて作製することができる。
<< Positive electrode for secondary battery >>
The positive electrode for the secondary battery is prepared by a known method, for example, the method described in International Publication No. 09/041722, using the lithium composite metal oxide obtained by the above method as a positive electrode active material. can do.
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless the gist thereof is changed.
 《評価方法》
 試料の評価方法を以下に示す。
"Evaluation methods"
The sample evaluation method is shown below.
 〈粉末X線回折測定〉
 粉末X線回折測定(XRD)は、株式会社リガク製の粉末X線回折装置Ultima IV ASC-10を用いて行った。具体的には測定は、粉末試料を専用の基板に充填し、CuKα線源を用いて、電圧40kV及び電流40mAの条件で、回折角2θ=10°~90°の範囲について行った。
<Powder X-ray diffraction measurement>
Powder X-ray diffraction measurement (XRD) was performed using a powder X-ray diffraction apparatus Ultimate IV ASC-10 manufactured by Rigaku Corporation. Specifically, the powder sample was filled in a dedicated substrate, and a CuKα radiation source was used in the range of diffraction angle 2θ = 10 ° to 90 ° under the conditions of a voltage of 40 kV and a current of 40 mA.
 〈含水率測定〉
 含水率測定は、株式会社エー・アンド・デイ製の加熱乾燥式水分計MX-50を用いて行った。具体的には、装置内の試料皿に約5gの粉末試料を静置した後、装置の蓋を閉じ、試料皿温度を130℃に設定することで粉末試料中に含まれている水分を蒸発させ、重量減少が認められなくなった時点を完全な乾燥状態、すなわち含水率0と見なした。試料皿に静置した粉末試料の重量に対して、減少した重量の割合を粉末試料の含水率とした。
<Moisture content measurement>
The moisture content was measured using a heat drying moisture meter MX-50 manufactured by A & D Co., Ltd. Specifically, after leaving about 5 g of powder sample in the sample dish in the device, the lid of the device is closed and the sample dish temperature is set to 130 ° C. to evaporate the water contained in the powder sample. When the weight loss was not recognized, it was regarded as a completely dry state, that is, a water content of 0. The ratio of the reduced weight with respect to the weight of the powder sample placed on the sample dish was taken as the moisture content of the powder sample.
 《実施例1》
 〈正極材料前駆体の製造〉
 (1)原料スラリー生成工程
 攪拌槽内において、蒸留水535重量部に水酸化カリウム100重量部を添加し、攪拌によりを完全に溶解させて、水酸化カリウム水溶液(塩基性水溶液)を調整した。
Example 1
<Production of positive electrode material precursor>
(1) Raw material slurry production | generation process In a stirring tank, 100 weight part of potassium hydroxide was added to 535 weight part of distilled water, and was dissolved completely by stirring, and potassium hydroxide aqueous solution (basic aqueous solution) was adjusted.
 また、別の攪拌槽内において、蒸留水255重量部に、硫酸ニッケル(II)六水和物98.4重量部、硫酸マンガン(II)一水和物64.6重量部、及び硫酸鉄(II)七水和物11.1重量部を添加し、攪拌により溶解して、ニッケル-マンガン-鉄混合水溶液を得た。 In another stirring tank, 255 parts by weight of distilled water was added to 98.4 parts by weight of nickel (II) sulfate hexahydrate, 64.6 parts by weight of manganese (II) sulfate monohydrate, and iron sulfate ( II) 11.1 parts by weight of heptahydrate was added and dissolved by stirring to obtain a nickel-manganese-iron mixed aqueous solution.
 次いで、別の攪拌槽に、蒸留水936重量部と水酸化カリウム水溶液15.8重量部を仕込んだ後、液温度を30℃にて攪拌しながら、水酸化カリウム水溶液165重量部とニッケル-マンガン-鉄混合水溶液95.1重量部を滴下することによって、遷移金属水酸化物からなる沈殿物を生成させ、原料スラリーを得た。反応終了時のpHは13であった。 Next, 936 parts by weight of distilled water and 15.8 parts by weight of potassium hydroxide aqueous solution were charged into another stirring tank, and then 165 parts by weight of potassium hydroxide aqueous solution and nickel-manganese were stirred while the liquid temperature was stirred at 30 ° C. -By adding 95.1 parts by weight of an iron-mixed aqueous solution dropwise, a precipitate composed of a transition metal hydroxide was generated, and a raw slurry was obtained. The pH at the end of the reaction was 13.
 (2)濃縮工程
 次いで、図3の構成を有するクロスフローろ過システムを用いてスラリーの濃縮を行った。なお、クロスフローろ過システムにおけるクロスフローろ過装置20としては、ロータリーフィルターRF-02型(寿工業株式会社製)を使用した。
(2) Concentration process Next, the slurry was concentrated using the crossflow filtration system which has the structure of FIG. In addition, as the cross flow filtration device 20 in the cross flow filtration system, a rotary filter RF-02 type (manufactured by Kotobuki Industries Co., Ltd.) was used.
 まず、室温において、原料スラリー100重量部をスラリー貯槽31に仕込み、ポンプ32にて、原料スラリーを、クロスフローろ過装置20を経由してスラリー貯槽31に循環させてろ過操作を行った。このろ過操作を、ろ液が50重量部抜き出されるまで継続することによって、スラリーの濃縮を行った。なお、クロスフローろ過装置20のスラリー供給入口圧力は、0.4MPaGであり、ろ布は、P2560C(敷島カンバス製)を使用した。 First, at room temperature, 100 parts by weight of the raw material slurry was charged into the slurry storage tank 31, and the raw material slurry was circulated to the slurry storage tank 31 via the cross-flow filtration device 20 by the pump 32 to perform a filtration operation. This filtration operation was continued until 50 parts by weight of the filtrate was extracted to concentrate the slurry. In addition, the slurry supply inlet pressure of the crossflow filtration apparatus 20 is 0.4 MPaG, and P2560C (made by Shikishima canvas) was used for the filter cloth.
 次いで、スラリー貯槽31内に蒸留水50重量部を加えて濃縮スラリーを希釈し、その後で、先の条件と同一条件にてろ過操作を行なうことによって、スラリーの固形分(遷移金属水酸化物)の洗浄を行った。また、蒸留水の添加及びろ過操作を同様に繰り返して、洗浄を繰り返した。 Next, 50 parts by weight of distilled water is added to the slurry storage tank 31 to dilute the concentrated slurry, and then the solid content of the slurry (transition metal hydroxide) is obtained by performing a filtration operation under the same conditions as the previous conditions. Was washed. Moreover, washing was repeated by repeating the addition of distilled water and filtration operation in the same manner.
 洗浄終了後、先のろ過操作と同一の条件にてろ液を抜き取って、スラリーの濃縮を行った。スラリー貯槽31内に得られた濃縮スラリーの固形分濃度は、12重量%であった。 After completion of the washing, the filtrate was extracted under the same conditions as the previous filtration operation, and the slurry was concentrated. The solid content concentration of the concentrated slurry obtained in the slurry storage tank 31 was 12% by weight.
 (3)乾燥工程
 次いで、濃縮工程により得られた濃縮スラリーを、図4に示す構成の気流乾燥機(流動層乾燥装置)(「スラリードライヤー SFD」、株式会社 大川原製作所)にて乾燥した。ここでは、媒体として平均直径が2mm~3mmのアルミナボールを用いた。
(3) Drying Step Next, the concentrated slurry obtained in the concentration step was dried with an air flow dryer (fluidized bed drying device) (“Slurry dryer SFD”, Okawara Seisakusho Co., Ltd.) having the configuration shown in FIG. Here, alumina balls having an average diameter of 2 mm to 3 mm were used as the medium.
 高温気体としては、空気を使用し、図4における装置本体45の入口における高温気体の温度が250℃となるようにして、熱交換器49を調整した。また、スラリー供給ポンプ44によりスラリー供給量を2.4kg/hに調整した。装置本体45の出口における高温気体の温度は143℃であり、高温気体の流速は3.3m/sであった。乾燥時間(濃縮スラリーが装置本体45内に供給されてから、粉末としてバグフィルタ50へ到達するまでの滞留時間)は、平均的に1分以内であった。 As the high temperature gas, air was used, and the heat exchanger 49 was adjusted so that the temperature of the high temperature gas at the inlet of the apparatus main body 45 in FIG. Further, the slurry supply amount was adjusted to 2.4 kg / h by the slurry supply pump 44. The temperature of the hot gas at the outlet of the apparatus main body 45 was 143 ° C., and the flow rate of the hot gas was 3.3 m / s. The drying time (the residence time from when the concentrated slurry was supplied into the apparatus main body 45 until reaching the bag filter 50 as powder) was within 1 minute on average.
 上記条件にて、スラリーの乾燥を行い、粉末状の乾燥物Pを得た。乾燥物Pの含水率は、3.5重量%であった。 Under the above conditions, and drying the slurry to obtain a powdery dried product P 1. The water content of the dried product P 1 was 3.5 wt%.
 図6に乾燥物PのX線回折パターンを示す。図6で示されているように、酸化Mn(Mn)を示すシグナル(2θ=36.08°(ミラー指数350))は確認されなかった。 Figure 6 shows the X-ray diffraction pattern of the dried product P 1. As shown in FIG. 6, a signal indicating 2 Mn oxide (Mn 3 O 4 ) (2θ = 36.08 ° (Miller index 350)) was not confirmed.
 〈正極材料の製造〉
 乾燥物P100重量部、炭酸リチウム52.2重量部、及び硫酸カリウム18.0重量部を、アルミナボールを入れたロッキングミルで4時間混合し、ローラーハースキルンにより870℃で6時間保持して焼成し、そして室温まで冷却して、焼成品を得た。得られた焼成品を粉砕し、蒸留水でろ過及び洗浄し、150℃で6時間にわたって乾燥し、そして300℃で6時間にわたってアニール処理して、粉末Bを得た。
<Manufacture of positive electrode material>
100 parts by weight of the dried product P 1 , 52.2 parts by weight of lithium carbonate, and 18.0 parts by weight of potassium sulfate were mixed for 4 hours in a rocking mill containing alumina balls and held at 870 ° C. for 6 hours by a roller hearth kiln. And fired, and cooled to room temperature to obtain a fired product. The resulting calcined product was pulverized, filtered and washed with distilled water, dried for 6 hours at 0.99 ° C., and is annealed for 6 hours at 300 ° C., to obtain a powder B 1.
 粉末X線回折パターンを測定すると、粉末Bは、R-3mの空間群に帰属される結晶構造を有することがわかった。 When measuring the powder X-ray diffraction pattern, the powder B 1 represents, it was found to have a crystal structure belonging to the space group R-3m.
 《比較例1》
 〈正極材料前駆体の製造〉
 乾燥工程において、気流乾燥機によって濃縮スラリーの乾燥を行う代わりに、濃縮スラリーを乾燥用バットに仕込み、そして棚段乾燥機(汎用乾燥装置AT-20(製造元:旭科学株式会社))で乾燥した以外は実施例1と同様にして、乾燥物Rを得た。棚段乾燥機による乾燥条件は、120℃及び8時間であった。得られた乾燥物Rの含水率は、8重量%であった。
<< Comparative Example 1 >>
<Production of positive electrode material precursor>
In the drying process, instead of drying the concentrated slurry with a flash dryer, the concentrated slurry was charged into a drying vat and dried with a shelf dryer (general-purpose dryer AT-20 (manufacturer: Asahi Kagaku Corporation)). otherwise in the same manner as in example 1 to obtain a dry product R 1. Drying conditions by the shelf dryer were 120 ° C. and 8 hours. The resulting moisture content of the dried product R 1 was 8% by weight.
 乾燥物RのX線回折パターンを図7に示す。図7で示されているように、酸化Mn(Mn)を示す36.08°(ミラー指数350)のシグナルが確認された。 The X-ray diffraction pattern of the dried product R 1 shown in FIG. As shown in FIG. 7, a signal of 36.08 ° (Miller index 350) indicating Mn oxide (Mn 3 O 4 ) was confirmed.
 〈正極材料の製造〉
 乾燥物Pの代わりに乾燥物Rを使用した以外は実施例1と同様にして、粉末Bを得た。粉末X線回折パターンを測定し、粉末Bの結晶構造は、R-3mの空間群に帰属される結晶構造であることがわかった。
<Manufacture of positive electrode material>
Except that in place of the dry substance P 1 using the dried product R 1 in the same manner as in Example 1 to obtain a powder B 2. The powder X-ray diffraction pattern was measured, the crystal structure of the powder B 2 was found to be a crystal structure belonging to the space group of R-3m.
 《参考例1》
 参考例1として、原料スラリーを固液分離してウェットケークを形成し、このウェットケークを乾燥する従来の方法にて、正極材料前駆体を製造した。
<< Reference Example 1 >>
As Reference Example 1, a positive electrode material precursor was manufactured by a conventional method in which a raw cake slurry was solid-liquid separated to form a wet cake, and this wet cake was dried.
 まず、実施例1における原料スラリー生成工程と同じ条件で、固形分濃度が3.5重量%の原料スラリーを得た。 First, a raw material slurry having a solid content concentration of 3.5% by weight was obtained under the same conditions as in the raw material slurry generating step in Example 1.
 次いで、フィルタープレスにて得られたスラリーの固液分離を行った。フィルタープレスには、「ロールフィット フィルタープレス・ドライヤー」(販売元:株式会社 ユーロテック)を使用した。スラリー100重量部をフィルタープレスに供給し、室温下、ろ過圧力0.4MPaG、ろ過時間50分の条件にてろ過した。次いで、蒸留水を室温下、洗浄圧力0.4~0.6MPaGにて供給し、水洗を行った。水洗後、圧搾圧力0.7MPaGにて、15分間の圧搾脱水を行った。次いで、減圧フィルタープレスのろ過室内を圧力10kPaとし、フィルタープレスの各ろ過室の流体供給路に、90℃温水を通水して、170分間、予備乾燥を行った。予備乾燥後、フィルタープレスから排出したウェットケーク4.62重量部を回収した。この時のウェットケークの含水量は湿潤基準で29.5重量%であった。 Next, the slurry obtained by a filter press was subjected to solid-liquid separation. For the filter press, a “roll fit filter press dryer” (distributor: Eurotech Co., Ltd.) was used. 100 parts by weight of the slurry was supplied to a filter press and filtered under conditions of room temperature at a filtration pressure of 0.4 MPaG and a filtration time of 50 minutes. Next, distilled water was supplied at a washing pressure of 0.4 to 0.6 MPaG at room temperature to perform washing with water. After washing with water, pressing and dewatering was performed at a pressing pressure of 0.7 MPaG for 15 minutes. Next, the pressure inside the filtration chamber of the vacuum filter press was set to 10 kPa, and 90 ° C. hot water was passed through the fluid supply passages of each filtration chamber of the filter press, and preliminary drying was performed for 170 minutes. After preliminary drying, 4.62 parts by weight of the wet cake discharged from the filter press was recovered. The water content of the wet cake at this time was 29.5% by weight on a wet basis.
 得られたウェットケークを、乾燥用バットに仕込み、棚段乾燥機(汎用乾燥装置AT-20(製造元:旭科学株式会社))を用いて120℃、8時間の条件で乾燥した。その後、フェザーミル粉砕を行い、粉末状の乾燥物Xを得た。得られた乾燥物Xの含水率は、3重量%であった。 The obtained wet cake was charged into a drying vat and dried using a shelf dryer (general-purpose dryer AT-20 (manufacturer: Asahi Kagaku Corporation)) at 120 ° C. for 8 hours. Thereafter, feather mill pulverized to obtain a powdery dried product X 1. The resulting moisture content of the dried product X 1 was 3 wt%.
 乾燥物XのX線回折パターンを図8に示す。図8からわかるように、酸化Mn(Mn)を示す2θ=36.08°(ミラー指数350)のシグナルが若干ながら確認された。 The X-ray diffraction pattern of the dried product X 1 shown in FIG. As can be seen from FIG. 8, a slight signal of 2θ = 36.08 ° (Miller index 350) indicating Mn oxide (Mn 3 O 4 ) was confirmed.
 〈正極材料の製造〉
 乾燥物Pの代わりに乾燥物Xを使用した以外は、実施例1と同様にして粉末Bを得た。粉末X線回折パターンを測定し、粉末Bの結晶構造は、R-3mの空間群に帰属される結晶構造であることがわかった。
<Manufacture of positive electrode material>
Except that in place of the dry substance P 1 using the dried product X 1 is to obtain a powder B 3 in the same manner as in Example 1. The powder X-ray diffraction pattern was measured, and it was found that the crystal structure of the powder B 3 was a crystal structure belonging to the R-3m space group.
 《充放電試験》
 実施例1、比較例1及び参考例1でそれぞれ作製した粉末B~Bを正極活物質として使用して、コイン型の非水電解質二次電池を作製し、充放電試験を実施した。
《Charge / discharge test》
Using the powders B 1 to B 3 prepared in Example 1, Comparative Example 1 and Reference Example 1, respectively, as a positive electrode active material, a coin-type non-aqueous electrolyte secondary battery was manufactured and a charge / discharge test was performed.
 〈非水電解質二次電池の作製〉
 正極活物質(粉末B~B)と導電材(アセチレンブラックと黒鉛を9:1の重量比で混合したもの)の混合物に、バインダーとしてPVdFのN-メチル-2-ピロリドン溶液を、活物質:導電材:バインダー=87:10:3(重量比)の組成となるように加えて混練することによりペーストとし、集電体となる厚さ40μmのAl箔に該ペーストを塗布して150℃で8時間真空乾燥を行い、正極を得た。
<Preparation of non-aqueous electrolyte secondary battery>
An N-methyl-2-pyrrolidone solution of PVdF as a binder is mixed with a mixture of a positive electrode active material (powder B 1 to B 3 ) and a conductive material (a mixture of acetylene black and graphite at a weight ratio of 9: 1). Material: Conductive material: Binder = 87: 10: 3 (weight ratio) In addition, the paste was kneaded and kneaded to form a paste, and the paste was applied to an Al foil having a thickness of 40 μm serving as a current collector. Vacuum drying was performed at 0 ° C. for 8 hours to obtain a positive electrode.
 得られた正極、電解液、セパレータとしての積層フィルム、及び負極として金属リチウムを組み合わせて、コイン型電池(R2032)を作製した。なお、電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの30:35:35(体積比)混合液にLiPFを1モル/リットルとなるように溶解した溶液であった。 A coin-type battery (R2032) was produced by combining the obtained positive electrode, electrolytic solution, laminated film as a separator, and metallic lithium as the negative electrode. The electrolytic solution was a solution obtained by dissolving LiPF 6 in a 30:35:35 (volume ratio) mixed solution of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate so as to be 1 mol / liter.
 上記のコイン型電池を用いて、25℃保持下、以下に示す条件で充放電試験を実施した。 Using the above coin-type battery, a charge / discharge test was conducted under the conditions shown below while maintaining at 25 ° C.
 〈充放電試験条件〉
 充電最大電圧: 4.3V
 充電時間: 8時間
 充電電流: 0.18mA/cm
 放電時の放電最小電圧: 2.5V(一定)
 1サイクル目の放電: 放電電流0.18mA/cm(放電レート0.2C)
 2サイクル目の放電(1C): 放電電流0.88mA/cm(放電レート1C)
<Charging / discharging test conditions>
Maximum charging voltage: 4.3V
Charging time: 8 hours Charging current: 0.18 mA / cm 2
Minimum discharge voltage during discharge: 2.5V (constant)
First cycle discharge: discharge current 0.18 mA / cm 2 (discharge rate 0.2 C)
Second cycle discharge (1C): Discharge current 0.88 mA / cm 2 (discharge rate 1C)
 充放電試験の結果を下記の表1に示す。 The results of the charge / discharge test are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、各サイクルおける放電による放電容量が大きいことは、高出力であることを意味している。 In Table 1, a large discharge capacity due to discharge in each cycle means high output.
 実施例1は、比較例1と比較して、1サイクル目(0.2C)、及び2サイクル目(1C)のいずれにおいても、放電容量が大きかった。また、実施例1は、従来のウェットケーク由来の正極材料を用いた参考例1と比較しても、同等以上の放電容量を示した。 Example 1 had a larger discharge capacity in both the first cycle (0.2C) and the second cycle (1C) as compared with Comparative Example 1. In addition, Example 1 showed a discharge capacity equal to or higher than that of Reference Example 1 using a positive electrode material derived from a conventional wet cake.
 以上のように、本発明の製造方法によれば、工業的スケールであっても、高品質な正極材料を得ることができることが確認された。 As described above, according to the production method of the present invention, it was confirmed that a high-quality positive electrode material can be obtained even on an industrial scale.
 本発明の製造方法は、の正極材料の前駆体を製造するときや、この前駆体から正極材料の製造するときに、好適に用いることができる。 The production method of the present invention can be suitably used when a positive electrode material precursor is produced or when a positive electrode material is produced from this precursor.
 10  クロスフローろ過システム
 11  スラリー貯槽
 12  フィルター
 20  クロスフローろ過装置
 22  ろ過室
 23  ろ過板
 24  撹拌板
 25  モータ
 26  スラリー供給口
 27  スラリー排出口
 28  スラリー排出弁
 30  クロスフローろ過システム
 31  スラリー貯槽
 31a  撹拌装置
 32  送液ポンプ
 33  希釈水供給設備
 P,P  配管
 40  気流乾燥機
 41  スラリー貯槽
 42  水貯槽
 43  スラリー供給管
 44  スラリー供給ポンプ
 45  装置本体
 46  吸気フィルター
 47  吸気管
 48  吸込ファン
 49  熱交換器
 50  バグフィルタ
 51  排出管
 52  排気ファン
 53  排気管
 54  容器
 M  媒体
 F  流動層
DESCRIPTION OF SYMBOLS 10 Crossflow filtration system 11 Slurry storage tank 12 Filter 20 Crossflow filtration apparatus 22 Filtration chamber 23 Filtration plate 24 Stirring plate 25 Motor 26 Slurry supply port 27 Slurry discharge port 28 Slurry discharge valve 30 Crossflow filtration system 31 Slurry storage tank 31a Stirring device 32 dilution water supply system feeding pump 33 P 1, P 2 pipe 40 flash dryer 41 slurry storage tank 42 water tank 43 slurry supply pipe 44 slurry supply pump 45 apparatus main body 46 the intake filter 47 an intake pipe 48 the suction fan 49 heat exchanger 50 bugs Filter 51 Discharge pipe 52 Exhaust fan 53 Exhaust pipe 54 Container M Medium F Fluidized bed

Claims (13)

  1.  (1)遷移金属元素を含有する溶液を塩基と接触させて、遷移金属水酸化物に基づく固形分を生成することによって、原料スラリーを生成する、原料スラリー生成工程と、
     (2)前記原料スラリー中の液体部分の少なくとも一部を除去することによって、濃縮スラリーを生成する、濃縮工程、及び
     (3)前記濃縮スラリーを、気流乾燥機において粉末まで乾燥して、正極材料前駆体を得る、乾燥工程、
    を有する、正極材料前駆体の製造方法。
    (1) A raw material slurry generating step of generating a raw material slurry by bringing a solution containing a transition metal element into contact with a base to generate a solid content based on a transition metal hydroxide;
    (2) A concentration step in which a concentrated slurry is produced by removing at least a part of the liquid portion in the raw slurry, and (3) the concentrated slurry is dried to a powder in an airflow dryer, and a positive electrode material Obtaining a precursor, a drying step;
    A method for producing a positive electrode material precursor, comprising:
  2.  前記遷移金属元素が、少なくともMnを含む、請求項1に記載の方法。 The method according to claim 1, wherein the transition metal element contains at least Mn.
  3.  前記濃縮工程を、クロスフローろ過で行う、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the concentration step is performed by cross flow filtration.
  4.  前記濃縮工程において、前記濃縮スラリーに希釈液を添加し、希釈液を添加した前記濃縮スラリー中の液体部分の少なくとも一部を除去することによって、前記遷移金属水酸化物に基づく粒子の洗浄を行うことを更に含む、請求項3に記載の方法。 In the concentration step, the diluent based on the transition metal hydroxide is washed by adding a diluent to the concentrated slurry and removing at least part of the liquid portion in the concentrated slurry to which the diluent has been added. The method of claim 3 further comprising:
  5.  前記乾燥工程において、60分以内に含水率40重量%以下の粉末まで乾燥する、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein in the drying step, the powder is dried to a powder having a water content of 40% by weight or less within 60 minutes.
  6.  前記乾燥工程において、10分以内に含水率15重量%以下の粉末まで乾燥する、請求項5に記載の方法。 The method according to claim 5, wherein in the drying step, the powder is dried to a powder having a water content of 15% by weight or less within 10 minutes.
  7.  前記乾燥工程において、100℃以上の高温気体を用いて乾燥を行う、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein in the drying step, drying is performed using a high-temperature gas of 100 ° C or higher.
  8.  前記気流乾燥機が、流動層乾燥装置である、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the air dryer is a fluidized bed dryer.
  9.  前記気流乾燥機において、乾燥用の高温気体の入口温度が、150℃以上500℃以下である、請求項1~8のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8, wherein in the air dryer, an inlet temperature of a high-temperature gas for drying is 150 ° C or higher and 500 ° C or lower.
  10.  前記気流乾燥機において、乾燥用の高温気体の出口温度が、50℃以上200℃以下である、請求項1~9のいずれか一項に記載の方法。 The method according to any one of claims 1 to 9, wherein in the air dryer, the outlet temperature of the high-temperature gas for drying is 50 ° C or higher and 200 ° C or lower.
  11.  前記気流乾燥機において、乾燥用の高温気体が、可燃性気体を燃焼させて得られる気体である、請求項1~10のいずれか一項に記載の方法。 The method according to any one of claims 1 to 10, wherein the high-temperature gas for drying is a gas obtained by burning a combustible gas in the airflow dryer.
  12.  前記気流乾燥機において、バグフィルタを使用して粉末を回収する、請求項1~11のいずれか一項に記載の方法。 The method according to any one of claims 1 to 11, wherein the powder is collected using a bag filter in the airflow dryer.
  13.  請求項1~12のいずれか一項に記載の方法により正極材料前駆体を製造し、そして得られた前記正極材料前駆体をリチウム化合物と混合し、焼成することを含む、正極材料の製造方法。 A method for producing a positive electrode material, comprising producing a positive electrode material precursor by the method according to any one of claims 1 to 12, and mixing the obtained positive electrode material precursor with a lithium compound and firing. .
PCT/JP2011/073257 2010-10-08 2011-10-07 Positive electrode material precursor for lithium secondary cell and method for producing positive electrode material WO2012046854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-228818 2010-10-08
JP2010228818 2010-10-08

Publications (1)

Publication Number Publication Date
WO2012046854A1 true WO2012046854A1 (en) 2012-04-12

Family

ID=45927846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073257 WO2012046854A1 (en) 2010-10-08 2011-10-07 Positive electrode material precursor for lithium secondary cell and method for producing positive electrode material

Country Status (2)

Country Link
JP (1) JP2012099470A (en)
WO (1) WO2012046854A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105390661A (en) * 2014-08-21 2016-03-09 庄臣及庄臣视力保护公司 methods for manufacturing biocompatible cathode slurry for use in biocompatible batteries
US9577259B2 (en) 2014-08-21 2017-02-21 Johnson & Johnson Vision Care, Inc. Cathode mixture for use in a biocompatible battery
US9599842B2 (en) 2014-08-21 2017-03-21 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US9715130B2 (en) 2014-08-21 2017-07-25 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US9793536B2 (en) 2014-08-21 2017-10-17 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US9899700B2 (en) 2014-08-21 2018-02-20 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and deposited separators
US9923177B2 (en) 2014-08-21 2018-03-20 Johnson & Johnson Vision Care, Inc. Biocompatibility of biomedical energization elements
US9941547B2 (en) 2014-08-21 2018-04-10 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US10775644B2 (en) 2012-01-26 2020-09-15 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
JPWO2021065229A1 (en) * 2019-10-02 2021-04-08

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186325A1 (en) * 2014-06-04 2015-12-10 株式会社豊田自動織機 Method for producing lithium composite metal oxide
JP2019160573A (en) * 2018-03-13 2019-09-19 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery
JP6994990B2 (en) * 2018-03-13 2022-01-14 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary batteries, positive electrodes and lithium secondary batteries
JP6962838B2 (en) * 2018-03-13 2021-11-05 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339804A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Manufacture of positive active material for lithium secondary battery
WO2009049955A1 (en) * 2007-10-12 2009-04-23 H.C. Starck Gmbh Pulverulent niambox(oh)y compounds, processes for preparing them and also their use in batteries
JP2010021125A (en) * 2007-09-28 2010-01-28 Sumitomo Chemical Co Ltd Lithium complex metal oxide and nonaqueous electrolyte secondary battery
JP2010159180A (en) * 2009-01-08 2010-07-22 Tanaka Chemical Corp Method for producing agglomerated crystal particle useful as nickel positive electrode active material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2595072Y2 (en) * 1992-02-28 1999-05-24 株式会社大川原製作所 Perforated plate unit in fluidized bed processing equipment
WO2009099158A1 (en) * 2008-02-06 2009-08-13 Agc Seimi Chemical Co., Ltd. Method for producing granular powder for positive electrode active material of lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339804A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Manufacture of positive active material for lithium secondary battery
JP2010021125A (en) * 2007-09-28 2010-01-28 Sumitomo Chemical Co Ltd Lithium complex metal oxide and nonaqueous electrolyte secondary battery
WO2009049955A1 (en) * 2007-10-12 2009-04-23 H.C. Starck Gmbh Pulverulent niambox(oh)y compounds, processes for preparing them and also their use in batteries
JP2010159180A (en) * 2009-01-08 2010-07-22 Tanaka Chemical Corp Method for producing agglomerated crystal particle useful as nickel positive electrode active material

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US10775644B2 (en) 2012-01-26 2020-09-15 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
US10386656B2 (en) 2014-08-21 2019-08-20 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US9793536B2 (en) 2014-08-21 2017-10-17 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US9746695B2 (en) 2014-08-21 2017-08-29 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices
US10367233B2 (en) 2014-08-21 2019-07-30 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US9864213B2 (en) 2014-08-21 2018-01-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US9899700B2 (en) 2014-08-21 2018-02-20 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and deposited separators
US10374216B2 (en) 2014-08-21 2019-08-06 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US9941547B2 (en) 2014-08-21 2018-04-10 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US9946092B2 (en) 2014-08-21 2018-04-17 Johnson & Johnson Vision Care, Inc. Methods for manufacturing biocompatible cathode slurry for use in biocompatible batteries
EP3016194A1 (en) * 2014-08-21 2016-05-04 Johnson & Johnson Vision Care Inc. Methods for manufacturing biocompatible cathode slurry for use in biocompatible batteries
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US9715130B2 (en) 2014-08-21 2017-07-25 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US9599842B2 (en) 2014-08-21 2017-03-21 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US9923177B2 (en) 2014-08-21 2018-03-20 Johnson & Johnson Vision Care, Inc. Biocompatibility of biomedical energization elements
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
CN105390661A (en) * 2014-08-21 2016-03-09 庄臣及庄臣视力保护公司 methods for manufacturing biocompatible cathode slurry for use in biocompatible batteries
US9577259B2 (en) 2014-08-21 2017-02-21 Johnson & Johnson Vision Care, Inc. Cathode mixture for use in a biocompatible battery
US10558062B2 (en) 2014-08-21 2020-02-11 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical device
US10598958B2 (en) 2014-08-21 2020-03-24 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
JPWO2021065229A1 (en) * 2019-10-02 2021-04-08
WO2021065229A1 (en) * 2019-10-02 2021-04-08 古河機械金属株式会社 Method for producing inorganic material
JP7212797B2 (en) 2019-10-02 2023-01-25 古河機械金属株式会社 Inorganic material manufacturing method

Also Published As

Publication number Publication date
JP2012099470A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
WO2012046854A1 (en) Positive electrode material precursor for lithium secondary cell and method for producing positive electrode material
TWI527298B (en) A positive electrode active material particle powder, a method for producing the same, and a nonaqueous electrolyte battery
JP5218782B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR101796233B1 (en) Manufacturing method of lithium-titanium composite doped by different metal, and lithium-titanium composite doped with different metal made by same
JP2006019310A (en) Active substance for battery
KR20180108521A (en) Positive active material and secondary battery comprising the same
JPWO2012132071A1 (en) Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
KR20130061038A (en) Manufacturing method of lithium-titanium composite doped by different metal, and lithium-titanium composite doped with different metal made by same
TWI518974B (en) Novel lithium titanate, process for producing the lithium titanate, electrode active material comprising the lithium titanate and storage device using the electrode active material
WO2017082314A1 (en) Positive electrode active material production method, positive electrode active material, positive electrode, and lithium ion secondary battery
KR100765970B1 (en) Manganese complex oxides by co-precipitation method and preparation method of the same, and spinel type cathode active material for lithium secondary batteries using thereby and preparation method of the same
JP6128303B2 (en) Lithium manganese composite oxide and method for producing the same
JP2002158007A (en) Lithium manganese nickel complex oxide, and manufacturing method of the same
CN112299487B (en) All-manganese or high-manganese-based lithium-rich layered cathode material with disordered cations in layer and preparation method thereof
JP5594663B2 (en) Alkali metal titanate compound, method for producing the same, electrode active material containing the alkali metal titanate compound, and electricity storage device using the electrode active material
WO2011136036A1 (en) Method for producing transition metal hydroxide
JP2002326818A (en) Production method of slurry and production method of lithium transition metal compound oxide
JP5539946B2 (en) Method for producing spinel-type lithium-manganese composite oxide
CN115050935A (en) Layered high-nickel ternary lithium ion battery positive electrode material, preparation method and application
JP7217514B2 (en) Titanium oxide, method for producing titanium oxide, and lithium secondary battery using electrode active material containing titanium oxide
JP2013203565A (en) Complex metal oxide, positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
JP3733659B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery
JP6876600B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
JP7417675B1 (en) Metal composite hydroxide particles, method for producing metal composite compound, and method for producing positive electrode active material for lithium secondary batteries
JP7412485B1 (en) Method for producing metal composite hydroxide particles and positive electrode active material for lithium secondary batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830785

Country of ref document: EP

Kind code of ref document: A1