JP2009277374A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2009277374A
JP2009277374A JP2008124924A JP2008124924A JP2009277374A JP 2009277374 A JP2009277374 A JP 2009277374A JP 2008124924 A JP2008124924 A JP 2008124924A JP 2008124924 A JP2008124924 A JP 2008124924A JP 2009277374 A JP2009277374 A JP 2009277374A
Authority
JP
Japan
Prior art keywords
fuel cell
heat
solid oxide
air
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008124924A
Other languages
Japanese (ja)
Inventor
Masahiro Shibata
昌宏 柴田
Yasumasa Oguma
泰正 小熊
Hiroya Ishikawa
浩也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008124924A priority Critical patent/JP2009277374A/en
Publication of JP2009277374A publication Critical patent/JP2009277374A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxide fuel cell capable of reducing radiation heat from a conductive member for electric power extraction. <P>SOLUTION: The the solid oxide fuel cell is equipped with air for reaction with a fuel gas in a fuel cell stack; a supply route to supply a fluid of either of water or the fuel gas, in order to steam reform the fuel gas; an output member to take out electric power generated at the fuel cell stack; and a heat exchanger in order to carry out heat exchange between the output member and the fluid. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は,固体酸化物形燃料電池に関する。   The present invention relates to a solid oxide fuel cell.

固体酸化物形燃料電池は,固体酸化物を用いて,燃料ガス(可燃ガス)と酸素を反応させて,電力を発生する。ここで,燃料電池を構成する燃料電池スタックの均熱性を維持するための技術が開示されている(特許文献1参照)。即ち,エンドプレートからの放熱により,燃料電池へ投入される空気を加熱する。この結果,エンドプレートからの放熱を低減し,燃料電池スタックの均熱性が維持される。
ところで,燃料電池スタックから電力を取り出すために,燃料電池スタックに導電性の部材が接続される(特許文献2参照)。
Solid oxide fuel cells use solid oxide to generate electric power by reacting fuel gas (combustible gas) with oxygen. Here, a technique for maintaining the thermal uniformity of the fuel cell stack constituting the fuel cell is disclosed (see Patent Document 1). That is, the heat supplied to the fuel cell is heated by heat radiation from the end plate. As a result, heat dissipation from the end plate is reduced, and the thermal uniformity of the fuel cell stack is maintained.
By the way, in order to extract electric power from the fuel cell stack, a conductive member is connected to the fuel cell stack (see Patent Document 2).

特開2006−179286号公報JP 2006-179286 A 特開2005−183089号公報JP 2005-183089 A

ここで,電力取り出し用の導電性部材からの放熱が大きいことが判った。一般に,燃料電池スタックは断熱容器内に収納され,高温に維持される。このため,電力取り出し用の導電性部材は,断熱容器内の高温領域と外界の低温領域に跨って配置され,その温度差の関係で放熱量が大きくなり易い。
上記に鑑み,本発明は電力取り出し用の導電性部材からの放熱を低減可能な固体酸化物形燃料電池を提供することを目的とする。
Here, it was found that the heat radiation from the conductive member for extracting power was large. In general, the fuel cell stack is stored in a heat insulating container and maintained at a high temperature. For this reason, the conductive member for extracting power is disposed across the high temperature region in the heat insulating container and the low temperature region in the outside, and the amount of heat radiation tends to increase due to the temperature difference.
In view of the above, an object of the present invention is to provide a solid oxide fuel cell capable of reducing heat radiation from a conductive member for extracting power.

本発明の一態様に係る固体酸化物形燃料電池は,燃料極および空気極が両面に配置された酸素イオン伝導性固体電解質体が積層され,燃料ガスと空気中の酸素との反応により電力を発生する燃料電池スタックと,前記燃料電池スタックに,前記燃料ガスと反応させるための空気,前記燃料ガスを水蒸気改質するための水,前記燃料ガスのいずれかの流体を供給する供給経路と,前記燃料電池スタックで発生した電力を取り出す出力部材と,前記出力部材と前記流体との間で熱交換するための熱交換器と,を具備することを特徴とする。   A solid oxide fuel cell according to an aspect of the present invention includes an oxygen ion conductive solid electrolyte body in which a fuel electrode and an air electrode are arranged on both sides, and generates electric power by reaction between fuel gas and oxygen in the air. A fuel cell stack to be generated, a supply path for supplying the fuel cell stack with air for reacting with the fuel gas, water for steam reforming the fuel gas, and any fluid of the fuel gas; An output member for extracting electric power generated in the fuel cell stack, and a heat exchanger for exchanging heat between the output member and the fluid are provided.

本発明によれば,電力取り出し用の導電性部材からの放熱を低減可能な固体酸化物形燃料電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the solid oxide fuel cell which can reduce the thermal radiation from the electroconductive member for electric power extraction can be provided.

以下,図面を参照して,本発明の実施の形態を詳細に説明する。
(第1の実施の形態)
図1は本発明の第1実施形態に係る固体酸化物形燃料電池100を表す側面図である。固体酸化物形燃料電池100は,燃料ガスと空気の供給を受けて発電を行う装置である。燃料ガスとして,都市ガスなどの炭化水素燃料を用いることができる。固体酸化物形燃料電池100は,燃料電池スタック110,空気配管121,122,導電性出力部材131,132,熱交換器140,断熱容器170を有する。なお,熱交換器140および空気配管121,122は,切断した断面状態を表している。また,燃料ガスおよび排ガスの配管の図示が省略されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a side view showing a solid oxide fuel cell 100 according to the first embodiment of the present invention. The solid oxide fuel cell 100 is a device that generates power by receiving supply of fuel gas and air. A hydrocarbon fuel such as city gas can be used as the fuel gas. The solid oxide fuel cell 100 includes a fuel cell stack 110, air pipes 121 and 122, conductive output members 131 and 132, a heat exchanger 140, and a heat insulating container 170. In addition, the heat exchanger 140 and the air piping 121 and 122 represent the cut | disconnected cross-sectional state. Also, illustration of fuel gas and exhaust gas piping is omitted.

燃料電池スタック110は,積層された燃料電池セル111,エンドプレート112,113を有する。燃料電池セル111は,板形状をなし,発電単位である。本実施形態では,燃料電池スタック110に発電に必要な量よりも多くの燃料ガスが投入され,余った燃料ガスは燃料電池スタック110の内部で燃焼される。燃料電池スタック110での燃料ガスの燃焼による発熱および発電時の燃料電池スタック110でのジュール熱と,断熱容器170からの放熱や投入ガスの予熱といった吸熱分とがバランスする。この結果,燃料電池スタック110の温度が一定に保たれ,熱自立運転がなされる。なお,燃料電池セル111の詳細は後述する。   The fuel cell stack 110 includes stacked fuel battery cells 111 and end plates 112 and 113. The fuel cell 111 has a plate shape and is a power generation unit. In the present embodiment, the fuel cell stack 110 is charged with more fuel gas than is necessary for power generation, and the surplus fuel gas is combusted inside the fuel cell stack 110. The heat generated by the combustion of the fuel gas in the fuel cell stack 110 and the Joule heat in the fuel cell stack 110 during power generation and the endothermic component such as heat release from the heat insulating container 170 and preheating of the input gas are balanced. As a result, the temperature of the fuel cell stack 110 is kept constant, and the heat independent operation is performed. Details of the fuel cell 111 will be described later.

エンドプレート112,113は,耐熱性及び導電性に優れた板材(例えばステンレス製の板材)から構成される。エンドプレート112,113は,積層される燃料電池セル111を押圧する保持板であり,かつ燃料電池スタック110からの電流の出力端子でもある。エンドプレート112,113を介し,燃料電池スタック110を積層方向に貫く固定部材114,115により,燃料電池セル111が締め付けられて固定,一体化されることで,燃料電池スタック110が構成される。この固定部材114,115は,例えば,ボルト及びそれに螺合するナット等であり,燃料電池スタック110の枠部にあけられた貫通孔を貫く様に配置される。なお,本実施形態では,エンドプレート112,113がそれぞれ正極,負極となる。   The end plates 112 and 113 are made of a plate material excellent in heat resistance and conductivity (for example, a plate material made of stainless steel). The end plates 112 and 113 are holding plates that press the stacked fuel battery cells 111 and are also output terminals for current from the fuel battery stack 110. The fuel cell stack 110 is configured by the fuel cell 111 being fastened and fixed and integrated by fixing members 114 and 115 penetrating the fuel cell stack 110 in the stacking direction via the end plates 112 and 113. The fixing members 114 and 115 are, for example, bolts and nuts screwed to the bolts, and are disposed so as to penetrate through holes formed in the frame portion of the fuel cell stack 110. In the present embodiment, the end plates 112 and 113 are a positive electrode and a negative electrode, respectively.

空気配管121,122は,燃料ガスと反応させるための空気(流体)を燃料電池スタック110に供給するための供給経路である。空気配管122から供給される空気が熱交換器140で加熱され,空気配管121を経由して,燃料電池スタック110に供給される。   The air pipes 121 and 122 are supply paths for supplying air (fluid) for reacting with the fuel gas to the fuel cell stack 110. Air supplied from the air pipe 122 is heated by the heat exchanger 140 and supplied to the fuel cell stack 110 via the air pipe 121.

導電性出力部材131,132は,燃料電池スタック110から電力を取り出すための部材である。エンドプレート112,113それぞれに,棒状の導電性出力部材131,132が接続される。導電性出力部材131,132は,耐熱性及び導電性に優れた例えばニッケルからなり,燃料電池スタック110の外に電力を取り出すリード部として機能する。エンドプレート112,113の右側面に,雌ねじのねじ孔が形成される(図示せず)。一方,エンドプレート112,113に接続される導電性出力部材131,132の左端部の外周には,雄ねじのねじ部が形成されている(図示せず)。この雄ねじと雌ねじの螺合により,エンドプレート112,113と導電性出力部材131,132とが接続される。   The conductive output members 131 and 132 are members for taking out electric power from the fuel cell stack 110. Bar-shaped conductive output members 131 and 132 are connected to the end plates 112 and 113, respectively. The conductive output members 131 and 132 are made of, for example, nickel having excellent heat resistance and conductivity, and function as lead portions for taking out electric power out of the fuel cell stack 110. A screw hole for a female screw is formed on the right side surface of the end plates 112 and 113 (not shown). On the other hand, a threaded portion of a male screw is formed on the outer periphery of the left end portion of the conductive output members 131 and 132 connected to the end plates 112 and 113 (not shown). The end plates 112 and 113 and the conductive output members 131 and 132 are connected by screwing of the male screw and the female screw.

熱交換器140は,空気配管122で供給される空気と,導電性出力部材131との間での熱交換を可能とする。熱交換器140は,容器141,および容器141内の空洞142を有する。導電性出力部材131が熱交換器140を貫通し,この空洞142内に配置される。空気配管122で供給される空気は,この空洞142内を通過する際に,導電性出力部材131からの放熱で加熱される。この熱交換により,導電性出力部材131からの放熱が有効利用され,外部に流出することが防止される。出力取り出し部位(導電性出力部材131)からの放熱を燃料電池スタック110に投入する空気により回収することで,熱ロスが少なくなる。この結果,燃料電池スタック110の熱自立運転が容易となる。   The heat exchanger 140 enables heat exchange between the air supplied through the air pipe 122 and the conductive output member 131. The heat exchanger 140 has a container 141 and a cavity 142 in the container 141. A conductive output member 131 passes through the heat exchanger 140 and is disposed in the cavity 142. The air supplied through the air pipe 122 is heated by heat radiation from the conductive output member 131 when passing through the cavity 142. By this heat exchange, the heat radiation from the conductive output member 131 is effectively used and is prevented from flowing out. By recovering the heat released from the output extraction portion (conductive output member 131) by the air introduced into the fuel cell stack 110, the heat loss is reduced. As a result, the fuel cell stack 110 can be easily operated by heat.

図2は,燃料電池セル111を分解した状態を表す斜視図である。燃料電池セル111は,コネクタプレート41(41a,41b),空気極フレーム42,絶縁フレーム43,セパレータ44,空気極45,電解質46,燃料極47,燃料極フレーム48を有する。   FIG. 2 is a perspective view showing a state in which the fuel cell 111 is disassembled. The fuel cell 111 includes a connector plate 41 (41a, 41b), an air electrode frame 42, an insulating frame 43, a separator 44, an air electrode 45, an electrolyte 46, a fuel electrode 47, and a fuel electrode frame 48.

コネクタプレート41a,41bは,金属等の導電性材料から構成され,燃料電池セル111の厚み方向の両側に一対配置される。コネクタプレート41により,燃料電池セル111それぞれのガス流路が分離され,かつ板厚方向での導通が確保される。   The connector plates 41 a and 41 b are made of a conductive material such as metal, and a pair is arranged on both sides of the fuel cell 111 in the thickness direction. The connector plate 41 separates the gas flow paths of the fuel cells 111 and ensures conduction in the thickness direction.

隣り合う燃料電池セル111の間に配置されるコネクタプレート41は,インターコネクタとなり,隣り合う燃料電池セル111を区分する。燃料電池スタック110の積層方向の両端に配置されるコネクタプレート41が,エンドプレート112,113となる。   The connector plate 41 disposed between the adjacent fuel cells 111 serves as an interconnector, and separates the adjacent fuel cells 111. The connector plates 41 arranged at both ends in the stacking direction of the fuel cell stack 110 become the end plates 112 and 113.

電解質46は,矩形の板形状であり,例えば,ZrO等の酸化物から構成され,セパレータ44の下面に固定される。電解質46は,酸素イオン伝導性固体電解質体として機能する。電解質46の上下に,空気極45および燃料極47が固着される。空気極45とコネクタプレート41aとの間には,その導通を確保するために,集電体(図示せず)が配置される。 The electrolyte 46 has a rectangular plate shape, is made of an oxide such as ZrO 2 , and is fixed to the lower surface of the separator 44. The electrolyte 46 functions as an oxygen ion conductive solid electrolyte body. An air electrode 45 and a fuel electrode 47 are fixed on and under the electrolyte 46. A current collector (not shown) is arranged between the air electrode 45 and the connector plate 41a in order to ensure the conduction.

コネクタプレート41a,空気極フレーム42,絶縁フレーム43によって,セパレータ44の上方に空気室が構成される。燃料極フレーム48,コネクタプレート41bによって,セパレータ44の下方に燃料室が構成される。燃料室,空気室それぞれに,燃料ガス,空気が導入され,高温(例えば,700℃程度)に加熱されることで,電解質46を介して,燃料ガスと空気中の酸素が反応し,空気極45,燃料極47をそれぞれ正極,負極とする直流の電気エネルギーが発生する。   An air chamber is formed above the separator 44 by the connector plate 41 a, the air electrode frame 42, and the insulating frame 43. A fuel chamber is formed below the separator 44 by the fuel electrode frame 48 and the connector plate 41b. Fuel gas and air are introduced into the fuel chamber and the air chamber, respectively, and heated to a high temperature (for example, about 700 ° C.), so that the fuel gas and oxygen in the air react via the electrolyte 46, and the air electrode 45, direct current electric energy is generated using the fuel electrode 47 as a positive electrode and a negative electrode, respectively.

断熱容器170は,断熱性能を有した容器であり,燃料電池スタック110を格納する。空気配管121,122は,断熱容器170の内外に配置される。導電性出力部材131,132は,断熱容器170を貫通して配置される。この例では,熱交換器140が断熱容器170の内外に渡って配置される。これに対して,熱交換器140を断熱容器170の内部あるいは外部のみに配置することも可能である。但し,どちらかと言えば,熱交換器140は断熱容器170の外部に設置するほうが好ましい。熱交換器140を断熱容器170の内部に設置すると,断熱容器170内の熱が熱交換器140により吸熱されるためである。   The heat insulating container 170 is a container having heat insulating performance, and stores the fuel cell stack 110. The air pipes 121 and 122 are disposed inside and outside the heat insulating container 170. The conductive output members 131 and 132 are disposed through the heat insulating container 170. In this example, the heat exchanger 140 is disposed across the inside and outside of the heat insulating container 170. On the other hand, it is also possible to arrange the heat exchanger 140 only inside or outside the heat insulating container 170. However, if anything, it is preferable to install the heat exchanger 140 outside the heat insulating container 170. This is because when the heat exchanger 140 is installed inside the heat insulating container 170, the heat in the heat insulating container 170 is absorbed by the heat exchanger 140.

(第2の実施の形態)
図3は本発明の第2実施形態に係る固体酸化物形燃料電池200を表す側面図である。固体酸化物形燃料電池200は,燃料電池スタック110,空気配管221,222,導電性出力部材131,132,熱交換器240,断熱容器170を有する。なお,熱交換器240および空気配管221,222は,切断した断面状態を表している。また,燃料ガスおよび排ガスの配管の図示が省略されている。
(Second Embodiment)
FIG. 3 is a side view showing a solid oxide fuel cell 200 according to the second embodiment of the present invention. The solid oxide fuel cell 200 includes a fuel cell stack 110, air pipes 221 and 222, conductive output members 131 and 132, a heat exchanger 240, and a heat insulating container 170. The heat exchanger 240 and the air pipes 221 and 222 represent a cut cross-sectional state. Also, illustration of fuel gas and exhaust gas piping is omitted.

熱交換器240は,空気配管222で供給される空気と,導電性出力部材131との間での熱交換を可能とする。熱交換器240は,容器241,および容器241内の空洞242を有する。導電性出力部材131が熱交換器240を貫通し,この空洞242内に配置される。空気配管222で供給される空気は,この空洞242内を通過する際に,導電性出力部材131からの放熱で加熱される。本実施形態では,容器141,空洞242が円筒形であり,その軸に沿って導電性出力部材131が配置される。導電性出力部材131が空洞242の軸に配置されることで,空洞242内の空気に導電性出力部材131からの放熱が均一に伝達され,熱ロスのさらなる低減が可能となる(効果的な熱の回収)。
以上の点を除き,本実施形態に係る固体酸化物形燃料電池200は,固体酸化物形燃料電池100と実質的に相違する訳ではないので,詳細な説明を省略する。
The heat exchanger 240 enables heat exchange between the air supplied through the air pipe 222 and the conductive output member 131. The heat exchanger 240 has a container 241 and a cavity 242 in the container 241. A conductive output member 131 passes through the heat exchanger 240 and is disposed in the cavity 242. The air supplied from the air pipe 222 is heated by heat radiation from the conductive output member 131 when passing through the cavity 242. In this embodiment, the container 141 and the cavity 242 are cylindrical, and the conductive output member 131 is disposed along the axis. By disposing the conductive output member 131 on the shaft of the cavity 242, heat radiation from the conductive output member 131 is uniformly transmitted to the air in the cavity 242, and further reduction in heat loss is possible (effectively Heat recovery).
Except for the above points, the solid oxide fuel cell 200 according to the present embodiment is not substantially different from the solid oxide fuel cell 100, and a detailed description thereof will be omitted.

(第3の実施の形態)
図4は本発明の第3実施形態に係る固体酸化物形燃料電池300を表す側面図である。固体酸化物形燃料電池300は,燃料電池スタック110,空気配管321,322,導電性出力部材131,132,熱交換器340,断熱容器170を有する。なお,燃料ガスおよび排ガスの配管の図示が省略されている。
(Third embodiment)
FIG. 4 is a side view showing a solid oxide fuel cell 300 according to the third embodiment of the present invention. The solid oxide fuel cell 300 includes a fuel cell stack 110, air pipes 321 and 322, conductive output members 131 and 132, a heat exchanger 340, and a heat insulating container 170. Illustration of piping for fuel gas and exhaust gas is omitted.

熱交換器340は,空気配管322で供給される空気と,導電性出力部材131との間での熱交換を可能とする。熱交換器340は,空気配管341を有する。空気配管341は,空気配管321,322の間に配置され,導電性出力部材131に螺旋状に巻き付けられる。空気配管341を通過する空気が,導電性出力部材131からの放熱で加熱される。
以上の点を除き,本実施形態に係る固体酸化物形燃料電池300は,固体酸化物形燃料電池100と実質的に相違する訳ではないので,詳細な説明を省略する。
The heat exchanger 340 enables heat exchange between the air supplied through the air pipe 322 and the conductive output member 131. The heat exchanger 340 has an air pipe 341. The air pipe 341 is disposed between the air pipes 321 and 322 and is wound around the conductive output member 131 in a spiral shape. Air passing through the air pipe 341 is heated by heat radiation from the conductive output member 131.
Except for the above points, the solid oxide fuel cell 300 according to the present embodiment is not substantially different from the solid oxide fuel cell 100, and a detailed description thereof will be omitted.

(比較例)
図5は本発明の比較例に係る固体酸化物形燃料電池100xを表す側面図である。固体酸化物形燃料電池100xは,燃料電池スタック110,空気配管121x,導電性出力部材131,132,断熱容器170を有する。即ち,固体酸化物形燃料電池100xは熱交換器を有せず,空気配管121xから流入される空気はそのまま燃料電池スタック110に投入される。
(Comparative example)
FIG. 5 is a side view showing a solid oxide fuel cell 100x according to a comparative example of the present invention. The solid oxide fuel cell 100x includes a fuel cell stack 110, an air pipe 121x, conductive output members 131 and 132, and a heat insulating container 170. That is, the solid oxide fuel cell 100x does not have a heat exchanger, and the air flowing from the air pipe 121x is input to the fuel cell stack 110 as it is.

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

1.上記実施形態では,熱交換器140〜340によって,燃料電池スタック110での反応用の空気を加熱していた。空気に換えて,他の流体を加熱することも可能である。このような流体として,(1)燃料ガス,(2)燃料ガスを水蒸気改質するための水,(3)汎用の水が考えられる。 1. In the above embodiment, the reaction air in the fuel cell stack 110 is heated by the heat exchangers 140 to 340. It is possible to heat other fluids instead of air. As such a fluid, (1) fuel gas, (2) water for steam reforming the fuel gas, and (3) general-purpose water can be considered.

固体酸化物形燃料電池100の燃料極47で炭素が析出すると燃料電池スタック110が劣化,もしくは破損する恐れがある。このため,燃料ガス(炭化水素燃料)を改質してから,燃料電池スタック110へ流すことが望ましい。水蒸気で燃料ガス(例えば,炭化水素燃料)を改質し(水蒸気改質方式),炭素の析出を防止できる。このために,水蒸気改質用の水が固体酸化物形燃料電池100に供給される。そして,その水を気化するために気化器が,燃料ガスを改質するために改質触媒を入れた改質器が必要となる。但し,固体酸化物形燃料電池の燃料極で水蒸気改質を行うことも可能である。この場合,改質器を別途に設ける必要は無い。この改質用の水を熱交換器140〜340によって加熱することでも,導電性出力部材131からの熱ロスを低減できる。   If carbon deposits at the fuel electrode 47 of the solid oxide fuel cell 100, the fuel cell stack 110 may be deteriorated or damaged. For this reason, it is desirable to reform the fuel gas (hydrocarbon fuel) and then flow it to the fuel cell stack 110. Fuel gas (for example, hydrocarbon fuel) can be reformed with steam (steam reforming method) to prevent carbon deposition. For this purpose, water for steam reforming is supplied to the solid oxide fuel cell 100. A vaporizer is needed to vaporize the water, and a reformer containing a reforming catalyst is needed to reform the fuel gas. However, it is also possible to perform steam reforming at the fuel electrode of the solid oxide fuel cell. In this case, there is no need to provide a separate reformer. Heat loss from the conductive output member 131 can also be reduced by heating the reforming water using the heat exchangers 140 to 340.

2.上記実施形態では,導電性出力部材131のみに,熱交換器140〜340が取り付けられていた。これに対して,導電性出力部材132のみ,導電性出力部材131,132の双方に熱交換器140〜340を取り付けても良い。また,導電性出力部材131,132で異なる流体を加熱することも可能である。例えば,導電性出力部材131,132それぞれで,空気,水を加熱することができる。 2. In the above embodiment, the heat exchangers 140 to 340 are attached only to the conductive output member 131. On the other hand, the heat exchangers 140 to 340 may be attached only to the conductive output member 132 and to both the conductive output members 131 and 132. It is also possible to heat different fluids with the conductive output members 131 and 132. For example, air and water can be heated by the conductive output members 131 and 132, respectively.

以下,本発明の実施例を説明する。
実施例1は,第1の実施形態に対応する。即ち,燃料電池スタック110からの出力取り出し部材(導電性出力部材131)が熱交換器140を貫通するように組付け,出力取り出し部材(導電性出力部材131)からの熱を回収する。但し,加熱される流体を汎用の水とした。この水は,例えば,風呂に利用できる。
Examples of the present invention will be described below.
Example 1 corresponds to the first embodiment. That is, the output extraction member (conductive output member 131) from the fuel cell stack 110 is assembled so as to penetrate the heat exchanger 140, and the heat from the output extraction member (conductive output member 131) is recovered. However, the heated fluid was general-purpose water. This water can be used, for example, for a bath.

実施例2は,熱交換器140に流す流体を水蒸気改質用の水をとして使用する以外は,実施例1と同様とした。   Example 2 was the same as Example 1 except that the fluid flowing through the heat exchanger 140 was used as water for steam reforming.

実施例3は,熱交換器140に流す流体を発電に必要な空気をとする以外は,実施例1と同様とした。   Example 3 was the same as Example 1 except that the fluid flowing through the heat exchanger 140 was air necessary for power generation.

実施例4は,熱交換器140に流す流体を燃料ガスとしてのメタンとする以外は,実施例1と同様とした。   Example 4 was the same as Example 1 except that the fluid flowing through the heat exchanger 140 was methane as the fuel gas.

実施例5は,第2の実施形態に対応する。即ち,熱交換器240を二重構造とし,外側に空気,もしくは水を流す。   Example 5 corresponds to the second embodiment. That is, the heat exchanger 240 has a double structure, and air or water flows outside.

実施例6は,第3の実施形態に対応する。即ち,導電性出力部材131の外側に螺旋状に空気配管341を巻き付け,その空気配管341に空気,もしくは水を流す。   Example 6 corresponds to the third embodiment. In other words, the air pipe 341 is spirally wound around the conductive output member 131 and air or water is caused to flow through the air pipe 341.

実施例7では,2つの熱交換器がある。即ち,導電性出力部材131,132それぞれに配管を取り付け,片側には燃料ガスをもう一方には空気を流した。   In Example 7, there are two heat exchangers. That is, piping was attached to each of the conductive output members 131 and 132, fuel gas was flowed on one side, and air was flowed on the other side.

実施例8は,一方の配管に水,他方の配管に空気を流す以外は実施例7と同様とした。   Example 8 was the same as Example 7 except that water was passed through one pipe and air was passed through the other pipe.

実施例9は,一方の配管に燃料ガス(メタン),他方の配管に水を流す以外は実施例7と同様とした。   Example 9 was the same as Example 7 except that fuel gas (methane) was passed through one pipe and water was passed through the other pipe.

比較例では,熱交換器を有しない。即ち,導電性出力部材131,132に何の熱交換機能を付与されない。   The comparative example does not have a heat exchanger. That is, no heat exchange function is given to the conductive output members 131 and 132.

燃料電池スタック110に投入される直前の温度と熱交換器に投入する時の温度差,比熱,密度,流量から計算して,熱交換器で回収した熱量を算出した。その結果を図6に示す。   The amount of heat recovered by the heat exchanger was calculated by calculating from the temperature difference just before being introduced to the fuel cell stack 110 and the temperature difference at the time of introduction to the heat exchanger, specific heat, density, and flow rate. The result is shown in FIG.

比較例1では,出力取り出し部材(導電性出力部材131,132)からの放熱を回収していないため,φ15程度の出力線を用いた場合には,スタック温度が700℃の時に1本当たり15〜20Wの放熱がある。   In Comparative Example 1, since the heat radiation from the output take-out members (conductive output members 131 and 132) is not recovered, when an output line of about φ15 is used, 15 per unit when the stack temperature is 700 ° C. There is ~ 20W heat dissipation.

導電性出力部材131,132からの放熱は,相当に大きい。導電性出力部材131がφ15mm,長さ200mmで,燃料電池スタック110の温度が700℃の時に,導電性出力部材131,132の1本当たり約20Wの放熱がある。固体酸化物形燃料電池100が1kW出力の場合,放熱が約900Wでも熱自立運転は可能である。しかし,固体酸化物形燃料電池100への負荷を500W,200W,100Wと下げた場合には,それぞれ放熱を450W,180W,90W以下としないと熱自立運転は不可能となる。このように,導電性出力部材131,132からの放熱は決して無視できる値ではない。その放熱を回収し,燃料電池スタック110へと返すことで,より低出力発電の時でも熱自立運転が容易となる。   The heat radiation from the conductive output members 131 and 132 is considerably large. When the conductive output member 131 is φ15 mm, the length is 200 mm, and the temperature of the fuel cell stack 110 is 700 ° C., there is about 20 W of heat dissipation per conductive output member 131, 132. When the solid oxide fuel cell 100 has a 1 kW output, the heat self-sustained operation is possible even if the heat dissipation is about 900 W. However, when the load on the solid oxide fuel cell 100 is reduced to 500 W, 200 W, and 100 W, the heat self-sustaining operation is impossible unless the heat radiation is set to 450 W, 180 W, and 90 W or less, respectively. Thus, the heat radiation from the conductive output members 131 and 132 is not a negligible value. By recovering the heat radiation and returning it to the fuel cell stack 110, the thermal self-sustained operation becomes easy even when the power generation is lower.

実施例1のように水で熱交換させ,その水を例えばコジェネレーションとしての温水を生成する装置の前段階とすることで,熱を利用できることになり,全体のシステム効率の向上に繋がる。   Heat is exchanged with water as in the first embodiment, and the water is used, for example, as a pre-stage of a device that generates hot water as cogeneration, so that heat can be used, leading to improvement in overall system efficiency.

実施例2では,熱交換した水を燃料電池スタック110へと投入することにより,水の移動距離が短くなる。このため,熱ロスが小さく,回収した熱を効果的に利用できる。   In the second embodiment, the water movement distance is shortened by introducing the heat-exchanged water into the fuel cell stack 110. For this reason, heat loss is small and the recovered heat can be used effectively.

実施例3のように熱交換する流体を水ではなく,空気としても実施例2と同様の効果が得られる。   The same effect as in the second embodiment can be obtained by using air instead of water as in the third embodiment instead of water.

実施例4のように熱交換する流体を燃料としても実施例2と同様の効果が得られる。   The same effect as in the second embodiment can be obtained by using a fluid for heat exchange as in the fourth embodiment as a fuel.

実施例5のように熱交換器を二重構造とすることで,効果的な熱交換が可能となり,熱ロスが小さくなる。   The heat exchanger having a double structure as in the fifth embodiment enables effective heat exchange and reduces heat loss.

実施例6のように,螺旋状に配管を巻き付け,その配管に熱交換する流体を流すことで,実施例5よりもより効果的に熱交換を行うことが可能となり,熱ロスがより小さくなる。   As in the sixth embodiment, a pipe is spirally wound and a fluid for heat exchange is allowed to flow through the pipe, so that heat exchange can be performed more effectively than in the fifth embodiment, and heat loss is reduced. .

実施例7〜9のように,導電性出力部材131,132の両方に熱交換機能を付与することで,熱ロスは小さくできる。即ち,実施例7〜9のように,2本の導電性出力部材131,132に対し,燃料電池スタック110に必要な燃料,空気,水の内,いずれか2つの流体(媒体)にて熱交換することが最も効率が良かった。この場合,最終的な回収熱量は,2つの媒体それぞれでの回収熱量の和となる。この観点からすると,実施例8での水と空気の組み合わせが良かった。   As in Examples 7 to 9, heat loss can be reduced by providing a heat exchange function to both the conductive output members 131 and 132. That is, as in Examples 7 to 9, the two conductive output members 131 and 132 are heated by any two fluids (mediums) out of fuel, air, and water necessary for the fuel cell stack 110. Replacing was the most efficient. In this case, the final recovered heat amount is the sum of the recovered heat amounts of the two media. From this point of view, the combination of water and air in Example 8 was good.

なお,実施例5,6では,2つの媒体(空気,水)を別個に使用しているので(2つの媒体を同時に使用している訳ではない),最終的な回収熱量は,それぞれの媒体での回収熱量そのものである。   In Examples 5 and 6, since two media (air and water) are used separately (not using two media at the same time), the final recovered heat quantity is determined for each medium. This is the amount of heat recovered.

本発明の第1実施形態に係る固体酸化物形燃料電池100を表す側面図である。1 is a side view showing a solid oxide fuel cell 100 according to a first embodiment of the present invention. 燃料電池セル111を分解した状態を表す斜視図である。It is a perspective view showing the state where fuel cell 111 was disassembled. 本発明の第2実施形態に係る固体酸化物形燃料電池200を表す側面図である。It is a side view showing the solid oxide fuel cell 200 concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る固体酸化物形燃料電池300を表す側面図である。It is a side view showing the solid oxide fuel cell 300 concerning a 3rd embodiment of the present invention. 本発明の比較例に係る固体酸化物形燃料電池100xを表す側面図である。It is a side view showing the solid oxide fuel cell 100x which concerns on the comparative example of this invention. 実験結果を纏めた表である。It is the table | surface which summarized the experimental result.

符号の説明Explanation of symbols

100 固体酸化物形燃料電池
110 燃料電池スタック
111 燃料電池セル
112,113 エンドプレート
114,115 固定部材
121,122 空気配管
131,132 導電性出力部材
140 熱交換器
141 容器
142 空洞
170 断熱容器
41(41a,41b) コネクタプレート
42 空気極フレーム
43 絶縁フレーム
44 セパレータ
45 空気極
46 電解質
47 燃料極
48 燃料極フレーム
100 Solid oxide fuel cell 110 Fuel cell stack 111 Fuel cell 112, 113 End plate 114, 115 Fixing member 121, 122 Air piping 131, 132 Conductive output member 140 Heat exchanger 141 Container 142 Cavity 170 Thermal insulation container 41 ( 41a, 41b) Connector plate 42 Air electrode frame 43 Insulating frame 44 Separator 45 Air electrode 46 Electrolyte 47 Fuel electrode 48 Fuel electrode frame

Claims (6)

燃料極および空気極が両面に配置された酸素イオン伝導性固体電解質体が積層され,燃料ガスと空気中の酸素との反応により電力を発生する燃料電池スタックと,
前記燃料電池スタックに,前記燃料ガスと反応させるための空気,前記燃料ガスを水蒸気改質するための水,前記燃料ガスのいずれかの流体を供給する供給経路と,
前記燃料電池スタックで発生した電力を取り出す出力部材と,
前記出力部材と前記流体との間で熱交換するための熱交換器と,
を具備することを特徴とする固体酸化物形燃料電池。
A fuel cell stack in which an oxygen ion conductive solid electrolyte body with a fuel electrode and an air electrode disposed on both sides is stacked, and generates electric power by the reaction between fuel gas and oxygen in the air;
A supply path for supplying the fuel cell stack with air for reacting with the fuel gas, water for steam reforming the fuel gas, and any fluid of the fuel gas;
An output member for extracting electric power generated in the fuel cell stack;
A heat exchanger for exchanging heat between the output member and the fluid;
A solid oxide fuel cell comprising:
前記熱交換器が,前記出力部材を囲み,前記流体を通過させる容器を有する
ことを特徴とする請求項1記載の固体酸化物形燃料電池。
The solid oxide fuel cell according to claim 1, wherein the heat exchanger includes a container that surrounds the output member and allows the fluid to pass therethrough.
前記熱交換器が,前記出力部材に巻き付けられ,前記流体を通過させる配管を有する
ことを特徴とする請求項1記載の固体酸化物形燃料電池。
The solid oxide fuel cell according to claim 1, wherein the heat exchanger includes a pipe wound around the output member and allowing the fluid to pass therethrough.
前記出力部材が,正極,負極それぞれに対応する第1,第2の出力部材を有し,
前記熱交換器が,第1,第2の出力部材それぞれに対応する第1,第2の熱交換器を有する
ことを特徴とする請求項1乃至3のいずれか1項に記載の固体酸化物形燃料電池。
The output member has first and second output members corresponding to the positive electrode and the negative electrode,
The solid oxide according to any one of claims 1 to 3, wherein the heat exchanger includes first and second heat exchangers corresponding to the first and second output members, respectively. Fuel cell.
前記第1,第2の熱交換器それぞれで熱交換される流体が異なる
ことを特徴とする請求項4に記載の固体酸化物形燃料電池。
5. The solid oxide fuel cell according to claim 4, wherein fluids exchanged by the first and second heat exchangers are different from each other.
前記燃料電池スタックを覆う断熱容器
をさらに具備することを特徴とする請求項1乃至5のいずれか1項に記載の固体酸化物形燃料電池。
The solid oxide fuel cell according to any one of claims 1 to 5, further comprising a heat insulating container covering the fuel cell stack.
JP2008124924A 2008-05-12 2008-05-12 Solid oxide fuel cell Pending JP2009277374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124924A JP2009277374A (en) 2008-05-12 2008-05-12 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124924A JP2009277374A (en) 2008-05-12 2008-05-12 Solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2009277374A true JP2009277374A (en) 2009-11-26

Family

ID=41442633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124924A Pending JP2009277374A (en) 2008-05-12 2008-05-12 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2009277374A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080177A (en) * 2008-09-25 2010-04-08 Hitachi Ltd Fuel cell power generation module
JP2016119297A (en) * 2014-12-19 2016-06-30 ヘクシス アクチェンゲゼルシャフト Fuel battery module
WO2019003989A1 (en) * 2017-06-30 2019-01-03 京セラ株式会社 Cell stack device, fuel cell module, and fuel cell device
JP2022505501A (en) * 2018-10-26 2022-01-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Solid oxide electrochemical system with built-in heating means

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109650A (en) * 2001-09-28 2003-04-11 Mitsubishi Materials Corp Collector structure for fuel cell
JP2004319462A (en) * 2003-03-28 2004-11-11 Kyocera Corp Fuel cell assembly
JP2008198372A (en) * 2007-02-08 2008-08-28 Casio Comput Co Ltd Fuel cell device and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109650A (en) * 2001-09-28 2003-04-11 Mitsubishi Materials Corp Collector structure for fuel cell
JP2004319462A (en) * 2003-03-28 2004-11-11 Kyocera Corp Fuel cell assembly
JP2008198372A (en) * 2007-02-08 2008-08-28 Casio Comput Co Ltd Fuel cell device and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080177A (en) * 2008-09-25 2010-04-08 Hitachi Ltd Fuel cell power generation module
JP2016119297A (en) * 2014-12-19 2016-06-30 ヘクシス アクチェンゲゼルシャフト Fuel battery module
US11349142B2 (en) 2014-12-19 2022-05-31 Hexis Ag Fuel cell module
WO2019003989A1 (en) * 2017-06-30 2019-01-03 京セラ株式会社 Cell stack device, fuel cell module, and fuel cell device
JP6498850B1 (en) * 2017-06-30 2019-04-10 京セラ株式会社 Cell stack device, fuel cell module and fuel cell device
JP2022505501A (en) * 2018-10-26 2022-01-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Solid oxide electrochemical system with built-in heating means

Similar Documents

Publication Publication Date Title
JP5129452B2 (en) Fuel cell power generation system
JP5260132B2 (en) Solid oxide fuel cell
US10193170B2 (en) Fuel cell module
JP6320204B2 (en) Fuel cell heating apparatus, heating method, and fuel cell apparatus including the same
JP2006331678A (en) Fuel cell system
JP2009277374A (en) Solid oxide fuel cell
TWI459624B (en) Fuel cell module
KR101897500B1 (en) Fuel cell system with heat exchager using reformed gas or anode off gas
JP2011113743A (en) Generation device
JP6099408B2 (en) Power generation system and method for operating power generation system
JP2009193808A (en) Solid oxide fuel cell
KR101897486B1 (en) Fuel cell system with heat exchager using burner off gas
JP5940470B2 (en) FUEL CELL MODULE AND FUEL CELL SYSTEM INCLUDING THE SAME
CN109478662B (en) Fuel cell system
EP2617090B1 (en) Method and arrangement for avoiding anode oxidation in a high temperature fuel cell system
WO2014112018A1 (en) Fuel cell device
KR101817432B1 (en) Fuel cell system
JP5502440B2 (en) FUEL CELL STACK AND FUEL CELL SYSTEM INCLUDING THE SAME
KR100778480B1 (en) Heat storaging apparatus of fuel cell system
JP6215744B2 (en) Heat exchanger and fuel cell system
KR100774465B1 (en) Apparatus for preventing heat loss in fuel cell system
JP3191025U (en) Fluid heating device
JP2017527945A (en) Fuel cell module with increased thermal efficiency, heating system using the same, and control method thereof
JP2010113959A (en) Fuel cell stack
JP5491079B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625