JP2009276117A - Loss calculation method of permanent magnet - Google Patents

Loss calculation method of permanent magnet Download PDF

Info

Publication number
JP2009276117A
JP2009276117A JP2008125704A JP2008125704A JP2009276117A JP 2009276117 A JP2009276117 A JP 2009276117A JP 2008125704 A JP2008125704 A JP 2008125704A JP 2008125704 A JP2008125704 A JP 2008125704A JP 2009276117 A JP2009276117 A JP 2009276117A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic field
eddy current
dimensional
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008125704A
Other languages
Japanese (ja)
Inventor
Akio Toba
章夫 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008125704A priority Critical patent/JP2009276117A/en
Publication of JP2009276117A publication Critical patent/JP2009276117A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Electric Motors In General (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove increase of a calculation scale or useless duplication of analysis by deriving efficiently an eddy current loss generated in a permanent magnet by using a result of two-dimensional magnetic field analysis. <P>SOLUTION: At least one of a magnetic field intensity distribution, a magnetic flux density distribution and an eddy current density distribution inside a permanent magnet is derived by using two-dimensional magnetic field analysis on a shape having one-dimensional uniformity in a three-dimensional shape, and a three-dimensional eddy current loss in the permanent magnet is calculated based on the derived distribution. To put it concretely, the position inside the permanent magnet in the two-dimensional magnetic field analysis is specified by x, y coordinates as two-dimensional coordinates, and a three-dimensional eddy current loss P<SB>pm</SB>in the permanent magnet is calculated by the equation: P<SB>pm</SB>=∫∫äL(x, y)×P(x, y)}dxdy [W] (wherein L(x, y) is a function on a depth length of the permanent magnet), based on an eddy current loss density distribution P(x, y) calculated from the eddy current density distribution in the permanent magnet derived by the two-dimensional magnetic field analysis. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電磁機器に用いられる永久磁石において、内部に磁束密度の時間変化が発生することによって生じる渦電流損失を算出するための損失算定方法に関する。   The present invention relates to a loss calculation method for calculating an eddy current loss caused by a temporal change in magnetic flux density in a permanent magnet used in an electromagnetic device.

電磁機器に永久磁石が用いられる場合、特に導電率が高い希土類永久磁石が用いられる場合には、永久磁石内部に磁束密度の時間変化が発生することによって生じる渦電流損失を無視できない場合が多い。その代表例は、永久磁石を回転子または可動子に有するモータである。
ここで、図6は永久磁石100に発生する磁束密度の時間変化と、これに伴って発生する渦電流とを示した概念図である。
When permanent magnets are used in electromagnetic equipment, particularly when rare earth permanent magnets with high conductivity are used, eddy current loss caused by time-dependent changes in magnetic flux density inside the permanent magnets cannot often be ignored. A typical example is a motor having a permanent magnet on a rotor or a mover.
Here, FIG. 6 is a conceptual diagram showing the time change of the magnetic flux density generated in the permanent magnet 100 and the eddy current generated along with this.

永久磁石において発生する渦電流は、本質的に三次元の現象であるため、これを解析的に導出する場合、従来は三次元磁界解析を用いることが通常であった。すなわち、三次元磁界解析において、永久磁石の特性として導電率を所定の値とし、かつ永久磁石における渦電流を考慮する設定とし、磁界強度や可動部位置の時間変化を微小時間毎に逐次変更して解析することにより、永久磁石内部の磁場及び渦電流の密度分布を計算することができる。
なお、代表的な磁界解析の手法としては有限要素法があり、例えば非特許文献1には、PWMインバータにおけるキャリア高調波の影響を考慮した三次元非線形非定常有限要素法による埋込磁石型モータの損失解析手法が開示されている。
Since the eddy current generated in the permanent magnet is essentially a three-dimensional phenomenon, when it is derived analytically, it has been usual to use a three-dimensional magnetic field analysis. In other words, in the three-dimensional magnetic field analysis, the conductivity is set to a predetermined value as a permanent magnet characteristic and the eddy current in the permanent magnet is taken into account, and the time variation of the magnetic field strength and the position of the movable part is sequentially changed every minute time. The density distribution of the magnetic field and eddy current inside the permanent magnet can be calculated.
As a typical magnetic field analysis method, there is a finite element method. For example, Non-Patent Document 1 discloses an embedded magnet type motor using a three-dimensional nonlinear unsteady finite element method in consideration of the influence of carrier harmonics in a PWM inverter. A loss analysis method is disclosed.

図7及び図8は、モータを対象とした三次元磁界解析による永久磁石の渦電流の解析結果を示した図である。
このうち、図7は、埋込磁石型モータについて三次元磁界解析を行い、永久磁石の端面における磁束密度ベクトル分布を描画した例である。同図において、200は永久磁石100を備えたロータ、300はステータを示す。また、図8は、図7の解析モデルのうち永久磁石100のみを表示してその表面における渦電流ベクトルを描画したものである。
7 and 8 are diagrams showing the analysis results of the eddy current of the permanent magnet by the three-dimensional magnetic field analysis for the motor.
Among these, FIG. 7 is an example in which a three-dimensional magnetic field analysis is performed on an embedded magnet type motor and a magnetic flux density vector distribution on the end face of the permanent magnet is drawn. In the figure, reference numeral 200 denotes a rotor including a permanent magnet 100, and 300 denotes a stator. FIG. 8 shows only the permanent magnet 100 in the analysis model of FIG. 7 and depicts the eddy current vector on the surface.

この解析では、ロータ200及びステータ300の鉄心部分については軟磁性材料、具体的には珪素鋼板の磁気特性を設定し、その導電率をゼロとしてある。これは、鉄心部分を積層構造とした場合に通常行われる設定である。
一方、永久磁石100については、透磁率及び導電率を実際の永久磁石の特性に合わせて設定し、かつ内部の渦電流を考慮して解析を行う設定としてある。このように設定することによって、図示したような結果が得られる。
図8のような渦電流ベクトル分布が得られれば、その値と導電率とから渦電流損失を算出することができる。
この種の技術は現在一般に用いられており、前述した非特許文献1に記載されている。
In this analysis, the magnetic properties of a soft magnetic material, specifically, a silicon steel plate, are set for the iron core portions of the rotor 200 and the stator 300, and the conductivity is zero. This is a setting usually performed when the iron core portion has a laminated structure.
On the other hand, with respect to the permanent magnet 100, the permeability and conductivity are set according to the characteristics of the actual permanent magnet, and the analysis is performed in consideration of the internal eddy current. By setting in this way, the result shown in the figure is obtained.
If the eddy current vector distribution as shown in FIG. 8 is obtained, the eddy current loss can be calculated from the value and the conductivity.
This type of technology is currently in general use and is described in Non-Patent Document 1 described above.

また、特許文献1には、表面磁石型モータを対象として、ロータの永久磁石における渦電流損失を三次元磁界解析により求めることが開示されている。   Patent Document 1 discloses that a eddy current loss in a permanent magnet of a rotor is obtained by a three-dimensional magnetic field analysis for a surface magnet type motor.

山崎克巳,阿部敦,磯田翼介,「キャリア高周波を考慮したIPMモータの損失解析−駆動条件・磁石分割に対する損失変化−」,平成18年電気学会産業応用部門大会論文集,講演番号3−47,p.307〜312Katsumi Yamazaki, Satoshi Abe, Tsubasa Hamada, “Loss Analysis of IPM Motor Considering Carrier High Frequency-Loss Change due to Driving Conditions and Magnet Splitting”, 2006 IEICE Conference on Industrial Applications, Lecture No. 3-47 , P. 307-312 特開2002−6009号公報(段落[0013],[0042]〜[0044]等)JP 2002-6009 A (paragraphs [0013], [0042] to [0044], etc.)

しかし、非特許文献1に記載されているような三次元磁界解析は、より一般的に用いられている二次元磁界解析に比べて、解析に多くの時間を要する。
モータを始めとする電磁機器では、一軸に関して一様な形状となっている場合が多いため、この特徴を利用すれば、二次元磁界解析によって多くの特性を精度良く導出することができる。特に、回転形モータにおいては、回転軸方向に関して電磁構造が一様である場合が殆どである。
However, the three-dimensional magnetic field analysis as described in Non-Patent Document 1 requires much time for the analysis compared to the two-dimensional magnetic field analysis that is more generally used.
Since electromagnetic devices such as motors often have a uniform shape with respect to one axis, if this feature is used, many characteristics can be accurately derived by two-dimensional magnetic field analysis. In particular, in a rotary motor, the electromagnetic structure is almost uniform in the direction of the rotation axis.

しかしながら、永久磁石の渦電流損失が三次元の現象であることから、その他の特性については二次元磁界解析で足りるにも関わらず、永久磁石の渦電流損失を導出するためだけに三次元磁界解析を用いる必要が生じる。二次元磁界解析及び三次元磁界解析の所要時間の違いは、解析の仕様に応じてまちまちではあるものの、通常、後者では前者の10倍〜100倍の時間を要するため、開発や設計が非効率化するという問題がある。   However, since the eddy current loss of the permanent magnet is a three-dimensional phenomenon, the three-dimensional magnetic field analysis is used only to derive the eddy current loss of the permanent magnet even though the other characteristics are sufficient for the other characteristics. Need to be used. Although the difference in time required for two-dimensional magnetic field analysis and three-dimensional magnetic field analysis varies depending on the analysis specifications, the latter usually requires 10 to 100 times as long as the former, so development and design are inefficient. There is a problem of becoming.

また、三次元磁界解析には、解析時間の問題に加えて、計算の規模が大きくなるという問題もある。すなわち、有限要素法に代表される数値解析においては、解析モデルを細かな部位(メッシュ)に分割し、各々のメッシュに対して支配方程式を適用し、それらを連立方程式として解くという手法を採っているため、メッシュ数に応じて連立方程式の規模、具体的には計算に用いる行列の次数が大きくなる。このことにより、計算機において多くのメモリを要するため、メモリの制約の範囲内で計算規模を収める必要が生じる場合がある。   In addition to the problem of analysis time, the three-dimensional magnetic field analysis has a problem that the scale of calculation becomes large. In other words, in numerical analysis represented by the finite element method, a method is adopted in which an analysis model is divided into fine parts (mesh), governing equations are applied to each mesh, and they are solved as simultaneous equations. Therefore, the scale of the simultaneous equations, specifically, the order of the matrix used for calculation increases according to the number of meshes. This requires a large amount of memory in the computer, so that it may be necessary to keep the calculation scale within the limits of the memory.

このような場合の対策として、メッシュの分割を粗くする等の措置が考えられるが、結果として得られる計算結果の誤差が大きくなる。つまり、永久磁石の渦電流損失の導出に引きずられて、その他の特性の誤差までも拡大することになる。
これを避けるためには、三次元磁界解析によって渦電流損失を求め、その他の特性については二次元磁界解析を行うという二度手間が生じる。
As a countermeasure for such a case, measures such as coarse mesh division may be considered, but the error of the calculation result obtained as a result becomes large. In other words, the error of other characteristics is expanded by being drawn by the derivation of the eddy current loss of the permanent magnet.
In order to avoid this, eddy current loss is obtained by three-dimensional magnetic field analysis, and two-dimensional magnetic field analysis is performed twice for other characteristics.

そこで、本発明の解決課題は、永久磁石を有する電磁機器において永久磁石に発生する渦電流損失を、二次元磁界解析の結果を用いて効率よく導出することにより、計算規模の増大や解析の二度手間を解消した永久磁石の損失算定方法を提供することにある。   Therefore, the problem to be solved by the present invention is to efficiently derive the eddy current loss generated in the permanent magnet in the electromagnetic device having the permanent magnet by using the result of the two-dimensional magnetic field analysis. The purpose is to provide a method for calculating the loss of permanent magnets that eliminates time and effort.

上記課題を解決するため、請求項1に係る発明は、三次元のうち一次元に関して略一様性を有する電磁機器に用いられる永久磁石の損失算定方法において、
前記一次元を除く他の二次元の磁界解析を用いて前記永久磁石の表面を含む永久磁石内部の磁界強度分布、磁束密度分布、または渦電流密度分布の少なくとも一つを導出し、
この導出した分布に基づいて、三次元における前記永久磁石の渦電流または渦電流損失を算出するものである。
In order to solve the above-mentioned problem, the invention according to claim 1 is a loss calculation method for permanent magnets used in electromagnetic equipment having a substantially uniform one dimension among three dimensions.
Deriving at least one of a magnetic field strength distribution, a magnetic flux density distribution, or an eddy current density distribution inside the permanent magnet including the surface of the permanent magnet using the other two-dimensional magnetic field analysis except the one dimension;
Based on this derived distribution, the eddy current or eddy current loss of the permanent magnet in three dimensions is calculated.

請求項2に係る発明は、請求項1に記載した永久磁石の損失算定方法において、
前記二次元の磁界解析により導出した前記永久磁石の表面の磁界強度分布または磁束密度分布を、前記一次元としての奥行きについて一様とみなし、前記磁界強度分布または磁束密度分布を、三次元磁界解析の境界条件として前記永久磁石の対応する表面に設定して解析することにより、
三次元における前記永久磁石内部の渦電流または渦電流損失を算出するものである。
The invention according to claim 2 is the permanent magnet loss calculation method according to claim 1,
The magnetic field strength distribution or magnetic flux density distribution on the surface of the permanent magnet derived by the two-dimensional magnetic field analysis is regarded as uniform with respect to the one-dimensional depth, and the magnetic field strength distribution or the magnetic flux density distribution is regarded as a three-dimensional magnetic field analysis. By setting and analyzing the corresponding surface of the permanent magnet as a boundary condition of
The eddy current or eddy current loss inside the permanent magnet in three dimensions is calculated.

請求項3に係る発明は、請求項1に記載した永久磁石の損失算定方法において、
前記二次元の磁界解析における前記永久磁石内部の位置を二次元座標としてのx,y座標により規定し、
前記二次元の磁界解析により導出した前記永久磁石の渦電流密度分布から算出した渦電流損失密度分布P(x,y)に基づき、三次元における前記永久磁石の渦電流損失Ppmを次の数式によって算出するものである。
pm=∫∫{L(x,y)×P(x,y)}dxdy [W]
(但し、L(x,y):永久磁石の奥行き方向の長さに関する関数)
The invention according to claim 3 is the permanent magnet loss calculation method according to claim 1,
The position inside the permanent magnet in the two-dimensional magnetic field analysis is defined by x, y coordinates as two-dimensional coordinates,
Based on the eddy current loss density distribution P (x, y) calculated from the eddy current density distribution of the permanent magnet derived by the two-dimensional magnetic field analysis, the eddy current loss P pm of the permanent magnet in three dimensions is expressed by the following equation. Is calculated by
P pm = ∫∫ {L (x, y) × P (x, y)} dxdy [W]
(However, L (x, y): a function related to the length of the permanent magnet in the depth direction)

請求項4に係る発明は、請求項1に記載した永久磁石の損失算定方法において、
前記二次元の磁界解析における前記永久磁石内部の位置を二次元座標としてのx,y座標により規定し、
前記永久磁石のx,y平面の断面形状が略長方形または略瓦形状であり、前記断面形状の長辺の長さが前記永久磁石の奥行き方向の長さよりも短い場合に、
前記断面形状の中心軸をy軸、このy軸に直交する軸をx軸とし、
前記永久磁石のx軸方向の幅の中央部のx座標を0として、
前記二次元の磁界解析により導出した前記永久磁石の渦電流密度分布から算出した渦電流損失密度分布P(x,y)に基づき、三次元における前記永久磁石の渦電流損失Ppmを次の数式によって算出するものである。
pm=∫∫{(l−w+4|x|)×P(x,y)}dxdy [W]
(但し、l:永久磁石の奥行き方向長さ,w:永久磁石のx軸方向の幅)
The invention according to claim 4 is the permanent magnet loss calculation method according to claim 1,
The position inside the permanent magnet in the two-dimensional magnetic field analysis is defined by x, y coordinates as two-dimensional coordinates,
When the cross-sectional shape of the x, y plane of the permanent magnet is substantially rectangular or substantially tile-shaped, and the length of the long side of the cross-sectional shape is shorter than the length of the permanent magnet in the depth direction,
The central axis of the cross-sectional shape is the y axis, and the axis perpendicular to the y axis is the x axis,
The x coordinate of the central portion of the width in the x-axis direction of the permanent magnet is set to 0,
Based on the eddy current loss density distribution P (x, y) calculated from the eddy current density distribution of the permanent magnet derived by the two-dimensional magnetic field analysis, the eddy current loss P pm of the permanent magnet in three dimensions is expressed by the following equation. Is calculated by
P pm = ∫∫ {(l−w + 4 | x |) × P (x, y)} dxdy [W]
(Where l is the length of the permanent magnet in the depth direction, w is the width of the permanent magnet in the x-axis direction)

請求項5に係る発明は、請求項1に記載した永久磁石の損失算定方法において、
前記二次元の磁界解析により導出した前記永久磁石の表面の磁界強度分布または磁束密度分布を、前記一次元としての奥行きについて一様とみなし、前記二次元の磁界解析における前記永久磁石内部の位置を二次元座標としてのx,y座標により規定し、
前記永久磁石の奥行き方向の長さが、前記永久磁石内に発生する磁束密度変化の考慮すべき周波数の上限値によって決まる表皮厚さの2倍よりも小さい場合に、
前記二次元の磁界解析において前記永久磁石に発生する渦電流を無視するように設定し、
三次元における前記永久磁石の渦電流損失Ppmを次の数式によって算出するものである。
pm=l×Σ∫∫{K×B(f,x,y)×f}dxdy [W]
(但し、l:永久磁石の奥行き方向長さ,Σ:永久磁石中の磁束密度変化として存在する周波数成分の総和,K:渦電流損失密度定数,B(f,x,y):座標x,yにおける周波数fの磁束密度振幅,f:磁束密度変化の周波数)
The invention according to claim 5 is the permanent magnet loss calculation method according to claim 1,
The magnetic field strength distribution or magnetic flux density distribution on the surface of the permanent magnet derived by the two-dimensional magnetic field analysis is regarded as uniform with respect to the depth as the one dimension, and the position inside the permanent magnet in the two-dimensional magnetic field analysis is determined. It is defined by x and y coordinates as two-dimensional coordinates,
When the length in the depth direction of the permanent magnet is smaller than twice the skin thickness determined by the upper limit value of the frequency to be taken into account of the change in magnetic flux density generated in the permanent magnet,
Set to ignore eddy currents generated in the permanent magnet in the two-dimensional magnetic field analysis,
The eddy current loss P pm of the permanent magnet in three dimensions is calculated by the following formula.
P pm = l × Σ f ∫∫ {K e × B (f, x, y) 2 × f 2 } dxdy [W]
(Where l is the length of the permanent magnet in the depth direction, Σ f is the sum of the frequency components present as changes in the magnetic flux density in the permanent magnet, K e is the eddy current loss density constant, and B (f, x, y) is the coordinate. magnetic flux density amplitude of frequency f in x and y, f: frequency of magnetic flux density change)

本発明によれば、モータ等の電磁機器の永久磁石に発生する渦電流損失を、二次元磁界解析の結果を用いて効率よく高精度に算出し、これによって計算規模の増大や解析の二度手間を解消することができる。   According to the present invention, an eddy current loss generated in a permanent magnet of an electromagnetic device such as a motor is efficiently and accurately calculated using the result of the two-dimensional magnetic field analysis, thereby increasing the calculation scale and analyzing twice. The trouble can be eliminated.

まず、請求項1に相当する実施形態を図1,図2に従って説明する。
図1は、二次元磁界解析によって埋込磁石型モータ(IPMモータ)の磁界解析を行い、永久磁石の中心線における磁界強度ベクトルの分布を描画した例である。なお、各構成部材には図7と同一の番号を付してある。
First, an embodiment corresponding to claim 1 will be described with reference to FIGS.
FIG. 1 is an example in which a magnetic field analysis of an embedded magnet type motor (IPM motor) is performed by two-dimensional magnetic field analysis, and the distribution of the magnetic field strength vector at the center line of the permanent magnet is drawn. In addition, the same number as FIG. 7 is attached | subjected to each structural member.

二次元磁界解析は、電磁機器において実際の三次元構造における一次元(例えば奥行き方向)に関して一様性がある場合に、その一次元については磁界分布が一様であるものとして、問題を他の二次元に関する磁界解析として求解するものである。
一次元に関して一様性がある電磁機器は様々であるが、例えば、回転形モータは回転軸方向に一様性がある構造が殆どであり、特性解析において上記二次元磁界解析が多用される。
なお、二次元磁界解析では磁界の奥行き方向成分がゼロであるとする結果、渦電流は回転軸方向にのみ流れるものとして求解される。
In the two-dimensional magnetic field analysis, when there is uniformity in one dimension (for example, in the depth direction) in an actual three-dimensional structure in an electromagnetic device, the magnetic field distribution is uniform in that one dimension, It is to be solved as a two-dimensional magnetic field analysis.
There are various types of electromagnetic devices having uniformity in one dimension. For example, most rotary motors have a structure having uniformity in the direction of the rotation axis, and the two-dimensional magnetic field analysis is frequently used in characteristic analysis.
In the two-dimensional magnetic field analysis, as a result of assuming that the depth direction component of the magnetic field is zero, the eddy current is obtained as flowing only in the rotation axis direction.

図2は、図1の永久磁石100における磁界強度分布及び渦電流密度分布を表したものであり、この磁界強度分布及び渦電流密度分布が、奥行き方向につき一様に存在するというのが、二次元磁界解析における場の取り扱いである。ここで、磁界強度分布及び渦電流密度分布は時間に応じて変動するものである。なお、図2における横軸は、後述する永久磁石100の幅方向に沿った距離xを示している。   FIG. 2 shows the magnetic field strength distribution and the eddy current density distribution in the permanent magnet 100 of FIG. 1, and this magnetic field strength distribution and eddy current density distribution exist uniformly in the depth direction. It is the handling of the field in the dimensional magnetic field analysis. Here, the magnetic field strength distribution and the eddy current density distribution vary with time. 2 represents the distance x along the width direction of the permanent magnet 100 described later.

三次元構造の回転形モータを考えると、いわゆる端効果を無視した場合でも、永久磁石の渦電流が作る反発磁界の作用によって、磁界の分布は回転軸方向について厳密には一様にならない。しかし、永久磁石の渦電流は、通常運転時に永久磁石が晒される磁界変化の周波数においては一般に小さく、従ってその反発磁界も小さい。このような条件の下では、三次元構造の回転形モータについても回転軸方向について磁界の分布が一様であると近似できる場合が多い。あるいは、補正によって回転軸方向に関する磁界の分布の変化を考慮してもよい。
このような場合には、三次元物体である永久磁石中に、一次元について一様、あるいは前記補正された磁界が発生しているものとして取り扱い、三次元磁界解析を行わずに二次元磁界解析に基づいて、渦電流、更には渦電流損失を算出することが可能となる。
Considering a rotary motor having a three-dimensional structure, even if the so-called end effect is ignored, the magnetic field distribution is not strictly uniform in the direction of the rotation axis due to the action of the repulsive magnetic field generated by the eddy current of the permanent magnet. However, the eddy current of the permanent magnet is generally small at the frequency of magnetic field change to which the permanent magnet is exposed during normal operation, and therefore the repulsive magnetic field is also small. Under such conditions, a three-dimensional rotary motor can often be approximated as having a uniform magnetic field distribution in the direction of the rotation axis. Or you may consider the change of distribution of the magnetic field regarding a rotating shaft direction by correction | amendment.
In such a case, the permanent magnet, which is a three-dimensional object, is treated as if the one-dimensional uniform or the corrected magnetic field is generated, and the two-dimensional magnetic field analysis is performed without performing the three-dimensional magnetic field analysis. Based on the above, it is possible to calculate eddy current and further eddy current loss.

二次元磁界解析を基本として渦電流、渦電流損失を算出するための具体的な手順は、次の通りである。
(1)二次元磁界解析によって、永久磁石の表面を含む内部の磁界強度分布、磁束密度分布、または渦電流密度分布を求める。
(2)(1)で求めた分布が、二次元磁界解析における他の一次元の奥行き方向に一様であるような三次元の分布、あるいは奥行き方向に関して補正された三次元の分布が、三次元物体である永久磁石に発生しているものとする。
(3)その際に発生する渦電流を求める。
このような手順により、電磁機器の三次元磁界解析を実施せずに二次元磁界解析によって永久磁石の渦電流を効率よく算出し、更に渦電流損失を導出することができる。
The specific procedure for calculating the eddy current and eddy current loss based on the two-dimensional magnetic field analysis is as follows.
(1) An internal magnetic field strength distribution, magnetic flux density distribution, or eddy current density distribution including the surface of the permanent magnet is obtained by two-dimensional magnetic field analysis.
(2) A three-dimensional distribution in which the distribution obtained in (1) is uniform in the other one-dimensional depth direction in the two-dimensional magnetic field analysis, or a three-dimensional distribution corrected in the depth direction is a cubic It is assumed that it is generated in the permanent magnet that is the original object.
(3) The eddy current generated at that time is obtained.
By such a procedure, the eddy current of the permanent magnet can be efficiently calculated by the two-dimensional magnetic field analysis without performing the three-dimensional magnetic field analysis of the electromagnetic device, and further the eddy current loss can be derived.

次に、請求項2に係る発明の実施形態を、図3に基づいて説明する。この実施形態は、上述した手順(1)〜(3)を具体化したものである。
(1A)二次元磁界解析によって、永久磁石の表面の磁界強度分布または磁束密度分布を求める。
例えば、図3(a)に示すように、永久磁石100の表面における長辺101に沿って二次元磁界解析により磁界強度|H|(t)を求める。図3(b)は長辺101方向の距離xに対する磁界強度|H|(t)を示す図であり、この例では長辺101の長さが永久磁石100の幅となる。
Next, an embodiment of the invention according to claim 2 will be described with reference to FIG. This embodiment embodies the above-described procedures (1) to (3).
(1A) A magnetic field strength distribution or a magnetic flux density distribution on the surface of the permanent magnet is obtained by two-dimensional magnetic field analysis.
For example, as shown in FIG. 3A, the magnetic field strength | H | (t) is obtained by two-dimensional magnetic field analysis along the long side 101 on the surface of the permanent magnet 100. FIG. 3B is a diagram showing the magnetic field intensity | H | (t) with respect to the distance x in the direction of the long side 101. In this example, the length of the long side 101 is the width of the permanent magnet 100.

(2A)上記の(1A)により求めた磁界強度分布が、二次元磁界解析における他の一次元の奥行き方向について一様であるような三次元の分布が、三次元物体である永久磁石100の表面に発生しているものとする。
例えば、図3(c)に示すごとく、図3(b)における磁界強度|H|(t)を、その分布が永久磁石100の奥行き方向zに沿って一様である三次元関数|H|ex(t)に拡張する。
(2A) The three-dimensional distribution in which the magnetic field strength distribution obtained by (1A) above is uniform in the other one-dimensional depth direction in the two-dimensional magnetic field analysis is the same as that of the permanent magnet 100 that is a three-dimensional object. It is assumed that it is generated on the surface.
For example, as shown in FIG. 3C, the magnetic field intensity | H | (t) in FIG. 3B is expressed as a three-dimensional function | H | whose distribution is uniform along the depth direction z of the permanent magnet 100. Expand to ex (t).

(3A)永久磁石100のみに関する三次元磁界解析において、境界条件として上記(2A)により導出した磁界強度分布を与え、解析を実行する。なお、解析においては、永久磁石100内部の渦電流を考慮する設定とすることは当然である。
すなわち、図3(d)に示すように、永久磁石100の三次元解析モデルにおいて、その奥行き方向zに沿った表面102に三次元関数|H|ex(t)を設定し、解析を実行する。
この方法によれば、電磁機器全体ではなく、永久磁石100のみについて三次元磁界解析を行えばよいため、電磁機器全体につき三次元磁界解析を行う場合に比べてごく短い時間で、永久磁石内部の渦電流分布及び渦電流損失を求めることができる。
(3A) In the three-dimensional magnetic field analysis for only the permanent magnet 100, the magnetic field strength distribution derived by (2A) above is given as a boundary condition, and the analysis is executed. In the analysis, it is a matter of course that the eddy current in the permanent magnet 100 is taken into consideration.
That is, as shown in FIG. 3D, in the three-dimensional analysis model of the permanent magnet 100, a three-dimensional function | H | ex (t) is set on the surface 102 along the depth direction z, and the analysis is executed. .
According to this method, since the three-dimensional magnetic field analysis only needs to be performed on the permanent magnet 100, not the entire electromagnetic device, the time in the permanent magnet can be reduced in a very short time compared to the case of performing the three-dimensional magnetic field analysis on the entire electromagnetic device. Eddy current distribution and eddy current loss can be obtained.

次いで、請求項3に係る発明の実施形態を、図4に基づいて説明する。この実施形態は、永久磁石100の渦電流損失を計算するために永久磁石100を領域分けする点に特徴がある。
二次元磁界解析では、渦電流損失を単位体積当たりの損失[W/m]として得ることができる。これは、渦電流が奥行き方向成分だけを有する場合の値であるが、実際には奥行き方向が有限長であるため渦電流は環流しており、正しい渦電流損失を求めるためには奥行き方向の長さを考慮しなければならない。
Next, an embodiment of the invention according to claim 3 will be described with reference to FIG. This embodiment is characterized in that the permanent magnet 100 is divided into regions in order to calculate the eddy current loss of the permanent magnet 100.
In the two-dimensional magnetic field analysis, the eddy current loss can be obtained as a loss per unit volume [W / m 3 ]. This is a value when the eddy current has only a depth direction component, but since the depth direction is actually finite, the eddy current is circulating, and in order to obtain the correct eddy current loss, Length must be taken into account.

ここで、図4に示すように、永久磁石100の奥行き方向zの長さが幅方向xの長さに対して同等以上である場合には、渦電流分布は奥行き方向の相当部分に関して一様と見なせる場合が多い。この場合には、永久磁石100の奥行き方向中央部103を中心としてその前後に、渦電流分布がほぼ一様とみなせる領域103Aが存在し、この領域103Aにおける渦電流分布は二次元解析によって求めた値とほぼ等しくなる。
従って、渦電流損失を精度良く求めるためには、上記の領域103A以外の渦電流が環流する環流部104,105の考慮を巧妙に行うことが肝要である。
Here, as shown in FIG. 4, when the length in the depth direction z of the permanent magnet 100 is equal to or greater than the length in the width direction x, the eddy current distribution is uniform with respect to the corresponding portion in the depth direction. Can often be considered. In this case, there is a region 103A in which the eddy current distribution can be regarded as almost uniform around the center 103 in the depth direction of the permanent magnet 100, and the eddy current distribution in this region 103A is obtained by two-dimensional analysis. Almost equal to the value.
Therefore, in order to obtain the eddy current loss with high accuracy, it is important to carefully consider the circulating portions 104 and 105 where the eddy currents other than the region 103A circulate.

ここで、仮に奥行き方向の渦電流分布が一様であり、奥行き方向長さがLであるものとし、二次元磁界解析によって求めた渦電流損失密度分布をP(x,y)[W/m]とすると(二次元磁界解析の座標をx,yで表すものとする)、永久磁石の渦電流損失Ppmは数式1により算出される。
[数式1]
pm=L∫∫{P(x,y)}dxdy [W]
Here, it is assumed that the eddy current distribution in the depth direction is uniform and the length in the depth direction is L, and the eddy current loss density distribution obtained by two-dimensional magnetic field analysis is P (x, y) [W / m. 3 ] (the coordinates of the two-dimensional magnetic field analysis are represented by x and y), the eddy current loss P pm of the permanent magnet is calculated by Equation 1.
[Formula 1]
P pm = L∫∫ {P (x, y)} dxdy [W]

次に、図4に示した環流部104,105の影響を考慮する一つの方法として考えられるのは、渦電流が環流する経路の長さが、永久磁石100の内側部分については短く、外側部分については長くなるものと見なすことである。   Next, one possible method for considering the influence of the circulating portions 104 and 105 shown in FIG. 4 is that the length of the path through which the eddy current circulates is short for the inner portion of the permanent magnet 100 and the outer portion. Is to be considered long.

数式1におけるLは、渦電流の経路の長さと捉えることができるため、これが永久磁石100の部位に応じて変化することを数式表現すると、数式2のようになる。
[数式2]
pm=∫∫{L(x,y)×P(x,y)}dxdy [W]
但し、L(x,y):永久磁石の奥行き方向の長さに関する関数
Since L in Formula 1 can be regarded as the length of the path of the eddy current, it can be expressed as Formula 2 when this changes according to the part of the permanent magnet 100.
[Formula 2]
P pm = ∫∫ {L (x, y) × P (x, y)} dxdy [W]
Where L (x, y): a function related to the length of the permanent magnet in the depth direction

このようにすれば、二次元磁界解析により求めた渦電流損失密度分布P(x,y)を操作せずにそのまま用い、永久磁石100の奥行き方向の長さに関する関数(渦電流の経路の長さに関する関数)L(x,y)を適切に設定することで、永久磁石の渦電流損失を精度良く導出することができる。   In this way, the eddy current loss density distribution P (x, y) obtained by the two-dimensional magnetic field analysis is used as it is without being manipulated, and the function related to the length of the permanent magnet 100 in the depth direction (the length of the eddy current path). By properly setting the function (L) (L, x, y), the eddy current loss of the permanent magnet can be derived with high accuracy.

上記の着想を具体化すると、例えば次のような計算が可能である。この方法は、永久磁石100の断面形状(図4におけるx,y平面の形状)が略長方形またはこれに準ずる形状(例えば略瓦形状)である場合に適用することができ、請求項4に係る発明の実施形態に相当する。
以下では、永久磁石100の断面形状が長方形である場合を例にとって説明する。
When the above idea is embodied, for example, the following calculation is possible. This method can be applied when the sectional shape of the permanent magnet 100 (the shape of the x and y planes in FIG. 4) is substantially rectangular or a shape equivalent thereto (for example, substantially tile shape). It corresponds to an embodiment of the invention.
Hereinafter, the case where the cross-sectional shape of the permanent magnet 100 is a rectangle will be described as an example.

まず、永久磁石100を図4の上方から見た状態において、各辺や変数を図5のように設定する。すなわち、磁界強度分布または渦電流密度分布に一様性のある奥行き方向の長さをl、幅をw、幅方向の座標軸をx(幅wの中央部のx座標を0)とする。また、二次元磁界解析により求めた渦電流損失密度分布P(x,y)、またはこれと一対一で対応している渦電流密度J(x,y)が、図5に示すように、永久磁石100の奥行き方向の中心軸zに関して対称に、永久磁石外周部からの距離を一定に保ち、x軸方向の半面において連続するモデルを設定する。 First, in the state which looked at the permanent magnet 100 from the upper direction of FIG. 4, each edge | side and a variable are set like FIG. That is, the length in the depth direction with uniform magnetic field strength distribution or eddy current density distribution is set to l, the width is set to w, and the coordinate axis in the width direction is set to x (the x coordinate at the center of the width w is set to 0). Further, the eddy current loss density distribution P (x, y) obtained by the two-dimensional magnetic field analysis or the eddy current density J (x, y) corresponding one-to-one with the eddy current density J (x, y) is permanent as shown in FIG. A model that is continuous on the half surface in the x-axis direction is set while keeping the distance from the outer periphery of the permanent magnet constant, symmetrically with respect to the central axis z c in the depth direction of the magnet 100.

上記モデルによれば、永久磁石全体の渦電流損失は数式3によって計算できることが判る。
[数式3]
pm=∫∫{(l−w+4|x|)×P(x,y)}dxdy [W]
但し、l:永久磁石の奥行き方向長さ,w:永久磁石のx軸方向の幅
上記方法によれば、永久磁石100の渦電流損失を簡便に計算することができる。
According to the above model, it can be seen that the eddy current loss of the entire permanent magnet can be calculated by Equation 3.
[Formula 3]
P pm = ∫∫ {(l−w + 4 | x |) × P (x, y)} dxdy [W]
However, l: length in the depth direction of the permanent magnet, w: width in the x-axis direction of the permanent magnet According to the above method, the eddy current loss of the permanent magnet 100 can be easily calculated.

次いで、請求項5に係る発明の実施形態を説明する。
永久磁石の奥行き方向長さが、永久磁石内に発生する磁束密度変化の考慮すべき周波数の上限値により決まる表皮厚さの2倍よりも小さい場合、渦電流損失は積層鋼板の場合と同様に見積もれるようになる。一般に、積層鋼板の渦電流損失密度Pssは、内部の磁束密度がB、磁束密度変化の周波数がfである場合、B及びfの二乗に比例することが知られている。すなわち、渦電流損失密度Pssは数式4によって表される。
[数式4]
ss=Kess×B×f
但し、Kess:渦電流損失係数(積層鋼板の材料、板厚に依存)
Next, an embodiment of the invention according to claim 5 will be described.
When the length in the depth direction of the permanent magnet is smaller than twice the skin thickness determined by the upper limit value of the frequency to be considered in the change in magnetic flux density generated in the permanent magnet, the eddy current loss is the same as in the case of the laminated steel plate. Get an estimate. In general, it is known that the eddy current loss density P ss of a laminated steel plate is proportional to the square of B and f when the internal magnetic flux density is B and the frequency of the magnetic flux density change is f. That is, the eddy current loss density P ss is expressed by Equation 4.
[Formula 4]
P ss = K ess × B 2 × f 2
However, K ess : Eddy current loss coefficient (depends on the material and thickness of laminated steel sheet)

なお、磁束密度変化の周波数成分が複数存在する場合には、各々の周波数成分に関して上式を適用し、加算すればよい。
よって、数式4を変形して永久磁石100の渦電流損失に適用すれば、数式5に示すように永久磁石100の渦電流損失Ppmの算定式を得る。
[数式5]
pm=Σ∫∫{K×B(f,x,y)×f}dxdy [W]
但し、Σ:永久磁石中の磁束密度変化として存在する周波数成分の総和,K:渦電流損失密度定数(永久磁石の材料、奥行き方向の長さに依存),B(f,x,y):座標x,yにおける周波数fの磁束密度振幅,f:磁束密度変化の周波数
If there are a plurality of frequency components of the magnetic flux density change, the above equation may be applied to each frequency component and added.
Therefore, if Formula 4 is modified and applied to the eddy current loss of the permanent magnet 100, a formula for calculating the eddy current loss P pm of the permanent magnet 100 is obtained as shown in Formula 5.
[Formula 5]
P pm = Σ f ∫∫ {K e × B (f, x, y) 2 × f 2 } dxdy [W]
Where Σ f is the sum of the frequency components present as a change in magnetic flux density in the permanent magnet, K e is the eddy current loss density constant (depending on the material of the permanent magnet and the length in the depth direction), B (f, x, y ): Magnetic flux density amplitude at frequency f at coordinates x, y, f: Frequency of magnetic flux density change

従って、永久磁石100全体の渦電流損失Ppmは、数式5のPpmが永久磁石100の奥行き方向について一様であるものとして、奥行き方向の長さlを数式5の右辺に乗じることにより、数式6のように算出することができる。
[数式6]
pm=l×Σ∫∫{K×B(f,x,y)×f}dxdy [W]
Therefore, the eddy current loss P pm of the entire permanent magnet 100, as P pm of equation 5 is uniform for the depth direction of the permanent magnet 100, by multiplying the depth direction length l to the right-hand side of Equation 5, It can be calculated as Equation 6.
[Formula 6]
P pm = l × Σ f ∫∫ {K e × B (f, x, y) 2 × f 2 } dxdy [W]

このような方法は、例えばPMモータにおいて、渦電流損失を低減するために軸方向に永久磁石を複数に分割した場合にも用いることができる。   Such a method can also be used when, for example, a PM motor is divided into a plurality of permanent magnets in the axial direction in order to reduce eddy current loss.

二次元磁界解析による永久磁石の中心線における磁界強度ベクトルの分布を描画した図である。It is the figure which drawn distribution of the magnetic field strength vector in the centerline of a permanent magnet by two-dimensional magnetic field analysis. 図1における永久磁石の磁界強度分布及び渦電流密度分布を表したグラフである。It is a graph showing the magnetic field strength distribution and eddy current density distribution of the permanent magnet in FIG. 請求項2に係る発明の実施形態の説明図である。It is explanatory drawing of embodiment of the invention which concerns on Claim 2. 永久磁石の領域分けを説明するための図である。It is a figure for demonstrating area division of a permanent magnet. 請求項4に係る発明の実施形態における各辺や変数の説明図である。It is explanatory drawing of each edge | side and variable in embodiment of the invention which concerns on Claim 4. 永久磁石に発生する磁束密度の時間変化及び渦電流を示す概念図である。It is a conceptual diagram which shows the time change and eddy current of the magnetic flux density which generate | occur | produce in a permanent magnet. 埋込磁石型モータの永久磁石端面における磁束密度ベクトル分布を描画した図である。It is the figure which drawn magnetic flux density vector distribution in the permanent magnet end surface of an embedded magnet type motor. 図7における永久磁石表面の渦電流ベクトルを描画した図である。It is the figure which drawn the eddy current vector of the permanent magnet surface in FIG.

符号の説明Explanation of symbols

100:永久磁石
101:長辺
102:表面
103:奥行き方向中央部
103A:領域
104,105:環流部
200:ロータ
300:ステータ
DESCRIPTION OF SYMBOLS 100: Permanent magnet 101: Long side 102: Surface 103: Depth direction center part 103A: Area | region 104,105: Circulation part 200: Rotor 300: Stator

Claims (5)

三次元のうち一次元に関して略一様性を有する電磁機器に用いられる永久磁石の損失算定方法において、
前記一次元を除く他の二次元の磁界解析を用いて前記永久磁石の表面を含む前記永久磁石内部の磁界強度分布、磁束密度分布、または渦電流密度分布の少なくとも一つを導出し、
この導出した分布に基づいて、三次元における前記永久磁石の渦電流または渦電流損失を算出することを特徴とする、永久磁石の損失算定方法。
In the method for calculating the loss of permanent magnets used in electromagnetic equipment that is substantially uniform in one of the three dimensions,
Deriving at least one of a magnetic field strength distribution, a magnetic flux density distribution, or an eddy current density distribution inside the permanent magnet including the surface of the permanent magnet using a two-dimensional magnetic field analysis other than the one dimension,
A permanent magnet loss calculation method, wherein the permanent magnet eddy current or eddy current loss in three dimensions is calculated based on the derived distribution.
請求項1に記載した永久磁石の損失算定方法において、
前記二次元の磁界解析により導出した前記永久磁石の表面の磁界強度分布または磁束密度分布を、前記一次元としての奥行きについて一様とみなし、前記磁界強度分布または磁束密度分布を、三次元磁界解析の境界条件として前記永久磁石の対応する表面に設定して解析することにより、
三次元における前記永久磁石内部の渦電流または渦電流損失を算出することを特徴とする、永久磁石の損失算定方法。
In the permanent magnet loss calculation method according to claim 1,
The magnetic field strength distribution or magnetic flux density distribution on the surface of the permanent magnet derived by the two-dimensional magnetic field analysis is regarded as uniform with respect to the one-dimensional depth, and the magnetic field strength distribution or the magnetic flux density distribution is regarded as a three-dimensional magnetic field analysis. By setting and analyzing the corresponding surface of the permanent magnet as a boundary condition of
A method for calculating a loss of a permanent magnet, comprising calculating an eddy current or an eddy current loss in the permanent magnet in three dimensions.
請求項1に記載した永久磁石の損失算定方法において、
前記二次元の磁界解析における前記永久磁石内部の位置を二次元座標としてのx,y座標により規定し、
前記二次元の磁界解析により導出した前記永久磁石の渦電流密度分布から算出した渦電流損失密度分布P(x,y)に基づき、三次元における前記永久磁石の渦電流損失Ppmを次の数式によって算出することを特徴とする、永久磁石の損失算定方法。
pm=∫∫{L(x,y)×P(x,y)}dxdy [W]
(但し、L(x,y):永久磁石の奥行き方向の長さに関する関数)
In the permanent magnet loss calculation method according to claim 1,
The position inside the permanent magnet in the two-dimensional magnetic field analysis is defined by x, y coordinates as two-dimensional coordinates,
Based on the eddy current loss density distribution P (x, y) calculated from the eddy current density distribution of the permanent magnet derived by the two-dimensional magnetic field analysis, the eddy current loss P pm of the permanent magnet in three dimensions is expressed by the following equation. A method for calculating the loss of permanent magnets, characterized by:
P pm = ∫∫ {L (x, y) × P (x, y)} dxdy [W]
(However, L (x, y): a function related to the length of the permanent magnet in the depth direction)
請求項1に記載した永久磁石の損失算定方法において、
前記二次元の磁界解析における前記永久磁石内部の位置を二次元座標としてのx,y座標により規定し、
前記永久磁石のx,y平面の断面形状が略長方形または略瓦形状であり、前記断面形状の長辺の長さが前記永久磁石の奥行き方向の長さよりも短い場合に、
前記断面形状の中心軸をy軸、このy軸に直交する軸をx軸とし、前記永久磁石のx軸方向の幅の中央部のx座標を0として、
前記二次元の磁界解析により導出した前記永久磁石の渦電流密度分布から算出した渦電流損失密度分布P(x,y)に基づき、三次元における前記永久磁石の渦電流損失Ppmを次の数式によって算出することを特徴とする、永久磁石の損失算定方法。
pm=∫∫{(l−w+4|x|)×P(x,y)}dxdy [W]
(但し、l:永久磁石の奥行き方向長さ,w:永久磁石のx軸方向の幅)
In the permanent magnet loss calculation method according to claim 1,
The position inside the permanent magnet in the two-dimensional magnetic field analysis is defined by x, y coordinates as two-dimensional coordinates,
When the cross-sectional shape of the x, y plane of the permanent magnet is substantially rectangular or substantially tile-shaped, and the length of the long side of the cross-sectional shape is shorter than the length of the permanent magnet in the depth direction,
The central axis of the cross-sectional shape is the y-axis, the axis perpendicular to the y-axis is the x-axis, and the x-coordinate of the central portion of the width of the permanent magnet in the x-axis direction is 0.
Based on the eddy current loss density distribution P (x, y) calculated from the eddy current density distribution of the permanent magnet derived by the two-dimensional magnetic field analysis, the eddy current loss P pm of the permanent magnet in three dimensions is expressed by the following equation. A method for calculating the loss of permanent magnets, characterized by:
P pm = ∫∫ {(l−w + 4 | x |) × P (x, y)} dxdy [W]
(Where l is the length of the permanent magnet in the depth direction, w is the width of the permanent magnet in the x-axis direction)
請求項1に記載した永久磁石の損失算定方法において、
前記二次元の磁界解析により導出した前記永久磁石の表面の磁界強度分布または磁束密度分布を、前記一次元としての奥行きについて一様とみなし、前記二次元の磁界解析における前記永久磁石内部の位置を二次元座標としてのx,y座標により規定し、
前記永久磁石の奥行き方向の長さが、前記永久磁石内に発生する磁束密度変化の考慮すべき周波数の上限値によって決まる表皮厚さの2倍よりも小さい場合に、
前記二次元の磁界解析において前記永久磁石に発生する渦電流を無視するように設定し、
三次元における前記永久磁石の渦電流損失Ppmを次の数式によって算出することを特徴とする、永久磁石の損失算定方法。
pm=l×Σ∫∫{K×B(f,x,y)×f}dxdy [W]
(但し、l:永久磁石の奥行き方向長さ,Σ:永久磁石中の磁束密度変化として存在する周波数成分の総和,K:渦電流損失密度定数,B(f,x,y):座標x,yにおける周波数fの磁束密度振幅,f:磁束密度変化の周波数)
In the permanent magnet loss calculation method according to claim 1,
The magnetic field strength distribution or magnetic flux density distribution on the surface of the permanent magnet derived by the two-dimensional magnetic field analysis is regarded as uniform with respect to the depth as the one dimension, and the position inside the permanent magnet in the two-dimensional magnetic field analysis is determined. It is defined by x and y coordinates as two-dimensional coordinates,
When the length in the depth direction of the permanent magnet is smaller than twice the skin thickness determined by the upper limit value of the frequency to be taken into account of the change in magnetic flux density generated in the permanent magnet,
Set to ignore eddy currents generated in the permanent magnet in the two-dimensional magnetic field analysis,
A permanent magnet loss calculation method, characterized in that the eddy current loss P pm of the permanent magnet in three dimensions is calculated by the following equation.
P pm = l × Σ f ∫∫ {K e × B (f, x, y) 2 × f 2 } dxdy [W]
(Where l is the length of the permanent magnet in the depth direction, Σ f is the sum of the frequency components present as changes in the magnetic flux density in the permanent magnet, K e is the eddy current loss density constant, and B (f, x, y) is the coordinate. magnetic flux density amplitude of frequency f in x and y, f: frequency of magnetic flux density change)
JP2008125704A 2008-05-13 2008-05-13 Loss calculation method of permanent magnet Withdrawn JP2009276117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125704A JP2009276117A (en) 2008-05-13 2008-05-13 Loss calculation method of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125704A JP2009276117A (en) 2008-05-13 2008-05-13 Loss calculation method of permanent magnet

Publications (1)

Publication Number Publication Date
JP2009276117A true JP2009276117A (en) 2009-11-26

Family

ID=41441701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125704A Withdrawn JP2009276117A (en) 2008-05-13 2008-05-13 Loss calculation method of permanent magnet

Country Status (1)

Country Link
JP (1) JP2009276117A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003589A1 (en) * 2018-06-28 2020-01-02 株式会社日立製作所 Split magnetic eddy current loss analysis method
CN111654131A (en) * 2020-04-30 2020-09-11 北京交通大学 Rotor structure of permanent magnet motor
CN111859694A (en) * 2020-07-28 2020-10-30 大连理工大学 Heat source loss calculation method for permanent magnet magnetic coupler
CN112560301A (en) * 2020-11-26 2021-03-26 东南大学 Magnetic material eddy current loss calculation method based on magnetic induction principle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003589A1 (en) * 2018-06-28 2020-01-02 株式会社日立製作所 Split magnetic eddy current loss analysis method
JP2020004083A (en) * 2018-06-28 2020-01-09 株式会社日立製作所 Split magnet eddy current loss analysis method
JP7057235B2 (en) 2018-06-28 2022-04-19 株式会社日立製作所 Divided magnet eddy current loss analysis method
CN111654131A (en) * 2020-04-30 2020-09-11 北京交通大学 Rotor structure of permanent magnet motor
CN111859694A (en) * 2020-07-28 2020-10-30 大连理工大学 Heat source loss calculation method for permanent magnet magnetic coupler
CN112560301A (en) * 2020-11-26 2021-03-26 东南大学 Magnetic material eddy current loss calculation method based on magnetic induction principle
CN112560301B (en) * 2020-11-26 2021-10-08 东南大学 Magnetic material eddy current loss calculation method based on magnetic induction principle
WO2022110529A1 (en) * 2020-11-26 2022-06-02 东南大学 Magnetic material eddy-current loss calculation method based on magnetic induction principle
US11790132B2 (en) 2020-11-26 2023-10-17 Southeast University Calculation method of eddy current loss in magnetic materials based on magnetic-inductance

Similar Documents

Publication Publication Date Title
Sharif et al. Performance analysis of a cylindrical eddy current brake
Boroujeni et al. A novel analytical model for no-load, slotted, surface-mounted PM machines: air gap flux density and cogging torque
CN112257231B (en) Permanent magnet motor analysis method and system considering nonlinear characteristics of silicon steel sheet and application
Arumugam et al. Estimation of eddy current loss in semi-closed slot vertical conductor permanent magnet synchronous machines considering eddy current reaction effect
Pilat Analytical modeling of active magnetic bearing geometry
JP2009276117A (en) Loss calculation method of permanent magnet
JP2010072773A (en) Method for analyzing in-magnet eddy current loss for permanent magnet type motor
Min et al. Eddy-current loss analysis of noncontact magnetic device with permanent magnets based on analytical field calculations
Santra et al. Calculation of passive magnetic force in a radial magnetic bearing using general division approach
JPWO2017017716A1 (en) Magnetic field analysis calculation method, circuit calculation model program using magnetic field analysis calculation method, and recording medium for the program
KR102277515B1 (en) Devices and method for determining a magnetic field
Yokoyama et al. Comparison of iron loss characteristics of divided cores considering vector magnetic properties
JP6610346B2 (en) Magnetic property analyzing apparatus, magnetic property analyzing method, and computer program
Nor Firdaus et al. Improvement of energy density in single stator interior permanent magnet using double stator topology
Rostami et al. Analysis of AFPM machines with cylindrically shaped magnets using quasi-3D method
Yamaguchi et al. 3-D finite-element analysis of skewed squirrel-cage induction motor
JP2008123076A (en) Magnet eddy current loss analyzing method for pm motor
Liang et al. Modeling and analysis of field modulated permanent-magnet eddy-current couplings with a slotted conductor rotor
JP6984426B2 (en) Electromagnetic field analyzer, electromagnetic field analysis method, and program
JP7436778B2 (en) Processing systems, processing methods, and programs
Chen et al. Field analysis of a sinusoidal-edged Halbach magnet array using the differential quadrature finite element method
JP5673401B2 (en) Motor characteristics analysis method
JP4785051B2 (en) Electromagnetic field analysis method and electromagnetic field analysis program
Shima et al. Analysis of Eddy‐Current Losses in Solid Iron Under dc‐Biased Magnetization Considering Minor Hysteresis Loops
Ristagno et al. FEM using projection of physical properties suitable for movement modeling and optimization processes

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802