JP2009275828A - Vibration damping device and manufacturing method of excitation command table - Google Patents
Vibration damping device and manufacturing method of excitation command table Download PDFInfo
- Publication number
- JP2009275828A JP2009275828A JP2008127749A JP2008127749A JP2009275828A JP 2009275828 A JP2009275828 A JP 2009275828A JP 2008127749 A JP2008127749 A JP 2008127749A JP 2008127749 A JP2008127749 A JP 2008127749A JP 2009275828 A JP2009275828 A JP 2009275828A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- command
- frequency
- upper limit
- damping device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Vibration Prevention Devices (AREA)
Abstract
Description
本発明は,自動車等の制振対象機器の振動抑制制御を行う制振装置及び制振装置に用いられる電流上限テーブルの製造方法に関する。 The present invention relates to a vibration damping device that performs vibration suppression control of a vibration damping target device such as an automobile and a method of manufacturing a current upper limit table used in the vibration damping device.
従来から,車両エンジンの出力トルク変動により生じた車両振動がエンジン回転数に対応している事に着目し,エンジン回転数を検出することによって発生が予測される車体振動を打ち消すようにアクチュエータを駆動し,車両振動を低減させる振動制御装置が知られている(例えば,特許文献1参照)。この装置によれば,制御回路は,エンジン回転数に応じて,あらかじめ記憶しておいた表を参照しながら,車体振動と往復動を行う加振手段が発生する反力とが相殺するように生成した指令信号を出力する。そして,この指令信号でアクチュエータを駆動することによって,車体の振動を低減させることができる,とされている。 Conventionally, focusing on the fact that the vehicle vibration caused by the output torque fluctuation of the vehicle engine corresponds to the engine speed, the actuator is driven to cancel the body vibration that is predicted to occur by detecting the engine speed. A vibration control device that reduces vehicle vibration is known (for example, see Patent Document 1). According to this apparatus, the control circuit cancels out the vehicle body vibration and the reaction force generated by the reciprocating vibration means by referring to a pre-stored table according to the engine speed. The generated command signal is output. And it is said that the vibration of the vehicle body can be reduced by driving the actuator with this command signal.
一方,往復動を行う加振手段として,可動子が,固定子に対して往復動可能であるように弾性支持部(板バネ)によって支持されたリニアアクチュエータが知られている(例えば,特許文献2参照)。このリニアアクチュエータは,可動子が摩耗しないため,長期間にわたって使用した後でも軸支持の精度が低下しない。また,可動子に摺動抵抗が作用しないため,摺動抵抗による消費電力の損失が少ない。さらにまた,嵩の張るコイルと弾性支持部とを近接して配置できるので,リニアアクチュエータを小型化できるという特徴がある。 On the other hand, a linear actuator in which a movable element is supported by an elastic support portion (plate spring) so as to be able to reciprocate with respect to a stator is known as a vibrating means for performing reciprocating movement (for example, Patent Documents). 2). Since this linear actuator does not wear the mover, the accuracy of shaft support does not deteriorate even after long-term use. Also, since sliding resistance does not act on the mover, power loss due to sliding resistance is small. Furthermore, since the bulky coil and the elastic support portion can be arranged close to each other, the linear actuator can be miniaturized.
特許文献2に記載されたリニアアクチュエータは,駆動時の反力によって,制振しようとする対象機器が発生している振動を相殺することができる。すなわち,制振対象機器の振動加速度に対して,アクチュエータの発生反力が逆位相になるように電流指令を印加することにより,アクチュエータは制振対象機器の振動を低減することができる。このようなリニアアクチュエータを用いた制振装置を自動車の車体に取り付けることにより,自動車のエンジンから車体に加わる力を相殺することができるため,車体の振動を低減することができる。
ところで,このような制振装置に用いられるアクチュエータは,その反力を増加させるため,可動子に補助質量(おもり)が付与されていることが一般的である。また,制振の効率を高めるため,アクチュエータの可動子および補助質量と弾性支持部とからなる機械系の共振周波数を,制振しようとしている周波数に一致させることが多い。すなわち,発生推力が小さいアクチュエータを用いた場合でも,共振を利用することによって発生反力を増加させることができるので,振動発生源が発生している大きな加速度の振動を抑制することができる。 By the way, an actuator used in such a vibration damping device is generally provided with an auxiliary mass (weight) on the mover in order to increase the reaction force. Also, in order to increase the damping efficiency, the resonance frequency of the mechanical system composed of the actuator mover and auxiliary mass and the elastic support portion is often matched with the frequency to be damped. That is, even when an actuator with a small generated thrust is used, the generated reaction force can be increased by utilizing the resonance, so that the large acceleration vibration generated by the vibration generating source can be suppressed.
しかしながら,上述した制振装置を,たとえば自動車の乗り心地改善のために用いた場合,共振によって可動子が許容振幅以上に振動するため,アクチュエータが破損するという問題が生じる。その理由を以下に述べる。
制振装置の制御部は,自動車の振動特性がエンジン回転数によって決まるため,エンジン回転数に応じてアクチュエータへの電流指令すなわち電流の振幅と周波数を算出し出力する。また,前述した機械系は,アクチュエータへの指令電流から可動子の振幅までの伝達特性を考えた場合,共振周波数で最もゲインが高く,共振周波数より周波数が高くなるほどゲインが小さくなる。そのため,たとえばアイドリング時のエンジン回転周波数が車体フレームの共振周波数と一致している場合,前述した理由から,アクチュエータの機械系の共振周波数は,車体フレームの共振周波数と一致させることになる。
ここで,エンジン回転周波数が高い走行時の場合,アクチュエータは機械系の共振周波数よりも高い周波数で動作するため,制振に必要な反力を得るために大きな電流指令が必要になる。すなわち,必要な反力を得るためには可動子の変位振幅がある値以上必要であるが,アクチュエータの駆動周波数が高くなるほど同じ電流振幅で発生できる可動子の変位振幅が小さくなるため,必要な変位振幅を得るために大きな電流振幅が必要になるのである。
一方,自動車のエンジン回転数は,走行時・停止時を問わず,軽くアクセルを踏んだり緩めたりするだけで大きく変動する。そのため,たとえば車両の急停止によってエンジンがアイドリング状態に急変した場合,過渡状態では,非共振時の大きな電流振幅のまま機械系の共振状態に推移するため,アクチュエータの可動子が過大な変位振幅で振動することになる。このとき,可動子に付与された補助質量が車体フレームやアクチュエータのストッパ等に衝突したり,弾性支持部に弾性限度以上の変位が発生するため,アクチュエータが破損する。
また,可動子が過大な変位振幅で振動している場合,アクチュエータは制振ではなく加振状態となるため,かえって自動車の乗り心地を悪化させる原因となる。
なお,上記の現象は,自動車がアイドリング状態あるいは走行状態であるかどうかによらず,機械系の共振を利用して発生反力を増加させるアクチュエータを用いた制振装置で発生する。
However, when the above-described vibration damping device is used, for example, for improving the riding comfort of an automobile, there is a problem that the actuator is damaged because the movable element vibrates beyond the allowable amplitude due to resonance. The reason is described below.
Since the vibration characteristics of the automobile are determined by the engine speed, the control unit of the vibration damping device calculates and outputs a current command to the actuator, that is, the current amplitude and frequency, according to the engine speed. Further, the mechanical system described above has the highest gain at the resonance frequency when considering the transfer characteristics from the command current to the actuator to the amplitude of the mover, and the gain becomes smaller as the frequency becomes higher than the resonance frequency. Therefore, for example, when the engine rotation frequency at idling matches the resonance frequency of the vehicle body frame, the resonance frequency of the mechanical system of the actuator matches the resonance frequency of the vehicle body frame for the reason described above.
Here, when traveling at a high engine rotation frequency, the actuator operates at a frequency higher than the resonance frequency of the mechanical system, so that a large current command is required to obtain a reaction force required for damping. That is, in order to obtain the required reaction force, the displacement amplitude of the mover must be greater than a certain value. However, the higher the actuator drive frequency, the smaller the displacement amplitude of the mover that can be generated with the same current amplitude. A large current amplitude is required to obtain the displacement amplitude.
On the other hand, the engine speed of a car fluctuates greatly by simply stepping on or loosening the accelerator regardless of whether it is running or stopped. For this reason, for example, when the engine suddenly changes to an idling state due to a sudden stop of the vehicle, the transient state causes the mechanical system to change to a resonance state with a large current amplitude at non-resonance, so the actuator mover has an excessive displacement amplitude. It will vibrate. At this time, the auxiliary mass applied to the mover collides with the body frame, the stopper of the actuator, or the like, and the elastic support portion is displaced beyond the elastic limit, so that the actuator is damaged.
In addition, when the mover vibrates with an excessive displacement amplitude, the actuator is not vibrated, but is in a vibrating state, which causes the ride quality of the automobile to deteriorate.
Note that the above phenomenon occurs in a vibration damping device using an actuator that increases the generated reaction force using resonance of a mechanical system regardless of whether the automobile is in an idling state or a traveling state.
本発明は,このような事情に鑑みてなされたもので,振動発生源の周波数が変化した場合でもアクチュエータの破損を防止できるとともに,安定した制振効果を得ることができる制振装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a vibration damping device that can prevent damage to the actuator and obtain a stable vibration damping effect even when the frequency of the vibration source changes. For the purpose.
本発明は,固定部材が制振対象の制振するべき位置に設けられ該固定部材に対して制振対象の振動方向に往復動可能であるように弾性部材によって支持された可動部材とからなる加振手段と,前記制振対象の振動に基づいて前記加振手段に前記制振するべき位置での振動を打ち消す制振力を発生させるための加振指令を出力する制御部とを備えた制振装置であって,前記制御部は前記加振指令から前記固定部材に対する前記可動部材の相対状態量までの伝達特性に基づいて周波数ごとに前記加振指令の制限値を定めた加振指令上限テーブルを備えたことを特徴とする。
なお,状態量とは,たとえば力,加速度,速度,変位等の時間によって変化する物理量を示す。また,加振指令の制限値とは,加振指令振幅の上限値を意味する。
上記構成により,加振手段に入力する加振指令を,加振指令から固定部材に対する可動部材の相対上大量までの伝達関数に基づいて周波数ごとに定められた上限値によって制限できるので,制振対象の振動の周波数が急激に変化した場合であっても,加振手段の固定部材が過大に振動することを防止できる。そのため,過大な振動によって加振手段が破損したり,可動部材が制振対象に衝突することによって制振対象に損傷を与えることを防止できる。
The present invention comprises a movable member that is provided at a position to be damped by a fixed member and is supported by an elastic member so that the fixed member can reciprocate in the vibration direction of the damped object. And a control unit that outputs a vibration command for generating a vibration control force that cancels the vibration at the position to be controlled to the vibration control unit based on the vibration of the vibration control target. The vibration control device, wherein the control unit determines a limit value of the vibration command for each frequency based on a transmission characteristic from the vibration command to a relative state quantity of the movable member with respect to the fixed member. An upper limit table is provided.
The state quantity indicates a physical quantity that changes with time, such as force, acceleration, speed, and displacement. The limit value of the excitation command means the upper limit value of the excitation command amplitude.
With the above configuration, the vibration command input to the vibration means can be limited by the upper limit value determined for each frequency based on the transfer function from the vibration command to a relatively large amount of the movable member relative to the fixed member. Even if the frequency of vibration of the target changes suddenly, it is possible to prevent the fixing member of the vibration means from vibrating excessively. For this reason, it is possible to prevent the vibration control means from being damaged due to excessive vibrations or damage to the vibration suppression target due to the movable member colliding with the vibration suppression target.
また,本発明の前記加振指令上限テーブルは,少なくとも前記弾性部材と前記可動部材とからなる機械系の共振周波数近傍の前記加振指令を制限することを特徴とする。
なお,共振周波数近傍とは,共振周波数の1/10倍の周波数から10倍の周波数までの範囲を示す。
上記構成により,弾性部材と可動部とからなる機械系の共振周波数近傍の加振指令を制限できるので,制振対象の共振周波数と機械系の共振周波数とを一致させ,制御対象が非共振周波数で駆動している状態から共振周波数で駆動している状態に変化した場合であっても,加振手段の可動部材が過大に振動するのを防止できる。
The excitation command upper limit table of the present invention is characterized in that the excitation command near a resonance frequency of a mechanical system including at least the elastic member and the movable member is limited.
Note that the vicinity of the resonance frequency indicates a range from 1/10 times the resonance frequency to 10 times the frequency.
With the above configuration, since the vibration command near the resonance frequency of the mechanical system consisting of the elastic member and the movable part can be limited, the resonance frequency of the vibration control object and the resonance frequency of the mechanical system are matched, and the control object is the non-resonance frequency. Even when the driving state is changed from the driving state to the driving state at the resonance frequency, it is possible to prevent the movable member of the vibration means from vibrating excessively.
また,本発明の前記制限値は,前記相対変位の最大値と前記周波数の2乗との積を,前記加振指令から前記固定部材に対する前記可動部材の相対加速度までの伝達関数で除した値であることを特徴とする。
なお,相対変位の最大値とは,加振手段の固定部材に対して可動部材が可動しうる最大の変位量を示す。
上記構成により、許容される駆動電流を許容最大変位と、周波数と、伝達関数とから事前に求めて電流上限テーブルを作成することができる。
Further, the limit value of the present invention is a value obtained by dividing the product of the maximum value of the relative displacement and the square of the frequency by a transfer function from the excitation command to the relative acceleration of the movable member with respect to the fixed member. It is characterized by being.
The maximum value of the relative displacement indicates the maximum amount of displacement that the movable member can move with respect to the fixed member of the vibration means.
With the above configuration, the current upper limit table can be created by obtaining the allowable drive current in advance from the allowable maximum displacement, frequency, and transfer function.
また,本発明は,固定部材が制振対象の制振するべき位置に設けられ該固定部材に対して制振対象の振動方向に往復動可能であるように弾性部材によって支持された可動部材とからなる加振手段と,前記制振対象の振動に基づいて前記加振手段に前記制振するべき位置での振動を打ち消す制振力を発生させるための加振指令を出力する制御部とを備え,前記制御部は予め定められた加振指令上限テーブルに基づいて前記加振指令を制限する制振装置に使用される加振指令上限テーブル製造方法について,前記加振手段に出力する加振指令前記加振指令から前記固定部材に対する前記可動部材の相対変位までの伝達特性を測定する過程と,該過程により測定された伝達関数と前記相対変位の最大値とに基づいて前記周波数と前記加振指令との関係を求めることにより加振指令上限テーブルを生成する過程とを有することを特徴とする。
上記構成により、許容最大変位と、前記アクチュエータの駆動周波数と、前記アクチュエータの駆動電流の指令値から前記補助質量の加速度までの伝達関数とを用いて、振動周波数毎に許容される電流指令値を求め、電流上限テーブルを作成することができる。
In addition, the present invention provides a movable member supported by an elastic member so that the fixed member is provided at a position to be controlled by the vibration suppression target and can reciprocate in the vibration direction of the vibration suppression target with respect to the fixed member. And a control unit for outputting a vibration command for generating a vibration control force for canceling vibration at the position to be controlled by the vibration control means based on the vibration of the vibration control target. And the control unit outputs a vibration command output to the vibration means for a vibration command upper limit table manufacturing method used in a vibration damping device that limits the vibration command based on a predetermined vibration command upper limit table. Based on the process of measuring the transfer characteristics from the excitation command to the relative displacement of the movable member with respect to the fixed member, the transfer function measured by the process and the maximum value of the relative displacement, Relationship with vibration command And having a process of generating a vibration command upper table by determining the.
With the above configuration, the allowable current command value for each vibration frequency is obtained using the allowable maximum displacement, the drive frequency of the actuator, and the transfer function from the drive current command value of the actuator to the acceleration of the auxiliary mass. The current upper limit table can be created.
本発明によれば,アクチュエータの可動子が予め設定された許容変位振幅以上にならないように,制御部が加振指令上限テーブルを参照することによって加振指令の振幅を制限するので,振動発生源の周波数が変化した場合でもアクチュエータが破損するのを防止することができる。 According to the present invention, the control unit limits the amplitude of the vibration command by referring to the vibration command upper limit table so that the actuator mover does not exceed the preset allowable displacement amplitude. Even when the frequency of the actuator changes, it is possible to prevent the actuator from being damaged.
<第1の実施形態>
以下,本発明の第1の実施形態による制振装置を図面を参照して説明する。図1は,同実施形態の構成を示すブロック図である。符号1は,制振対象である制御対象機器4に設置する加振部である。なお,制御対象機器4は,たとえば自動車の車体フレームや,座席シートや,エンジン等である。また,加振部1は特許文献2に示したリニアアクチュエータであり,以下,レシプロモータと称する。
<First Embodiment>
Hereinafter, a vibration damping device according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the embodiment.
レシプロモータの可動子13は,板バネ14と軸13を介して固定子12に支持され,固定子12に対して往復動を行う。固定子12は,永久磁石と図示しないコイルとを備え,制振しようとする制御対象機器4の振動方向(図1では上下方向)と可動子12の振動方向とが一致するように制御対象機器4に固定される。図1では,可動子13が制御対象機器4と同様に上下方向に振動することによって,制御対象機器4に作用する反力が制御対象機器4の振動を抑制する。ストッパ16は,可動子13の上限と下限の可動範囲を制限する。補助質量11は,制御対象機器4に作用する反力を増加させるための錘である。可動子12と,軸13と,補助質量11とからなる質量と,板バネ14のバネ定数とから決まる機械系の固有振動数は,制御対象機器4の1次モードの固有振動数に一致するように,質量とバネ定数によって調整されている。なお,以下の説明では,可動子12と,軸13と,補助質量11とを,可動部と称する。
The
指令値生成部20は,制御対象機器4のエンジン回転数などの状態値を入力して,レシプロモータの加振指令,すなわち電流の振幅と周波数の指令値を演算によって求めて出力する。電流上限クランプテーブル23は,予め周波数ごとに電流の振幅の上限値を記憶したテーブルであり,周波数指令値を入力して振幅指令値の上限値を出力する。なお,この上限値の詳細は後述する。印加電流生成部22は,周波数指令値と振幅指令値および振幅指令値の上限値を入力して,印加電流指令値を出力する。この印加電流指令値は,駆動周波数ごとにレシプロモータの可動部が適切な可動範囲になるように,電流の振幅が制限された指令値である。パワーアンプ3は,印加電流指令値を入力し,固定子12に備えられた図示しないコイルに流すための電流を増幅して出力する。
The command
次に,図1に示す加振部1の動作を説明する。図示しないレシプロモータのコイルに電流を流していない場合,固定子12に設けられた永久磁石が発生する磁束は,固定子12の左側のN極から左側のS極および右側のS極へ通り,また,固定子12の右側のN極から右側のS極および左側のS極へ通ることによって,可動子13を図1に示すような磁気的中心位置に保持する。ここで,固定子12の左側から右側へ磁束が発生するように図示しないコイルに電流を流した場合,固定子12の左側のN極から右側のS極へ通る磁束が強まり,かつ,右側のN極から左側のS極へ通る磁束が弱まることによって,可動子13が矢印の上方向へ移動する。一方,固定子12の右側から左側へ磁束が発生するように図示しないコイルに電流を流した場合,固定子12の右側のN極から左側のS極へ通る磁束が強まり,かつ,左側のN極から右側のS極へ通る磁束が弱まることによって,可動子13が矢印の下方向へ移動する。すなわち,図示しないコイルに交流電流を流すことによって,可動子13すなわち可動部は上下方向に振動する。
Next, the operation of the
ここでレシプロモータの可動部と板バネとからなる機械系の固有振動数は,前述したように,制御対象機器4の1次モードの固有振動数と一致するように調整されている。そのため,たとえば制御対象機器4が2次モードの固有振動数で振動している場合,制振装置は制御対象機器4の状態値を検出して,加振部1が制振対象機器4の2次モードの振動とは逆位相で振動するように加振指令を生成して出力する。この場合,1次モードに比べて2次モードの周波数が高いため,加振部1が制御対象機器4に必要な反力Fを作用させるためには,可動部が反力Fが得られるほどの変位振幅で振動する必要がある。しかし,制振装置が2次モードを制振している最中に制振対象機器4の振動周波数が急変し,制振対象機器4が1次モードで振動するようになった場合,過渡状態では,加振部1の機械系が非共振時の大きな電流振幅のまま1次モードの周波数で共振するため,可動部が過大な変位振幅で振動することになる。すると可動子13がストッパ16に衝突したり,可動部が制御対象機器に衝突したり,あるいは板バネ14が弾性限度以上に変形したりするため,加振部1が破損するおそれがある。
Here, the natural frequency of the mechanical system composed of the movable part of the reciprocating motor and the leaf spring is adjusted to coincide with the natural frequency of the primary mode of the
そこで、電流上限クランプテーブル23が,周波数指令値の変化に応じて印加電流指令値の電流振幅の上限を制限するため,過渡状態であっても可動部が過大な変位振幅で振動することを防止できる。また,印加電流指令値の補正をテーブル参照によって行うようにしたため,印加電流生成部22における演算量を軽減することができる。すなわち,処理の高速化を図ることができるとともに,廉価な演算装置を用いることができるのでコストダウンを図ることができる。
Therefore, since the current upper limit clamp table 23 limits the upper limit of the current amplitude of the applied current command value in accordance with the change of the frequency command value, the movable part is prevented from vibrating with an excessive displacement amplitude even in a transient state. it can. Further, since the applied current command value is corrected by referring to the table, the amount of calculation in the applied
ここで図2を参照して,上記電流上限クランプテーブルについて説明する。
可動部の振動が,加速度振幅Ap,角周波数ωの正弦波で近似できると仮定すると,加速度aはa=Apsinωtとなるので,変位xはx=(−AP/ω2)sinωtで表される。すなわち,変位xの最大振幅LpはLp=AP/ω2である。このLpが,2つのストッパ16の間隔2Lsの半分より小さくなるように(Lp<Ls)電流指令の振幅の上限値を決定する。
Here, the current upper limit clamp table will be described with reference to FIG.
Assuming that the vibration of the movable part can be approximated by a sinusoidal wave having an acceleration amplitude A p and an angular frequency ω, since the acceleration a is a = A p sinωt, the displacement x is x = (− A P / ω 2 ) sinωt. It is represented by That is, the maximum amplitude L p of the displacement x is L p = A P / ω 2 . The L p determines the upper limit value of the amplitude of the two so that less than half the interval 2L s stopper 16 (L p <L s) current command.
電流指令をIref=Ip・sinωtと定義すると,電流指令Irefから可動部の加速度aまでの伝達関数Gは,G=a/Irefで表される。ここでa=Apsinωt=(−Lp・ω2)・sinωt,ω=2πfの関係より,G=(−Lp・ω2)・sinωt/(Ip・sinωt)=(−Lp・ω2)/Ip=(−Lp)・(2πf)2/Ipとなる。 If the current command is defined as I ref = I p · sin ωt, the transfer function G from the current command I ref to the acceleration a of the movable part is represented by G = a / I ref . Where a = A p sinωt = (- L p · ω 2) · sinωt, from the relation of ω = 2πf, G = (- L p · ω 2) · sinωt / (I p · sinωt) = (- L p Ω 2 ) / I p = (− L p ) · (2πf) 2 / I p
すなわち,Ip=(−Lp)・(2πf)2/Gより,変位xの最大振幅Lpと,可動部の振動周波数fと,電流指令から加速度までの伝達関数Gとから,電流振幅の上限値Ipが得られる。 That is, from I p = (− L p ) · (2πf) 2 / G, the current amplitude is calculated from the maximum amplitude L p of the displacement x, the vibration frequency f of the movable part, and the transfer function G from the current command to the acceleration. limit I p can be obtained.
ここで変位xの最大振幅Lpは,可動部の許容最大変位および板バネ14の弾性限度範囲より予め求めることができる値であり,可動部の振動周波数fは,状態値として検出する制御対象機器の振動周波数から求まる値である。また,伝達関数Gは,図2の構成で伝達関数測定器によって実験的に求めることができる。なお,図2において,符号51は可動部の振動方向の加速度を検出するための加速度センサである。
以上のように,電流上限クランプテーブル23は,周波数fに対する変位xの最大振幅Lpと伝達関数Gとから得られる電流振幅の上限値Ipが記憶されたテーブルであり,周波数指令値が入力されると印加電流生成部に電流振幅の上限値Ipを出力することができる。
Here, the maximum amplitude L p of the displacement x is a value that can be obtained in advance from the allowable maximum displacement of the movable part and the elastic limit range of the
As described above, the current upper limit clamp table 23 is a table in which the upper limit value I p of the current amplitude obtained from the maximum amplitude L p of the displacement x with respect to the frequency f and the transfer function G is stored, and the frequency command value is input. Then, the upper limit value Ip of the current amplitude can be output to the applied current generation unit.
以上,本発明の一実施形態について説明したが,これに限られるものではない。
たとえば,加振部1がレシプロモータであることは本発明の必須条件ではない。すなわち,加振部1は,固定部に対し可動部を相対的に運動させて制御対象機器4に反力を作用させることが可能なアクチュエータであれば良く,たとえばボイスコイルモータやソレノイド等の他の磁気式モータ,あるいは,たとえば圧電素子を用いたピエゾアクチュエータ等のような磁気以外の原理で動作するモータでも良い。
また,加振部1の固定部材および可動部材は,必ずしもアクチュエータの固定子および可動子と一致している必要はない。すなわち,本実施例では永久磁石と図示しないコイルとを備えた固定子12を固定部材として,また,可動子13,軸15,補助質量11からなる可動部を可動部材としているが,これとは逆に,軸15を介して可動子13を制御対象機器4に固定する固定部材とし,この可動子13に対して相対的に運動可能な固定子12を可動部材としても良い。このような構成を取ることにより,固定子12本体と,永久磁石と,図示しないコイルとを可動部材の質量として利用できる。そのため,本実施形態のように反力を増加させるための補助質量11を別途設ける必要がなくなるので,加振部1をコンパクトにできるとともにコストの低減化が図れる。
また,本実施例では制御対象機器4の状態値としてエンジン回転数を検出しているが,抑制しようとする制御対象機器の振動周波数と対応可能な他の信号でも良い。たとえばエンジン点火タイミング信号など制御対象機器4が出力可能な他の状態値を検出しても良く,また,制御対象機器4に加速度センサ等の検出器を設置することによって状態値を検出しても良い。
また,電流上限クランプテーブル23は,少なくとも一部の周波数帯域について電流振幅の上限値Ipが記憶されたテーブルであっても良い。すなわち,たとえばアクチュエータの機械系の共振周波数近傍のみ電流振幅の上限を制限するようにし,それ以外の周波数帯域については電流振幅を制限しないようにしても良い。
その他の構成も,本発明の主旨を逸脱しない範囲で種々変形が可能である。
As mentioned above, although one Embodiment of this invention was described, it is not restricted to this.
For example, it is not an essential condition of the present invention that the
Further, the fixed member and the movable member of the
In the present embodiment, the engine speed is detected as the state value of the
Further, the current upper limit clamp table 23 may be a table in which the upper limit value I p of the current amplitude is stored for at least some frequency bands. That is, for example, the upper limit of the current amplitude may be limited only in the vicinity of the resonance frequency of the mechanical system of the actuator, and the current amplitude may not be limited for other frequency bands.
Other configurations can be variously modified without departing from the gist of the present invention.
1・・・加振部,11・・・補助質量(おもり),12・・・レシプロモータ(固定子),13・・・レシプロモータ(可動子),14・・・板バネ,15・・・軸,16・・・ストッパ,20・・・指令値生成部,22・・・印加電流生成部,23・・・電流上限クランプテーブル,50・・・伝達関数測定器
DESCRIPTION OF
Claims (4)
前記制振対象の振動に基づいて,前記加振手段に前記制振するべき位置での振動を打ち消す制振力を発生させるための加振指令を出力する制御部とを備えた制振装置であって,
前記制御部は,前記加振指令から前記固定部材に対する前記可動部材の相対状態量までの伝達特性に基づいて,周波数ごとに前記加振指令の制限値を定めた加振指令上限テーブルを備えたことを特徴とする制振装置。 Excitation means comprising a movable member supported by an elastic member so that the fixed member is provided at a position to be damped of the object to be damped, and can reciprocate in the vibration direction of the object to be damped. When,
A vibration control device comprising: a control unit that outputs a vibration command to generate vibration control force that cancels vibration at the position to be controlled in the vibration control unit based on the vibration of the vibration control target; There,
The control unit includes an excitation command upper limit table that defines a limit value of the excitation command for each frequency based on a transmission characteristic from the excitation command to a relative state quantity of the movable member with respect to the fixed member. A vibration damping device characterized by that.
前記制振対象の振動に基づいて,前記加振手段に前記制振するべき位置での振動を打ち消す制振力を発生させるための加振指令を出力する制御部とを備え,
前記制御部は,予め定められた加振指令上限テーブルに基づいて,前記加振指令を制限する制振装置に使用される加振指令上限テーブル製造方法について,
前記加振手段に出力する加振指令前記加振指令から前記固定部材に対する前記可動部材の相対状態量までの伝達特性を測定する過程と,
該過程により測定された伝達関数と,前記相対変位の最大値とに基づいて,前記周波数と前記加振指令との関係を求めることにより加振指令上限テーブルを生成する過程とを有することを特徴とする加振指令テーブルの製造方法。 Excitation means comprising a movable member supported by an elastic member so that the fixed member is provided at a position to be damped of the object to be damped, and can reciprocate in the vibration direction of the object to be damped. When,
A control unit that outputs a vibration command for generating a vibration control force that cancels the vibration at the position to be controlled in the vibration control unit based on the vibration of the vibration control target;
The control unit, based on a predetermined vibration command upper limit table, for a vibration command upper limit table manufacturing method used in a vibration damping device that limits the vibration command,
A step of measuring a transmission characteristic from the vibration command output to the vibration means to the relative state quantity of the movable member with respect to the fixed member;
A step of generating an excitation command upper limit table by obtaining a relationship between the frequency and the excitation command based on the transfer function measured by the process and the maximum value of the relative displacement. A method for manufacturing the vibration command table.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008127749A JP5146747B2 (en) | 2008-05-14 | 2008-05-14 | Damping device and method for manufacturing vibration command table |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008127749A JP5146747B2 (en) | 2008-05-14 | 2008-05-14 | Damping device and method for manufacturing vibration command table |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009275828A true JP2009275828A (en) | 2009-11-26 |
JP5146747B2 JP5146747B2 (en) | 2013-02-20 |
Family
ID=41441446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008127749A Expired - Fee Related JP5146747B2 (en) | 2008-05-14 | 2008-05-14 | Damping device and method for manufacturing vibration command table |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5146747B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011081018A1 (en) * | 2009-12-28 | 2011-07-07 | シンフォニアテクノロジー株式会社 | Vibration control device, motorized actuator drive device, and vehicle |
JP2011209830A (en) * | 2010-03-29 | 2011-10-20 | Sinfonia Technology Co Ltd | Motorized actuator drive device and vibration damper including the same |
WO2019008908A1 (en) * | 2017-07-06 | 2019-01-10 | 日立オートモティブシステムズ株式会社 | Linear motor system |
CN116822157A (en) * | 2023-06-05 | 2023-09-29 | 哈尔滨工业大学 | Resonance suppression method for flexible foundation excitation table |
CN117387819A (en) * | 2023-12-11 | 2024-01-12 | 国科大杭州高等研究院 | Micro-thrust measuring device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0658014A (en) * | 1992-08-07 | 1994-03-01 | Kayaba Ind Co Ltd | Vibration isolating device |
JPH10299825A (en) * | 1997-04-22 | 1998-11-13 | Ohbayashi Corp | Mass body movement control method for vibration damping device |
WO2007129627A1 (en) * | 2006-05-08 | 2007-11-15 | Shinko Electric Co., Ltd. | Damper for automobiles for reducing vibration of automobile body |
-
2008
- 2008-05-14 JP JP2008127749A patent/JP5146747B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0658014A (en) * | 1992-08-07 | 1994-03-01 | Kayaba Ind Co Ltd | Vibration isolating device |
JPH10299825A (en) * | 1997-04-22 | 1998-11-13 | Ohbayashi Corp | Mass body movement control method for vibration damping device |
WO2007129627A1 (en) * | 2006-05-08 | 2007-11-15 | Shinko Electric Co., Ltd. | Damper for automobiles for reducing vibration of automobile body |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011081018A1 (en) * | 2009-12-28 | 2011-07-07 | シンフォニアテクノロジー株式会社 | Vibration control device, motorized actuator drive device, and vehicle |
CN102639902A (en) * | 2009-12-28 | 2012-08-15 | 昕芙旎雅有限公司 | Vibration control device, motorized actuator drive device, and vehicle |
US8471502B2 (en) | 2009-12-28 | 2013-06-25 | Sinfonia Technology Co., Ltd. | Vibration damping apparatus, electric actuator driving apparatus and vehicle |
JP2011209830A (en) * | 2010-03-29 | 2011-10-20 | Sinfonia Technology Co Ltd | Motorized actuator drive device and vibration damper including the same |
WO2019008908A1 (en) * | 2017-07-06 | 2019-01-10 | 日立オートモティブシステムズ株式会社 | Linear motor system |
CN116822157A (en) * | 2023-06-05 | 2023-09-29 | 哈尔滨工业大学 | Resonance suppression method for flexible foundation excitation table |
CN116822157B (en) * | 2023-06-05 | 2024-05-07 | 哈尔滨工业大学 | Resonance suppression method for flexible foundation excitation table |
CN117387819A (en) * | 2023-12-11 | 2024-01-12 | 国科大杭州高等研究院 | Micro-thrust measuring device |
CN117387819B (en) * | 2023-12-11 | 2024-04-09 | 国科大杭州高等研究院 | Micro-thrust measuring device |
Also Published As
Publication number | Publication date |
---|---|
JP5146747B2 (en) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2080928B1 (en) | Damping apparatus for reducing vibration of automobile body | |
JP5522038B2 (en) | Vibration control device and vehicle | |
JP5522037B2 (en) | Vibration control device and vehicle | |
JP5146747B2 (en) | Damping device and method for manufacturing vibration command table | |
JP6369901B2 (en) | Dynamic damper control device | |
JP6264952B2 (en) | Vibration reduction device | |
JP2008256109A (en) | Vibration damping device and control method for vibration damping device | |
JPS61222819A (en) | Vibration controller for vehicles | |
JP2020070895A (en) | Vibration damping device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101201 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120416 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5146747 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151207 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |