JP2009275860A - Revolving bearing - Google Patents

Revolving bearing Download PDF

Info

Publication number
JP2009275860A
JP2009275860A JP2008129123A JP2008129123A JP2009275860A JP 2009275860 A JP2009275860 A JP 2009275860A JP 2008129123 A JP2008129123 A JP 2008129123A JP 2008129123 A JP2008129123 A JP 2008129123A JP 2009275860 A JP2009275860 A JP 2009275860A
Authority
JP
Japan
Prior art keywords
cage
slewing bearing
ball
balls
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008129123A
Other languages
Japanese (ja)
Inventor
Michio Hori
径生 堀
Atsushi Kuwabara
温 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008129123A priority Critical patent/JP2009275860A/en
Publication of JP2009275860A publication Critical patent/JP2009275860A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/42Ball cages made from wire or sheet metal strips
    • F16C33/422Ball cages made from wire or sheet metal strips made from sheet metal
    • F16C33/425Ball cages made from wire or sheet metal strips made from sheet metal from a single part, e.g. ribbon cages with one corrugated annular part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wind Motors (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a revolving bearing in the form of a four point contact ball bearing embodied in a constitution using a retainer, reducing the axial direction dimension and sustaining a large rated load. <P>SOLUTION: A plurality of balls 3 held by the retainer 4 are interposed between groove-shaped raceway surfaces 1a, 1b, 2a, 2b of an inner ring 1 and an outer ring 2. The balls 3 make four point contact, in contacting with two curved surfaces 1aa, 1ab, 1ba, 1bb, 2aa, 2ab, 2ba, 2bb which constitute the raceway surfaces 1a, 1b, 2a, 2b of the inner 1 and outer rings 2. The retainer 4 assumes a band form curved in an arcuate shape along the raceway surfaces 1a, 1b, 2a, 2b, and pockets 4a to hold the balls 3 are formed in line in the circumferential direction. The shape of the inside surface of each pocket 4a is such as to contact with the ball 3 at a plurality of points P1 and P2 for each side of the inside surface in the retainer circumferential direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば風力発電用の風車等の旋回部分に用いられる大型または超大型の旋回軸受に関する。   The present invention relates to a large-size or super-large-size slewing bearing used for a slewing portion of, for example, a wind turbine for wind power generation.

図5および図6は風力発電用の風車の1例を示す。この風車11は、支持台12上にナセル13を水平旋回自在に設け、このナセル13のケーシング14内に主軸15を回転自在に支持し、この主軸15のケーシング14外に突出した一端に、旋回翼であるブレード16を取付けてなる。主軸15の他端は増速機17に接続され、増速機17の出力軸18が発電機19のロータ軸に結合されている。   5 and 6 show an example of a wind turbine for wind power generation. The windmill 11 is provided with a nacelle 13 on a support base 12 so as to be able to turn horizontally, and a main shaft 15 is rotatably supported in a casing 14 of the nacelle 13. A blade 16 which is a wing is attached. The other end of the main shaft 15 is connected to the speed increaser 17, and the output shaft 18 of the speed increaser 17 is coupled to the rotor shaft of the generator 19.

風力発電用の風車は規模が非常に大きく、1枚のブレード16の長さが数10メートル、中には100メートルを超えるものもある。そのため、ブレード16が主軸15回りに回転する際に、その回転位置、例えば主軸15よりも上側の位置と下側の位置とで、ブレード16が受ける風の風速が異なる。風速が違っていても各ブレード16が同じ荷重を受けるように、ブレード16が回転する間に、風速に応じて各ブレード16の風に向かう角度を調整する。また、常に各ブレード16が正面から風を受けるように、風向きの変化に応じてナセル13の向きを変える(ヨー)。なお、風速が速過ぎて多大な荷重を受ける恐れがある場合には、ナセル13の向きを通常の逆にして、風が抜けるようにすることもある。   Wind turbines for wind power generation are very large, and the length of one blade 16 is several tens of meters, and some of them exceed 100 meters. Therefore, when the blade 16 rotates about the main shaft 15, the wind speed of the wind received by the blade 16 differs depending on the rotation position, for example, the position above the main shaft 15 and the position below the main shaft 15. While the blade 16 rotates, the angle of each blade 16 toward the wind is adjusted according to the wind speed so that each blade 16 receives the same load even if the wind speed is different. Further, the direction of the nacelle 13 is changed according to the change of the wind direction so that each blade 16 receives wind from the front (yaw). If the wind speed is too high and a large load may be received, the direction of the nacelle 13 may be reversed to allow the wind to escape.

このように、風力発電用の風車では、風の状態に合わせてブレード16の角度およびナセル13の向きを随時変える必要があるため、ブレード16およびナセル13はそれぞれ旋回軸受21,22により旋回自在に支持され、図示しない駆動手段により旋回させるようになっている。風車用の旋回軸受の特徴としては、寸法が非常に大きいこと、旋回の揺動角が比較的小さいこと、変動荷重を受けることが挙げられる。
寸法に関しては、ブレード用で外輪外径1000〜3000mm、ヨー用で同1500〜3500mmである。揺動角に関しては、ブレード用で最大約90°程度、ヨー用で最大360°である。変動荷重に関しては、ブレード用およびヨー用のいずれについても変動荷重を受けるが、特にブレード用が急激な変動荷重を受けることが多い。
As described above, in the wind turbine for wind power generation, it is necessary to change the angle of the blade 16 and the direction of the nacelle 13 according to the state of the wind, so that the blade 16 and the nacelle 13 can be swung by the swivel bearings 21 and 22, respectively. It is supported and turned by driving means (not shown). The characteristics of the slewing bearing for the windmill include that the dimensions are very large, the swing angle of the slewing is relatively small, and that it receives a variable load.
Regarding the dimensions, the outer ring outer diameter is 1000 to 3000 mm for blades and 1500 to 3500 mm for yaw. The swing angle is about 90 ° at the maximum for blades and 360 ° at the maximum for yaw. As for the fluctuating load, both the blade and the yaw are subjected to a fluctuating load, but the blade is often subjected to a sudden fluctuating load.

建設機械、工作機械等の幅広い分野において、旋回軸受として、4点接触玉軸受が用いられている(例えば特許文献1,2)。4点接触玉軸受は、内輪および外輪の各軌道面をそれぞれ2つの曲面で形成し、これらの軌道面間に複数のボールを転動自在に介在させたものであり、転動体としてのボールが両軌道面間にしっかりと挟持され、かつ内外輪の剛性も高いので、簡単な構成で大きな負荷容量が得られる。
特開2002−339981号公報 特開2003−13963号公報
In a wide range of fields such as construction machines and machine tools, four-point contact ball bearings are used as slewing bearings (for example, Patent Documents 1 and 2). The four-point contact ball bearing is formed by forming each raceway surface of the inner ring and the outer ring with two curved surfaces, and interposing a plurality of balls so as to roll freely between these raceway surfaces. A large load capacity can be obtained with a simple configuration because the inner and outer rings are firmly clamped between the raceway surfaces and the rigidity of the inner and outer rings is high.
JP 2002-339981 A JP 2003-13963 A

そこで、風車用の旋回軸受にも、4点接触玉軸受を採用することにした。4点接触玉軸受を採用するにあたり、ボールの保持方法について以下のように考えた。すなわち、風車用の旋回軸受は、前述のように変動荷重により比較的狭い旋回範囲内で頻繁に揺動するため、フレッティングが生じやすい。フレッティングを防止するには、内部すきまを負すきまにして、ボールと軌道輪との滑りを抑える必要がある。一方、揺動時に個々のボールの接触角が変わり、ボールの公転速度が変化することにより、ボールの進み遅れが生じるが、負すきまにして負荷域が広がることにより進み遅れの影響は大きくなる。この進み遅れにより各ボールが散らばることがなく、常に各ボールが等間隔に保持されるようにするために、間座スペーサではなく、保持器でボールを保持するのが望ましいという結論に達した。   Therefore, we decided to adopt a four-point contact ball bearing for the slewing bearing for wind turbines. In adopting the four-point contact ball bearing, the ball holding method was considered as follows. That is, the slewing bearing for the windmill frequently oscillates within a relatively narrow turning range due to the fluctuating load as described above, and thus fretting is likely to occur. In order to prevent fretting, it is necessary to reduce the slip between the ball and the race by making the internal clearance negative. On the other hand, the contact angle of each ball changes at the time of swinging, and the revolving speed of the ball changes, thereby causing a ball advance / delay. However, the influence of the advance / delay becomes large due to the negative clearance and the load area widening. In order to prevent the balls from being scattered by this advance and delay, and to keep the balls at regular intervals, it was concluded that it is desirable to hold the balls with a cage rather than a spacer.

保持器を用いる場合、風車用のような大型または超大型の旋回軸受では、次の点が課題となる。なお、JIS B 0104-1991によると、大型軸受は外輪外径が180〜800mmのものと定義されている。   When a cage is used, the following points are problems in a large or super large slewing bearing for a wind turbine. According to JIS B 0104-1991, a large bearing is defined as having an outer ring outer diameter of 180 to 800 mm.

第1の課題は、軸方向寸法のコンパクト化である。風車用の旋回軸受は、径方向寸法が非常に大きいため、従来のものは重量が重かった。性能向上とコスト低減のため、なるべく軸方向寸法を短くして、全体をコンパクトで軽量なものとすることが求められる。しかし、軸受の軸方向寸法を短くするために、図7のように保持器4の軸方向幅wを狭くすると、軸方向端からポケット4aまでの寸法aが狭くなり、保持器4の強度が低下し、ボールの進み遅れによる負荷に耐えられなくなる。   The first problem is the reduction in axial dimension. Since the slewing bearing for wind turbines has a very large radial dimension, the conventional one is heavy. In order to improve performance and reduce costs, it is required to shorten the axial dimension as much as possible to make the whole compact and lightweight. However, if the axial width w of the cage 4 is narrowed as shown in FIG. 7 in order to shorten the axial dimension of the bearing, the dimension a from the axial end to the pocket 4a becomes narrow, and the strength of the cage 4 is reduced. It becomes lower and cannot withstand the load caused by the delay of the advance of the ball.

第2の課題は、所定大きさの定格荷重の確保である。風車用の旋回軸受は、最大風速時に非常に大きな荷重を受けるため、大きな定格荷重を必要とする。そのためには、図7のようにボール間ピッチpを狭くしてボール数を増やすことが考えられるが、ボール間ピッチpを狭くすると、保持器4の柱部4bの最小幅(円周方向寸法)bが狭くなり、保持器4の強度が低下し、ボールの進み遅れによる負荷に耐えられなくなる。   The second problem is securing a rated load of a predetermined size. Since the slewing bearing for a windmill receives a very large load at the maximum wind speed, a large load rating is required. To that end, it is conceivable to increase the number of balls by narrowing the pitch p between balls as shown in FIG. 7, but if the pitch p between balls is narrowed, the minimum width (circumferential dimension) of the pillar portion 4b of the cage 4 is considered. B) becomes narrower, the strength of the cage 4 is lowered, and it becomes impossible to withstand the load due to the advance and delay of the ball.

この発明は上記背景下でなされたものであり、その目的は、軸受形式は4点接触玉軸受で、保持器を用いた構成とし、軸方向寸法がコンパクトで、かつ大きな定格荷重が得られる旋回軸受を提供することである。   The present invention has been made under the above-mentioned background, and its purpose is to provide a four-point contact ball bearing with a bearing structure, a compact size in the axial direction, and a swivel that provides a large rated load. It is to provide a bearing.

この発明にかかる旋回軸受は、内輪および外輪の溝状の軌道面間に、保持器に保持された複数のボールが介在し、前記内輪および外輪の軌道面が、それぞれ溝底の両側に位置する2つの曲面で形成され、前記ボールが前記内外輪の軌道面の前記各曲面に接して4点接触する旋回軸受において、前記保持器は、前記各軌道面に沿って円弧状に湾曲した帯状であって、各ボールを保持するポケットが円周方向に並んで形成され、前記各ポケットの内周面の形状を、この内周面における保持器円周方向の片側につき、それぞれ複数点で前記ボールと接触する形状としたことを特徴とする。   In the slewing bearing according to the present invention, a plurality of balls held by a cage are interposed between the groove-shaped raceway surfaces of the inner ring and the outer ring, and the raceway surfaces of the inner ring and the outer ring are respectively located on both sides of the groove bottom. In a slewing bearing formed of two curved surfaces and in contact with each curved surface of the raceway surface of the inner and outer rings and contacting at four points, the cage is a belt-shaped band curved along each raceway surface. The pockets for holding the balls are formed side by side in the circumferential direction, and the shape of the inner peripheral surface of each pocket is set at a plurality of points on one side of the inner peripheral surface in the cage circumferential direction. It is characterized by having a shape in contact with.

この構成の旋回軸受によれば、軸受形式を4点接触玉軸受としたため、他の形式の軸受に比べて、構成が簡単でありながら定格荷重が大きい。保持器によりボールが確実に保持されるので、ボールの進み遅れによって各ボールが散らばることがなく、常にボールを等間隔に保持できる。
また、保持器の各ポケットの内周面の形状を、この内周面における円周方向の片側につき、それぞれ複数点でボールと接触する形状としたことにより、ボールとの接触により保持器に加わる力を分散させて、保持器のボール接触部の応力を低減させることができる。そのため、保持器の軸方向端からポケットまでの寸法を狭く、かつ保持器の柱部の幅を狭くしても、ボールの進み遅れにより保持器に加わる力に耐えられる。それにより、保持器の軸方向幅を狭くして軸受の軸方向寸法をコンパクト化できるとともに、ボール間ピッチを狭くしてボール数を増やして、より一層定格荷重を増加させることが可能である。
さらに、ポケットの内周面が円周方向の片側につき複数点でボールと接触すると、ボールと保持器とが互いに近接している箇所の面積が広くなり、この近接箇所に潤滑油を多く保持することができるため、軸受の潤滑性が良好である。
According to the slewing bearing of this configuration, since the bearing type is a four-point contact ball bearing, the rated load is large while the configuration is simple compared to other types of bearings. Since the balls are securely held by the cage, the balls are not scattered due to the advance and delay of the balls, and the balls can always be held at equal intervals.
In addition, the shape of the inner peripheral surface of each pocket of the cage is such that the ball comes into contact with the ball at a plurality of points on one side in the circumferential direction on the inner peripheral surface, thereby adding to the cage by contact with the ball. The force can be dispersed to reduce the stress at the ball contact portion of the cage. Therefore, even if the dimension from the axial end of the cage to the pocket is narrowed and the width of the pillar portion of the cage is narrowed, it can withstand the force applied to the cage due to the advance and delay of the ball. As a result, the axial width of the cage can be reduced to reduce the axial dimension of the bearing, and the rated load can be further increased by reducing the pitch between the balls and increasing the number of balls.
Furthermore, when the inner peripheral surface of the pocket comes into contact with the ball at a plurality of points on one side in the circumferential direction, the area where the ball and the cage are close to each other is widened, and a large amount of lubricating oil is held at this close location. Therefore, the lubricity of the bearing is good.

この発明において、前記保持器における前記ポケット間の部分である柱部の保持器軸方向に沿う断面の形状は、両側部が直線状で、中間部に外径側または内径側に膨らむ膨らみ部を有する形状とすることができる。前記膨らみ部の保持器軸方向に沿う断面の形状は、例えばV字形である。
保持器の柱部の軸方向中間部に膨らみ部を設けることにより、各ポケットの内周面が、この内周面における円周方向の片側につき、複数点でボールと接触するようにできる。膨らみ部の保持器軸方向に沿う断面の形状をV字形とすれば、保持器を比較的単純な形状とすることができ、加工が容易である。
In this invention, the shape of the cross-section along the cage axial direction of the pillar portion that is the portion between the pockets in the cage is a linear shape on both sides, and a bulging portion that bulges on the outer diameter side or inner diameter side in the middle portion. It can be made into the shape which has. The cross-sectional shape of the bulge portion along the cage axial direction is, for example, a V shape.
By providing a bulging portion at the axially intermediate portion of the pillar portion of the cage, the inner peripheral surface of each pocket can be brought into contact with the ball at a plurality of points on one circumferential side of the inner peripheral surface. If the cross-sectional shape of the bulging portion along the cage axial direction is V-shaped, the cage can be made relatively simple and easy to process.

この発明において、前記保持器は鋼板製である。
鋼板は、強度が強く、加工が容易であるので、保持器の材料に適する。
In the present invention, the cage is made of a steel plate.
A steel plate is suitable for the material of the cage because it has high strength and is easy to process.

この発明において、前記ボールの介在する軌道面が複列設けられていてもよい。
軌道面およびボールが複列設けられていると、単列である場合に比べて、ボール列の数をnとしたとき静定格荷重をn倍にできる。ボールが複列であると、保持器の軸方向幅が広くなるが、単列である場合に比べてn倍になることはない。そのため、保持器の軸方向幅をあまり広くすることなく、定格荷重を増加させることができる。
In this invention, the raceway surface where the said ball interposes may be provided in multiple rows.
When the raceway surface and the balls are provided in a double row, the static load rating can be increased by n times when the number of the ball rows is n, as compared to a single row. When the balls are in a double row, the axial width of the cage is widened, but it is not n times that in the case of a single row. Therefore, the rated load can be increased without increasing the axial width of the cage.

この発明の旋回軸受は、上記の各作用効果が得られるため、風車のブレードを主軸に対して、主軸軸心に略垂直な軸心回りに旋回自在に支持するためや、風車のナセルを支持台に対して旋回自在に支持するために好適に使用できる。   Since the slewing bearing of the present invention can obtain the above-described effects, the wind turbine blade is supported so as to be pivotable about the axis substantially perpendicular to the main shaft axis with respect to the main shaft, and the wind turbine nacelle is supported. It can be suitably used for pivotally supporting the table.

この発明の旋回軸受は、内輪および外輪の溝状の軌道面間に、保持器に保持された複数のボールが介在し、前記内輪および外輪の軌道面が、それぞれ溝底の両側に位置する2つの曲面で形成され、前記ボールが前記内外輪の軌道面の前記各曲面に接して4点接触する旋回軸受において、前記保持器は、前記各軌道面に沿って円弧状に湾曲した帯状であって、各ボールを保持するポケットが円周方向に並んで形成され、前記各ポケットの内周面の形状を、この内周面における保持器円周方向の片側につき、それぞれ複数点で前記ボールと接触する形状としたため、軸方向寸法がコンパクトになり、かつ大きな定格荷重が得られる。   In the slewing bearing according to the present invention, a plurality of balls held by a cage are interposed between the groove-shaped raceway surfaces of the inner ring and the outer ring, and the raceway surfaces of the inner ring and the outer ring are respectively positioned on both sides of the groove bottom. In a slewing bearing formed of two curved surfaces and in which the balls are in contact with the curved surfaces of the inner and outer races at four points and are in contact with each other at four points, the cage has a belt shape curved in an arc along each of the raceway surfaces. Pockets for holding the respective balls are formed side by side in the circumferential direction, and the shape of the inner peripheral surface of each pocket is set at a plurality of points on one side of the inner peripheral surface in the circumferential direction of the cage. Due to the contact shape, the axial dimension becomes compact and a large load rating can be obtained.

この発明の実施形態を図1ないし図4と共に説明する。この旋回軸受は、例えば、風力発電用風車のブレードを主軸に対して、主軸軸心に略垂直な軸心回りに旋回自在に支持する軸受、または風車のナセルを支持台に対して旋回自在に支持する軸受として使用される。   An embodiment of the present invention will be described with reference to FIGS. This slewing bearing is, for example, a bearing that supports the blade of a wind turbine for wind power generation so that it can pivot about an axis substantially perpendicular to the main shaft axis or a nacelle of the wind turbine relative to a support base. Used as a bearing to support.

図1において、旋回軸受は、内輪1と、外輪2と、これら内外輪1,2の複列の軌道面1a,1b,2a,2b間にそれぞれ転動自在に介在する各列複数のボール3と、各列のボール3を別々に保持する保持器4とを備える。内外輪1,2の軌道面1a,1b,2a,2bは、いずれも2つの曲面1aa,1ab,1ba,1bb,2aa,2ab,2ba,2bbで構成されている。これら2つの曲面は、それぞれボール3よりも曲率半径が大きく、曲率中心が互いに異なる断面円弧状である。各軌道面1a,1b,2a,2bを構成する一対の曲面間は、溝部1ac,1bc,2ac,2bcになっている。各ボール3は、内輪軌道面1a,1bおよび外輪軌道面,2a,2bの前記各曲面に接して4点接触する。すなわち、この旋回軸受は4点接触複列玉軸受として構成されている。内輪1および外輪2には、取付用ボルト孔5,6がそれぞれ設けられている。内外輪1,2間の軸受空間にはグリースが充填され、この軸受空間の軸方向の両端がシール部材7により密封されている。   In FIG. 1, the slewing bearing includes an inner ring 1, an outer ring 2, and a plurality of balls 3 that are interposed between the inner and outer rings 1, 2, and the double-row raceway surfaces 1 a, 1 b, 2 a, 2 b, respectively. And a holder 4 for holding each row of balls 3 separately. Each of the raceway surfaces 1a, 1b, 2a, 2b of the inner and outer rings 1, 2 is composed of two curved surfaces 1aa, 1ab, 1ba, 1bb, 2aa, 2ab, 2ba, 2bb. Each of these two curved surfaces has a circular arc shape with a radius of curvature larger than that of the ball 3 and different centers of curvature. Between a pair of curved surfaces constituting each track surface 1a, 1b, 2a, 2b, groove portions 1ac, 1bc, 2ac, 2bc are formed. Each ball 3 comes into contact with the curved surfaces of the inner ring raceway surfaces 1a and 1b and the outer ring raceway surfaces 2a and 2b at four points. That is, this slewing bearing is configured as a four-point contact double row ball bearing. The inner ring 1 and the outer ring 2 are provided with mounting bolt holes 5 and 6, respectively. Grease is filled in the bearing space between the inner and outer rings 1 and 2, and both ends in the axial direction of the bearing space are sealed with seal members 7.

図2ないし図4に示すように、各列の保持器4は、各軌道面1a,1b,2a,2bに沿って円弧状に湾曲した帯状で、ボール3が嵌り込むポケット4aが円周方向に並んで形成されている。ポケット4a間の部分である柱部4bの形状(図4)は、両側部4baが直線状で、中間部が外径側にV字形に膨らんだ膨らみ部4bbになっている。このように柱部4bの中間部をV字形の膨らみ部4bbとすることにより、ポケット4aの内周面が、円周方向の片側につき2点P1,P2でボール3と接触する。膨らみ部4bbがV字形であると、保持器4を比較的単純な形状とすることができ、加工が容易である。膨らみ部4bbはV字形以外の形状であってもよい。その場合も、ポケット4aの内周面が、円周方向の片側につき複数点で接触するようにできる。   As shown in FIGS. 2 to 4, the cages 4 in each row are in the shape of a belt curved in an arc along each track surface 1a, 1b, 2a, 2b, and the pockets 4a into which the balls 3 are fitted have a circumferential direction. Are formed side by side. The shape of the column part 4b which is a part between the pockets 4a (FIG. 4) is a bulging part 4bb in which both side parts 4ba are linear and the middle part swells in a V shape on the outer diameter side. Thus, by making the intermediate part of the column part 4b into the V-shaped swelling part 4bb, the inner peripheral surface of the pocket 4a contacts the ball 3 at two points P1 and P2 on one side in the circumferential direction. When the bulging portion 4bb is V-shaped, the cage 4 can be made relatively simple and easy to process. The bulging portion 4bb may have a shape other than the V shape. Also in this case, the inner peripheral surface of the pocket 4a can be brought into contact at a plurality of points on one side in the circumferential direction.

保持器4は、全周にわたって一体に形成されたものであってもよく、または円周方向で分割された複数のセグメントからなり、これらセグメントを互いに結合したものであってもよく、または前記各セグメントがそれぞれ分離したままのものであってもよい。   The cage 4 may be integrally formed over the entire circumference, or may be composed of a plurality of segments divided in the circumferential direction, and these segments may be combined with each other, or The segments may remain separated from each other.

保持器4は、例えば鋼板製である。鋼板製である場合、ポケット4aとなる穴をプレス加工で打ち抜いた後、膨らみ部4bbとなる箇所を所定の形状に曲げ加工することで製作できる。鋼板は、強度が強く、加工が容易であるので、保持器4の材料に適する。保持器4は、鋼板以外の材料で製作してもよい。   The cage 4 is made of, for example, a steel plate. When it is made of a steel plate, it can be manufactured by punching a hole to be the pocket 4a by press working and then bending a portion to be the bulging portion 4bb into a predetermined shape. The steel plate is suitable for the material of the cage 4 because it is strong and easy to process. The cage 4 may be made of a material other than a steel plate.

この旋回軸受は、軸受形式を4点接触玉軸受とし、かつボール3を複列に配置したため、構成が簡単でありながら定格荷重が大きい。単純計算で、単列の場合に比べて、静定格荷重が2倍である。ボール3が複列であると、保持器4の軸方向幅wが広くなるが、単列である場合に比べて2倍になることはない。そのため、保持器4の軸方向幅wをあまり広くすることなく、定格荷重を増加させることができる。ボール3は保持器4により確実に保持されるため、ボール3の進み遅れによって各ボール3が散らばることがなく、常にボール3を等間隔に保持できる。   In this slewing bearing, the bearing type is a four-point contact ball bearing and the balls 3 are arranged in double rows, so that the rated load is large while the configuration is simple. In the simple calculation, the static load rating is twice that of the single-row case. When the balls 3 are in a double row, the axial width w of the cage 4 is widened, but it is not doubled as compared with a single row. Therefore, the rated load can be increased without increasing the axial width w of the cage 4 too much. Since the balls 3 are securely held by the cage 4, the balls 3 are not scattered by the advance and delay of the balls 3, and the balls 3 can always be held at equal intervals.

保持器4のポケット4aの内周面が、円周方向の片側につき2点P1,P2でボール3と接触するため、ボール3から保持器4に加わる力が分散されて、保持器4のボール接触部の応力が低減される。そのため、保持器4の軸方向端からポケット4aまでの寸法aを狭くしても、または保持器4の柱部4bの最小幅bを狭くしても、ボール3の進み遅れにより保持器4に加わる力に耐えられる。よって、保持器4の軸方向幅wを狭くして軸受の軸方向寸法をコンパクト化できるとともに、ボール間ピッチpを狭くしてボール数を増やすことにより、定格荷重をより一層増加させることが可能である。
加えて、ポケット4aの内周面が、円周方向の片側につき2点P1,P2でボール3と接触する構成であると、ボール3と保持器4とが互いに近接している箇所の面積が広く、この近接箇所に潤滑油を多く保持することができるため、軸受の潤滑性が良好である。そのため、変動荷重を受ける条件下で、狭い旋回範囲内で頻繁に揺動しても、フレッティングが生じにくい。
Since the inner peripheral surface of the pocket 4a of the cage 4 contacts the ball 3 at two points P1 and P2 on one side in the circumferential direction, the force applied from the ball 3 to the cage 4 is dispersed, and the ball of the cage 4 The stress at the contact portion is reduced. For this reason, even if the dimension a from the axial end of the cage 4 to the pocket 4a is narrowed or the minimum width b of the column portion 4b of the cage 4 is narrowed, the cage 3 is moved to the cage 4 due to the advance and delay of the ball 3. Can withstand the added forces. Therefore, the axial width w of the cage 4 can be reduced to reduce the axial dimension of the bearing, and the rated load can be further increased by increasing the number of balls by reducing the pitch p between balls. It is.
In addition, if the inner peripheral surface of the pocket 4a is configured to come into contact with the ball 3 at two points P1 and P2 on one side in the circumferential direction, the area where the ball 3 and the cage 4 are close to each other is increased. Since a large amount of lubricating oil can be retained widely in the vicinity, the lubricity of the bearing is good. Therefore, fretting is unlikely to occur even if the rocker is frequently swung within a narrow turning range under the condition of receiving a variable load.

以上の説明のように、この旋回軸受は、軸方向寸法をコンパクトにして軽量化を図れ、定格荷重の増大が可能であり、しかもフレッティングが生じにくいことから、風力発電用風車のブレード支持用の旋回軸受21(図6)またはナセルのヨー支持用の旋回軸受22(図6)に適する。風力発電用風車以外では、油圧ショベル、クレーン等の建設機械、工作機械の回転テーブル、パラボラアンテナ等に適用できる。   As described above, this slewing bearing can reduce the weight in the axial direction, reduce the weight, increase the rated load, and prevent fretting. The slewing bearing 21 (FIG. 6) or the slewing bearing 22 (FIG. 6) for nacelle yaw support is suitable. Other than wind turbines for wind power generation, it can be applied to construction machines such as hydraulic excavators and cranes, rotary tables for machine tools, parabolic antennas, and the like.

上記実施形態では、ボール3を複列としたが、単列であってもよい。また、保持器4の柱部4bの膨らみ部4bbを外径側に膨らむ形状としたが、内径側に膨らむ形状としてもよい。   In the above embodiment, the balls 3 are in a double row, but may be in a single row. Moreover, although the bulging part 4bb of the pillar part 4b of the retainer 4 is shaped to bulge to the outer diameter side, it may be shaped to bulge to the inner diameter side.

この発明の実施形態にかかる旋回軸受の断面図である。It is sectional drawing of the slewing bearing concerning embodiment of this invention. 同旋回軸受の保持器の一部を展開した平面図である。It is the top view which expand | deployed some cages of the rotation bearing. 図2のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 図2のIV−IV断面図である。It is IV-IV sectional drawing of FIG. 風力発電用風車の一例の一部を切り欠いて表した斜視図である。It is the perspective view which notched and represented a part of example of the windmill for wind power generation. 同風力発電用風車の破断側面図である。It is a fractured side view of the wind turbine for wind power generation. 保持器の形状の変化の説明図である。It is explanatory drawing of the change of the shape of a holder | retainer.

符号の説明Explanation of symbols

1…内輪
1a,1b…内輪軌道面
1aa,1ab,1ba,1bb,2aa,2ab,2ba,2bb…曲面
2…外輪
2a,2b…外輪軌道面
3…ボール
4…保持器
4a…ポケット
4b…柱部
4bb…膨らみ部
21,22…旋回軸受
DESCRIPTION OF SYMBOLS 1 ... Inner ring 1a, 1b ... Inner ring raceway surface 1aa, 1ab, 1ba, 1bb, 2aa, 2ab, 2ba, 2bb ... Curved surface 2 ... Outer ring 2a, 2b ... Outer ring raceway surface 3 ... Ball 4 ... Cage 4a ... Pocket 4b ... Column Part 4bb ... Swelling parts 21, 22 ... Slewing bearing

Claims (7)

内輪および外輪の溝状の軌道面間に、保持器に保持された複数のボールが介在し、前記内輪および外輪の軌道面が、それぞれ溝底の両側に位置する2つの曲面で形成され、前記ボールが前記内外輪の軌道面の前記各曲面に接して4点接触する旋回軸受において、
前記保持器は、前記各軌道面に沿って円弧状に湾曲した帯状であって、各ボールを保持するポケットが円周方向に並んで形成され、前記各ポケットの内周面の形状を、この内周面における保持器円周方向の片側につき、それぞれ複数点で前記ボールと接触する形状としたことを特徴とする旋回軸受。
A plurality of balls held by a cage are interposed between the grooved raceway surfaces of the inner ring and the outer ring, and the raceways of the inner ring and the outer ring are formed by two curved surfaces respectively positioned on both sides of the groove bottom, In the slewing bearing in which the ball is in contact with the curved surfaces of the raceway surface of the inner and outer rings and contacts four points
The cage is in the shape of a belt curved in an arc along each track surface, and pockets for holding the balls are formed side by side in the circumferential direction, and the shape of the inner peripheral surface of each pocket is A slewing bearing having a shape in contact with the ball at a plurality of points on one side of the inner circumferential surface of the cage in the circumferential direction.
請求項1において、前記保持器における前記ポケット間の部分である柱部の保持器軸方向に沿う断面の形状は、両側部が直線状で、中間部に外径側または内径側に膨らむ膨らみ部を有する旋回軸受。   In Claim 1, the shape of the cross section along the cage axial direction of the pillar portion, which is the portion between the pockets in the cage, is linear in both side portions, and a bulging portion that swells to the outer diameter side or inner diameter side in the middle portion. A slewing bearing. 請求項2において、前記膨らみ部の保持器軸方向に沿う断面の形状がV字形である旋回軸受。   The slewing bearing according to claim 2, wherein a shape of a cross section of the bulging portion along a cage axial direction is V-shaped. 請求項1ないし請求項3のいずれか1項において、前記保持器は鋼板製である旋回軸受。   4. The slewing bearing according to claim 1, wherein the cage is made of a steel plate. 請求項1ないし請求項4のいずれか1項において、前記ボールの介在する軌道面が複列設けられている旋回軸受。   5. The slewing bearing according to claim 1, wherein a raceway surface on which the ball is interposed is provided in a double row. 請求項1ないし請求項5のいずれか1項において、風車のブレードを主軸に対して、主軸軸心に略垂直な軸心回りに旋回自在に支持する旋回軸受。   6. The slewing bearing according to claim 1, wherein the blade of the wind turbine is pivotally supported with respect to the main shaft so as to be rotatable about an axis substantially perpendicular to the main shaft axis. 請求項1ないし請求項5のいずれか1項において、風車のナセルを支持台に対して旋回自在に支持する旋回軸受。   The slewing bearing according to claim 1, wherein the nacelle of the wind turbine is pivotally supported with respect to the support base.
JP2008129123A 2008-05-16 2008-05-16 Revolving bearing Pending JP2009275860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008129123A JP2009275860A (en) 2008-05-16 2008-05-16 Revolving bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008129123A JP2009275860A (en) 2008-05-16 2008-05-16 Revolving bearing

Publications (1)

Publication Number Publication Date
JP2009275860A true JP2009275860A (en) 2009-11-26

Family

ID=41441477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008129123A Pending JP2009275860A (en) 2008-05-16 2008-05-16 Revolving bearing

Country Status (1)

Country Link
JP (1) JP2009275860A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185632A (en) * 2010-03-05 2011-09-22 Ntn Corp Device and method for detecting faulure of bearing
CN109826865A (en) * 2019-01-09 2019-05-31 烟台天成机械有限公司 A kind of wind power generating set raceway maintenance grease maintenance-free method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185632A (en) * 2010-03-05 2011-09-22 Ntn Corp Device and method for detecting faulure of bearing
CN109826865A (en) * 2019-01-09 2019-05-31 烟台天成机械有限公司 A kind of wind power generating set raceway maintenance grease maintenance-free method

Similar Documents

Publication Publication Date Title
KR101022104B1 (en) Slewing bearing structure
US7922396B2 (en) Double row self-aligning roller bearing and main shaft support structure of wind power generator
RU2647799C2 (en) Roller bearing for wind turbines
WO2005050038A1 (en) Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
DK2715162T4 (en) Large roller bearing
KR20120038463A (en) Rotating shaft bearing and rotating section support device for wind turbine
CN103429914A (en) Angular contact roller bearing, notably used in a wind turbine
JP2007263305A (en) Bearing incorporating tool, tapered roller bearing, tapered roller bearing incorporating method, and main shaft supporting structure of wind power generator
WO2014045934A1 (en) Wind/tidal power generation bearing
JP2008064248A (en) Rolling bearing cage, rolling bearing, and spindle supporting structure for wind power generator
KR20140033342A (en) Axial-radial rolling contact bearing, in particular for supporting rotor blades on a wind turbine
KR20140063749A (en) Spacer for rolling bearing, notably used in a wind turbine
US20180202489A1 (en) Double-row self-aligning roller bearing
JP4522266B2 (en) Double row roller bearing
JP2011007247A (en) Rolling bearing and wind power generator using the same
US20160238070A1 (en) Bearing for combined loads
JP2009275860A (en) Revolving bearing
WO2018194025A1 (en) Slewing bearing and processing method thereof
JP2006349032A (en) Double-row tapered roller bearing and spindle supporting structure of aerogenerator
JP2009287706A (en) Rolling bearing
GB2612486A (en) Self-aligning roller bearing of asymmetric structure
JP2017057951A (en) Double row self-aligning roller bearing
JP7456851B2 (en) Double row tapered roller bearing
JP2009041642A (en) Cylindrical roller bearing
CN113767227A (en) Large rolling bearing