JP4785051B2 - Electromagnetic field analysis method and electromagnetic field analysis program - Google Patents

Electromagnetic field analysis method and electromagnetic field analysis program Download PDF

Info

Publication number
JP4785051B2
JP4785051B2 JP2006184444A JP2006184444A JP4785051B2 JP 4785051 B2 JP4785051 B2 JP 4785051B2 JP 2006184444 A JP2006184444 A JP 2006184444A JP 2006184444 A JP2006184444 A JP 2006184444A JP 4785051 B2 JP4785051 B2 JP 4785051B2
Authority
JP
Japan
Prior art keywords
calculation
time
electromagnetic field
finite element
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006184444A
Other languages
Japanese (ja)
Other versions
JP2008015674A (en
Inventor
和樹 仙波
隆 山田
洋 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Research Institute Ltd
Original Assignee
Japan Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Research Institute Ltd filed Critical Japan Research Institute Ltd
Priority to JP2006184444A priority Critical patent/JP4785051B2/en
Publication of JP2008015674A publication Critical patent/JP2008015674A/en
Application granted granted Critical
Publication of JP4785051B2 publication Critical patent/JP4785051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Description

本発明は電磁界解析方法および電磁界解析用プログラムに関し、特に、有限要素法を用いた回転機等の電磁界解析でスライディングメッシュの非線形反復計算でも高速計算および妥当な解を得るのに適した電磁界解析方法および電磁界解析用プログラムに関する。   The present invention relates to an electromagnetic field analysis method and an electromagnetic field analysis program, and is particularly suitable for obtaining a high-speed calculation and a reasonable solution even in nonlinear iterative calculation of a sliding mesh in electromagnetic field analysis of a rotating machine or the like using a finite element method. The present invention relates to an electromagnetic field analysis method and an electromagnetic field analysis program.

有限要素法を利用した電磁界解析において、時系列の複数時刻の各々での計算ステップを有する過渡応答解析であって非線形特性を有する材料を扱う場合の解析では、通常、複数の時刻の各々ごとにNewton−Raphson法(以下「N−R法」と記す)等の非線形反復計算法を用いて材料特性を決定し電磁界を算出する。   In an electromagnetic field analysis using the finite element method, a transient response analysis having a calculation step at each of a plurality of time points in a time series and dealing with a material having nonlinear characteristics is usually performed at each of a plurality of times. The material characteristics are determined using a nonlinear iterative calculation method such as the Newton-Raphson method (hereinafter referred to as “N-R method”), and the electromagnetic field is calculated.

図15は、非線形特性を有する材料の一例を示す。図15に示す直交2軸座標系で横軸は磁界Hを示し、縦軸は磁束密度Bを示す。図15で(A)は非線形特性の全体図、(B)は(A)の一部100の拡大図である。特性101は非線形特性を有している。このような特性101を有する材料の或る時刻の材料特性値を決定するためには、図15(B)の点(1),(2),(3),(4)に示すごとく、例えば4回の反復計算を行って最終的に点(4)を材料特性値として決定する。各時刻ごとに材料特性値を決定するため、このような非線形反復計算を行う必要があり、連立一次方程式を複数回解かねばならない。図15の例では、4回(矢印で示す推移)の計算例を示しているが、実際には解析の対象によっては計算回数が数十回に及ぶ場合がある。このため、解析時間が長くなるという問題が提起される。   FIG. 15 shows an example of a material having nonlinear characteristics. In the orthogonal biaxial coordinate system shown in FIG. 15, the horizontal axis indicates the magnetic field H, and the vertical axis indicates the magnetic flux density B. 15A is an overall view of nonlinear characteristics, and FIG. 15B is an enlarged view of a part 100 of FIG. The characteristic 101 has a non-linear characteristic. In order to determine the material characteristic value of a material having such a characteristic 101 at a certain time, as shown at points (1), (2), (3), (4) in FIG. Four iterations are performed to finally determine the point (4) as the material property value. In order to determine the material property value at each time, it is necessary to perform such a nonlinear iterative calculation, and the simultaneous linear equations must be solved a plurality of times. In the example of FIG. 15, an example of calculation four times (transition indicated by an arrow) is shown, but in practice, the number of calculations may reach several tens of times depending on the object of analysis. For this reason, the problem that analysis time becomes long is raised.

上記の非線形反復計算法による計算の場合に、解析の時間を短くするためには初期値である点(1)を適切に決定することが望まれる。初期値を適切に決定することができれば、或る時刻tにおける材料特性値、すなわち点(4)にたどりつくのに要する非線形反復計算の回数の減少を期待することができる。かかる観点から、その前の時刻の材料特性が現時刻の材料特性に近いという仮定に基づいて、前時刻の反復計算の解を現時刻の反復計算の初期値とする手法が提案されている(非特許文献1,2)。   In the case of the calculation by the above nonlinear iterative calculation method, in order to shorten the analysis time, it is desirable to appropriately determine the point (1) which is the initial value. If the initial value can be determined appropriately, it can be expected that the material characteristic value at a certain time t, that is, the number of nonlinear iterative calculations required to reach the point (4) will be reduced. From this point of view, based on the assumption that the material characteristics at the previous time are close to the material characteristics at the current time, a method has been proposed in which the solution of the previous time iteration calculation is used as the initial value of the current iteration iteration ( Non-patent documents 1, 2).

上記の計算手法は、各時刻の反復計算で最初の計算を省くすることができ、さらに材料特性に近いところから探索を行うことができるため、早く材料特性に到達することができるという利点を有する。
矢川元基/塩谷隆二著、「超並列有限要素解析」、朝倉書店、1998年10月初版発行、107〜109頁 D.KondrashovとD.Keefer, "A Maxwell's Equation Solver for 3-D MHD Calculations" IEEE Trans. on Magnetics Vol 33, No1, pp254-259, Jan. 1997
The above calculation method has the advantage that the first calculation can be omitted by the iterative calculation at each time, and the search can be performed from a place close to the material characteristic, so that the material characteristic can be reached quickly. .
Motomoto Yagawa / Ryuji Shioya, “Super Parallel Finite Element Analysis”, Asakura Shoten, first published in October 1998, pages 107-109 D. Kondrashov and D. Keefer, "A Maxwell's Equation Solver for 3-D MHD Calculations" IEEE Trans. On Magnetics Vol 33, No1, pp254-259, Jan. 1997

前時刻の反復計算の解を現時刻の反復計算の初期値とする従来の計算手法は、解析対象が、可動部と固定部を有する回転機等の電磁機器において有限要素メッシュにスライディングメッシュを含むものの場合には、非線形反復計算の回数が増加したり、物理的に意味を有しない不正な解に到達するというケースが見られる。このようなケースの例を図16〜図18を参照して説明する。   The conventional calculation method using the solution of the previous time iteration as the initial value for the current time iteration includes a sliding mesh in a finite element mesh in an electromagnetic device such as a rotating machine having a movable part and a fixed part. In the case of things, there are cases where the number of nonlinear iterative calculations increases or an illegal solution that does not have physical meaning is reached. Examples of such cases will be described with reference to FIGS.

図16は、一例として、回転機200を形成する可動部(回転子)201と固定部202の一部断面(90°分)であって、回転軸203に対して直角な断面図を示している。可動201と固定部202との間には空気層204が存在し、この空気層204は可動部側の空気層204aと固定部側の空気層204bとからなっている。   FIG. 16 shows, as an example, a partial cross section (90 ° portion) of the movable part (rotor) 201 and the fixed part 202 forming the rotating machine 200, and a cross-sectional view perpendicular to the rotation axis 203. Yes. An air layer 204 exists between the movable 201 and the fixed portion 202, and the air layer 204 includes an air layer 204a on the movable portion side and an air layer 204b on the fixed portion side.

図16の矩形領域205を拡大し、そのスライディングメッシュによる要素分割例を示すと、図17の(A)と(B)のごとくなる。ここで「スライディングメッシュ」とは、有限要素法を解析対象に適用して作られる有限要素メッシュであり、特に、可動部201と固定部202の境界を作る空気層204における空気層204aと空気層204bの接面を構成するメッシュを指す。   When the rectangular area 205 in FIG. 16 is enlarged and an example of element division by the sliding mesh is shown, it becomes as shown in FIGS. Here, the “sliding mesh” is a finite element mesh created by applying the finite element method to the analysis target, and in particular, the air layer 204a and the air layer in the air layer 204 that forms the boundary between the movable part 201 and the fixed part 202. The mesh which comprises the contact surface of 204b is pointed out.

図17の(A)は時刻tにおけるスライディングメッシュの分割例を示し、図17の(B)は時刻t+Δtにおけるスライディングメッシュの分割例を示している。図17の(A)と(B)で、206は可動部201と固定部202との間の接合部であり、図では分けて示されているが、実際には重なっている。接合部206は上記の空気層204に対応している。図17の(A),(B)で数字1,2,3,4,5,6,7はメッシュ要素を区別するための番号を示し、(A)と(B)の間で同じ数字が付されたメッシュ要素は同一部分を示している。図中黒丸は接点を意味する。図17の(A)と(B)を比較すると、時刻tから時刻t+Δtに時間が推移すると、固定部202のメッシュ要素に変化はなく、他方、可動部201のメッシュ要素の位置は可動部201の回転動作に応じて1メッシュ要素分だけ時計方向に回転し、その位置が変化する。この場合において、例えば時刻t+Δtで各スライディングメッシュで材料特性を反復計算するとき、最初の計算の初期値に時刻tでの対応する部分の材料特性を用いる。   FIG. 17A shows an example of sliding mesh division at time t, and FIG. 17B shows an example of sliding mesh division at time t + Δt. In FIGS. 17A and 17B, reference numeral 206 denotes a joint portion between the movable portion 201 and the fixed portion 202, which is shown separately in the figure, but actually overlaps. The joint portion 206 corresponds to the air layer 204 described above. In FIGS. 17A and 17B, numerals 1, 2, 3, 4, 5, 6, and 7 indicate numbers for distinguishing mesh elements, and the same numerals are used between (A) and (B). The attached mesh elements indicate the same parts. Black circles in the figure mean contacts. When (A) and (B) in FIG. 17 are compared, when the time changes from time t to time t + Δt, the mesh element of the fixed portion 202 does not change, and on the other hand, the position of the mesh element of the movable portion 201 is the movable portion 201. Rotate clockwise by one mesh element in accordance with the rotation operation, and its position changes. In this case, for example, when material properties are repeatedly calculated with each sliding mesh at time t + Δt, the material properties of the corresponding portion at time t are used as initial values of the first calculation.

上記のようにスライディングメッシュで分割した回転機200に対して、前時刻の反復計算の解を現時刻の反復計算の初期値とする従来の計算手法を適用すると、図7に示すごとき計算結果が得られる。図18の座標系で、横軸は時刻、縦軸はトルクを示している。図18に示したグラフで、301が前時刻の解を利用する上記反復計算の結果に基づき得られた材料特性値の変化特性であり、302が物理的に正しい状態を表すトルクの変化特性である。計算の結果、解として得られたトルクの変化特性301は不正な解を示している。このように、実際の物理的状態に比較して、計算の結果が顕著に異なるという事態が生じる。   When the conventional calculation method using the solution of the previous time iteration calculation as the initial value of the current time iteration calculation is applied to the rotating machine 200 divided by the sliding mesh as described above, the calculation result as shown in FIG. can get. In the coordinate system of FIG. 18, the horizontal axis represents time and the vertical axis represents torque. In the graph shown in FIG. 18, 301 is a change characteristic of the material characteristic value obtained based on the result of the above iterative calculation using the solution at the previous time, and 302 is a change characteristic of the torque representing a physically correct state. is there. As a result of the calculation, the torque change characteristic 301 obtained as a solution indicates an incorrect solution. In this way, there arises a situation in which the result of the calculation is significantly different from the actual physical state.

上記のような問題が発生するのは、スライディングメッシュ上の解が可動部201側と固定部202側とで時刻によって大きく変化し、前時刻の材料特性が現時刻の材料特性に近いという仮定が成立せず、前時刻の反復計算の解を現時刻の反復計算の初期値とすることができない状態になっているからであると推測される。そのため、スライディングメッシュ上の解の取り扱いについては十分に検討の余地があった。   The above problem occurs because the solution on the sliding mesh largely changes depending on the time on the movable part 201 side and the fixed part 202 side, and the material property at the previous time is close to the material property at the current time. It is presumed that it is not established and the solution for the iterative calculation at the previous time cannot be set as the initial value of the iterative calculation at the current time. For this reason, there was room for sufficient consideration regarding the handling of solutions on the sliding mesh.

本発明の目的は、有限要素法を用いた回転機等の電磁界解析であって、複数時刻のステップの各々でN−R法等の非線形反復計算手法で材料特性を決定する場合に、前時刻の解を現時刻の初期値とする非線形反復計算において、回転機等のスライディングメッシュの計算であっても、反復計算回数を減少し、計算を高速化し、さらに物理的に実際に即した妥当な解を得ることができる電磁界解析方法および電磁界解析用プログラムを提供することにある。   An object of the present invention is an electromagnetic field analysis of a rotating machine or the like using a finite element method, and in the case where material properties are determined by a nonlinear iterative calculation method such as an NR method at each of a plurality of time steps. In non-linear iterative calculations using the time solution as the initial value of the current time, even for sliding meshes such as rotating machines, the number of iterative calculations is reduced, the calculation speed is increased, and the appropriateness is physically realistic. It is to provide an electromagnetic field analysis method and an electromagnetic field analysis program capable of obtaining a simple solution.

本発明に係る電磁界解析方法および電磁界解析用プログラムは、上記目的を達成するために、次のように構成される。   In order to achieve the above object, an electromagnetic field analysis method and an electromagnetic field analysis program according to the present invention are configured as follows.

第1の電磁界解析方法(請求項1に対応)は、
固定部、可動部、および固定部と可動部の間に形成される境界部を有する電磁機器の電磁界特性を、コンピュータ上で有限要素法を適用して計算手段により時系列の複数の時刻の各々にて非線形反復計算を行って解析する電磁界解析方法であって、
計算手段が、電磁機器の固定部と可動部の各々の分割要素に対して有限要素法に基づく有限要素メッシュを作ると共に、電磁機器の境界部の分割要素に対して有限要素法に基づくスライディングメッシュを作るステップと、
時刻設定手段が時系列の複数の時刻の各々を設定するステップと、
初期値設定手段が、時系列の複数の時刻のうち或る時刻が時刻設定手段により設定されたとき、有限要素メッシュに関しては或る時刻の前の時刻における非線形反復計算の解を初期値に設定し、スライディングメッシュに関しては0または周りの辺もしくは節点について求められた値に比べて充分に小さい値を初期値に設定するステップと、
計算手段が、有限要素メッシュおよびスライディングメッシュの各々に関してそれぞれで設定された初期値を用いて或る時刻における非線形反復計算を行うステップと、
を有するように構成される。
The first electromagnetic field analysis method (corresponding to claim 1) is:
The electromagnetic field characteristics of an electromagnetic device having a fixed part, a movable part, and a boundary part formed between the fixed part and the movable part are calculated on a computer by applying a finite element method to a plurality of time-series times. An electromagnetic field analysis method for performing analysis by performing nonlinear iterative calculation at each ,
The calculation means creates a finite element mesh based on the finite element method for each divided element of the fixed part and the movable part of the electromagnetic device, and a sliding mesh based on the finite element method for the divided element of the boundary part of the electromagnetic device. Step to make,
A time setting means for setting each of a plurality of times in a time series;
The initial value setting means sets a solution for nonlinear iterative calculation at a time before a certain time to an initial value for a finite element mesh when a time is set by the time setting means among a plurality of time-series times. And, for the sliding mesh, setting a value sufficiently smaller than 0 or a value obtained for a surrounding edge or node to an initial value;
Calculating means for performing nonlinear iterative calculation at a certain time using initial values respectively set for each of the finite element mesh and the sliding mesh;
It is comprised so that it may have.

上記の電磁界解析方法では、回転運動や並進運動を伴う電磁機器の電磁界解析で、時系列の複数の時刻の各々で実行される非線形反復計算において、スライディングメッシュ上以外の有限要素メッシュ上のみで前時刻の解を現時刻の初期値として非線形反復計算を行い、かつスライディングメッシュ上において、前時刻の解が現時刻の解に近いという仮定が成立しないため、前時刻の解を現時刻の初期値としない。その代わりに、スライディングメッシュに関しては0または周りの辺もしくは節点について求められた値に比べて充分に小さい値を初期値にする。これにより、スライディングメッシュの影響により、非線形反復計算の回数が増加したり、物理的な意味を有しない不正な解に到達するということをなくすことが可能となる。各時刻での非線形反復計算において、スライディングメッシュ上の初期値を上記の通り設定することにより、すなわち急激な変化を生じる部分の有限要素メッシュでは前時刻の解を初期値に使用せず、回転機等のスライディングメッシュ上の計算であっても、反復計算回数を減少し、計算を高速化し、さらに物理的に実際に即した妥当な解を得ることができる。 In the electromagnetic field analysis method described above, in electromagnetic field analysis of electromagnetic equipment with rotational motion and translational motion, in non-linear iterative calculations executed at each of a plurality of times in a time series, only on a finite element mesh other than on a sliding mesh The nonlinear iteration is calculated with the previous time solution as the initial value of the current time, and the assumption that the previous time solution is close to the current time solution is not valid on the sliding mesh. Not set as initial value. Instead, for the sliding mesh, the initial value is set to 0 or a value sufficiently smaller than the value obtained for the surrounding side or node. As a result, it is possible to eliminate an increase in the number of non-linear iterative calculations due to the influence of the sliding mesh or an illegal solution having no physical meaning. In the nonlinear iterative calculation at each time, the initial value on the sliding mesh is set as described above, that is, the solution of the previous time is not used as the initial value in the finite element mesh in the portion where the abrupt change occurs. Even if the calculation is performed on a sliding mesh, the number of iterations can be reduced, the calculation can be speeded up, and a reasonable solution that is physically practical can be obtained.

第2の電磁界解析方法(請求項2に対応)は、上記の方法において、好ましくは、境界部は空気層であることを特徴とする。 In the second electromagnetic field analysis method (corresponding to claim 2), preferably, the boundary portion is an air layer .

の電磁界解析方法(請求項に対応)は、上記の方法において、好ましくは、非線形反復計算法はNewton−Raphson法であることを特徴とする。 In a third electromagnetic field analysis method (corresponding to claim 3 ), preferably, the nonlinear iterative calculation method is a Newton-Raphson method.

本発明に係る電磁界解析用プログラム(請求項に対応)は、前述した電磁界解析方法をコンピュータに実行させるプログラムであり、当該コンピュータに、
電磁機器の固定部と可動部の各々の分割要素に対して有限要素法に基づく有限要素メッシュを作ると共に、電磁機器の境界部の分割要素に対して有限要素法に基づくスライディングメッシュを作る第1計算手段と、
時系列の複数の時刻の各々を設定する時刻設定手段と、
時系列の複数の時刻のうち或る時刻が時刻設定手段により設定されたとき、有限要素メッシュに関しては或る時刻の前の時刻における非線形反復計算の解を初期値に設定し、スライディングメッシュに関しては0または周りの辺もしくは節点について求められた値に比べて充分に小さい値を初期値に設定する初期値設定手段と、
有限要素メッシュおよびスライディングメッシュの各々に関してそれぞれで設定された初期値を用いて或る時刻における非線形反復計算を行う第2計算手段と、
を実現させることを特徴とする。
上記において、さらに境界部は空気層であることを特徴とし(請求項5に対応)、また非線形反復計算法はNewton−Raphson法であることを特徴とする(請求項に対応)。
An electromagnetic field analysis program according to the present invention (corresponding to claim 4 ) is a program that causes a computer to execute the electromagnetic field analysis method described above.
First, a finite element mesh based on the finite element method is created for each divided element of the fixed part and the movable part of the electromagnetic device, and a sliding mesh based on the finite element method is created for the divided element of the boundary part of the electromagnetic device. Calculation means;
Time setting means for setting each of a plurality of times in a time series;
When a certain time among a plurality of times in the time series is set by the time setting means, for a finite element mesh, the solution of nonlinear iterative calculation at a time before a certain time is set to an initial value, and for a sliding mesh An initial value setting means for setting an initial value to a value sufficiently smaller than the value obtained for 0 or a surrounding edge or node;
Second calculation means for performing nonlinear iterative calculation at a certain time using initial values respectively set for each of the finite element mesh and the sliding mesh;
It is characterized by realizing.
In the above, further boundary is characterized by an air layer (corresponding to claim 5), or non-linear iterative calculation method is characterized by a Newton-Raphson method (corresponding to claim 6).

本発明に係る電磁界解析方法によれば、有限要素法を用いた回転機等の機器の電磁界解析であって、複数時刻のステップの各々でN−R法等の非線形反復計算手法で初期値を決定する場合に、スライディングメッシュ上以外の有限要素メッシュ上に前時刻の解を現時刻の初期値とする非線形反復計算を適用し、スライディングメッシュ上では当該初期値を0または0に近い値とするようにしたため、スライディングメッシュを伴う有限要素法の計算であっても、反復計算回数を減少し、計算を高速化し、さらに物理的に実際に即した妥当な解を得ることができる。   The electromagnetic field analysis method according to the present invention is an electromagnetic field analysis of a device such as a rotating machine using a finite element method, and is initially performed by a non-linear iterative calculation method such as an NR method at each of a plurality of time steps. When determining the value, apply a non-linear iterative calculation with the solution at the previous time as the initial value of the current time on a finite element mesh other than the sliding mesh, and the initial value is 0 or a value close to 0 on the sliding mesh. Therefore, even in the case of the finite element method calculation with a sliding mesh, the number of iterations can be reduced, the calculation speeded up, and a reasonable solution that is physically realistic can be obtained.

以下に、本発明の好適な実施形態(実施例)を添付図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Preferred embodiments (examples) of the present invention will be described below with reference to the accompanying drawings.

本発明の実施形態に係る電磁界解析方法が適用される解析対象は、回転運動や並進運動を行う構造部分(スライド部)を有する電磁機器である。この電磁機器の代表例として、固定部と回転子(一般的には「可動部」)を有する回転機の例を用いる。回転機において、回転子は、相対的な運動として固定部に対して回転運動を行う。回転子と固定部は分離されており、その間には隙間(ギャップ)が形成されている。回転子と固定部の間の境界部を形成する隙間は空気層になっている。回転機に対して有限要素法を適用すると、固定部と回転子と境界部等について大量の数の有限要素メッシュ(メッシュ要素)が作られる。境界部をなす空気層の有限要素メッシュは、急激な変化または大きな変化が生じる部分であり、スライディングメッシュとして扱われる。スライディングメッシュの要素分割の例は、前述の図16に示した通りである。   An analysis target to which the electromagnetic field analysis method according to the embodiment of the present invention is applied is an electromagnetic device having a structural portion (slide portion) that performs a rotational motion or a translational motion. As a typical example of this electromagnetic device, an example of a rotating machine having a fixed part and a rotor (generally “movable part”) is used. In the rotating machine, the rotor performs a rotational motion with respect to the fixed portion as a relative motion. The rotor and the fixed part are separated, and a gap (gap) is formed between them. The gap that forms the boundary between the rotor and the fixed part is an air layer. When the finite element method is applied to the rotating machine, a large number of finite element meshes (mesh elements) are created for the fixed portion, the rotor, the boundary portion, and the like. The finite element mesh of the air layer that forms the boundary is a portion where a sudden change or a large change occurs, and is treated as a sliding mesh. An example of the element division of the sliding mesh is as shown in FIG.

この実施形態における有限要素法を適用した回転機の電磁界解析方法(トルク等の計算)は、原則的に、時系列の複数の時刻の各々での計算ステップを有する解析であって非線形特性を有する材料特性を扱う場合の解析であり、複数の時刻の各々ごとで、例えばN−R法の非線形反復計算法を用いて材料特性を決定し、電磁界を算出するものとする。   The electromagnetic field analysis method (torque calculation, etc.) of a rotating machine to which the finite element method in this embodiment is applied is, in principle, an analysis having a calculation step at each of a plurality of times in a time series, and has nonlinear characteristics. This is an analysis in the case of handling the material characteristics, and for each of a plurality of times, for example, the material characteristics are determined using a nonlinear iterative calculation method of the NR method, and the electromagnetic field is calculated.

さらに上記電磁界解析方法では、上記非線形反復計算で、計算の初期値の決定について、スライディングメッシュ以外の有限要素メッシュの上での計算では、前時刻の材料特性が現時刻の材料特性に近いという仮定に基づいて、前時刻の非線形反復計算の解を現時刻の非線形反復計算の初期値とし、他方、スライディングメッシュの上での計算では0または0に近い値を現時刻の非線形反復計算の初期値とする。   Furthermore, in the electromagnetic field analysis method, in the non-linear iterative calculation, regarding the determination of the initial value of the calculation, in the calculation on the finite element mesh other than the sliding mesh, the material property at the previous time is close to the material property at the current time. Based on the assumptions, the solution of the nonlinear iteration calculation at the previous time is set as the initial value of the nonlinear iteration calculation at the current time, while the value on the sliding mesh is set to 0 or a value close to 0 as the initial value of the nonlinear iteration calculation at the current time. Value.

非線形反復計算においてスライディングメッシュ以外の有限要素メッシュの上では、前時刻の非線形反復計算の解を現時刻の非線形反復計算の初期値とし、これにより前時刻の材料特性を現時刻の材料特性の初期値とする。これにより、各時刻での非線形反復計算で、スライディングメッシュ以外の有限要素メッシュの各メッシュ要素において、非線形反復回数を減少させることができ、計算効率を高めることができる。   In a non-sliding calculation, on the finite element mesh other than the sliding mesh, the solution of the non-sliding calculation at the previous time is set as the initial value of the non-sliding calculation at the current time. Value. Accordingly, the number of nonlinear iterations can be reduced in each mesh element of the finite element mesh other than the sliding mesh in the nonlinear iteration calculation at each time, and the calculation efficiency can be improved.

また、スライディングメッシュ上の計算では、急激な変化等が生じ、前時刻の解が現時刻の解に近いという仮定が成立しないため、前時刻の非線形反復計算の解を現時刻の非線形反復計算の初期値とする処理は行わず、0または0に近い値を現時刻の非線形反復計算の初期値とする。これにより、スライディングメッシュ上の計算では物理的に妥当な解を得ることができる。なお、上記において「0に近い値」とは、実質的に0に相当する値であり、より詳しくは、「周りの辺(または節点)について求められた値に比べて充分に小さい値」という意味である。   In addition, in the calculation on the sliding mesh, an abrupt change or the like occurs and the assumption that the solution at the previous time is close to the solution at the current time is not valid, so the solution of the nonlinear iteration calculation at the previous time is changed to the nonlinear iteration calculation at the current time. The process for setting the initial value is not performed, and a value close to 0 is set as an initial value for nonlinear iterative calculation at the current time. Thereby, a physically reasonable solution can be obtained in the calculation on the sliding mesh. In the above, the “value close to 0” is a value substantially corresponding to 0, and more specifically, “a value sufficiently smaller than the value obtained for the surrounding sides (or nodes)”. Meaning.

次に、時刻tと時刻t+Δtにおける非線形材要素(回転子と固定部における要素)に対応する有限要素メッシュ上のN−R法に基づく非線形反復計算の計算式を説明する。ここでは、前述した図15の(B)で示した点(1),(2),(3),(4)に関連づけて説明する。   Next, a calculation formula for nonlinear iterative calculation based on the NR method on a finite element mesh corresponding to nonlinear material elements (elements in the rotor and the fixed portion) at time t and time t + Δt will be described. Here, description will be made in relation to the points (1), (2), (3), and (4) shown in FIG.

下記の(数1)で示される式(1),(2)の展開は時刻tでの1回目の計算式であり、点(1)での計算式に対応する。(数1)で示す計算式(1),(2)で「K」は連立一次方程式の係数行列であり、「A」は連立一次方程式の解ベクトルであり、「f」は連立一次方程式の荷重ベクトルである。   The expansion of the equations (1) and (2) shown in the following (Equation 1) is the first calculation equation at the time t, and corresponds to the calculation equation at the point (1). In the calculation formulas (1) and (2) shown in (Equation 1), “K” is a coefficient matrix of simultaneous linear equations, “A” is a solution vector of simultaneous linear equations, and “f” is a simultaneous linear equation. It is a load vector.

Figure 0004785051
Figure 0004785051

下記の(数2)で示される式(3),(4),(5)の展開は時刻tでの2回目の計算式であり、点(2)での計算式に対応する。   The expansion of the equations (3), (4), and (5) expressed by the following (Equation 2) is the second calculation equation at the time t, and corresponds to the calculation equation at the point (2).

Figure 0004785051
Figure 0004785051

その後、同様にして{A}を反復計算し、時刻tにおける非線形反復計算の結果としての解(点(4)に相当する解)を算出し、これにより材料特性を決定して電磁界を算出する。 Thereafter, {A t } is iteratively calculated in the same manner, and a solution (solution corresponding to the point (4)) as a result of the nonlinear iterative calculation at time t is calculated. calculate.

次に下記の(数3)で示される式(6),(7)の展開は次の時刻である時刻t+Δtでの1回目の計算式であって、初期値として{At+Δt}を用いる従来の一例である。 Next, the expansion of the formulas (6) and (7) expressed by the following (Equation 3) is the first calculation formula at the time t + Δt, which is the next time, and the conventional method using {A t + Δt } as the initial value. It is an example.

Figure 0004785051
Figure 0004785051

しかし前述のごとく、本実施形態の電磁界解析方法による計算によれば、時刻t+Δtでの非線形反復計算で、1回目の計算の初期値の決定について、スライディングメッシュ以外の有限要素メッシュ上では、前時刻の材料特性が現時刻の材料特性に近いという仮定に基づいて、前時刻の非線形反復計算の解を現時刻の非線形反復計算の初期値とする。そこで、上記の計算式で初期値として{At+Δt}を用いる代わりに、時刻tでの非線形反復計算で求めた解{A}を用い、その結果(数3)の計算を省略できる。その結果得られる時刻t+Δtでの2回目の計算式は、下記の(数4)で示された式(8),(9),(10)となる。 However, as described above, according to the calculation by the electromagnetic field analysis method of the present embodiment, the initial value of the first calculation is determined on the finite element mesh other than the sliding mesh in the nonlinear iterative calculation at time t + Δt. Based on the assumption that the material property at the time is close to the material property at the current time, the solution of the nonlinear iterative calculation at the previous time is set as the initial value of the nonlinear iterative calculation at the current time. Therefore, instead of using {A t + Δt } as the initial value in the above calculation formula, the solution {A t } obtained by nonlinear iterative calculation at time t can be used, and the calculation of the result (Equation 3) can be omitted. As a result, the second calculation formula at time t + Δt is the formulas (8), (9), and (10) shown in the following (Equation 4).

Figure 0004785051
Figure 0004785051

上記の式(数4)では、前回計算ステップである時刻tでの解{A}が、今回計算ステップである時刻t+Δtの初期値として使用されている。 In the above equation (Equation 4), the solution {A t } at time t, which is the previous calculation step, is used as the initial value of time t + Δt, which is the current calculation step.

他方、本実施形態の電磁界解析方法による計算によれば、時刻t+Δtでの非線形反復計算で、1回目の計算の初期値の決定について、スライディングメッシュ上では、前時刻の材料特性が現時刻の材料特性に近いという仮定が成立しないので、上記の計算式(数4)において初期値(項{A}の部分)に0または0に近い値を代入する。 On the other hand, according to the calculation by the electromagnetic field analysis method of the present embodiment, in the non-linear iterative calculation at time t + Δt, regarding the determination of the initial value of the first calculation, the material property at the previous time is the current time on the sliding mesh. Since the assumption that the material properties are close is not established, 0 or a value close to 0 is substituted into the initial value (the part of the term {A t }) in the above calculation formula (Formula 4).

その後、{At+Δt}を反復計算し、時刻t+Δtにおける非線形反復計算の結果としての解を算出し、これにより材料特性を決定して電磁界を算出する。その後に続く複数の時刻の各々で同様に非線形反復計算を実行し、解を算出する。 Thereafter, {A t + Δt } is iteratively calculated to calculate a solution as a result of the nonlinear iterative calculation at time t + Δt, thereby determining material characteristics and calculating an electromagnetic field. A non-linear iterative calculation is similarly performed at each of a plurality of subsequent times to calculate a solution.

上記の電磁界解析方法を実施する装置構成と機能ブロックを説明する。   An apparatus configuration and functional blocks for implementing the electromagnetic field analysis method will be described.

図1はコンピュータシステムを示す。11はコンピュータ本体、12は記憶装置、13は入力装置、14は表示装置(出力装置)である。コンピュータ本体11は、記憶装置12に保存された電磁界解析用プログラム12aを読み出して実行し、上記の電磁界解析方法に係る計算を実施する。これにより、上記のコンピュータ本体11等に基づき電磁界解析を実施する装置が実現される。図2はこの電磁界解析装置の各機能に係る構成を示すブロック図である。   FIG. 1 shows a computer system. 11 is a computer main body, 12 is a storage device, 13 is an input device, and 14 is a display device (output device). The computer main body 11 reads and executes the electromagnetic field analysis program 12a stored in the storage device 12, and performs the calculation related to the electromagnetic field analysis method. Thus, an apparatus for performing electromagnetic field analysis based on the computer main body 11 and the like is realized. FIG. 2 is a block diagram showing a configuration relating to each function of the electromagnetic field analysis apparatus.

図2において、21は、時系列の複数の時刻を決定する時刻設定手段、22は、時刻設定部21から与えられる時刻情報に基づき時系列の複数の時刻の各々で非線形反復計算を行う計算手段、23は、各時刻の非線形反復計算で、スライディングメッシュ上以外の有限要素メッシュ上で、前時刻の解を現時刻の初期値とすることにより前時刻の材料特性を現時刻の材料特性の初期値とすると共に、スライディングメッシュ上で、0または0に近い値を現時刻の初期値とすることにより現時刻の材料特性の初期値を決定する初期値決定手段、である。計算手段22は各計算ステップでの計算結果を出力する。この計算結果は、計算結果格納手段24に保存される。時刻設定手段21は、各計算ステップの時刻情報を、計算手段22と初期値設定手段23とに供給する。計算手段22は時刻情報を受けて非線形反復計算を開始する。このとき最初の計算において、初期値設定手段23から、同期した適宜なタイミングで初期値に係るデータが計算手段22に与えられる。この際に、初期値設定手段23は、スライディングメッシュ上以外の有限要素メッシュ上については計算結果格納手段24に格納された前回計算ステップでの計算結果を取り出し、初期値データとして供給し、スライディングメッシュ上については0または0に近い値を供給する。これらの各手段は上記の電磁界解析用プログラム12aにより実現される。   In FIG. 2, 21 is a time setting means for determining a plurality of time-series times, and 22 is a calculation means for performing nonlinear iterative calculation at each of a plurality of time-series times based on time information given from the time setting section 21. , 23 is a nonlinear iterative calculation at each time, and on the finite element mesh other than the sliding mesh, the solution of the previous time is set as the initial value of the current time, thereby changing the material property of the previous time to the initial of the material property of the current time. And an initial value determining means for determining the initial value of the material property at the current time by setting the value to 0 or a value close to 0 on the sliding mesh as the initial value of the current time. The calculation means 22 outputs the calculation result at each calculation step. This calculation result is stored in the calculation result storage means 24. The time setting unit 21 supplies time information of each calculation step to the calculation unit 22 and the initial value setting unit 23. The calculation means 22 receives the time information and starts nonlinear iterative calculation. At this time, in the first calculation, the initial value setting means 23 gives the data related to the initial value to the calculation means 22 at an appropriate synchronized timing. At this time, the initial value setting means 23 takes out the calculation result in the previous calculation step stored in the calculation result storage means 24 on the finite element mesh other than the sliding mesh, supplies it as initial value data, and supplies the sliding mesh. For the above, 0 or a value close to 0 is supplied. Each of these means is realized by the electromagnetic field analysis program 12a.

次に、図3に本実施形態に係る電磁界解析方法に基づく計算結果(解はトルク)の検証の一例を示す。図3において、横軸は計算ステップ(1〜12)を意味し、縦軸はトルク(Nm)を意味する。   Next, FIG. 3 shows an example of verification of calculation results (solution is torque) based on the electromagnetic field analysis method according to the present embodiment. In FIG. 3, the horizontal axis represents calculation steps (1 to 12), and the vertical axis represents torque (Nm).

この検証結果は、SPM(Surface Permanent Magnet)モータのトルク値の計算を行うにあたり、(1)物理的に正しい結果をもたらす本来の計算手法(以下「オリジナル」と記す)による特性C1、(2)前回計算ステップの解を今回計算ステップの初期値とする計算でスライディングメッシュ上の計算初期値を0にする計算手法(a)による特性C2、(3)前回計算ステップの解を今回計算ステップの初期値とする計算で非線形材料に係る有限要素メッシュ上の計算初期値のみについて前時刻の解を現時刻の初期値として引き渡す計算手法(b)による特性C3、を示している。図3は、これらの特性C1,C2,C3がいずれも実質的に一致するという検証結果を示している。   This verification result shows that when calculating the torque value of an SPM (Surface Permanent Magnet) motor, (1) characteristics C1 by an original calculation method (hereinafter referred to as “original”) that gives a physically correct result, (2) Characteristic C2 by calculation method (a) in which the initial calculation value on the sliding mesh is set to 0 by setting the previous calculation step as the initial value of the current calculation step, and (3) the previous calculation step as the initial value of the current calculation step. The characteristic C3 by the calculation method (b) which delivers the solution of the previous time as the initial value of the present time only for the initial value of calculation on the finite element mesh related to the nonlinear material in the calculation to be the value is shown. FIG. 3 shows a verification result that these characteristics C1, C2, and C3 are substantially the same.

上記の結果から明らかなように、上記特徴を有する本発明の電磁界解析方法によれば、N−R法による非線形反復計算法で反復回数を減少でき、全体として計算の高速化を実現でき、さらに物理的に妥当な解を得ることができる。   As is clear from the above results, according to the electromagnetic field analysis method of the present invention having the above characteristics, the number of iterations can be reduced by the nonlinear iterative calculation method by the NR method, and the overall calculation speed can be increased. Furthermore, a physically reasonable solution can be obtained.

前述した本実施形態に係る電磁界解析方法に基づく検証例(シミュレーションモデル)を下記の表1に示す。表1は、モデル番号1〜6の6つの検証例について、上記のオリジナルと計算手法(a)との間の計算速度向上比を示している。モデル番号1はSPMモータのモデル(3次元)であり、モデル番号2はクローポール型ステッピングモータのモデル(2つの要素タイプを含む)であり、モデル番号3は薄型IPM(Interior Permanent Magnet)モータのモデル(3次元で、2つの要素タイプを含む)であり、モデル番号4はIPMモータのモデル(2つの要素タイプを含む)であり、モデル番号5はSPMモータのモデル(2次元)であり、モデル番号6はIPMモータのモデル(2次元)である。横軸では、「オリジナル」と「本手法による速度向上比」の項目の他に、「次元」、「要素タイプ」、「要素数」、「節点数」の項目が関連事項として示されている。   A verification example (simulation model) based on the electromagnetic field analysis method according to this embodiment described above is shown in Table 1 below. Table 1 shows the calculation speed improvement ratio between the original and the calculation method (a) for the six verification examples of model numbers 1 to 6. Model number 1 is an SPM motor model (three-dimensional), model number 2 is a claw pole type stepping motor model (including two element types), and model number 3 is a thin IPM (Interior Permanent Magnet) motor. Model (3 dimensions, including two element types), model number 4 is an IPM motor model (including two element types), model number 5 is an SPM motor model (two dimensions), Model number 6 is an IPM motor model (two-dimensional). On the horizontal axis, in addition to the items “original” and “speed improvement ratio by this method”, the items “dimension”, “element type”, “number of elements”, and “number of nodes” are shown as related items. .

表1の検証例によれば、計算速度向上比は、モデル番号1のSPMモータの場合であっても、第2〜第6のその他のモータの場合についても非常に向上していることが判明する。上記の本実施形態に係る電磁界解析方法の計算手法(a)によれば計算速度を非常に高めることができる。   According to the verification example of Table 1, the calculation speed improvement ratio is found to be greatly improved even in the case of the SPM motor of model number 1 and in the case of the second to sixth other motors. To do. According to the calculation method (a) of the electromagnetic field analysis method according to the above embodiment, the calculation speed can be greatly increased.

Figure 0004785051
Figure 0004785051

次に、上記表1に示された6つの検証例のうちのいくつかについて、その検証結果を図に示す。   Next, the verification results of some of the six verification examples shown in Table 1 are shown in the figure.

図4は、モデル番号1の検証例での検証結果である非線形材料の特性曲線41を示す。図4の座標系で横軸は磁界(A/m)を示し、縦軸は磁束密度(T)を示している。またモデル番号1の検証例の要部構造を図7と図8に示す。図7はSPMモータの要部のメッシュ分割状態の斜視図を示し、図8は電圧駆動部の回路図を示す。   FIG. 4 shows a characteristic curve 41 of a nonlinear material, which is a verification result in the verification example of model number 1. In the coordinate system of FIG. 4, the horizontal axis indicates the magnetic field (A / m), and the vertical axis indicates the magnetic flux density (T). The main structure of the verification example of model number 1 is shown in FIGS. FIG. 7 shows a perspective view of the main part of the SPM motor in a mesh division state, and FIG. 8 shows a circuit diagram of the voltage driving unit.

図7において、モータ構造物50における複数の符号51は固定部側のコイルを指し示し、符号52は回転子側の磁石を指し示している。モータ構造物50において、磁石52は、コイル51の内側の空間を軸心53の周りに回転するように設けられている。モータ構造物50における符号54で指し示す部分は非線形材であり、また符号55で指し示す部分が隙間(ギャップ)である。モータ構造物50は、図7に示されるごとく、有限要素メッシュで区分して描かれている。また、図8に示すようにSPMモータの電圧駆動部では、3つの交流電流源56の各々からスイッチ要素57を経由して対応するコイル51に交流電流を供給する。   In FIG. 7, a plurality of symbols 51 in the motor structure 50 indicate coils on the fixed portion side, and a symbol 52 indicates a magnet on the rotor side. In the motor structure 50, the magnet 52 is provided to rotate around the axis 53 in the space inside the coil 51. The portion indicated by reference numeral 54 in the motor structure 50 is a non-linear material, and the portion indicated by reference numeral 55 is a gap (gap). As shown in FIG. 7, the motor structure 50 is drawn with a finite element mesh. Further, as shown in FIG. 8, in the voltage drive unit of the SPM motor, an alternating current is supplied from each of the three alternating current sources 56 to the corresponding coil 51 via the switch element 57.

上記の特性曲線41によれば、特に非線型特性を表す曲線部分の計算について、反復計算の回数が減少し、計算の高速化を達成し、さらに物理的に実際に即した妥当な解が得られている。   According to the characteristic curve 41 described above, especially for the calculation of the curve portion representing the non-linear characteristic, the number of repeated calculations is reduced, the calculation speed is increased, and a reasonable solution that is physically realistic is obtained. It has been.

図5はモデル番号3の検証例の検証結果である非線形材料の特性曲線42を示す。図5の座標系で横軸は磁界(A/m)を示し、縦軸は磁束密度(T)を示す。またモデル番号3の検証例の要部構造を図9と図10に示す。図9は薄型IPMモータの要部のメッシュ分割状態の斜視図を示し、図10は3相電流駆動部の回路図を示す。   FIG. 5 shows a characteristic curve 42 of the nonlinear material, which is the verification result of the verification example of model number 3. In the coordinate system of FIG. 5, the horizontal axis indicates the magnetic field (A / m), and the vertical axis indicates the magnetic flux density (T). The main structure of the verification example of model number 3 is shown in FIGS. FIG. 9 is a perspective view of a main part of the thin IPM motor in a mesh division state, and FIG. 10 is a circuit diagram of a three-phase current driving unit.

図9において、モータ構造物60における複数の符号61は固定部側のスロットを指し示し、複数の符号62は回転子側の磁石を指し示している。固定部側においてスロット61の中はコイル63として扱われる。モータ構造物60において、磁石62は、コイル63の内側の空間を軸心64の周りに回転するように設けられている。モータ構造物60における符号65で指し示す部分は非線形材であり、また符号66で指し示す部分が隙間(ギャップ)である。モータ構造物60は、図9に示されるごとく、有限要素メッシュで区分して描かれている。また図10に示すように薄型IPMモータの3相電流駆動部では、3相の交流電流源67から各相のコイル63に各相の交流電流を供給する。   In FIG. 9, a plurality of reference numerals 61 in the motor structure 60 indicate slots on the fixed portion side, and a plurality of reference numerals 62 indicate magnets on the rotor side. On the fixed part side, the inside of the slot 61 is handled as a coil 63. In the motor structure 60, the magnet 62 is provided so as to rotate around the axis 64 in the space inside the coil 63. A portion indicated by reference numeral 65 in the motor structure 60 is a non-linear material, and a portion indicated by reference numeral 66 is a gap (gap). As shown in FIG. 9, the motor structure 60 is drawn with a finite element mesh. Further, as shown in FIG. 10, in the three-phase current drive unit of the thin IPM motor, the AC current of each phase is supplied from the three-phase AC current source 67 to the coil 63 of each phase.

上記の特性曲線42によれば、非線型特性を表す曲線部分等の計算について、反復計算の回数が減少し、計算の高速化を達成し、さらに物理的に実際に即した妥当な解が得られている。   According to the above-described characteristic curve 42, the calculation of the curve portion representing the non-linear characteristic is reduced, the number of repeated calculations is reduced, the calculation is speeded up, and a reasonable solution that is physically realistic is obtained. It has been.

図6はモデル番号5,6の検証例の検証結果である非線形材料の特性曲線43を示す。図6の座標系で横軸は磁界(A/m)を示し、縦軸は磁束密度(T)を示す。またモデル番号5の検証例の要部構造を図11と図12に示す。図11は2次元SPMモータの要部の断面図を示し、図12は電圧駆動部の回路図を示す。さらにモデル番号6の検証例の要部構造を図13と図14に示す。図13は2次元IPMモータの要部の断面図を示し、図14は電流駆動部の回路図を示す。   FIG. 6 shows a characteristic curve 43 of the nonlinear material, which is the verification result of the verification examples of model numbers 5 and 6. In the coordinate system of FIG. 6, the horizontal axis indicates the magnetic field (A / m), and the vertical axis indicates the magnetic flux density (T). Further, the main structure of the verification example of model number 5 is shown in FIGS. FIG. 11 is a cross-sectional view of the main part of the two-dimensional SPM motor, and FIG. 12 is a circuit diagram of the voltage driving unit. Furthermore, the principal part structure of the verification example of the model number 6 is shown in FIG. 13 and FIG. FIG. 13 is a cross-sectional view of the main part of the two-dimensional IPM motor, and FIG. 14 is a circuit diagram of the current driving unit.

図11において、モータ構造物70における複数の符号71は固定部側のコイルを指し示し、符号72は回転子側の磁石を指し示している。モータ構造物70において、磁石72は、コイル71の内側の空間を軸心73の周りに回転するように設けられている。モータ構造物70における符号74で指し示す部分は非線形材であり、また符号75で指し示す部分が隙間(ギャップ)である。モータ構造物70は、図11に示されるごとく、有限要素メッシュで区分して描かれている。また、図12示すようにSPMモータの電圧駆動部では、3つの交流電流源76の各々からスイッチ要素77を経由して対応するコイル71に交流電流を供給する。   In FIG. 11, a plurality of reference numerals 71 in the motor structure 70 indicate coils on the fixed portion side, and a reference numeral 72 indicates a magnet on the rotor side. In the motor structure 70, the magnet 72 is provided to rotate around the axis 73 in the space inside the coil 71. The portion indicated by reference numeral 74 in the motor structure 70 is a non-linear material, and the portion indicated by reference numeral 75 is a gap (gap). As shown in FIG. 11, the motor structure 70 is drawn with a finite element mesh. Also, as shown in FIG. 12, in the voltage drive unit of the SPM motor, an alternating current is supplied from each of the three alternating current sources 76 to the corresponding coil 71 via the switch element 77.

図13において、モータ構造物80における複数の符号81は固定部側のスロットを指し示し、符号82は回転子側の磁石を指し示している。固定部側においてスロット81の中はコイル83として扱われる。モータ構造物80において、磁石82は、コイル83の内側の空間を軸心84の周りに回転するように設けられている。モータ構造物80における符号85で指し示す部分は非線形材であり、また符号86で指し示す部分が隙間(ギャップ)である。モータ構造物80は、図13に示されるごとく、有限要素メッシュで区分して描かれている。また図14に示すようにIPMモータの電流駆動部では、3相の交流電流源87から各相のコイル83に各相の交流電流を供給する。   In FIG. 13, a plurality of reference numerals 81 in the motor structure 80 indicate slots on the fixed portion side, and a reference numeral 82 indicates a magnet on the rotor side. On the fixed part side, the inside of the slot 81 is handled as a coil 83. In the motor structure 80, the magnet 82 is provided to rotate around the axis 84 in the space inside the coil 83. The portion indicated by reference numeral 85 in the motor structure 80 is a non-linear material, and the portion indicated by reference numeral 86 is a gap (gap). As shown in FIG. 13, the motor structure 80 is drawn with a finite element mesh. Further, as shown in FIG. 14, in the current drive unit of the IPM motor, the AC current of each phase is supplied from the three-phase AC current source 87 to the coil 83 of each phase.

上記の特性曲線43によれば、非線型特性を表す曲線部分等の計算について、反復計算の回数が減少し、計算の高速化を達成し、さらに物理的に実際に即した妥当な解が得られている。   According to the characteristic curve 43 described above, the number of iterations for the calculation of a curve portion or the like representing a nonlinear characteristic is reduced, the calculation speed is increased, and a reasonable solution that is physically realistic is obtained. It has been.

以上の実施形態で説明された構成、形状、大きさおよび配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また数値については例示にすぎない。従って本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。   The configurations, shapes, sizes, and arrangement relationships described in the above embodiments are merely schematically shown to the extent that the present invention can be understood and implemented, and numerical values are merely examples. Therefore, the present invention is not limited to the described embodiments, and can be modified in various forms without departing from the scope of the technical idea shown in the claims.

本発明は、回転運動や並進運動を行う構造部分を含む電磁機器の電磁界解析において非線形反復計算の回数を減少して効率的な計算を実現し、加えて正当な解を得るのに利用される。   The present invention is used to achieve efficient calculation by reducing the number of non-linear iterative calculations in electromagnetic field analysis of electromagnetic equipment including structural parts that perform rotational motion and translational motion, and in addition to obtain a valid solution. The

本発明に係る電磁界解析方法が実施されるコンピュータシステムの構成図である。It is a block diagram of the computer system with which the electromagnetic field analysis method concerning this invention is implemented. 本発明の電磁界解析方法を実施するための装置構成を示す機能ブロック図である。It is a functional block diagram which shows the apparatus structure for enforcing the electromagnetic field analysis method of this invention. 本発明の電磁界解析方法による検証結果の一例を示すグラフである。It is a graph which shows an example of the verification result by the electromagnetic field analysis method of this invention. モデル番号1の検証例での検証結果である非線形材料の特性曲線を示すグラフである。It is a graph which shows the characteristic curve of the nonlinear material which is the verification result in the verification example of the model number 1. モデル番号3の検証例での検証結果である非線形材料の特性曲線を示すグラフである。It is a graph which shows the characteristic curve of the nonlinear material which is a verification result in the verification example of model number 3. モデル番号5,6の検証例での検証結果である非線形材料の特性曲線を示すグラフである。It is a graph which shows the characteristic curve of the nonlinear material which is a verification result in the verification example of the model numbers 5 and 6. モデル番号1の検証例に係るSPMモータの要部のメッシュ分割状態を示す斜視図である。It is a perspective view which shows the mesh division | segmentation state of the principal part of the SPM motor which concerns on the verification example of the model number 1. FIG. モデル番号1の検証例に係るSPMモータにおける電圧駆動部の回路図である。It is a circuit diagram of the voltage drive part in the SPM motor which concerns on the verification example of the model number 1. FIG. モデル番号3の検証例に係る薄型IPMモータの要部のメッシュ分割状態を示す斜視図である。It is a perspective view which shows the mesh division | segmentation state of the principal part of the thin IPM motor which concerns on the verification example of the model number 3. FIG. モデル番号3の検証例に係る薄型IPMモータにおける電流駆動部の回路図である。It is a circuit diagram of the current drive part in the thin IPM motor which concerns on the verification example of the model number 3. FIG. モデル番号5の検証例に係るSPMモータの要部のメッシュ分割状態を示す斜視図である。It is a perspective view which shows the mesh division | segmentation state of the principal part of the SPM motor which concerns on the verification example of the model number 5. FIG. モデル番号5の検証例に係るSPMモータにおける電圧駆動部の回路図である。It is a circuit diagram of the voltage drive part in the SPM motor which concerns on the verification example of the model number 5. FIG. モデル番号6の検証例に係る薄型IPMモータの要部のメッシュ分割状態を示す斜視図である。It is a perspective view which shows the mesh division | segmentation state of the principal part of the thin IPM motor which concerns on the verification example of the model number 6. FIG. モデル番号6の検証例に係る薄型IPMモータにおける電流駆動部の回路図である。It is a circuit diagram of the current drive part in the thin IPM motor which concerns on the verification example of the model number 6. FIG. 従来の電磁界解析方法による非線形反復計算での問題点を説明するためのグラフと探索プロセスを示す図である。It is a figure which shows the graph for demonstrating the problem in the nonlinear iterative calculation by the conventional electromagnetic field analysis method, and a search process. 回転機における回転子と固定部に対して有限要素法を実施する例を説明するための断面図である。It is sectional drawing for demonstrating the example which implements a finite element method with respect to the rotor and fixed part in a rotary machine. 図16に示した断面の部分拡大断面図である。It is the elements on larger scale of the cross section shown in FIG. 従来の電磁界解析方法による非線形反復計算での問題を説明するためのグラフである。It is a graph for demonstrating the problem in the nonlinear iterative calculation by the conventional electromagnetic field analysis method.

符号の説明Explanation of symbols

11 コンピュータ本体
12 記憶装置
12a 電磁界解析用プログラム
21 時刻設定手段
22 計算手段
23 初期値設定手段
24 計算結果格納手段
DESCRIPTION OF SYMBOLS 11 Computer main body 12 Storage device 12a Electromagnetic field analysis program 21 Time setting means 22 Calculation means 23 Initial value setting means 24 Calculation result storage means

Claims (6)

固定部、可動部、および前記固定部と前記可動部の間に形成される境界部を有する電磁機器の電磁界特性を、コンピュータ上で有限要素法を適用して計算手段により時系列の複数の時刻の各々にて非線形反復計算を行って解析する電磁界解析方法であって、
前記計算手段が、前記電磁機器の前記固定部と前記可動部の各々の分割要素に対して前記有限要素法に基づく有限要素メッシュを作ると共に、前記電磁機器の前記境界部の分割要素に対して前記有限要素法に基づくスライディングメッシュを作るステップと、
時刻設定手段が時系列の前記複数の時刻の各々を設定するステップと、
初期値設定手段が、時系列の前記複数の時刻のうち或る時刻が前記時刻設定手段により設定されたとき、前記有限要素メッシュに関しては前記或る時刻の前の前記時刻における前記非線形反復計算の解を初期値に設定し、前記スライディングメッシュに関しては0または周りの辺もしくは節点について求められた値に比べて充分に小さい値を初期値に設定するステップと、
前記計算手段が、前記有限要素メッシュおよび前記スライディングメッシュの各々に関してそれぞれで設定された前記初期値を用いて前記或る時刻における前記非線形反復計算を行うステップと、
を有することを特徴とする電磁界解析方法。
The electromagnetic field characteristics of an electromagnetic device having a fixed part, a movable part, and a boundary part formed between the fixed part and the movable part, and applying a finite element method on a computer to calculate a plurality of time series An electromagnetic field analysis method for performing nonlinear iterative calculation at each time for analysis,
The calculation means creates a finite element mesh based on the finite element method for each of the fixed elements and the movable part of the electromagnetic device, and for the divided elements of the boundary portion of the electromagnetic device. Creating a sliding mesh based on the finite element method;
A time setting means for setting each of the plurality of times in time series;
When the initial value setting means sets a certain time among the plurality of times in the time series by the time setting means, the nonlinear iterative calculation at the time before the certain time is performed for the finite element mesh. Setting the solution to an initial value, and setting the initial value to a value that is sufficiently smaller than 0 or a value obtained for a surrounding edge or node for the sliding mesh;
The calculating means performing the nonlinear iterative calculation at the certain time using the initial values respectively set for the finite element mesh and the sliding mesh;
An electromagnetic field analysis method characterized by comprising:
前記境界部は空気層であることを特徴とする請求項1記載の電磁界解析方法。 The electromagnetic field analysis method according to claim 1, wherein the boundary portion is an air layer . 前記非線形反復計算法はNewton−Raphson法であることを特徴とする請求項1または2記載の電磁界解析方法。 3. The electromagnetic field analysis method according to claim 1, wherein the nonlinear iterative calculation method is a Newton-Raphson method. コンピュータに、固定部、可動部、および前記固定部と前記可動部の間に形成される境界部を有する電磁機器の電磁界特性を、有限要素法を適用することにより時系列の複数の時刻の各々にて非線形反復計算を行って解析するための電磁界解析方法を実行させるプログラムであり、
前記コンピュータに、
前記電磁機器の前記固定部と前記可動部の各々の分割要素に対して前記有限要素法に基づく有限要素メッシュを作ると共に、前記電磁機器の前記境界部の分割要素に対して前記有限要素法に基づくスライディングメッシュを作る第1計算手段と、
時系列の前記複数の時刻の各々を設定する時刻設定手段と、
時系列の前記複数の時刻のうち或る時刻が前記時刻設定手段により設定されたとき、前記有限要素メッシュに関しては前記或る時刻の前の前記時刻における前記非線形反復計算の解を初期値に設定し、前記スライディングメッシュに関しては0または周りの辺もしくは節点について求められた値に比べて充分に小さい値を初期値に設定する初期値設定手段と、
前記有限要素メッシュおよび前記スライディングメッシュの各々に関してそれぞれで設定された前記初期値を用いて前記或る時刻における前記非線形反復計算を行う第2計算手段と、
を実現させることを特徴とする電磁界解析用プログラム。
By applying a finite element method to the electromagnetic field characteristics of an electromagnetic device having a fixed part, a movable part, and a boundary part formed between the fixed part and the movable part on a computer, a plurality of time series It is a program that executes an electromagnetic field analysis method for performing analysis by performing nonlinear iterative calculation at each.
In the computer,
A finite element mesh based on the finite element method is made for each divided element of the fixed part and the movable part of the electromagnetic device, and the finite element method is applied to the divided element of the boundary part of the electromagnetic device. A first calculation means for creating a sliding mesh based thereon;
Time setting means for setting each of the plurality of times in time series;
When a certain time among the plurality of times in the time series is set by the time setting means, the solution of the nonlinear iterative calculation at the time before the certain time is set as an initial value for the finite element mesh An initial value setting means for setting the sliding mesh to an initial value that is sufficiently smaller than 0 or a value obtained for a surrounding edge or node;
Second calculation means for performing the nonlinear iterative calculation at the certain time using the initial values respectively set for each of the finite element mesh and the sliding mesh;
An electromagnetic field analysis program characterized by realizing the above.
前記境界部は空気層であることを特徴とする請求項記載の電磁界解析用プログラム。 The electromagnetic field analysis program according to claim 4, wherein the boundary portion is an air layer . 前記非線形反復計算法はNewton−Raphson法であることを特徴とする請求項5記載の電磁界解析用プログラム。 The nonlinear iterative calculation method according to claim 5 Symbol mounting the electromagnetic field analysis program characterized in that it is a Newton-Raphson method.
JP2006184444A 2006-07-04 2006-07-04 Electromagnetic field analysis method and electromagnetic field analysis program Active JP4785051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184444A JP4785051B2 (en) 2006-07-04 2006-07-04 Electromagnetic field analysis method and electromagnetic field analysis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184444A JP4785051B2 (en) 2006-07-04 2006-07-04 Electromagnetic field analysis method and electromagnetic field analysis program

Publications (2)

Publication Number Publication Date
JP2008015674A JP2008015674A (en) 2008-01-24
JP4785051B2 true JP4785051B2 (en) 2011-10-05

Family

ID=39072642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184444A Active JP4785051B2 (en) 2006-07-04 2006-07-04 Electromagnetic field analysis method and electromagnetic field analysis program

Country Status (1)

Country Link
JP (1) JP4785051B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106294928A (en) * 2016-07-25 2017-01-04 上海柏楚电子科技有限公司 A kind of method identifying the surface of revolution expressed with rational B-spline surface form
CN108920761A (en) * 2018-06-05 2018-11-30 同济大学 A kind of electromagnetic vibration noise emulated computation method of switched reluctance machines

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535766A (en) * 1991-07-25 1993-02-12 Matsushita Electric Ind Co Ltd Finite element analyzing device
JPH11167586A (en) * 1997-12-02 1999-06-22 Hitachi Ltd Production of rotary machine analysis result display data and rotary machine analysis is system
JP2001155055A (en) * 1999-08-31 2001-06-08 Hitachi Ltd Method and system for automatically dividing element
JP4834257B2 (en) * 2001-09-03 2011-12-14 株式会社日本総合研究所 3D mesh generation method, rotating machine magnetic field analysis method, 3D mesh generation apparatus, rotating machine magnetic field analysis apparatus, computer program, and recording medium
JP4763934B2 (en) * 2001-09-06 2011-08-31 株式会社日本総合研究所 3D mesh generation method, rotating machine magnetic field analysis method, 3D mesh generation apparatus, rotating machine magnetic field analysis apparatus, computer program, and recording medium
JP3979526B2 (en) * 2002-06-19 2007-09-19 株式会社日本総合研究所 Rotating machine thermal analysis method, rotating machine thermal analysis apparatus, computer program, and recording medium
US7158921B2 (en) * 2003-12-10 2007-01-02 Murata Manufacturing Co., Ltd. Electromagnetic field analyzer, electromagnetic field analyzing program and storage medium for recording the program
JP2005207900A (en) * 2004-01-23 2005-08-04 Hitachi Ltd Magnetic field analysis method, magnetic field analysis program, and recording medium for recording magnetic field analysis program

Also Published As

Publication number Publication date
JP2008015674A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
Boughrara et al. Magnetic field analysis of inset and surface-mounted permanent-magnet synchronous motors using Schwarz–Christoffel transformation
Jabbar et al. Modeling and numerical simulation of a brushless permanent-magnet DC motor in dynamic conditions by time-stepping technique
JP6468826B2 (en) Simulation apparatus and computer program
Overboom et al. Semianalytical calculation of the torque in a linear permanent-magnet motor with finite yoke length
Montier et al. Transient simulation of an electrical rotating machine achieved through model order reduction
Gysen et al. Analytical and numerical techniques for solving Laplace and Poisson equations in a tubular permanent magnet actuator: Part II. Schwarz–Christoffel mapping
Guo et al. Multimaterial magneto-structural topology optimization of wound field synchronous machine rotors
Kotter et al. Noise-vibration-harshness-modeling and analysis of a permanent-magnetic disc rotor axial-flux electric motor
Apostoaia AC machines and drives simulation platform
Ion et al. Robust shape optimization of electric devices based on deterministic optimization methods and finite-element analysis with affine parametrization and design elements
JP4785051B2 (en) Electromagnetic field analysis method and electromagnetic field analysis program
Stuikys et al. An efficient design optimization framework for nonlinear switched reluctance machines
Baranski FE analysis of coupled electromagnetic-thermal phenomena in the squirrel cage motor working at high ambient temperature
O’Connell et al. A time-harmonic three-dimensional vector boundary element model for electromechanical devices
US11954416B2 (en) Non-transitory computer readable recording medium storing a computer program, simulation method and simulation device for simulating dynamic behavior of electromagnetic component
Kalokiris et al. Special air-gap element for 2-D FEM analysis of electrical machines accounting for rotor skew
Shindo et al. Equivalent circuit in Cauer form for eddy current field including a translational mover
Rodger Modeling movement in electrical machines
Shi et al. Comparison of slip surface and moving band techniques for modelling movement in 3D with FEM
Costamagna et al. Fast algorithms for the design of complex-shape devices in electromechanics
Dziechciarz et al. Simplified model of synchronous reluctance machine with optimized flux barriers
Farzamfar et al. Proper orthogonal decomposition for order reduction of permanent magnet machine model
JP7057235B2 (en) Divided magnet eddy current loss analysis method
Mariolo et al. Modeling of hybrid stepper motor finalized to the optimization of the holding torque
JP6781855B1 (en) Computer programs, simulation methods and simulation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4785051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250