JP2009276207A - Surface defect inspection device - Google Patents

Surface defect inspection device Download PDF

Info

Publication number
JP2009276207A
JP2009276207A JP2008127764A JP2008127764A JP2009276207A JP 2009276207 A JP2009276207 A JP 2009276207A JP 2008127764 A JP2008127764 A JP 2008127764A JP 2008127764 A JP2008127764 A JP 2008127764A JP 2009276207 A JP2009276207 A JP 2009276207A
Authority
JP
Japan
Prior art keywords
optical system
imaging
image
receiving surface
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008127764A
Other languages
Japanese (ja)
Inventor
Hisao Osawa
日佐雄 大澤
Shinichi Nakajima
伸一 中島
Takeshi Matsuo
武史 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008127764A priority Critical patent/JP2009276207A/en
Publication of JP2009276207A publication Critical patent/JP2009276207A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently detect a defect, while enhancing the accuracy of defect detection. <P>SOLUTION: This surface defect inspection device is equipped with an imaging part 2 for imaging a surface 1a of an inspected object 1 and a processing part 4 for detecting a defect in the surface 1a of the inspected object 1, based on an image acquired by the imaging part 2. The imaging part 2 comprises an imaging element 11 for imaging an image formed on a light-receiving surface 11a and an optical system 12 for forming an image of the surface 1a of the inspected object 1 on the receiving surface 11a. The optical axis O of the optical system 12 is inclined, in a relation to a normal line N1 of the surface 1a of the inspected object 1. A normal line N2 of the receiving surface 11a is inclined relatively, in relation to the optical axis O of the optical system 12 so as to decrease the defocus amount of the surface 1a, which is caused by the optical system 12, of the inspected object 1 on the peripheral part of the receiving surface 11a, as compared with when the normal line N2 of the receiving surface 11a is set parallel with respect to the optical axis O of the optical system 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基板などの被検査物の表面の欠陥を検出する表面欠陥検査装置に関するものである。   The present invention relates to a surface defect inspection apparatus for detecting defects on the surface of an inspection object such as a substrate.

従来から、基板などの被検査物の表面の欠陥を検出する場合、CCDカメラ等の撮像部で被検査物の表面を撮像し、撮像部から得られた画像を処理して被検査物の表面の欠陥を検出している(例えば、下記特許文献1)。CCDカメラ等の撮像部は、受光面に形成された像を撮像するCCD等の撮像素子と、前記受光面に前記被検査物の表面の像を形成する光学系とを有している。そして、前記撮像部では、前記光学系の光軸と撮像素子の受光面の法線とは平行にされている。   Conventionally, when detecting defects on the surface of an inspected object such as a substrate, the surface of the inspected object is processed by imaging the surface of the inspected object with an imaging unit such as a CCD camera and processing the image obtained from the imaging unit. (For example, the following patent document 1). An imaging unit such as a CCD camera has an imaging element such as a CCD that captures an image formed on a light receiving surface, and an optical system that forms an image of the surface of the inspection object on the light receiving surface. In the imaging unit, the optical axis of the optical system and the normal line of the light receiving surface of the imaging element are made parallel.

このように撮像部で被検査物の表面を撮像し、撮像部から得られた画像を処理して被検査物の表面の欠陥を検出する場合、撮像部の光学系の光軸が被検査物の表面の法線に対してある程度傾くように撮像部が配置される場合がある。例えば、下記特許文献1に開示された表面欠陥検査装置では、照明光を被検査物に照射し、撮像部によって被検査物の表面の暗視野像を撮像するために、撮像部の光学系の光軸が被検査物の表面の法線に対して傾くように撮像部が配置されている。
特開平4−344447号公報
In this way, when the surface of the inspection object is imaged by the imaging unit and the image obtained from the imaging unit is processed to detect defects on the surface of the inspection object, the optical axis of the optical system of the imaging unit is the inspection object. In some cases, the imaging unit is arranged so as to be inclined to some extent with respect to the normal of the surface. For example, in the surface defect inspection apparatus disclosed in Patent Document 1 below, in order to irradiate the inspection object with illumination light and to capture a dark field image of the surface of the inspection object by the imaging unit, the optical system of the imaging unit The imaging unit is arranged so that the optical axis is inclined with respect to the normal line of the surface of the inspection object.
JP-A-4-344447

しかしながら、本発明者の研究の結果、前述した従来の表面欠陥検査装置では、撮像部の光学系の光軸が被検査物の表面の法線に対して傾くように撮像部が配置されていることに起因して、欠陥検出の精度が低下してしまうかあるいは効率良く欠陥を検出できなくなってしまうことが、判明した。   However, as a result of the inventor's research, in the conventional surface defect inspection apparatus described above, the imaging unit is arranged so that the optical axis of the optical system of the imaging unit is inclined with respect to the normal line of the surface of the inspection object. As a result, it has been found that the accuracy of defect detection is reduced or defects cannot be detected efficiently.

すなわち、前記従来の表面欠陥検査装置では、前述したように、撮像部の光学系の光軸が被検査物の前記表面の法線に対して傾けられ、撮像部の撮像素子の受光面の法線が撮像部の光学系の光軸と平行にされている。したがって、撮像部の視野内で被検査物の表面からの撮像素子の受光面までの距離が変化し、得られる被検査物の表面の画像は、中央付近ではジャストフォーカスの良好な像となるが、周辺部では傾いた方向にデフォーカスが発生してしまう。このため、デフォーカスが発生した周辺部の画像領域に基づいて欠陥検出を行うと、欠陥検出の精度が低下してしまう。   That is, in the conventional surface defect inspection apparatus, as described above, the optical axis of the optical system of the imaging unit is tilted with respect to the normal of the surface of the object to be inspected, and the method of the light receiving surface of the imaging element of the imaging unit The line is parallel to the optical axis of the optical system of the imaging unit. Therefore, the distance from the surface of the inspection object to the light receiving surface of the image sensor changes within the field of view of the imaging unit, and the obtained image of the surface of the inspection object is an image with a good just focus near the center. In the peripheral portion, defocusing occurs in a tilted direction. For this reason, if defect detection is performed based on the peripheral image area where defocusing occurs, the accuracy of defect detection is reduced.

一方、デフォーカスが発生した周辺部の画像領域を用いずにジャストフォーカスの良好な像が得られる中央付近の画像領域のみを用いて欠陥検出を行うと、欠陥検出の精度は高まるが、一度に欠陥を検出し得る領域(「一括検査領域」と呼ぶ。)が狭まってしまうために、被検査物の表面の所望の被検査領域の全体について検査を行うには、一括検査領域を順次移動させて当該領域を撮像する回数が増大してしまい、効率良く欠陥を検出することができなくなってしまう。   On the other hand, if defect detection is performed using only the image area near the center where an image with good focus can be obtained without using the peripheral image area where defocusing occurs, the accuracy of defect detection increases, but at one time In order to inspect the entire desired inspection area on the surface of the inspected object because the area where defects can be detected (referred to as “collective inspection area”) is narrowed, the collective inspection area is sequentially moved. As a result, the number of times that the area is imaged increases, and defects cannot be detected efficiently.

本発明は、このような事情に鑑みてなされたもので、欠陥検出の精度を高めつつ効率良く欠陥を検出することができる表面欠陥検査装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a surface defect inspection apparatus capable of efficiently detecting defects while improving the accuracy of defect detection.

前記課題を解決するため、本発明の一態様による表面欠陥検査装置は、被検査物の表面を撮像する撮像部と、該撮像部により得られた画像に基づいて前記被検査物の前記表面の欠陥を検出する処理部と、を備え、前記撮像部は、受光面に形成された像を撮像する撮像素子と、前記受光面に前記被検査物の前記表面の像を形成する光学系とを有し、前記光学系の光軸が前記被検査物の前記表面の法線に対して傾けられ、前記受光面の法線が前記光学系の光軸と平行である場合に比べて、前記受光面の周辺部での前記光学系による前記被検査物の前記表面のデフォーカス量が低減されるように、前記受光面の法線が前記光学系の光軸に対して相対的に傾けられたものである。   In order to solve the above problems, a surface defect inspection apparatus according to an aspect of the present invention includes an imaging unit that images the surface of an inspection object, and the surface of the inspection object based on an image obtained by the imaging unit. A processing unit that detects a defect, and the imaging unit includes an imaging element that captures an image formed on a light receiving surface, and an optical system that forms an image of the surface of the inspection object on the light receiving surface. The optical axis of the optical system is tilted with respect to the normal line of the surface of the object to be inspected, and the light receiving surface has a normal line parallel to the optical axis of the optical system. The normal line of the light receiving surface is tilted relative to the optical axis of the optical system so that the defocus amount of the surface of the inspection object by the optical system at the periphery of the surface is reduced. Is.

本発明によれば、欠陥検出の精度を高めつつ効率良く欠陥を検出することができる表面欠陥検査装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the surface defect inspection apparatus which can detect a defect efficiently, improving the precision of defect detection can be provided.

以下、本発明による表面欠陥検査装置について、図面を参照して説明する。   Hereinafter, a surface defect inspection apparatus according to the present invention will be described with reference to the drawings.

図1は、本発明の一実施の形態による表面欠陥検査装置を模式的に示す概略構成図である。図2は、図1中の要部を模式的に示す概略拡大図である。説明の便宜上、図1及び図2に示すように、互いに直交するX軸、Y軸、Z軸を定義する。透明基板1の表面1aがXY平面と平行となっている。   FIG. 1 is a schematic configuration diagram schematically showing a surface defect inspection apparatus according to an embodiment of the present invention. FIG. 2 is a schematic enlarged view schematically showing a main part in FIG. For convenience of explanation, as shown in FIGS. 1 and 2, an X axis, a Y axis, and a Z axis that are orthogonal to each other are defined. The surface 1a of the transparent substrate 1 is parallel to the XY plane.

本実施の形態による表面欠陥検査装置は、被検査物としてのガラス基板等の透明基板1の−Z側の表面1aの欠陥を検査するように構成され、透明基板1の−Z側の表面1aを撮像する撮像部としてのカメラ2と、透明基板1の−Z側の表面1aに照明光を照射する照明光学系3と、カメラ2により得られた画像に基づいて透明基板1の−Z側の表面1aの欠陥を検出する処理部4と、制御部5と、移動機構としてのXYステージ6とを備えている。   The surface defect inspection apparatus according to the present embodiment is configured to inspect defects on the surface 1a on the −Z side of the transparent substrate 1 such as a glass substrate as an inspection object, and the surface 1a on the −Z side of the transparent substrate 1. A camera 2 as an image pickup unit for picking up images, an illumination optical system 3 for irradiating illumination light to the surface 1a on the −Z side of the transparent substrate 1, and the −Z side of the transparent substrate 1 based on an image obtained by the camera 2 The processing part 4 which detects the defect of the surface 1a of this, the control part 5, and the XY stage 6 as a moving mechanism are provided.

カメラ2は、受光面11aに形成された像を撮像して電気信号に変換するCCD等の撮像素子11と、前記受光面11aに透明基板1の−Z側の表面1aの像を形成する光学系としての撮像レンズ12とから構成されている。このように本実施の形態では、撮像レンズ12が撮像素子11の受光面11aに直接に透明基板1の−Z側の表面の像を形成しているが、必ずしもこれに限定されるものではない。例えば、撮像レンズ12が形成した像を、光ファイバ束を介して撮像素子11の受光面11aに入射させるようにしてもよい。この場合、撮像レンズ12が透明基板1の−Z側の表面の像を形成する受光面は、光ファイバ束の入射端面となる。撮像素子11による撮像動作は、制御部5からの指令によって行われる。   The camera 2 captures an image formed on the light receiving surface 11a and converts it into an electrical signal, and an optical device that forms an image of the surface 1a on the -Z side of the transparent substrate 1 on the light receiving surface 11a. And an imaging lens 12 as a system. As described above, in the present embodiment, the imaging lens 12 forms an image of the surface on the −Z side of the transparent substrate 1 directly on the light receiving surface 11 a of the imaging element 11, but is not necessarily limited thereto. . For example, an image formed by the imaging lens 12 may be incident on the light receiving surface 11a of the imaging element 11 via an optical fiber bundle. In this case, the light receiving surface on which the imaging lens 12 forms an image of the surface on the −Z side of the transparent substrate 1 is the incident end surface of the optical fiber bundle. The imaging operation by the imaging element 11 is performed by a command from the control unit 5.

照明光学系3は、光源13と、光源13からの光をコリメートとして透明基板1に照射するコリメータレンズ14とから構成されている。   The illumination optical system 3 includes a light source 13 and a collimator lens 14 that irradiates the transparent substrate 1 with light from the light source 13 as a collimator.

本実施の形態では、照明光学系3からの照明光が−Z方向に進行して透明基板1を透過してその−Z側の表面に照明光を照射するように、透明基板1の+Z側に配置されている。一方、カメラ2は、透明基板1の−Z側に配置され、照明光学系3からの照明光がカメラ2の視野に直接入らないように、撮像レンズ12の光軸Oが透明基板1の−Z側の表面1aの法線N1に対して傾けられている。本実施の形態では、図1及び図2に示すように、撮像レンズ12の光軸Oは、法線N1に対してY軸回りに図中の時計方向に角度θだけ傾けられている。これにより、カメラ2の撮像素子11によって、透明基板1の−Z側の表面1aの照明光学系3による被照明領域の暗視野像が撮像されるようになっている。図面では、法線N1はZ軸と平行となっている。なお、本実施の形態では、照明光学系3による被照明領域は、カメラ2の視野よりも広くなるように設定されているが、必ずしもこれに限定されるものではない。また、本実施の形態では、照明光学系3が透明基板1に対してカメラ2とは反対側に配置され、照明光学系3が透明基板1の−Z側の表面1aの欠陥による前方散乱光を捉えるようになっているが、本発明では、逆に、照明光学系3を透明基板1に対してカメラ2と同じ側に配置し、照明光学系3が透明基板1の−Z側の表面1aの欠陥による後方散乱光を捉えるようにしてもよい。後方散乱光を捉える場合には、被検査物は透明基板1等の透明体でなくてもよい。なお、前記角度θは、欠陥と散乱光の角度依存性等の観点からより高感度での欠陥の検出が可能となるように、最適化して設定することが好ましい。   In the present embodiment, the + Z side of the transparent substrate 1 is such that the illumination light from the illumination optical system 3 travels in the −Z direction, passes through the transparent substrate 1 and irradiates the −Z side surface with the illumination light. Is arranged. On the other hand, the camera 2 is arranged on the −Z side of the transparent substrate 1, and the optical axis O of the imaging lens 12 is − of the transparent substrate 1 so that the illumination light from the illumination optical system 3 does not directly enter the field of view of the camera 2. It is inclined with respect to the normal line N1 of the surface 1a on the Z side. In the present embodiment, as shown in FIGS. 1 and 2, the optical axis O of the imaging lens 12 is tilted by an angle θ in the clockwise direction in the drawing around the Y axis with respect to the normal line N1. Accordingly, a dark field image of the illuminated area by the illumination optical system 3 on the surface 1 a on the −Z side of the transparent substrate 1 is captured by the imaging element 11 of the camera 2. In the drawing, the normal line N1 is parallel to the Z axis. In the present embodiment, the area to be illuminated by the illumination optical system 3 is set to be wider than the field of view of the camera 2, but is not necessarily limited thereto. In the present embodiment, the illumination optical system 3 is disposed on the opposite side of the transparent substrate 1 from the camera 2, and the illumination optical system 3 is forward scattered light due to a defect on the surface 1 a on the −Z side of the transparent substrate 1. However, in the present invention, on the contrary, the illumination optical system 3 is disposed on the same side as the camera 2 with respect to the transparent substrate 1, and the illumination optical system 3 is the surface on the −Z side of the transparent substrate 1. You may make it catch the backscattered light by the defect of 1a. When capturing backscattered light, the inspection object may not be a transparent body such as the transparent substrate 1. In addition, it is preferable to optimize and set the angle θ so that the defect can be detected with higher sensitivity from the viewpoint of the angle dependency between the defect and the scattered light.

そして、本実施の形態では、カメラ2の撮像素子11の受光面11aの法線N2が撮像レンズ12の光軸Oと平行である場合に比べて、受光面11aの周辺部での撮像レンズ12による透明基板1の−Z側の表面1aのデフォーカス量が低減されるように、受光面11aの法線N2が撮像レンズ12の光軸Oに対して相対的に傾けられている。本実施の形態では、図1及び図2に示すように、法線N2は、光軸Oに対してY軸回りに図中の時計方向に角度θ’だけ傾けられている。この点については、後に詳述する。   In the present embodiment, the imaging lens 12 at the periphery of the light receiving surface 11a is compared with the case where the normal N2 of the light receiving surface 11a of the imaging element 11 of the camera 2 is parallel to the optical axis O of the imaging lens 12. The normal line N2 of the light receiving surface 11a is inclined relative to the optical axis O of the imaging lens 12 so that the defocus amount of the surface 1a on the −Z side of the transparent substrate 1 is reduced. In the present embodiment, as shown in FIGS. 1 and 2, the normal line N <b> 2 is inclined with respect to the optical axis O by the angle θ ′ around the Y axis in the clockwise direction in the drawing. This will be described in detail later.

XYステージ6は、制御部5の制御下で、カメラ2及び照明光学系3の全体をXY平面と平行な面内において2次元に移動させるようになっている。   The XY stage 6 moves the entire camera 2 and illumination optical system 3 two-dimensionally in a plane parallel to the XY plane under the control of the control unit 5.

処理部4は、制御部5の制御下で、カメラ2により得られた画像(本実施の形態では、暗視野画像)に基づいて、透明基板1の−Z側の表面における欠陥を検出する。   The processing unit 4 detects a defect on the surface on the −Z side of the transparent substrate 1 based on an image (a dark field image in the present embodiment) obtained by the camera 2 under the control of the control unit 5.

ここで、本実施の形態による表面欠陥検査装置の具体的な動作の一例について説明する。動作を開始すると、まず、制御部5は、XYステージ6を制御して、カメラ2及び照明光学系3の全体を、カメラ2の視野が透明基板1の最初の被検査領域となるように、移動させる。次いで、制御部5は、カメラ2の撮像素子11に透明基板1の最初の被検査領域の暗視野像を撮像させる。   Here, an example of a specific operation of the surface defect inspection apparatus according to the present embodiment will be described. When the operation is started, first, the control unit 5 controls the XY stage 6 so that the camera 2 and the illumination optical system 3 as a whole are arranged such that the field of view of the camera 2 becomes the first inspection area of the transparent substrate 1. Move. Next, the control unit 5 causes the imaging element 11 of the camera 2 to capture a dark field image of the first inspection area of the transparent substrate 1.

次に、処理部4は、カメラ2の撮像素子11により得られた暗視野画像を処理して、欠陥を検出する。この欠陥の検出は、例えば、暗視野画像から欠陥を検出する種々の公知の手法により行うことができる。欠陥の検出は、例えば、撮像素子11により得られた暗視野画像を2値化処理してラベリングすることにより行うことができる。このとき、必要に応じて、パターン認識技術等を利用して、欠陥の検出の精度を高めるようにしてもよいことは言うまでもない。   Next, the processing unit 4 processes the dark field image obtained by the imaging device 11 of the camera 2 to detect a defect. This defect detection can be performed, for example, by various known methods for detecting a defect from a dark field image. Defect detection can be performed, for example, by binarizing and labeling a dark field image obtained by the image sensor 11. At this time, it goes without saying that the accuracy of defect detection may be increased by using a pattern recognition technique or the like as necessary.

その後、処理部4は、未検査の被検査領域(未だ前述した撮像及び欠陥検出処理が行われていない透明基板1の被検査領域)があるか否かを判定する。未検査の被検査領域があれば、制御部5は、XYステージ6を制御して、カメラ2及び照明光学系3の全体を、カメラ2の視野が透明基板1の次の被検査領域となるように、移動させる。その後、当該被検査領域について、前述した撮像及び欠陥検出処理を繰り返す。   Thereafter, the processing unit 4 determines whether or not there is an uninspected area to be inspected (an area to be inspected on the transparent substrate 1 that has not yet undergone the above-described imaging and defect detection process). If there is an uninspected area to be inspected, the control unit 5 controls the XY stage 6 so that the entire camera 2 and the illumination optical system 3 become the next inspected area of the transparent substrate 1 with the field of view of the camera 2. To move. Thereafter, the above-described imaging and defect detection process is repeated for the inspection area.

このようにして、全ての被検査領域について、前述した撮像及び欠陥検出処理が終了すると、処理部4は、欠陥の有無、欠陥の数や位置などを、検査結果として外部へ出力する。これにより、一連の動作を終了する。なお、検査結果としては、欠陥の有無のみを出力してもよい。   In this way, when the above-described imaging and defect detection processing is completed for all the areas to be inspected, the processing unit 4 outputs the presence / absence of defects, the number and positions of defects, and the like as inspection results to the outside. As a result, the series of operations is completed. Note that only the presence or absence of defects may be output as the inspection result.

前述したように、カメラ2の撮像レンズ12の光軸Oが透明基板1の−Z側の表面1aの法線N1に対してなす角度をθとし、カメラ2の撮像素子11の受光面11aの法線N2が、カメラ2の撮像レンズ12の光軸Oに対してなす角度をθ’とする。また、図2に示すように、撮像レンズ12と透明基板1の表面1aとの間の距離(撮像レンズ12の光軸Oに沿った撮像レンズ12の主点から透明基板1の表面1aまでの距離)をLとし、カメラ2の視野角(光軸Oを含みXZ平面と平行な面内での視野角)をαとし、撮像レンズ12と撮像素子11の受光面11aとの間の距離(撮像レンズ12の光軸Oに沿った撮像レンズ12の主点から撮像素子11の受光面11aまでの距離)をL’とする。さらに、撮像レンズ12の投影倍率をMとし、撮像レンズ12の焦点距離をfとする。なお、図2に示す例では、撮像素子11の受光面(有効受光領域)の中心が、撮像レンズ12の光軸O上に位置しているものとしているが、必ずしもこれに限定されるものではない。   As described above, the angle formed by the optical axis O of the imaging lens 12 of the camera 2 with respect to the normal line N1 of the surface 1a on the −Z side of the transparent substrate 1 is θ, and the light receiving surface 11a of the imaging element 11 of the camera 2 is An angle formed by the normal N2 with respect to the optical axis O of the imaging lens 12 of the camera 2 is defined as θ ′. 2, the distance between the imaging lens 12 and the surface 1a of the transparent substrate 1 (from the principal point of the imaging lens 12 along the optical axis O of the imaging lens 12 to the surface 1a of the transparent substrate 1). (Distance) is L, the viewing angle of the camera 2 (viewing angle in a plane parallel to the XZ plane including the optical axis O) is α, and the distance between the imaging lens 12 and the light receiving surface 11a of the imaging device 11 ( Let L ′ be the distance from the principal point of the imaging lens 12 along the optical axis O of the imaging lens 12 to the light receiving surface 11a of the imaging element 11. Furthermore, the projection magnification of the imaging lens 12 is M, and the focal length of the imaging lens 12 is f. In the example shown in FIG. 2, the center of the light receiving surface (effective light receiving region) of the image pickup device 11 is located on the optical axis O of the image pickup lens 12, but is not necessarily limited thereto. Absent.

図2から理解できるように、視野角αに対応する各光線K1,K2に関する、撮像素子11の受光面上での撮像レンズ12による透明基板1の表面1aのデフォーカス量Dは、下記の数1で表される。   As can be understood from FIG. 2, the defocus amount D of the surface 1a of the transparent substrate 1 by the imaging lens 12 on the light receiving surface of the imaging device 11 for each light ray K1, K2 corresponding to the viewing angle α is the following number. It is represented by 1.

Figure 2009276207
Figure 2009276207

一方、CCD面のみがθ’傾いた場合のデフォーカスD’も同様に、

Figure 2009276207
である。カメラが傾いていることによって発生するデフォーカスをCCD面の傾きで相殺するためにはデフォーカス量を考慮したレンズの公式
Figure 2009276207
を満たせばよい。 On the other hand, the defocus D ′ when only the CCD surface is inclined by θ ′
Figure 2009276207
It is. In order to cancel the defocus caused by tilting the camera with the tilt of the CCD surface, the lens formula considering the defocus amount
Figure 2009276207
Should be satisfied.

撮像倍率がM=L’/LであることからL,L’をMとfであらわすと、L=(M+1)f/M、L’=(M+1)fであり、これを利用してθとθ’の関係を求めると、

Figure 2009276207
である。これを満たすためには、
Figure 2009276207
とすればよい。 Since the imaging magnification is M = L ′ / L, when L and L ′ are represented by M and f, L = (M + 1) f / M and L ′ = (M + 1) f, and using this, θ And the relationship between θ ′ and
Figure 2009276207
It is. To meet this,
Figure 2009276207
And it is sufficient.

なお、上記は平面を撮像した場合の像面が平面となることを前提としており、大きな視野角αに対しては厳密には成り立たないが、レンズの焦点距離fがCCDサイズに対して大きい通常の場合については十分よい近似である。   Note that the above is based on the premise that the image plane when a plane is imaged is a plane, and this is not strictly true for a large viewing angle α, but the lens focal length f is usually large with respect to the CCD size. The case is a good enough approximation.

したがって、数5で示される条件を満たすθ’となるように、カメラ2の撮像素子11の受光面11aの法線N2がカメラ2の撮像レンズ12の光軸Oに対してなす角度をθ’を、設定すれば、カメラ2により得られる透明基板1の表面1aの画像は、カメラ2の視野の中央付近のみならず周辺部においてもジャストフォーカスの良好な像となり、カメラ2の視野の全面に渡ってジャストフォーカスの良好な像となる。   Therefore, the angle formed by the normal line N2 of the light receiving surface 11a of the image pickup device 11 of the camera 2 with respect to the optical axis O of the image pickup lens 12 of the camera 2 is set to θ ′ so as to satisfy θ ′ that satisfies the condition expressed by Equation 5. , The image of the surface 1a of the transparent substrate 1 obtained by the camera 2 becomes an image with a good just focus not only in the vicinity of the center of the field of view of the camera 2 but also in the peripheral part, and over the entire field of view of the camera 2 A good image with just focus is achieved.

本実施の形態によれば、このように、カメラ2により得られる透明基板1の表面1aの画像が、カメラ2の視野の全面に渡ってほぼジャストフォーカスの良好な像となるので、デフォーカスによる欠陥検出の精度の低下を招くことなく欠陥検出の精度を高めつつ、一度に欠陥を検出し得る領域(一括検査領域)をカメラ2の視野の全面にして欠陥検出の効率を高めることができる。   According to the present embodiment, since the image of the surface 1a of the transparent substrate 1 obtained by the camera 2 becomes an image having a good just focus over the entire field of view of the camera 2, as described above, While increasing the accuracy of defect detection without causing a decrease in the accuracy of defect detection, the area (collective inspection area) where defects can be detected at one time is set to the entire field of view of the camera 2 to increase the efficiency of defect detection.

例えば、透明体の表面のキズのように信号レベルの低いものは、暗視野での観察と本実施形態を組み合わせることにより、感度良くキズを検出することが出来る。   For example, a scratch with a low signal level, such as a scratch on the surface of a transparent body, can be detected with high sensitivity by combining observation in a dark field and this embodiment.

以上、本発明の一実施の形態について説明したが、本発明はこれらの実施の形態に限定されるものではない。   Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments.

例えば、被検査物は、前述したように、透明基板に限定されるものではなく、シリコン基板等の不透明基板であってもよい。また、被検査物は必ずしも基板に限定されるものではない。   For example, the inspection object is not limited to the transparent substrate as described above, and may be an opaque substrate such as a silicon substrate. Further, the inspection object is not necessarily limited to the substrate.

また、本実施の形態による表面欠陥検査装置は、被検査物の表面の暗視野像を撮像する装置であったが、本発明は、被検査物の表面の明視野像を撮像し、その画像に基づいて被検査物の表面の欠陥を検出する装置であっても、撮像レンズの光軸が被検査物の表面の法線に対して傾けられた装置であれば、適用することができる。   Further, the surface defect inspection apparatus according to the present embodiment is an apparatus that captures a dark field image of the surface of the inspection object, but the present invention captures a bright field image of the surface of the inspection object, and the image Even if the apparatus detects a defect on the surface of the object to be inspected based on the above, it can be applied as long as the optical axis of the imaging lens is inclined with respect to the normal line of the surface of the object to be inspected.

本発明の一実施の形態による表面欠陥検査装置を模式的に示す概略構成図である。It is a schematic block diagram which shows typically the surface defect inspection apparatus by one embodiment of this invention. 図1中の要部を模式的に示す概略拡大図である。It is a schematic enlarged view which shows typically the principal part in FIG.

符号の説明Explanation of symbols

1 透明基板
2 カメラ
3 照明光学系
4 処理部
11 撮像素子
12 撮像レンズ
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Camera 3 Illumination optical system 4 Processing part 11 Imaging element 12 Imaging lens

Claims (3)

被検査物の表面を撮像する撮像部と、該撮像部により得られた画像に基づいて前記被検査物の前記表面の欠陥を検出する処理部と、を備え、
前記撮像部は、受光面に形成された像を撮像する撮像素子と、前記受光面に前記被検査物の前記表面の像を形成する光学系とを有し、
前記光学系の光軸が前記被検査物の前記表面の法線に対して傾けられ、
前記受光面の法線が前記光学系の光軸と平行である場合に比べて、前記受光面の周辺部での前記光学系による前記被検査物の前記表面のデフォーカス量が低減されるように、前記受光面の法線が前記光学系の光軸に対して相対的に傾けられたことを特徴とする表面欠陥検査装置。
An imaging unit that images the surface of the inspection object, and a processing unit that detects defects on the surface of the inspection object based on an image obtained by the imaging unit,
The imaging unit includes an imaging element that captures an image formed on a light receiving surface, and an optical system that forms an image of the surface of the inspection object on the light receiving surface,
The optical axis of the optical system is tilted with respect to the normal of the surface of the inspection object,
Compared with the case where the normal of the light receiving surface is parallel to the optical axis of the optical system, the defocus amount of the surface of the inspection object by the optical system at the periphery of the light receiving surface is reduced. Furthermore, the surface defect inspection apparatus, wherein the normal line of the light receiving surface is inclined relative to the optical axis of the optical system.
前記光学系の投影倍率をMとし、前記光学系の焦点距離をfとし、前記光学系の光軸が前記被検査物の前記表面の法線に対してなす角度をθとし、前記受光面の法線が前記光学系の光軸に対してなす角度をθ’としたとき、tanθ’がほぼ−Mtanθであることを特徴とする請求項1記載の表面欠陥検査装置。   The projection magnification of the optical system is M, the focal length of the optical system is f, the angle formed by the optical axis of the optical system with respect to the normal of the surface of the inspection object is θ, 2. The surface defect inspection apparatus according to claim 1, wherein tan [theta] 'is approximately -Mtan [theta] when the angle formed by the normal line with respect to the optical axis of the optical system is [theta]'. 前記被検査物の前記表面に照明光を照射する照明光学系を備え、
前記撮像部は、前記照明光による前記撮像素子の前記表面の暗視野像を撮像することを特徴とする請求項1又は2記載の表面欠陥検査装置。
An illumination optical system for irradiating illumination light to the surface of the inspection object;
The surface defect inspection apparatus according to claim 1, wherein the imaging unit captures a dark field image of the surface of the imaging element by the illumination light.
JP2008127764A 2008-05-14 2008-05-14 Surface defect inspection device Pending JP2009276207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008127764A JP2009276207A (en) 2008-05-14 2008-05-14 Surface defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008127764A JP2009276207A (en) 2008-05-14 2008-05-14 Surface defect inspection device

Publications (1)

Publication Number Publication Date
JP2009276207A true JP2009276207A (en) 2009-11-26

Family

ID=41441776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127764A Pending JP2009276207A (en) 2008-05-14 2008-05-14 Surface defect inspection device

Country Status (1)

Country Link
JP (1) JP2009276207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521617A (en) * 2020-04-30 2020-08-11 上海御微半导体技术有限公司 Optical detection apparatus, control method of optical detection apparatus, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304030A (en) * 1996-05-20 1997-11-28 Komatsu Ltd Instrument for inspecting terminal of semiconductor package
WO2007133581A2 (en) * 2006-05-12 2007-11-22 Corning Incorporated Apparatus and method for characterizing defects in a transparent substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304030A (en) * 1996-05-20 1997-11-28 Komatsu Ltd Instrument for inspecting terminal of semiconductor package
WO2007133581A2 (en) * 2006-05-12 2007-11-22 Corning Incorporated Apparatus and method for characterizing defects in a transparent substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521617A (en) * 2020-04-30 2020-08-11 上海御微半导体技术有限公司 Optical detection apparatus, control method of optical detection apparatus, and storage medium

Similar Documents

Publication Publication Date Title
JP7373527B2 (en) Workpiece defect detection device and method
JP5559163B2 (en) Inspection method for polycrystalline wafer
US8629979B2 (en) Inspection system, inspection method, and program
JP2009283633A (en) Surface inspection device, and surface inspection method
JP2012026858A (en) Device for inspecting inner peripheral surface of cylindrical container
EP1197745A1 (en) Through hole inspecting method and device
JP4876744B2 (en) Inspection device
JP2006072147A (en) Inspection device, inspection method, and manufacturing method of pattern substrate
JP2007198761A (en) Flaw detection method and detector
JP2009276207A (en) Surface defect inspection device
JP2008064656A (en) Peripheral edge inspecting apparatus
JP4285613B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JP2009180561A (en) Surface defect inspection method and device therefor
JP5738628B2 (en) Internal defect inspection apparatus and internal defect inspection method
JP2008139126A (en) Flaw detector and flaw detection method
JP2010122155A (en) Method for detecting defect in plate-like body and defect detector
JP2008292221A (en) Defect inspection method and defect inspection device
JP2005345221A (en) Detection optical device and flaw inspection device
JP2004212353A (en) Optical inspection apparatus
JP3102362U (en) Mirror inspection equipment
JP2007033327A (en) Flaw detecting method and flaw detector
JP2009222629A (en) Device for inspecting edge of object to be inspected
JP4815796B2 (en) Defect inspection equipment
JP2008191017A (en) Method for detecting defect of plate
JP2000131241A (en) Inspection device and inspecting method for optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910