JP2009273458A - Cell fusion device and cell fusion method - Google Patents

Cell fusion device and cell fusion method Download PDF

Info

Publication number
JP2009273458A
JP2009273458A JP2009067479A JP2009067479A JP2009273458A JP 2009273458 A JP2009273458 A JP 2009273458A JP 2009067479 A JP2009067479 A JP 2009067479A JP 2009067479 A JP2009067479 A JP 2009067479A JP 2009273458 A JP2009273458 A JP 2009273458A
Authority
JP
Japan
Prior art keywords
cell fusion
cell
fusion
cells
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009067479A
Other languages
Japanese (ja)
Inventor
Takahiro Maruyama
高廣 丸山
Atsushi Morimoto
篤史 森本
Tatsu Futami
達 二見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009067479A priority Critical patent/JP2009273458A/en
Publication of JP2009273458A publication Critical patent/JP2009273458A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell fusion device and a cell fusion method which enable such treatment of cell as to simply and rapidly enhance fusion regeneration probability by carrying out substitution of cell fusion liquids, while fixing cells carrying out cell fusion in micropores in a fusion container. <P>SOLUTION: The cell fusion device includes a cell fusion container equipped with a cell fusion liquid inlet and discharge port and consisting of a pair of electrodes composed of electroconductive member and oppositely arranged in a cell fusion region and a flat insulator arranged through a flat spacer between a pair of electrodes and having a plurality of micropores extended through the direction of electrodes oppositely arranged, wherein the insulator is arranged on an electrode surface on a cell fusion region side of either one electrode in the electrodes, an electric power supply having an electric source changeover mechanism and a cell fusion liquid-introducing changeover means of changing over and introducing three or more cell fusion liquids. The cell fusion method comprises using the cell fusion device. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、細胞融合を効率的に行うための細胞融合装置とそれを用いた細胞融合方法に関する。   The present invention relates to a cell fusion apparatus for efficiently performing cell fusion and a cell fusion method using the same.

従来の一般的な細胞融合技術としては化学的細胞融合法であるポリエチレングリコール法(PEG法)と電気的細胞融合法が知られている。PEG法では(i)ポリエチレングリコール(PEG)は細胞に対して強い毒性を持っている、(ii)細胞融合するにあたりPEGの重合度、添加量などの最適な諸条件を見出すのに手間がかかる、(iii)細胞融合に際して高度な技術が要求され、特定の技術に習熟した人にしか使えない、(iv)2細胞の接触は偶発的であり、2細胞一対での細胞融合の制御が困難なため融合再生確率が極めて低い、等の解決すべき課題があった。ここで、融合再生確率とは、生成した融合細胞の数を融合容器に導入した脾臓細胞数で除した値である。   As a conventional general cell fusion technology, a polyethylene glycol method (PEG method) which is a chemical cell fusion method and an electric cell fusion method are known. In the PEG method, (i) polyethylene glycol (PEG) has a strong toxicity to cells. (Ii) It takes time to find optimum conditions such as the degree of polymerization of PEG and the amount of addition in cell fusion. , (Iii) Advanced technology is required for cell fusion, and can only be used by those skilled in specific technology. (Iv) 2 cell contact is accidental, and it is difficult to control cell fusion in a pair of 2 cells. Therefore, there is a problem to be solved such as a very low fusion reproduction probability. Here, the fusion regeneration probability is a value obtained by dividing the number of produced fused cells by the number of spleen cells introduced into the fusion container.

一方、電気的細胞融合法は、高度な技術が不要で、簡単に効率よく細胞融合させることができ、細胞に与える毒性がほとんどなく、高活性をもったままの状態で細胞融合させることができるという利点があり、電気的細胞融合の条件など、細胞融合時の諸条件の設定が容易なため、PEG法に比べ融合再生確率が高いことが知られている。電気的細胞融合法は、1981年西ドイツのZimmermannが確立したものであり、その原理は次の通りである。すなわち、平行電極間に交流電圧を印加し、そこに細胞を導入すると、細胞は電流密度の高い方へ引き寄せられ数珠状にならぶ。なお、細胞が数珠状にならんだ状態を一般にパールチェーンと呼ぶ。この状態で数μsec〜数十μsec単位の直流パルス電圧(以下、同じ意味として融合電圧とも称する)を電極間に印加することにより細胞膜の電気伝導度が瞬間的に低下し、脂質二重層により構成される細胞膜の可逆的乱れとその再構成が行われ、その結果、細胞融合が起こる。   On the other hand, the electric cell fusion method does not require advanced technology, can easily and efficiently fuse cells, has little toxicity to cells, and can fuse cells with high activity. It is known that the fusion regeneration probability is higher than that of the PEG method because various conditions at the time of cell fusion such as conditions for electric cell fusion can be easily set. The electric cell fusion method was established by Zimmermann in West Germany in 1981, and the principle is as follows. That is, when an alternating voltage is applied between parallel electrodes and cells are introduced therein, the cells are attracted toward the higher current density and form a bead shape. A state in which cells are arranged in a bead shape is generally called a pearl chain. In this state, the electric conductivity of the cell membrane is instantaneously lowered by applying a DC pulse voltage (hereinafter also referred to as a fusion voltage) in the unit of several μsec to several tens of μsec between the electrodes. Cell membranes are reversibly disrupted and reconstituted, resulting in cell fusion.

上記の電気的細胞融合法には、主に微小電極法と平行電極法が用いられている。このうち微小電極法は、2細胞一対の細胞融合を顕微鏡で見ながらマイクロマニュピレーターで細胞を拾い集めては直流パルス電圧を印加する方法であり、極めて融合確率が高く、微小電極法に用いる電極の例も報告されている(例えば、特許文献1参照)。しかしながらこの方法は手間のかかる方法であり、その操作は熟練を要す上、大量の細胞を扱う上では実用的とはいえなかった。また平行電極法は、誘電泳動により複数の細胞を数珠状に配列形成させた後、直流パルス電圧を印加することによって細胞融合させる方法であり、その取り扱いは簡単であるが、数珠状になった複数の細胞が細胞融合するためPEG法と同様に2細胞の接触は偶発的であり、2細胞一対での細胞融合の確実な制御が難しいという課題があった。   For the electric cell fusion method, a microelectrode method and a parallel electrode method are mainly used. Among these, the microelectrode method is a method of applying a DC pulse voltage by collecting cells with a micromanipulator while observing a cell fusion of a pair of two cells with a microscope, and has a very high fusion probability. Examples have also been reported (see, for example, Patent Document 1). However, this method is a laborious method, and its operation requires skill and is not practical for handling a large number of cells. The parallel electrode method is a method in which a plurality of cells are arranged in a bead shape by dielectrophoresis, and then the cells are fused by applying a DC pulse voltage. Since a plurality of cells are fused, contact of two cells is accidental as in the PEG method, and there is a problem that it is difficult to reliably control cell fusion with a pair of two cells.

また、上記化学的細胞融合法及び電気的細胞融合法の両者とも、2種類の細胞を同一成分の細胞融合液内で非特異的に混合して細胞融合を行うため、融合操作中に細胞融合液の成分を目的に応じてコントロールすることは極めて困難であった。従って、融合再生確率を高めるための幾つかの試みは、常に細胞融合とは別の細胞前処理操作を必要とし、また、細胞融合後の煩雑な洗浄操作を伴うため、操作が煩雑な上、必要以上に細胞の処理時間が長くなり細胞の活性が低下したり、細胞を損失したりするなどの課題があった。   In addition, both the chemical cell fusion method and the electric cell fusion method perform cell fusion by mixing two types of cells nonspecifically in the same component cell fusion solution. It was extremely difficult to control the components of the liquid according to the purpose. Therefore, some attempts to increase the fusion regeneration probability always require a cell pretreatment operation different from cell fusion, and also involve a complicated washing operation after cell fusion, so that the operation is complicated, The treatment time of cells was longer than necessary, resulting in problems such as decreased cell activity and lost cells.

例えば、融合再生確率を高める方法として、電気的細胞融合法に用いる細胞融合液中のCa濃度を高めることで融合再生確率を向上させた事例が報告されている(例えば、非特許文献1参照)。一般的に、Caには細胞膜修復作用があるといわれており、Ca濃度を高めて細胞融合する事で融合再生確率が向上する可能性がある。しかしながら、実際には、従来の電気的細胞融合法では2種類の細胞を同一の成分の溶液の中で混合状態として細胞融合を行うため、融合再生確率を高めるのに効果的なCa濃度のコントロールが難しく、Ca濃度を高めた場合、Caの細胞膜修復作用により融合再生確率が向上する効果もあるが、細胞融合前に細胞同士が凝集を起こし、細胞融合に関与できない細胞が増大するため、結果として融合再生確率が低下してしまうという課題があった。   For example, as a method for increasing the fusion regeneration probability, a case has been reported in which the fusion regeneration probability is improved by increasing the Ca concentration in the cell fusion solution used in the electric cell fusion method (see, for example, Non-Patent Document 1). . In general, it is said that Ca has a cell membrane repairing action, and the fusion regeneration probability may be improved by cell fusion by increasing the Ca concentration. However, in practice, in the conventional electric cell fusion method, cell fusion is performed by mixing two types of cells in a solution of the same component, so that the Ca concentration control is effective in increasing the fusion regeneration probability. However, when Ca concentration is increased, there is an effect of improving the fusion regeneration probability due to Ca's cell membrane repair action, but the cells aggregate before cell fusion and the number of cells that cannot participate in cell fusion increases. As a result, there is a problem that the fusion reproduction probability decreases.

また別の融合再生確率を高める方法として、細胞融合前にシアル酸分解酵素で細胞を処理することで細胞膜上のシアル酸を分解し、細胞を正の電荷に帯電させることによって細胞融合させる細胞同士の密着度を高め、融合再生確率を向上させた事例が報告されている(例えば、非特許文献2参照)。しかしこの場合、シアル酸分解反応中に細胞の死滅が起きる他、シアル酸分解処理を行った細胞同士が凝集することで、細胞融合に寄与する細胞数が減少し、結果として融合再生確率が低下してしまうという課題があった。   Another method for increasing the fusion regeneration probability is to treat cells with sialic acid-degrading enzyme before cell fusion to decompose sialic acid on the cell membrane and charge the cells to a positive charge. A case has been reported in which the degree of adhesion is increased and the fusion reproduction probability is improved (see, for example, Non-Patent Document 2). In this case, however, cells are killed during the sialic acid decomposition reaction, and cells that have undergone sialic acid decomposition aggregate to reduce the number of cells contributing to cell fusion, resulting in a decrease in the probability of fusion regeneration. There was a problem of doing it.

また別の融合再生確率を高める方法として、細胞融合前にプロテアーゼなどの酵素で細胞を処理することで細胞膜上のタンパクを分解し、融合再生確率を向上させた事例が報告されている(例えば、非特許文献3参照)。しかしこの場合も、酵素処理の過程において細胞の凝集や死滅、あるいは細胞の容器への付着が発生し、細胞融合時に処理可能な細胞数が著しく減少するため、結果として融合再生確率が低下してしまうという課題があった。また、細胞融合前または細胞融合後にこれらの酵素成分を除去する煩雑な細胞洗浄操作が必要であった。   As another method for increasing the probability of fusion regeneration, a case has been reported in which the cell membrane is treated with an enzyme such as a protease before cell fusion to degrade proteins on the cell membrane, thereby improving the fusion regeneration probability (for example, Non-Patent Document 3). However, in this case as well, cell aggregation and death or cell attachment to the container occurs during the enzyme treatment, and the number of cells that can be treated during cell fusion is significantly reduced, resulting in a decrease in the probability of fusion regeneration. There was a problem of ending up. In addition, a complicated cell washing operation for removing these enzyme components before or after cell fusion is necessary.

また別の融合再生確率を高める方法として、細胞を浸透圧より低張の糖溶液に懸濁して融合電圧を印加することで、従来よりも融合再生確率を向上させた事例が報告されている(例えば、非特許文献4参照)。この場合、低張の糖溶液に細胞を浸す時間が長く、また細胞融合後もしばらく低張の糖溶液中で細胞を放置しなければならないために、細胞融合時あるいは細胞融合後に死滅する細胞が多くなり、結果として融合再生確率が低下してしまうという課題があった。   As another method to increase the fusion regeneration probability, a case in which the fusion regeneration probability is improved by suspending cells in a sugar solution that is hypotonic than osmotic pressure and applying a fusion voltage has been reported ( For example, refer nonpatent literature 4). In this case, it takes a long time to immerse cells in a hypotonic sugar solution, and the cells must be left in the hypotonic sugar solution for a while after cell fusion. As a result, there is a problem that the fusion reproduction probability decreases as a result.

さらにまた融合再生確率を高める別の方法として、電気的細胞融合法に用いる細胞融合液中にポリエチレングリコールなどの融合促進作用のあると考えられている添加剤を添加して融合電圧を印加することで、従来よりも融合再生確率を向上させた事例が報告されている(例えば、特許文献2、非特許文献5参照)。この場合、加えた添加剤が細胞にとって有害な成分であれば、処理中に細胞の死滅が起きるため、結果として融合再生確率が低下してしまうという課題があった。また、細胞融合後にはこれらの細胞にとって有害な成分を除くための煩雑な細胞洗浄操作が必要であった。   Furthermore, as another method for increasing the fusion regeneration probability, a fusion voltage such as polyethylene glycol is added to the cell fusion solution used in the electric cell fusion method and a fusion voltage is applied. Thus, there have been reported cases in which the fusion reproduction probability is improved as compared with the prior art (see, for example, Patent Document 2 and Non-Patent Document 5). In this case, if the added additive is a harmful component for the cells, the cells are killed during the treatment, resulting in a problem that the fusion regeneration probability is lowered. Further, after cell fusion, a complicated cell washing operation for removing components harmful to these cells is required.

以上のように従来のPEG法、電気的細胞融合法では、融合再生確率を高めるための細胞の前処理や細胞融合後の融合促進剤の除去操作自体がそれぞれ細胞の死滅を引き起こし、結果として得られる融合細胞が少なくなり、よって融合再生確率がむしろ悪くなるという課題があった。   As described above, in the conventional PEG method and electrical cell fusion method, cell pretreatment for increasing the fusion regeneration probability and removal of the fusion accelerator after cell fusion itself cause cell death, respectively. There has been a problem that the number of fused cells produced is reduced, and thus the probability of fusion regeneration is rather deteriorated.

特公平7−40914号公報Japanese Patent Publication No. 7-40914 特開昭60−9490号公報JP 60-9490 A

Ohnishi, K., Chiba, J., Goto, Y., Tokunaga, T., 「Improvement in the basic technology of electrofusion for generation of antibody−producing hybridomas.」 J. Immunol. Methods., 100巻, p.181−189, 1987年Ohnishi, K .; , Chiba, J .; Goto, Y .; , Tokunaga, T .; , “Improvement in the basic technology of electrophoretic for generation of antibody-production hybridomas”. Immunol. Methods. , 100, p. 181-189, 1987 Igarashi, M., Bando, Y. 「Enhanced efficiency of cell hybridization by neuraminidase treatment.」 J. Immunol. Methods., 135巻, p.91−93, 1990年Igarashi, M .; , Bando, Y .; "Enhanced efficiency of cell hybridization by neurominidase treatment." Immunol. Methods. 135, p. 91-93, 1990 Ohno−Shosaku, T., Okada, Y. 「Facilitation of electrofusion of mouse lymphoma cells by the proteolytic action of proteases.」 Biochem. Biophys. Res. Commun., 120巻, p.138−143, 1984年Ohno-Shosaku, T .; Okada, Y .; “Facility of electrofusion of mouse lymphoma cells by the proteolytic action of proteases.” Biochem. Biophys. Res. Commun. , 120, p. 138-143, 1984 Schmitt, J. J., Zimmermann, U., Gessner, P. 「Electrofusion of osmotically treated cells. High and reproducible yields of hybridoma cells.」 Naturwissenschaften, 76巻, p.122−123, 1989年Schmitt, J.M. J. et al. , Zimmermann, U.S. Gessner, P .; "Electrofusion of osmotically treated cells. High and reproducible yields of hybridoma cells." Naturewissenchaften, 76, p. 122-123, 1989 Stoicheva, NG., Hui, SW. 「Electrically induced fusion of mammalian cells in the presence of polyethylene glycol.」 J. Membr. Biol., 141巻, p.177−182, 1994年Stoicheva, NG. , Hui, SW. “Electrically Induced Fusion of Mammalian Cells in the Presence of Polyethylene Glycol.” Membr. Biol. 141, p. 177-182, 1994

本発明の目的は、かかる従来の実状に鑑みて提案されたものであり、細胞融合を行う細胞を融合容器内の微細孔に固定したまま細胞融合液の置換を行い、簡便かつ迅速に融合再生確率を高めるような細胞の処理を可能にする細胞融合装置及び細胞融合方法を提供する。   The object of the present invention has been proposed in view of the conventional situation, and the cell fusion solution is replaced while the cells to be fused are fixed in the micropores in the fusion vessel, so that the fusion regeneration is simple and quick. Provided are a cell fusion device and a cell fusion method that enable treatment of cells with an increased probability.

本発明は上記課題を解決する手段として、細胞融合液導入口及び細胞融合液排出口を備え、細胞融合領域に対向して配置される導電部材からなる一対の電極と、前記一対の電極間に平板状のスペーサーを介して配置され、かつ前記対向して配置された電極の方向に貫通した複数の微細孔を有した平板状の絶縁体からなり、前記絶縁体が前記電極の内いずれか一方の電極の細胞融合領域側の電極面上に配置されている細胞融合容器と、電源と、3以上の細胞融合液を切替えて導入する細胞融合液導入切替え手段と、を備えた細胞融合装置であって、前記電源が前記一対の電極に交流電圧を印加する交流電源と直流パルス電圧を印加する直流パルス電源とを切替えて接続する電源切替え機構を有する、細胞融合装置を用いること、前記細胞融合装置を用いて第1の細胞と第2の細胞とを細胞融合領域において融合する際、前記細胞融合領域に前記第1の細胞が入った細胞融合液を導入し、前記交流電圧を印加して前記微細孔内に前記第1の細胞を固定した後、前記細胞融合領域に前記第2の細胞が入った細胞融合液を導入し、前記交流電圧を印加して前記第1の細胞に前記第2の細胞を前記微細孔において接触させ、前記微細孔に直流パルス電圧を印加して、前記第1の細胞と前記第2の細胞とを細胞融合させる方法であって、前記細胞融合液導入切替え手段を用いて細胞融合処理液が入った細胞融合液を導入する時期を、前記第2の細胞の導入前、前記細胞融合の前および前記細胞融合の後、の少なくとも一の時期とする、細胞融合方法を用いることにより、上記の従来技術の課題を解決することができることを見出し、遂に本発明を完成するに至った。以下、本発明を詳細に説明する。   As a means for solving the above-described problems, the present invention includes a pair of electrodes each including a cell fusion solution inlet and a cell fusion solution discharge port and arranged to face the cell fusion region, and between the pair of electrodes. It consists of a flat insulator having a plurality of fine holes penetrating in the direction of the opposed electrodes arranged via a flat spacer, and the insulator is one of the electrodes A cell fusion device comprising a cell fusion container disposed on an electrode surface on the cell fusion region side of the electrode, a power source, and cell fusion solution introduction switching means for switching and introducing three or more cell fusion solutions Using the cell fusion device, wherein the power source has a power source switching mechanism for switching and connecting an AC power source for applying an AC voltage to the pair of electrodes and a DC pulse power source for applying a DC pulse voltage; Dress When the first cell and the second cell are fused in the cell fusion region using the cell fusion solution, the cell fusion solution containing the first cell is introduced into the cell fusion region, and the alternating voltage is applied to the cell fusion region. After fixing the first cell in the micropore, a cell fusion solution containing the second cell is introduced into the cell fusion region, and the AC voltage is applied to the second cell to the second cell. In which the cells are contacted in the micropores, and a DC pulse voltage is applied to the micropores to fuse the first cells with the second cells, the cell fusion solution introduction switching means The cell fusion solution containing the cell fusion treatment solution is introduced at least one time before introduction of the second cell, before the cell fusion, and after the cell fusion. By using the method, the above-mentioned problems of the prior art are solved. Found that it is possible to attain, it has led to the completion of the finally the present invention. Hereinafter, the present invention will be described in detail.

本発明の細胞融合装置は、細胞融合液導入口及び細胞融合液排出口を備え、細胞融合領域に対向して配置される導電部材からなる一対の電極と、前記一対の電極間に平板状のスペーサーを介して配置され、かつ前記対向して配置された電極の方向に貫通した複数の微細孔を有した平板状の絶縁体からなり、前記絶縁体が前記電極の内いずれか一方の電極の細胞融合領域側の電極面上に配置されている細胞融合容器と、電源と、3以上の細胞融合液を切替えて導入する細胞融合液導入切替え手段と、を備えた細胞融合装置であって、前記電源が前記一対の電極に交流電圧を印加する交流電源と直流パルス電圧を印加する直流パルス電源とを切替えて接続する電源切替え機構を有する。   The cell fusion device of the present invention includes a cell fusion solution inlet and a cell fusion solution discharge port, a pair of electrodes made of a conductive member arranged to face the cell fusion region, and a flat plate shape between the pair of electrodes. It is composed of a flat insulator having a plurality of fine holes that are arranged through a spacer and penetrated in the direction of the electrodes arranged to face each other, and the insulator is one of the electrodes. A cell fusion device comprising a cell fusion container disposed on an electrode surface on the cell fusion region side, a power source, and cell fusion solution introduction switching means for switching and introducing three or more cell fusion solutions, The power supply has a power supply switching mechanism for switching and connecting an AC power supply for applying an AC voltage to the pair of electrodes and a DC pulse power supply for applying a DC pulse voltage.

また本発明の細胞融合方法は、上記細胞融合装置を用いて第1の細胞と第2の細胞とを細胞融合領域において融合する際、細胞融合領域に第1の細胞が入った細胞融合液を導入し、交流電圧を印加して微細孔内に第1の細胞を固定した後、細胞融合領域に第2の細胞が入った細胞融合液を導入し、交流電圧を印加して第1の細胞に第2の細胞を微細孔において接触させ、微細孔に直流パルス電圧を印加して、第1の細胞と第2の細胞とを細胞融合させる方法であって、細胞融合液導入切替え手段を用いて細胞融合処理液が入った細胞融合液を導入する時期を、第2の細胞の導入前、細胞融合の前および細胞融合の後、の少なくとも一の時期とする、細胞融合方法である。   In the cell fusion method of the present invention, when the first cell and the second cell are fused in the cell fusion region using the cell fusion device, a cell fusion solution containing the first cell in the cell fusion region is obtained. After the introduction and application of an alternating voltage to fix the first cells in the micropores, a cell fusion solution containing the second cells in the cell fusion region is introduced, and the alternating voltage is applied to the first cells. In which the second cell is brought into contact with the micropore, a DC pulse voltage is applied to the micropore, and the first cell and the second cell are fused, using cell fusion solution introduction switching means. In this cell fusion method, the cell fusion solution containing the cell fusion treatment solution is introduced at least one time before introduction of the second cell, before cell fusion, and after cell fusion.

また本発明の細胞融合方法は、細胞融合処理液が入った細胞融合液が2以上であって、前記2以上の細胞融合処理液が入った細胞融合液が全て同じまたは一部異なるまたは全て異なる、のいずれかの細胞融合処理液が入った細胞融合液である細胞融合方法である。   In the cell fusion method of the present invention, the cell fusion solution containing the cell fusion treatment solution is 2 or more, and the cell fusion solutions containing the two or more cell fusion treatment solutions are all the same, partly different, or all different. The cell fusion method is a cell fusion solution containing any of the cell fusion treatment solutions.

また本発明の細胞融合方法は、上記の特定の成分が酵素であり、さらに当該酵素がシアル酸分解酵素またはプロテアーゼである細胞融合方法である。   The cell fusion method of the present invention is a cell fusion method in which the specific component is an enzyme, and the enzyme is a sialic acid degrading enzyme or a protease.

また本発明の細胞融合方法は、上記の特定の成分がカルシウムイオンである細胞融合方法である。   The cell fusion method of the present invention is a cell fusion method in which the specific component is calcium ion.

また、本発明の細胞融合方法は、上記の添加剤が融合再生確率を高める添加剤である細胞融合方法であり、これらの添加剤として、カルシウム塩、マグネシウム塩、アミノ酸、ウシ血清アルブミン(BSA)、糖、フィコール、カルモジュリン、セリシン、アルブミン、インスリン、トランスフェリン、サイトカイン、リポポリサッカライド、ポリエチレングリコール、コレステロール、カテキン、血清、ホルモン、動物細胞培養用培地由来の成分の内、少なくともいずれか一つを含む添加剤である、細胞融合方法である。   The cell fusion method of the present invention is a cell fusion method in which the above additive is an additive that increases the fusion regeneration probability. Examples of these additives include calcium salt, magnesium salt, amino acid, bovine serum albumin (BSA). , Sugar, ficoll, calmodulin, sericin, albumin, insulin, transferrin, cytokine, lipopolysaccharide, polyethylene glycol, cholesterol, catechin, serum, hormone, containing at least one of components derived from animal cell culture media It is a cell fusion method which is an additive.

以下に、図を用いて本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings.

本発明の細胞融合装置は、細胞融合液導入口及び細胞融合液排出口を備え、細胞融合領域に対向して配置される導電部材からなる一対の電極と、前記一対の電極間に平板状のスペーサーを介して配置され、かつ前記対向して配置された電極の方向に貫通した複数の微細孔を有した平板状の絶縁体からなり、前記絶縁体が前記電極の内いずれか一方の電極の細胞融合領域側の電極面上に配置されている細胞融合容器と、電源と、3以上の細胞融合液を切替えて導入する細胞融合液導入切替え手段と、を備えた細胞融合装置であって、前記電源が前記一対の電極に交流電圧を印加する交流電源と直流パルス電圧を印加する直流パルス電源とを切替えて接続する電源切替え機構を有する。   The cell fusion device of the present invention includes a cell fusion solution inlet and a cell fusion solution discharge port, a pair of electrodes made of a conductive member disposed to face the cell fusion region, and a flat plate between the pair of electrodes. It is composed of a flat insulator having a plurality of fine holes that are arranged through a spacer and penetrated in the direction of the electrodes arranged to face each other, and the insulator is one of the electrodes. A cell fusion device comprising a cell fusion container disposed on an electrode surface on the cell fusion region side, a power source, and cell fusion solution introduction switching means for switching and introducing three or more cell fusion solutions, The power supply has a power supply switching mechanism for switching and connecting an AC power supply for applying an AC voltage to the pair of electrodes and a DC pulse power supply for applying a DC pulse voltage.

まず、本発明の特徴を説明するために、本発明の細胞融合装置を用いた基本的な細胞融合方法の概略、すなわち2つの細胞を細胞融合領域に導入して細胞融合する方法を図1〜図3を用いて説明する。なお説明は、本発明の基本動作を簡単に説明するために、細胞融合処理液が入った細胞融合液を導入する工程は省略しており、本発明特有の細胞融合方法である、細胞融合液導入切替え手段を用いて細胞融合処理液が入った細胞融合液を導入する時期を、第2の細胞の導入前、細胞融合の前および細胞融合の後、の少なくとも一の時期とする方法についても説明は後述する。   First, in order to explain the characteristics of the present invention, an outline of a basic cell fusion method using the cell fusion device of the present invention, that is, a method for cell fusion by introducing two cells into a cell fusion region is shown in FIGS. This will be described with reference to FIG. In the description, in order to briefly explain the basic operation of the present invention, the step of introducing the cell fusion solution containing the cell fusion treatment solution is omitted, and the cell fusion solution is a cell fusion method unique to the present invention. The method of introducing the cell fusion solution containing the cell fusion treatment solution using the introduction switching means is at least one time before the introduction of the second cell, before the cell fusion, and after the cell fusion. The description will be described later.

本発明の細胞融合方法の手順を図1、図2、図3の順に示す。   The procedure of the cell fusion method of the present invention is shown in the order of FIG. 1, FIG. 2, and FIG.

図1に示すように、最初に第1の細胞(18)の入った細胞融合液を細胞融合領域(1)に入れ、電源切替え機構(7)を交流電源(5)に接続する。このとき第1の細胞は、絶縁体(8)に形成された微細孔(9)に向かって移動し固定される。この第1の細胞が微細孔に向かって動くときに作用する力を誘電泳動力(10)という。図1に示すように誘電泳動力とは、電極間に特定の周波数の交流電圧を印加したとき、上部電極(14)と微細孔(9)で覆われた下部電極(15)のように、電気力線(12)の集中部位があると、その電気力線の集中部位(12)の方向(すなわち、微細孔の方向)に向かって細胞等の誘電体粒子を動かす力である。一般に誘電泳動力は、誘電体粒子の体積、誘電体粒子の誘電率と溶液の誘電率の差、印加電圧の2乗に比例する。   As shown in FIG. 1, the cell fusion solution containing the first cells (18) is first placed in the cell fusion region (1), and the power supply switching mechanism (7) is connected to the AC power supply (5). At this time, the first cells move toward the micropores (9) formed in the insulator (8) and are fixed. The force acting when the first cell moves toward the micropore is referred to as dielectrophoretic force (10). As shown in FIG. 1, the dielectrophoretic force means that when an alternating voltage of a specific frequency is applied between the electrodes, like the upper electrode (14) and the lower electrode (15) covered with the fine holes (9), When there is a concentrated part of the electric field lines (12), it is a force that moves dielectric particles such as cells toward the direction of the concentrated part (12) of the electric field lines (that is, the direction of the micropores). In general, the dielectrophoretic force is proportional to the volume of the dielectric particles, the difference between the dielectric constant of the dielectric particles and the dielectric constant of the solution, and the square of the applied voltage.

次に、交流電圧を印加したまま誘電泳動力を作用させ続けて微細孔に第1の細胞を固定したまま、第2の細胞(22)の入った細胞融合液を細胞融合領域に入れる。このとき、図2に示すように第2の細胞は誘電泳動力により第1の細胞の上に固定される。次に図3に示すように、電源切替え機構を直流パルス電源(6)に切替えて直流パルス電圧を印加すると、第1の細胞及び第2の細胞の接触点で細胞膜に変化(可逆的破壊と推定される)が起こり、第1の細胞と第2の細胞との細胞融合が生じて融合細胞(32)が生成される。このようにすることで、微細孔の位置で第1の細胞と第2の細胞を接触させ、従来の電気的細胞融合法より高い融合再生確率で細胞融合させることができる。この場合、理想的には、1つの第1の細胞に対し1つの第2の細胞が接触して融合した方が高い融合再生確率を得られる。すなわち、1つの微細孔に1つの第1の細胞が固定され、更にその上に1つの第2の細胞が固定された方が高い融合再生確率を得ることができる。   Next, the cell fusion solution containing the second cells (22) is put into the cell fusion region while the first cells are fixed in the micropores while the dielectrophoretic force is continuously applied with the alternating voltage applied. At this time, as shown in FIG. 2, the second cell is fixed on the first cell by the dielectrophoretic force. Next, as shown in FIG. 3, when the power source switching mechanism is switched to the direct current pulse power source (6) and a direct current pulse voltage is applied, the cell membrane changes at the contact point of the first cell and the second cell (reversible destruction and Presumed) occurs, and cell fusion between the first cell and the second cell occurs to produce a fused cell (32). By doing in this way, a 1st cell and a 2nd cell can be made to contact in the position of a micropore, and cell fusion can be carried out with the fusion regeneration probability higher than the conventional electrical cell fusion method. In this case, ideally, a higher fusion regeneration probability can be obtained when one second cell is brought into contact with one first cell and fused. That is, it is possible to obtain a higher fusion regeneration probability when one first cell is fixed in one micropore and one second cell is further fixed thereon.

次に、本発明の細胞融合装置の構成について、図を用いて詳しく説明する。   Next, the configuration of the cell fusion device of the present invention will be described in detail with reference to the drawings.

図4は本発明の細胞融合装置の概念図を示した図である。本発明の細胞融合装置は、細胞融合容器(13)と電源(4)、細胞融合液導入切替え手段(17)で構成されている。また電源(4)は、上記の一対の電極に交流電圧を印加する交流電源(5)と直流パルス電圧を印加する直流パルス電源(6)とを切替えて接続する電源切替え機構(7)で構成されている。   FIG. 4 is a conceptual diagram of the cell fusion device of the present invention. The cell fusion device of the present invention comprises a cell fusion container (13), a power source (4), and a cell fusion solution introduction switching means (17). The power source (4) is constituted by a power source switching mechanism (7) for switching and connecting an AC power source (5) for applying an AC voltage to the pair of electrodes and a DC pulse power source (6) for applying a DC pulse voltage. Has been.

細胞融合容器は、図4に示すように上部電極(14)と下部電極(15)の間に、スペーサー(16)を配置することで細胞融合領域(1)を確保し、微細孔(9)を形成した絶縁体(8)を下部電極の細胞融合領域側に配置した構造を有する。   As shown in FIG. 4, the cell fusion container secures the cell fusion region (1) by arranging the spacer (16) between the upper electrode (14) and the lower electrode (15), and the micropore (9). Insulator (8) having a structure is arranged on the cell fusion region side of the lower electrode.

上部電極と下部電極の材質は導電部材であって化学的に安定な部材であれば特に制限はなく、白金、金、銅などの金属やステンレスなどの合金及び、ITO(Indium Tin Oxide:酸化インジウムスズ)等の透明導電性材料を成膜したガラス基板などでもよいが、細胞融合を観察するには、ITOなどの透明導電性材料を成膜したガラス基板を電極として用いることが好ましい。   The material of the upper electrode and the lower electrode is not particularly limited as long as it is a conductive member and is a chemically stable member, such as platinum, gold, copper, or an alloy such as stainless steel, and ITO (Indium Tin Oxide). Although a glass substrate on which a transparent conductive material such as tin) is formed may be used, in order to observe cell fusion, it is preferable to use a glass substrate on which a transparent conductive material such as ITO is formed as an electrode.

上部電極と下部電極の面積等の寸法には特に制限はないが、取り扱いやすいサイズとして、例えば、縦70mm×横40mm×厚さ1mm程度のサイズが好ましい。細胞融合容器の上部電極と下部電極には導電線(3)を介して電源(4)が接続されている。電源(4)は交流電圧を上部電極と下部電極の電極間に印加する交流電源(5)と、細胞融合させるための直流パルス電圧を上部電極と下部電極の電極間に印加する直流パルス電源(6)から構成されており、交流電源と直流パルス電源は、電源切替え機構(7)により適宜切替えて使用することができる。   There are no particular limitations on the dimensions of the upper electrode and the lower electrode, but a size that is easy to handle is preferably, for example, a size of about 70 mm long × 40 mm wide × 1 mm thick. A power source (4) is connected to the upper electrode and the lower electrode of the cell fusion container via a conductive wire (3). The power source (4) includes an AC power source (5) for applying an AC voltage between the upper electrode and the lower electrode, and a DC pulse power source for applying a DC pulse voltage for cell fusion between the upper electrode and the lower electrode ( 6), and the AC power source and the DC pulse power source can be used by appropriately switching them by the power source switching mechanism (7).

スペーサーは、上部電極と下部電極が直接接触しないように設けられ、かつ細胞融合容器に細胞融合液を入れておくスペースを確保するための細胞融合領域を形成する貫通孔を有しているものであり、その材質は絶縁材料であればよく、例えばガラス、セラミック、樹脂等が挙げられる。またスペーサーには、細胞融合容器に細胞を導入、排出するため、細胞を導入する導入流路(29)及びそれに連通する導入口(19)と、細胞を排出する排出流路(30)及びそれに連通する排出口(20)が設けられている。   The spacer is provided so that the upper electrode and the lower electrode are not in direct contact with each other, and has a through hole that forms a cell fusion region for securing a space for storing the cell fusion solution in the cell fusion container. The material may be an insulating material, and examples thereof include glass, ceramic, resin, and the like. In addition, the spacer includes an introduction channel (29) for introducing cells and an introduction port (19) communicating therewith, a discharge channel (30) for discharging cells, and a cell for introducing and discharging cells to and from the cell fusion container. A communicating outlet (20) is provided.

図4に示す細胞融合容器の導入口には、細胞融合液導入流路(2)を介して細胞融合液導入切替え手段(17)が接続され、細胞融合液導入切替え手段に、シリンジA(34)、シリンジB(35)、シリンジC(36)、シリンジD(37)、シリンジE(38)が接続されている。細胞融合液導入切替え手段は、シリンジA、シリンジB、シリンジCのうちどれか一つのシリンジを選んで、シリンジを細胞融合液導入流路に接続することができればよく、一般的なバルブ(21)で構成されている。バルブは図4に示すようにそれぞれのシリンジ毎に取り付けても良い。図4示す例では、例えばシリンジAに第1の細胞が入った細胞融合液、シリンジBに第2の細胞が入った細胞融合液、シリンジCに細胞融合処理液が入った細胞融合液を入れることができる。このような構成にすることで、3以上の細胞融合液を切替えて導入することが可能となり、細胞融合液導入切替え手段を用いて細胞融合処理液が入った細胞融合液を導入する時期を、第2の細胞の導入前、細胞融合の前および細胞融合の後、の少なくとも一の時期とすることが可能となる。なお、どれか一つのシリンジを選んでシリンジを細胞融合液導入流路に接続することができればシリンジの数に特に制限はなく、使用する細胞の数、細胞融合処理液が入った細胞融合液の数に応じて適宜設置すればよい。   The cell fusion liquid introduction switching means (17) is connected to the introduction port of the cell fusion container shown in FIG. 4 via the cell fusion liquid introduction flow path (2), and the syringe A (34) is connected to the cell fusion liquid introduction switching means. ), Syringe B (35), syringe C (36), syringe D (37), and syringe E (38). The cell fusion solution introduction switching means only needs to select one of syringe A, syringe B, and syringe C and connect the syringe to the cell fusion solution introduction channel. It consists of A valve may be attached to each syringe as shown in FIG. In the example shown in FIG. 4, for example, a cell fusion solution containing the first cells in syringe A, a cell fusion solution containing the second cells in syringe B, and a cell fusion solution containing the cell fusion treatment solution in syringe C are added. be able to. With such a configuration, it becomes possible to switch and introduce three or more cell fusion solutions, and when the cell fusion solution containing the cell fusion treatment solution is introduced using the cell fusion solution introduction switching means, At least one period of time before introduction of the second cell, before cell fusion, and after cell fusion can be achieved. The number of syringes is not particularly limited as long as one of the syringes can be selected and the syringe can be connected to the cell fusion solution introduction flow path. The number of cells to be used and the cell fusion solution containing the cell fusion treatment solution are not limited. What is necessary is just to install suitably according to a number.

細胞融合させる2種の細胞としては、例えばモノクローナル抗体を製造するために用いられる抗体産生細胞とミエローマ細胞との組合せなどであれば良い。   As two types of cells to be fused, for example, a combination of antibody-producing cells and myeloma cells used for producing a monoclonal antibody may be used.

絶縁体(8)には微細孔(9)が形成されている。絶縁体(8)の材質は、例えばガラス、セラミック、樹脂等の絶縁材料であれば特に制限はないが、貫通した微細孔を形成させる必要があることから、樹脂等の比較的加工が容易な材料が好ましい。樹脂に貫通した微細孔を形成する手段としては、形成する微細孔の位置にレーザーを照射する方法や、微細孔の位置に貫通孔を形成するためのピンを有する金型を用いて成形する方法などの既知の方法を用いればよい。また、絶縁体にUV硬化性樹脂などを用いる場合は、微細孔に相当するパターンを描画した露光用フォトマスクを用いて一般的なフォトリソグラフィー(露光)とエッチング(現像)により貫通した微細孔を形成することができる。絶縁体に複数の微細孔を形成する場合は、絶縁体にUV硬化性樹脂を用いて、一般的なフォトリソグラフィーとエッチングによる方法で微細孔を形成することが好ましい。   A fine hole (9) is formed in the insulator (8). The material of the insulator (8) is not particularly limited as long as it is an insulating material such as glass, ceramic, resin, etc. However, since it is necessary to form through holes, it is relatively easy to process the resin or the like. Material is preferred. As a means for forming fine holes penetrating the resin, a method of irradiating a laser at the position of the fine hole to be formed, or a method of molding using a mold having a pin for forming the through hole at the position of the fine hole A known method such as the above may be used. In addition, when UV curable resin or the like is used for the insulator, a fine hole penetrating through general photolithography (exposure) and etching (development) using an exposure photomask on which a pattern corresponding to the fine hole is drawn is formed. Can be formed. When forming a plurality of fine holes in the insulator, it is preferable to form the fine holes by a general photolithography and etching method using a UV curable resin for the insulator.

微細孔の形状や大きさには特に制限はないが、本発明の細胞融合装置を用いた場合、1つの微細孔に1つの細胞を固定した方がより高い融合再生確率を得ることが可能となることから、微細孔の平面形状に内接する最大円の直径が、微細孔に固定する細胞の直径(細胞により異なるが、1μm〜数十μm程度)より小さいか、もしくは、細胞の直径の1〜2倍程度の範囲でありかつ微細孔の深さが微細孔に固定する細胞の直径の以下であることが好ましい。この理由を図を用いてさらに詳しく説明する。   The shape and size of the micropores are not particularly limited, but when the cell fusion device of the present invention is used, it is possible to obtain a higher fusion regeneration probability by fixing one cell in one micropore. Therefore, the diameter of the maximum circle inscribed in the planar shape of the micropore is smaller than the diameter of the cell fixed to the micropore (depending on the cell, about 1 μm to several tens of μm), or 1 of the cell diameter. It is preferable that it is in the range of about ˜2 times and the depth of the micropore is not more than the diameter of the cell fixed in the micropore. The reason for this will be described in more detail with reference to the drawings.

図6に示すように、微細孔の平面形状に内接する最大円の直径が、微細孔に固定する2つの細胞の直径より大きい場合は、微細孔に第1の細胞及び第2の細胞が複数入ってしまい、第1の細胞と第2の細胞の1対1での細胞融合ができなくなり、融合再生確率が低くなってしまう。しかしながら、図7に示すように、微細孔の平面形状に内接する最大円の直径が、微細孔に固定する2つの細胞の直径より小さい場合は、第1の細胞と第2の細胞の1対1での細胞融合が可能であり、融合再生確率が高くなる。また、図8に示すように、微細孔の平面形状に内接する最大円の直径が第1の細胞より1〜2倍程度大きくかつ微細孔の深さが微細孔に固定した第1の細胞の直径より大きい場合は第2の細胞が微細孔に固定された第1の細胞と接触することができずに細胞融合させることができない。しかしながら、図9に示すように、微細孔の平面形状に内接する最大円の直径が第1の細胞より1〜2倍程度大きくかつ微細孔の深さが微細孔に固定した第1の細胞の直径の以下である場合は1つの第2の細胞と微細孔に固定された1つの第1の細胞が確実に接触するので高い融合再生確率を得ることができる。   As shown in FIG. 6, when the diameter of the largest circle inscribed in the planar shape of the micropore is larger than the diameter of two cells fixed to the micropore, a plurality of first cells and second cells are contained in the micropore. It becomes impossible to perform cell fusion in a one-to-one relationship between the first cell and the second cell, and the fusion regeneration probability is lowered. However, as shown in FIG. 7, when the diameter of the maximum circle inscribed in the planar shape of the micropore is smaller than the diameter of the two cells fixed in the micropore, a pair of the first cell and the second cell 1 cell fusion is possible and the fusion regeneration probability is high. Moreover, as shown in FIG. 8, the diameter of the largest circle inscribed in the planar shape of the micropore is about 1 to 2 times larger than that of the first cell, and the depth of the micropore is fixed to the micropore. If it is larger than the diameter, the second cell cannot contact the first cell fixed in the micropore and cannot be fused. However, as shown in FIG. 9, the diameter of the maximum circle inscribed in the planar shape of the micropore is about 1 to 2 times larger than that of the first cell, and the depth of the micropore is fixed to the micropore. When the diameter is less than or equal to the diameter, one second cell and one first cell fixed in the micropore are surely in contact with each other, so that a high fusion regeneration probability can be obtained.

また、さらに好ましい態様としては、第2の細胞の直径が第1の細胞の直径より大きいことが好ましく、細胞を導入する際は直径の小さい細胞を第1の細胞として最初に導入し、直径の大きい細胞を第2の細胞として次に導入することが好ましく、この場合、微細孔の直径は、第2の細胞の直径よりも小さくかつ、第1の細胞の直径よりも大きいことが好ましい。この理由を以下に述べる。   In a more preferred embodiment, the diameter of the second cell is preferably larger than the diameter of the first cell. When introducing a cell, a cell having a smaller diameter is first introduced as the first cell, Large cells are then preferably introduced as second cells, in which case the micropore diameter is preferably smaller than the diameter of the second cell and larger than the diameter of the first cell. The reason for this will be described below.

微細孔では電気力線の集中が生じるため、微細孔付近の電界強度は、図10に示すように微細孔内の電極面の電界強度が最も高く、絶縁膜面からもう一方の電極に向けて次第に電界強度が弱くなる。図10は、一方の電極に任意の膜厚の絶縁膜に任意の直径と深さを有する微細孔を1個配置し、電極間に任意の電圧を印加した場合の電界強度を有限要素法を用いて計算した。縦軸が電界強度を最大の電界強度で正規化した値であり、横軸は電極間の位置である。横軸の原点に絶縁膜を配置した電極が存在している。絶縁膜面は図中の点線で示した位置に相当し、横軸の原点から点線までの範囲が絶縁膜厚に相当する。計算によれば、絶縁膜の材質や厚み、微細孔の大きさや深さにあまり大きく依存せず、図10に示すように微細孔内の電極面の電界強度は、絶縁膜面の電界強度より約20%程度高い結果となる。   Since electric field lines are concentrated in the fine holes, the electric field strength in the vicinity of the fine holes is the highest on the electrode surface in the fine holes as shown in FIG. 10, and is directed from the insulating film surface to the other electrode. The electric field strength gradually decreases. FIG. 10 shows a finite element method for calculating the electric field strength when an arbitrary voltage is applied between electrodes by arranging one fine hole having an arbitrary diameter and depth in an insulating film of an arbitrary film thickness on one electrode. Used to calculate. The vertical axis is the value obtained by normalizing the electric field intensity with the maximum electric field intensity, and the horizontal axis is the position between the electrodes. There is an electrode in which an insulating film is arranged at the origin of the horizontal axis. The insulating film surface corresponds to the position indicated by the dotted line in the figure, and the range from the origin of the horizontal axis to the dotted line corresponds to the insulating film thickness. According to the calculation, the electric field strength of the electrode surface in the microhole is less than the electric field strength of the insulating film surface as shown in FIG. 10 without much depending on the material and thickness of the insulating film and the size and depth of the microhole. The result is about 20% higher.

一般に電気的細胞融合法は、前述したように、細胞融合させるための直流パルス電圧を印加することで細胞膜の電気伝導度が瞬間的に低下し、脂質二重層から構成される細胞膜の可逆的乱れとその再構成が行われることで細胞融合させる。ここで、一般に細胞の直径が小さいほど細胞膜の可逆的乱れを生じさせる直流パルス電圧は高くなる。従って、直径の小さい細胞を第1の細胞として微細孔に入れ、直径の大きい細胞を第2の細胞として微細孔に固定された第1の細胞の上から固定すれば、印加する直流パルス電圧は同じでも、図10に示すように、微細孔内の電界強度が微細孔表面の電界強度より高いために、微細孔内に固定された直径の小さい第1の細胞には、より高い電圧が印加され、微細孔表面に固定された直径の大きい第2の細胞には第1の細胞に印加される電圧よりも20%程度低い電圧が印加される。このようにすることで、直径の異なる細胞を細胞融合させる場合の細胞膜の可逆的乱れを生じさせる電圧の違いをある程度キャンセルすることが可能となる。   In general, as described above, in the electric cell fusion method, by applying a DC pulse voltage for cell fusion, the electric conductivity of the cell membrane is instantaneously reduced, and the reversible disturbance of the cell membrane composed of lipid bilayers. And the cell is fused by reconfiguration. Here, in general, the smaller the cell diameter, the higher the DC pulse voltage that causes reversible disturbance of the cell membrane. Therefore, if a cell having a small diameter is put in the micropore as a first cell and a cell having a large diameter is fixed as a second cell from above the first cell fixed in the micropore, the DC pulse voltage to be applied is Even in the same case, as shown in FIG. 10, since the electric field strength in the micropore is higher than the electric field strength on the surface of the micropore, a higher voltage is applied to the first cell having a small diameter fixed in the micropore. Then, a voltage about 20% lower than the voltage applied to the first cell is applied to the second cell having a large diameter fixed to the surface of the micropore. By doing so, it becomes possible to cancel to some extent the voltage difference that causes reversible disturbance of the cell membrane when cells of different diameters are fused.

以上のように本発明の細胞融合装置を用いた細胞融合方法は、第1の細胞の直径が第2の細胞の直径よりも小さいことが好ましく、さらには、微細孔の直径が、細胞融合させる直径の異なる2細胞のうち、直径の大きい細胞の直径以下、直径の小さい細胞の直径以上であることが好ましい。このようにすることで、微細孔より直径の小さい細胞を微細孔に確実に固定することが可能となり、その後、微細孔より直径の大きい細胞を導入することで、2細胞一対での接触および細胞融合を効率的に行うことが可能となる。しかしながら、本質的には第1の細胞の直径が第2の細胞の直径と等しいか大きくてもよい。   As described above, in the cell fusion method using the cell fusion device of the present invention, it is preferable that the diameter of the first cell is smaller than the diameter of the second cell, and further, the diameter of the micropore is cell-fused. Of the two cells having different diameters, the diameter is preferably equal to or smaller than the diameter of the large diameter cell and equal to or larger than the diameter of the small diameter cell. By doing so, it becomes possible to securely fix cells having a diameter smaller than the micropores to the micropores, and then introduce cells having a diameter larger than the micropores, thereby making contact and cells in pairs of two cells. It becomes possible to perform fusion efficiently. However, in essence, the diameter of the first cell may be equal to or greater than the diameter of the second cell.

また、本発明の細胞融合方法は、第1の細胞と第2の細胞が微細孔表面の近傍で細胞融合することが好ましいが、本質的には微細孔の中で第1の細胞と第2の細胞を細胞融合してもよく、発明の要旨を逸脱しない範囲で、任意に変更が可能である。   In the cell fusion method of the present invention, the first cell and the second cell are preferably fused in the vicinity of the surface of the micropore. Essentially, the first cell and the second cell are in the micropore. These cells may be cell-fused, and can be arbitrarily changed without departing from the gist of the invention.

また後述するように、微細孔に固定した第1の細胞と第2の細胞の接触確率を上げるため、第2の細胞の数を第1の細胞の数より多くし細胞融合領域に過剰に導入した場合でも、図10に示すように、電界強度は微細孔近傍で最も高く、微細孔から離れるに従って弱くなっていくため、直流パルス電圧を適切に調整することで、微細孔近傍で接触した第1の細胞と第2の細胞のみの細胞膜が可逆的乱れを生じ細胞融合する。従って、微細孔近傍で接触した第1の細胞と第2の細胞のみを選択的に細胞融合させることが可能となる。   Also, as will be described later, in order to increase the contact probability between the first cells fixed in the micropores and the second cells, the number of the second cells is made larger than the number of the first cells and excessively introduced into the cell fusion region. Even in this case, as shown in FIG. 10, the electric field strength is the highest in the vicinity of the fine hole, and becomes weaker as the distance from the fine hole becomes smaller. The cell membranes of only one cell and the second cell cause reversible disturbance and cell fusion. Therefore, it is possible to selectively fuse only the first cell and the second cell that are in contact with each other in the vicinity of the micropore.

本発明の細胞融合装置は、1つの微細孔に1つの細胞を固定した方がより高い融合再生確率を得ることが可能となることから、前記した絶縁体に形成される複数の微細孔が、絶縁体の面において、いずれの微細孔からも隣合う微細孔の位置が同じ位置に形成されていること、すなわち図4に示すように、複数の微細孔が絶縁体の面においてアレイ状に形成されていることが好ましい。ここでアレイ状とは、微細孔の縦と横の間隔がほぼ等間隔に配置されていることを意味する。微細孔をアレイ状に配置することで、電極間に印加した電圧によって生じる電界がすべての微細孔にほぼ均等に生じるため、微細孔に細胞が固定される確率も各微細孔で等しくなり、1つの微細孔に1つの細胞を固定できる確率が高くなる。   Since the cell fusion device of the present invention can obtain a higher fusion regeneration probability by fixing one cell in one micropore, the plurality of micropores formed in the insulator described above, On the surface of the insulator, the positions of the adjacent micro holes from any one of the micro holes are formed at the same position, that is, as shown in FIG. 4, a plurality of micro holes are formed in an array on the surface of the insulator. It is preferable that Here, the array shape means that the vertical and horizontal intervals of the fine holes are arranged at substantially equal intervals. By arranging the micropores in an array, the electric field generated by the voltage applied between the electrodes is generated almost uniformly in all the micropores, so that the probability that the cells are fixed in the micropores is the same in each micropore. The probability that one cell can be fixed in one micropore increases.

また、1つの微細孔に1つの細胞を固定するためには、アレイ状に形成した微細孔の間隔が狭すぎても広すぎても不適当となることがある。微細孔の間隔が狭すぎる場合は、1つの微細孔に複数の細胞が固定される確率が高くなり結果として細胞の入らない微細孔が生じる確率が高くなることがある。また、微細孔の間隔が広すぎる場合には、微細孔と微細孔の間に細胞が残されてしまい、細胞の入らない微細孔が生じる確率が高くなることがある。従ってより具体的には、微細孔の隣合う間隔が、微細孔に固定する細胞の直径の0.5〜6倍の範囲であることが好ましく、さらには微細孔の間隔が固定する細胞の直径の1〜2倍程度であることがより好ましい。   In addition, in order to fix one cell in one micropore, it may be inappropriate if the interval between micropores formed in an array is too narrow or too wide. When the interval between the micropores is too narrow, there is a high probability that a plurality of cells are fixed in one micropore, and as a result, there is a high probability that micropores that do not contain cells are generated. Moreover, when the space | interval of a micropore is too wide, a cell will remain between a micropore and a micropore which a cell does not enter may become high. Therefore, more specifically, it is preferable that the interval between adjacent micropores is in the range of 0.5 to 6 times the diameter of the cells fixed in the micropores, and further the cell diameter in which the interval between the micropores is fixed. More preferably, it is about 1 to 2 times.

本発明における微細孔の形状は、円状に限定されるものではなく、三角状や四角状などの多角状であっても良い。三角状や四角状などの多角状の場合は角の部分で電気力線の集中の度合いが強められるため、誘電泳動力は円状の微細孔より強くなり細胞が微細孔に固定される確率が高くなるというメリットがある。ただし、微細孔をアレイ状に配置した場合は、前後左右の微細孔からの誘電泳動力が等しく作用する方が、1つに微細孔に1つの細胞を固定できる確率が高くなるので、微細孔の形状は点対称であることが好ましく、さらには正方形であることがより好ましい。 図5は、図4の細胞融合容器のXX’断面図を示した概略図である。上部電極(14)、スペーサー(16)、絶縁体(8)、下部電極(15)を図5のように貼り合わせる手段としては、それぞれを接着剤で貼り合わせたり、加圧した状態で過熱して融着させる方法や、スペーサーを表面粘着性のあるPDMS(poly−dimethylsiloxane)やシリコンシートのような樹脂を用いて作製することで圧着することにより貼り合わせる方法など、既知の方法を用いればよい。このようにすることで図5に示した細胞融合領域(1)を形成することができる。   The shape of the micropore in the present invention is not limited to a circular shape, and may be a polygonal shape such as a triangular shape or a square shape. In the case of a polygon such as a triangle or a quadrangle, the concentration of the electric field lines is increased at the corners, so the dielectrophoretic force is stronger than the circular micropores, and the probability that the cells are fixed in the micropores is increased. There is a merit that it becomes higher. However, when the micropores are arranged in an array, the probability that one cell can be fixed to each micropore is higher when the dielectrophoretic force from the front, rear, left and right micropores acts equally. The shape of is preferably point-symmetric and more preferably square. FIG. 5 is a schematic view showing an XX ′ cross-sectional view of the cell fusion container of FIG. 4. As a means for bonding the upper electrode (14), the spacer (16), the insulator (8), and the lower electrode (15) as shown in FIG. For example, a known method may be used, such as a method in which the spacers are fused together or a method in which the spacers are bonded using pressure-sensitive adhesives made by using a resin such as PDMS (poly-dimethylsiloxane) having surface adhesiveness or a silicon sheet. . In this way, the cell fusion region (1) shown in FIG. 5 can be formed.

第2の細胞を入れるときは、微細孔に入った第1の細胞よりも微細孔に固定されにくくなるので、第1の細胞の数よりも第2の細胞の数を多く入れることで、第1の細胞と第2の細胞を確実に接触させることができる。ここで、第1の細胞の数が微細孔の数より多いと微細孔に固定されない細胞が存在し結果として細胞融合に関与する細胞の割合が少なくなるので、第1の細胞の数は微細孔の数と同数かそれ以下が好ましい。第2の細胞の数が第1の細胞の数より少ないと、第2の細胞と接触できない第1の細胞が存在し結果として細胞融合する2細胞1組の組み合わせが少なくなることがある。一方、第2の細胞の数があまり多すぎると、現実的に細胞を導入できなくなることがあることから、第2の細胞の数は第1の細胞数と同数〜4倍程度の数が好ましい。   When putting the second cell, it becomes harder to be fixed to the micropore than the first cell entering the micropore, so by adding a larger number of the second cells than the number of the first cells, One cell and the second cell can be reliably brought into contact with each other. Here, when the number of the first cells is larger than the number of the micropores, there are cells that are not fixed in the micropores, and as a result, the ratio of the cells involved in the cell fusion decreases. The number is preferably equal to or less than the number of. If the number of the second cells is smaller than the number of the first cells, there may be a first cell that cannot be contacted with the second cell, and as a result, the combination of one set of two cells for cell fusion may be reduced. On the other hand, if the number of the second cells is too large, it may be impossible to introduce cells practically. Therefore, the number of the second cells is preferably about the same number to four times as the number of the first cells. .

本発明の細胞融合装置に用いる交流電源は、例えば、ピーク電圧が1V〜20V程度、周波数100kHz〜3MHz程度の正弦波、矩形波、三角波、台形波等の交流電圧を出力できる交流電源であれば特に制限はなく、また直流パルス電源は、50V〜1000V、パルス幅10μsec〜50μsec程度の直流パルス電圧を出力できる直流パルス電源であれば特に制限は無い。   The AC power supply used in the cell fusion device of the present invention is, for example, an AC power supply that can output an AC voltage such as a sine wave, a rectangular wave, a triangular wave, or a trapezoidal wave having a peak voltage of about 1 V to 20 V and a frequency of about 100 kHz to 3 MHz. There is no particular limitation, and the DC pulse power supply is not particularly limited as long as it is a DC pulse power supply that can output a DC pulse voltage of about 50 V to 1000 V and a pulse width of about 10 μsec to 50 μsec.

本発明の細胞融合装置を用いた場合、1つの微細孔に1つの細胞を固定した方がより高い融合再生確率を得ることが可能となるが、1つの微細孔につき1つの細胞を固定するための交流電圧の波形としては、矩形波であることが好ましい。その理由として、図12〜図15に示すように、交流電圧の波形が正弦波(図12)、三角波(図13)、台形波(図14)に比べて、矩形波(図15)は瞬時に設定したピーク電圧(31)に到達するため、細胞が微細孔に速やかに動くため、細胞が重なって微細孔に入る確率が低くなり、従って、1つの微細孔につき1つの細胞を固定する確率が高くなる。また、細胞は電気的にコンデンサーと見なすことができ、矩形波のピーク電圧が変化しない間は、微細孔に入った細胞には電流が流れにくくなるため、電気力線が生じにくく、細胞の入った微細孔には誘電泳動力が発生しにくくなるため、一度微細孔に細胞が入ると、別の細胞がその微細孔に入る確率が低くなり、電気力線が生じ誘電泳動力が発生している空の微細孔に、順次、細胞が入っていくためである。   When the cell fusion device of the present invention is used, it is possible to obtain a higher fusion regeneration probability when one cell is fixed in one micropore, but one cell is fixed per one micropore. The waveform of the AC voltage is preferably a rectangular wave. The reason for this is that, as shown in FIGS. 12 to 15, the waveform of the alternating voltage is instantaneous compared to the sine wave (FIG. 12), the triangular wave (FIG. 13), and the trapezoidal wave (FIG. 14). Since the cell quickly moves into the micropores because the peak voltage (31) set in is reached, the probability that the cells overlap and enter the micropores is low, and thus the probability of fixing one cell per micropore Becomes higher. In addition, cells can be regarded as capacitors electrically, and while the peak voltage of the rectangular wave does not change, it is difficult for current to flow into the cells that have entered the micropores. Since the dielectrophoretic force is less likely to be generated in the micropores, once a cell enters the micropore, the probability that another cell enters the micropore is reduced, and electric lines of force are generated to generate dielectrophoretic force. This is because cells sequentially enter the empty micropores.

本発明の細胞融合装置に用いる交流電圧の波形は、直流成分を有しないことが好ましい。これは、直流成分により発生した静電気力により細胞が特定の方向に偏った力を受けて移動するため誘電泳動力により細胞を微細孔に固定することが困難になること、また細胞を含有する懸濁液に含まれるイオンが電極表面で電気反応を生じて発熱が起こり、それにより細胞が熱運動を起こすため、誘電泳動力により細胞の動きを制御することができなくなり細胞を微細孔に引き寄せることが困難となるためである。   The waveform of the AC voltage used in the cell fusion device of the present invention preferably has no DC component. This is because the cells move by receiving a biased force in a specific direction due to the electrostatic force generated by the DC component, and it becomes difficult to fix the cells in the micropores due to the dielectrophoretic force. Ions contained in the suspension cause an electrical reaction on the electrode surface, generating heat, causing the cells to undergo thermal motion, and the cell movement cannot be controlled by the dielectrophoretic force, attracting the cells to the micropores. This is because it becomes difficult.

次に、本発明の細胞融合方法について説明する。   Next, the cell fusion method of the present invention will be described.

本発明の細胞融合方法は、前記細胞融合装置を用いた細胞融合方法であって、前記細胞融合液導入切替え手段を用いて、前記細胞融合領域に第1の細胞が入った細胞融合液を導入し、前記交流電圧を印加することで前記微細孔内に前記第1の細胞を固定した後、前記細胞融合領域に第2の細胞が入った細胞融合液を導入して、前記交流電圧を印加することで前記第1の細胞に前記第2の細胞を前記微細孔の位置において接触させ、前記電源切替え機構を用いて、前記直流パルス電圧を印加して細胞融合する細胞融合方法であって、細胞融合液導入切替え手段を用いて細胞融合処理液が入った細胞融合液を導入する時期を、第2の細胞の導入前、細胞融合の前および細胞融合の後、の少なくとも一の時期とする細胞融合方法である。また本発明の細胞融合方法は、前記細胞融合処理液が入った細胞融合液が2以上であって、前記2以上の細胞融合処理液が入った細胞融合液が全て同じまたは一部異なるまたは全て異なる、のいずれかの細胞融合処理液が入った細胞融合液であっても良い。   The cell fusion method of the present invention is a cell fusion method using the cell fusion device, wherein the cell fusion solution containing the first cell is introduced into the cell fusion region using the cell fusion solution introduction switching means. Then, after the first cell is fixed in the micropore by applying the AC voltage, a cell fusion solution containing the second cell is introduced into the cell fusion region, and the AC voltage is applied. A cell fusion method in which the second cell is brought into contact with the first cell at the position of the micropore, and the cell switching is performed by applying the DC pulse voltage using the power supply switching mechanism, The time when the cell fusion solution containing the cell fusion treatment solution is introduced using the cell fusion solution introduction switching means is at least one time before the introduction of the second cell, before the cell fusion, and after the cell fusion. Cell fusion method. In the cell fusion method of the present invention, the cell fusion solution containing the cell fusion treatment solution is 2 or more, and the cell fusion solutions containing the two or more cell fusion treatment solutions are all the same or partially different or all It may be a cell fusion solution containing any one of the different cell fusion treatment solutions.

このような細胞融合方法により、細胞融合させるべきそれぞれの細胞を目的に応じた成分の溶液に懸濁した状態で順次導入し2細胞一対の細胞融合を行い、さらには、それぞれの細胞を導入する前後あるいは細胞融合の前後で、細胞融合に必要な成分を導入したり、細胞融合に不要な成分を除去するための細胞融合処理液の入った細胞融合液を導入することはじめて可能となる。またそれぞれの細胞は、交流電圧により微細孔部に固定されるため、細胞融合液の置換を行うことが可能であり、また細胞融合液の置換に伴う細胞の損失も極めて低く抑えることが、はじめて可能になる。   By such a cell fusion method, each cell to be fused is sequentially introduced in a state of being suspended in a component solution according to the purpose to perform a two-cell paired cell fusion, and further each cell is introduced. It becomes possible for the first time to introduce a cell fusion solution containing a cell fusion treatment solution for removing components unnecessary for cell fusion or before or after cell fusion. In addition, since each cell is fixed to the micropores by an alternating voltage, it is possible to replace the cell fusion solution, and it is also possible for the first time to suppress the loss of cells accompanying the replacement of the cell fusion solution to an extremely low level. It becomes possible.

本発明の発明者らが、特願2006−160744として出願した細胞融合方法は、以下の(1)のプロセスである。また、本発明を実施する際の、具体的な細胞融合液や細胞融合液の導入および融合電圧印加の順序については、例えば以下の(2)から(8)のプロセスが挙げられる。本発明では、(2)〜(8)のプロセスの例にのみ限定されるものではなく、発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでも無い。また、第1の細胞融合液と第2の細胞融合液の成分は同じ成分であってもよいし異なる成分であってもよい。   The cell fusion method filed by the inventors of the present invention as Japanese Patent Application No. 2006-160744 is the following process (1). Moreover, as for the specific order of introduction of the cell fusion solution or cell fusion solution and application of the fusion voltage when carrying out the present invention, for example, the following processes (2) to (8) may be mentioned. Needless to say, the present invention is not limited to the process examples (2) to (8), and can be arbitrarily changed without departing from the gist of the invention. Further, the components of the first cell fusion solution and the second cell fusion solution may be the same component or different components.

プロセス(1):第1の細胞融合液に懸濁した第1の細胞を細胞融合領域に導入し、続いて第2の細胞融合液に懸濁した第2の細胞を細胞融合領域に導入し、微細孔にて2細胞一対で接触させた後、融合電圧を印加して細胞融合する。   Process (1): The first cells suspended in the first cell fusion solution are introduced into the cell fusion region, and then the second cells suspended in the second cell fusion solution are introduced into the cell fusion region. Then, after making two cells contact with each other through the micropores, a fusion voltage is applied to fuse the cells.

プロセス(2):第1の細胞融合液に懸濁した第1の細胞を細胞融合領域に導入し、続いて第2の細胞融合液に懸濁した第2の細胞を細胞融合領域に導入し、微細孔にて2細胞一対で接触させた後、特定の成分を含む細胞融合処理液の入った細胞融合液を細胞融合領域に導入することで細胞融合液を置換し、融合電圧を印加して細胞融合する。   Process (2): The first cell suspended in the first cell fusion solution is introduced into the cell fusion region, and then the second cell suspended in the second cell fusion solution is introduced into the cell fusion region. After contacting two cells in a micropore, a cell fusion solution containing a cell fusion treatment solution containing a specific component is introduced into the cell fusion region to replace the cell fusion solution, and a fusion voltage is applied. Cell fusion.

プロセス(3):第1の細胞融合液に懸濁した第1の細胞を細胞融合領域に導入し、特定の成分を含む細胞融合処理液の入った細胞融合液を細胞融合領域に導入することで細胞融合液を置換してから、続いて第2の細胞融合液に懸濁した第2の細胞を細胞融合領域に導入し、微細孔にて2細胞一対で接触させた後、融合電圧を印加して細胞融合する。   Process (3): introducing the first cell suspended in the first cell fusion solution into the cell fusion region, and introducing the cell fusion solution containing the cell fusion treatment solution containing a specific component into the cell fusion region. After replacing the cell fusion solution in step 2, the second cells suspended in the second cell fusion solution are introduced into the cell fusion region and contacted by a pair of two cells through the micropores. Apply to fuse cells.

プロセス(4):第1の細胞融合液に懸濁した第1の細胞を細胞融合領域に導入し、特定の成分を含む細胞融合処理液の入った細胞融合液を細胞融合領域に導入することで細胞融合液を置換し、続いて第2の細胞融合液に懸濁した第2の細胞を細胞融合領域に導入し、微細孔にて2細胞一対で接触させた後、再び特定の成分を含む細胞融合処理液の入った細胞融合液を細胞融合領域に導入することで細胞融合液を置換し、融合電圧を印加して細胞融合する。   Process (4): introducing the first cell suspended in the first cell fusion solution into the cell fusion region, and introducing the cell fusion solution containing the cell fusion treatment solution containing a specific component into the cell fusion region. Then, the cell fusion solution is replaced with, and then the second cells suspended in the second cell fusion solution are introduced into the cell fusion region and contacted by a pair of two cells through the micropores. The cell fusion solution containing the cell fusion treatment solution is introduced into the cell fusion region to replace the cell fusion solution, and a cell is fused by applying a fusion voltage.

プロセス(5):第1の細胞融合液に懸濁した第1の細胞を細胞融合領域に導入し、続いて第2の細胞融合液に懸濁した第2の細胞を細胞融合領域に導入し、微細孔にて2細胞一対で接触させて融合電圧を印加し細胞融合した後、特定の成分を含む細胞融合処理液の入った細胞融合液を細胞融合領域に導入することで細胞融合液を置換する。   Process (5): The first cells suspended in the first cell fusion solution are introduced into the cell fusion region, and then the second cells suspended in the second cell fusion solution are introduced into the cell fusion region. The cell fusion solution is introduced by introducing a cell fusion solution containing a cell fusion treatment solution containing a specific component into the cell fusion region after bringing the cell fusion into contact with a pair of two cells through a micropore and applying a fusion voltage. Replace.

プロセス(6):第1の細胞融合液に懸濁した第1の細胞を細胞融合領域に導入し、続いて第2の細胞融合液に懸濁した第2の細胞を細胞融合領域に導入し、微細孔にて2細胞一対で接触させた後、特定の成分を含む細胞融合処理液の入った細胞融合液を細胞融合領域に導入することで細胞融合液を置換し、融合電圧を印加して細胞融合し、その後、特定の成分を含む細胞融合処理液の入った細胞融合液を細胞融合領域に導入することで細胞融合液を置換する。   Process (6): The first cell suspended in the first cell fusion solution is introduced into the cell fusion region, and then the second cell suspended in the second cell fusion solution is introduced into the cell fusion region. After contacting two cells in a micropore, a cell fusion solution containing a cell fusion treatment solution containing a specific component is introduced into the cell fusion region to replace the cell fusion solution, and a fusion voltage is applied. The cell fusion solution is replaced by introducing a cell fusion solution containing a cell fusion treatment solution containing a specific component into the cell fusion region.

プロセス(7):第1の細胞融合液に懸濁した第1の細胞を細胞融合領域に導入し、特定の成分を含む細胞融合処理液の入った細胞融合液を細胞融合領域に導入することで細胞融合液を置換してから、続いて第2の細胞融合液に懸濁した第2の細胞を細胞融合領域に導入し、微細孔にて2細胞一対で接触させた後、融合電圧を印加し細胞融合し、その後、特定の成分を含む細胞融合処理液の入った細胞融合液を細胞融合領域に導入することで細胞融合液を置換する。   Process (7): introducing the first cell suspended in the first cell fusion solution into the cell fusion region, and introducing the cell fusion solution containing the cell fusion treatment solution containing a specific component into the cell fusion region. After replacing the cell fusion solution in step 2, the second cells suspended in the second cell fusion solution are introduced into the cell fusion region and contacted by a pair of two cells through the micropores. The cell fusion solution is replaced by introducing a cell fusion solution containing a cell fusion treatment solution containing a specific component into the cell fusion region.

プロセス(8):第1の細胞融合液に懸濁した第1の細胞を細胞融合領域に導入し、特定の成分を含む細胞融合処理液の入った細胞融合液を細胞融合領域に導入することで細胞融合液を置換してから、続いて第2の細胞融合液に懸濁した第2の細胞を細胞融合領域に導入し、微細孔にて2細胞一対で接触させた後、再び特定の成分を含む細胞融合処理液の入った細胞融合液を細胞融合領域に導入することで細胞融合液を置換してから、融合電圧を印加し細胞融合し、再び特定の成分を含む細胞融合処理液の入った細胞融合液を細胞融合領域に導入することで細胞融合液を置換する。   Process (8): Introducing the first cell suspended in the first cell fusion solution into the cell fusion region, and introducing the cell fusion solution containing the cell fusion treatment solution containing a specific component into the cell fusion region. After the cell fusion solution is replaced with the above, the second cells suspended in the second cell fusion solution are introduced into the cell fusion region, brought into contact with a pair of two cells through the micropores, and then again identified. A cell fusion solution containing a component-containing cell fusion treatment solution is introduced into the cell fusion region to replace the cell fusion solution, and then a cell fusion is performed by applying a fusion voltage, and then a cell fusion treatment solution containing a specific component again. The cell fusion solution is replaced by introducing the cell fusion solution containing the cell fusion region into the cell fusion region.

上記プロセス(1)は既に説明したように、本発明の発明者らが、特願2006−160744で既に出願した細胞融合方法の最も基本的なプロセスであるあり、2細胞一対での細胞融合をより効率的により確実に実施できる標準の形態である。   As described above, the process (1) is the most basic process of the cell fusion method already filed in the Japanese Patent Application No. 2006-160744 by the inventors of the present invention. It is a standard form that can be implemented more efficiently and reliably.

上記プロセス(2)〜(8)は、プロセス(1)に任意に細胞融合領域の細胞融合液の置換工程を加えたものである。具体的には、プロセス(2)は2種類の細胞を導入後に、プロセス(3)は第1の細胞を導入後に、プロセス(4)は第1の細胞の導入後および第2の細胞の導入後に、それぞれ細胞融合液の置換工程を加えたものである。さらに、プロセス(5)はプロセス(1)の融合電圧印加後に、プロセス(6)はプロセス(2)の融合電圧印加後に、プロセス(7)はプロセス(3)の融合電圧印加後に、プロセス(8)はプロセス(4)の融合電圧印加後に、細胞融合液の置換工程をそれぞれ加えたものである。ここで、細胞融合液の置換回数は目的に応じて何回でも繰り返すことができ、複数回置換を繰り返す場合は、その都度異なる成分を含む細胞融合処理液の入った細胞融合液を用いることも可能である。また、特定の細胞融合液で置換を行う際には、細胞を交流電圧により微細孔部に固定しておくことが望ましいが、交流電圧を印加しない状態でも細胞融合液の送液をゆっくりと行うことで、微細孔から細胞を脱離させずに、細胞融合領域の細胞融合液の置換が可能である。   The above processes (2) to (8) are obtained by arbitrarily adding a cell fusion solution replacement step in the cell fusion region to the process (1). Specifically, process (2) is after introduction of two types of cells, process (3) is after introduction of the first cell, process (4) is after introduction of the first cell and introduction of the second cell. Later, a cell fusion solution replacement step is added. Further, the process (5) is performed after applying the fusion voltage of the process (1), the process (6) is applied after applying the fusion voltage of the process (2), and the process (7) is applied after applying the fusion voltage of the process (3). ) Is obtained by adding a cell fusion solution replacement step after application of the fusion voltage in process (4). Here, the number of replacements of the cell fusion solution can be repeated any number of times according to the purpose. When the replacement is repeated a plurality of times, a cell fusion solution containing a cell fusion treatment solution containing a different component can be used each time. Is possible. In addition, when replacing with a specific cell fusion solution, it is desirable to fix the cells in the micropores with an AC voltage, but the cell fusion solution is slowly fed even when no AC voltage is applied. Thus, the cell fusion solution in the cell fusion region can be replaced without detaching the cells from the micropores.

また、上記のような細胞融合液の置換を行う事で、本発明の細胞融合方法は、細胞融合処理液が入った細胞融合液により、細胞融合領域の細胞融合液中の特定の成分を除去してもよい。   Further, by replacing the cell fusion solution as described above, the cell fusion method of the present invention removes specific components in the cell fusion solution in the cell fusion region with the cell fusion solution containing the cell fusion treatment solution. May be.

また、本発明の細胞融合方法は、細胞融合処理液が入った細胞融合液を特定の成分を含ませた細胞融合液とし、細胞融合液を置換することで、細胞融合領域の細胞融合液中に前記特定の成分を導入してもよい。ここで、前記特定の成分は、例えば細胞表面を改質するシアル酸分解酵素またはプロテアーゼのような酵素であってもよく、細胞膜修復作用があるカルシウムイオン等であってもよいし、細胞融合を行う細胞の種類に応じて、融合再生確率を高める添加剤であってもよい。   In the cell fusion method of the present invention, the cell fusion solution containing the cell fusion treatment solution is used as a cell fusion solution containing a specific component, and the cell fusion solution is replaced with the cell fusion solution in the cell fusion region. The specific component may be introduced into Here, the specific component may be, for example, an enzyme such as a sialic acid-degrading enzyme or protease that modifies the cell surface, may be a calcium ion having a cell membrane repairing action, etc. Depending on the type of cells to be performed, an additive that increases the fusion regeneration probability may be used.

一般に、融合再生確率を高める添加剤としては、カルシウム塩やマグネシウム塩などの無機塩、アミノ酸、ウシ血清アルブミン(BSA)、糖、フィコール、カルモジュリン、セリシン、アルブミン、インスリン、トランスフェリン、サイトカイン、その他のタンパク質、リポポリサッカライド、ポリエチレングリコール、コレステロール、カテキン、血清、ホルモン、動物細胞培養用培地由来の成分などがある。これらの成分をどのような組み合わせで、どのような濃度で用いても上記の本発明プロセスが適用可能である。   In general, additives that increase the probability of fusion regeneration include inorganic salts such as calcium and magnesium salts, amino acids, bovine serum albumin (BSA), sugar, ficoll, calmodulin, sericin, albumin, insulin, transferrin, cytokines, and other proteins. , Lipopolysaccharide, polyethylene glycol, cholesterol, catechin, serum, hormones, components derived from animal cell culture media, and the like. The above-described process of the present invention can be applied by using any combination of these components in any concentration.

以下に本発明の細胞融合方法を適用した例とその効果についてさらに詳細に説明する。   Hereinafter, examples of applying the cell fusion method of the present invention and effects thereof will be described in more detail.

第1の例として、従来の電気的細胞融合法では2種類の細胞を同一の成分の溶液の中で混合状態で細胞融合を行うため、融合再生確率を高めるのに効果的なCa濃度のコントロールは困難であった(例えば、上記した非特許文献1参照)。つまり、Ca濃度を高めた場合、Caの細胞膜修復作用により融合再生確率を向上させる効果はあるが、細胞融合前に細胞同士が凝集を起こし、細胞融合に関与できない細胞が増大するため、結果として融合再生確率が低下するという課題があった。   As a first example, in the conventional electric cell fusion method, two types of cells are mixed in a mixed solution in the same component solution, so that the Ca concentration control is effective in increasing the fusion regeneration probability. Is difficult (see, for example, Non-Patent Document 1 above). In other words, when the Ca concentration is increased, there is an effect of improving the fusion regeneration probability due to the cell membrane repair action of Ca. However, cells aggregate before cell fusion, and the number of cells that cannot participate in cell fusion increases. There was a problem that the fusion reproduction probability decreased.

これに対し本発明の細胞融合方法においては、上記したプロセス(1)またはプロセス(5)またはプロセス(6)を適用することで、細胞融合させるそれぞれの細胞を別々の成分の細胞融合液に懸濁して、個々に細胞融合領域に導入できるため、このような課題を克服することがはじめて可能となる。   On the other hand, in the cell fusion method of the present invention, by applying the above-described process (1), process (5) or process (6), each cell to be fused is suspended in a cell fusion solution of separate components. Since it becomes cloudy and can be individually introduced into the cell fusion region, such a problem can be overcome for the first time.

以下に第1の例においてプロセス(1)を適用した具体例を示す。プロセス(1)においては、最初に細胞融合領域に導入する第1の細胞は、低いCa濃度の細胞融合液に細胞を懸濁したものを用いることで細胞の凝集を防ぎ、交流電圧を印加することで1つの微細孔に1つの細胞を固定することができる。次に、細胞融合領域に導入する第2の細胞は、融合電圧印加時の電圧降下を生じない範囲で高いCa濃度の成分の細胞融合液に懸濁する。この高いCa濃度の成分の細胞融合液に懸濁した第2の細胞を細胞融合領域に導入し、交流電圧を印加して第1の細胞と第2の細胞を微細孔にて接触させ、融合電圧を印加して細胞融合する。このように、第2の細胞を懸濁した細胞融合液のみ高いCa濃度の成分の細胞融合液を用いることで、第1の細胞の凝集を防止し、かつ細胞融合後の細胞膜修復効果が高まり、融合再生確率を高めることができる。なお、微細孔に固定した第1の細胞に対して2細胞一対を効率よく形成させるため、第2の細胞は過剰に用いることができ、第2の細胞自体の凝集は問題とはならない。   A specific example in which the process (1) is applied in the first example will be described below. In the process (1), the first cell to be introduced into the cell fusion region first uses a suspension of cells in a cell fusion solution with a low Ca concentration to prevent cell aggregation and apply an alternating voltage. Thus, one cell can be fixed in one micropore. Next, the second cells to be introduced into the cell fusion region are suspended in a cell fusion solution having a high Ca concentration within a range that does not cause a voltage drop when the fusion voltage is applied. The second cell suspended in the cell fusion solution of this high Ca concentration component is introduced into the cell fusion region, an alternating voltage is applied to bring the first cell and the second cell into contact with each other through the micropore, and fusion is performed. Apply voltage to fuse cells. Thus, only the cell fusion solution in which the second cells are suspended uses a cell fusion solution having a high Ca concentration, thereby preventing the aggregation of the first cells and enhancing the effect of repairing the cell membrane after cell fusion. , The fusion reproduction probability can be increased. In addition, in order to efficiently form a two-cell pair with respect to the first cells fixed in the micropores, the second cells can be used excessively, and aggregation of the second cells themselves is not a problem.

次に、第1の例においてプロセス(5)を適用した具体例を示す。プロセス(5)においては、最初に細胞融合領域に導入する第1の細胞は、低いCa濃度の細胞融合液に細胞を懸濁したものを用いることで細胞の凝集を防ぎ、交流電圧を印加することで1つの微細孔に1つの細胞を固定することができる。次に、細胞融合領域に導入する第2の細胞は、融合電圧印加時の電圧降下を生じない範囲で高いCa濃度の成分の細胞融合液に懸濁する。この高いCa濃度の成分の細胞融合液に懸濁した第2の細胞を細胞融合領域に導入し、交流電圧を印加して第1の細胞と第2の細胞を微細孔にて接触させ、融合電圧を印加して細胞融合する。さらに細胞融合後、融合細胞を培養するための培地を細胞融合領域に速やかに導入し、細胞融合領域の細胞融合液を培地に置換する。このように、第2の細胞を懸濁した細胞融合液のみ高いCa濃度の成分の細胞融合液を用いることで、第1の細胞の凝集を防止し、かつ細胞融合後の細胞膜修復効果が高まり、融合再生確率を高めることができる。また、細胞融合後、細胞融合領域の細胞融合液を、融合細胞を培養するための培地に速やかに置換することにより、融合細胞の活性の低下を防止でき、融合再生確率をさらに高めることができる。   Next, a specific example in which the process (5) is applied in the first example will be described. In the process (5), the first cell to be first introduced into the cell fusion region is one in which cells are suspended in a cell fusion solution having a low Ca concentration to prevent cell aggregation and to apply an AC voltage. Thus, one cell can be fixed in one micropore. Next, the second cells to be introduced into the cell fusion region are suspended in a cell fusion solution having a high Ca concentration within a range that does not cause a voltage drop when the fusion voltage is applied. The second cell suspended in the cell fusion solution of this high Ca concentration component is introduced into the cell fusion region, an alternating voltage is applied to bring the first cell and the second cell into contact with each other through the micropore, and fusion is performed. Apply voltage to fuse cells. Further, after cell fusion, a medium for culturing the fused cells is rapidly introduced into the cell fusion region, and the cell fusion solution in the cell fusion region is replaced with the medium. Thus, only the cell fusion solution in which the second cells are suspended uses a cell fusion solution having a high Ca concentration, thereby preventing the aggregation of the first cells and enhancing the effect of repairing the cell membrane after cell fusion. , The fusion reproduction probability can be increased. In addition, after cell fusion, the cell fusion solution in the cell fusion region can be promptly replaced with a medium for culturing the fused cells, thereby preventing a decrease in the activity of the fused cells and further increasing the fusion regeneration probability. .

また、以下に第1の例においてプロセス(6)を適用した具体例を示す。この例では、高いCa濃度の成分の細胞融合液に第2の細胞を懸濁したときに著しく凝集が生じるときに、その凝集を防ぐことが可能となる。プロセス(6)においては、最初に細胞融合領域に導入する第1の細胞は、低いCa濃度の細胞融合液に細胞を懸濁したものを用いることで細胞の凝集を防ぎ、交流電圧を印加することで1つの微細孔に1つの細胞を固定することができる。次に、細胞融合領域に導入する第2の細胞は、同様に低いCa濃度の成分の細胞融合液に懸濁し、第2の細胞を細胞融合領域に導入し、交流電圧を印加して第1の細胞と第2の細胞を微細孔にて接触させる。その後、融合電圧を印加する前に、細胞融合領域に高いCa濃度の細胞融合液を導入し細胞融合液の置換を行う。次に融合電圧を印加して細胞融合を行う。最後に、融合細胞を培養するための培地を細胞融合領域に速やかに導入し、細胞融合領域の細胞融合液を培地に置換する。このように、第1の細胞と第2の細胞は低いCa濃度の細胞融合液に懸濁することで細胞の凝集を防止することが可能となり、第1の細胞と第2の細胞を微細孔にて接触させた後、高いCa濃度の成分の細胞融合液を導入し細胞融合液を置換することで、細胞融合後の細胞膜修復効果が高まり、融合再生確率を高めることができる。また、細胞融合後、細胞融合領域の細胞融合液を、融合細胞を培養するための培地に速やかに置換することにより、融合細胞の活性の低下を防止でき、融合再生確率をさらに高めることができる。   A specific example in which the process (6) is applied in the first example will be described below. In this example, when significant aggregation occurs when the second cells are suspended in the cell fusion solution having a high Ca concentration, the aggregation can be prevented. In the process (6), the first cell to be introduced into the cell fusion region first uses a suspension of cells in a cell fusion solution having a low Ca concentration to prevent cell aggregation and apply an alternating voltage. Thus, one cell can be fixed in one micropore. Next, the second cell to be introduced into the cell fusion region is similarly suspended in a cell fusion solution having a low Ca concentration component, the second cell is introduced into the cell fusion region, and an alternating voltage is applied to the first cell. The cells and the second cells are brought into contact with each other through micropores. Thereafter, before applying the fusion voltage, a cell fusion solution having a high Ca concentration is introduced into the cell fusion region to replace the cell fusion solution. Next, cell fusion is performed by applying a fusion voltage. Finally, a medium for culturing the fused cells is rapidly introduced into the cell fusion region, and the cell fusion solution in the cell fusion region is replaced with the medium. Thus, the first cells and the second cells can be prevented from aggregating by suspending in the cell fusion solution having a low Ca concentration, and the first cells and the second cells are microporous. Then, by introducing a cell fusion solution having a high Ca concentration component and replacing the cell fusion solution, the effect of repairing the cell membrane after cell fusion is increased, and the fusion regeneration probability can be increased. In addition, after cell fusion, the cell fusion solution in the cell fusion region can be promptly replaced with a medium for culturing the fused cells, thereby preventing a decrease in the activity of the fused cells and further increasing the fusion regeneration probability. .

第2の例として、細胞融合前にシアル酸分解酵素で細胞を処理することで細胞膜上のシアル酸を分解し、細胞を正の電荷に帯電させることによって細胞融合させる細胞同士の密着度を高め、融合再生確率を向上させた事例が報告されている(例えば、非特許文献2参照)。しかしながら一般に、従来の電気的細胞融合法では細胞融合領域に細胞を導入する前にシアル酸分解酵素で酵素処理を行う必要があり、酵素処理を行っている間に細胞が死滅したり、細胞の活性が低下したり、細胞の損失が生じるほか、シアル酸分解処理を行った細胞同士が凝集することで、細胞融合に寄与する細胞数が減少し、結果として融合再生確率が低下するという課題があった。しかし本発明の細胞融合方法では、細胞融合液の置換が逐次可能であることから、前述したプロセス(3)またはプロセス(4)を適用する事で、細胞融合領域内で細胞融合前に細胞のシアル酸分解処理を簡便に行い、そのまま続けて細胞融合を行うことが可能である。   As a second example, sialic acid on the cell membrane is decomposed by treating the cells with sialic acid degrading enzyme before cell fusion, and the cells are fused with each other by charging the cells with a positive charge. An example of improving the fusion reproduction probability has been reported (see, for example, Non-Patent Document 2). However, in general, in the conventional electric cell fusion method, it is necessary to perform an enzyme treatment with a sialic acid-degrading enzyme before introducing the cell into the cell fusion region. In addition to the decrease in activity and cell loss, the cells that have undergone sialic acid degradation aggregate to reduce the number of cells that contribute to cell fusion, resulting in a decrease in fusion regeneration probability. there were. However, in the cell fusion method of the present invention, since the replacement of the cell fusion solution can be sequentially performed, by applying the above-described process (3) or process (4), cell fusion is performed before cell fusion in the cell fusion region. It is possible to simply perform sialic acid decomposition treatment and continue cell fusion as it is.

以下に第2の例においてプロセス(3)を適用した具体例を示す。プロセス(3)においては、まず第1の細胞を通常の電気的細胞融合法の細胞融合液(例えば、300mMのマンニトール水溶液に0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSA(牛血清アルブミン)を添加した細胞融合液)に懸濁して導入し、交流電圧を用いて第1の細胞を微細孔に固定した後、交流電圧を印加した状態でシアル酸分解酵素を含む通常の電気的細胞融合用の細胞融合液で置換を行い、第1の細胞のシアル酸分解処理を行うことができる。この場合、第1の細胞は微細孔に固定されているため、シアル酸分解酵素での処理中には細胞凝集は起きず、従ってシアル酸分解処理による細胞融合前の細胞の損失を極力避けることができる。次に第2の細胞を細胞融合領域に導入する。この場合も第2の細胞を懸濁する細胞融合液として、シアル酸分解酵素を含む通常の電気的細胞融合用の細胞融合液を用いることで、細胞融合領域での第2の細胞のシアル酸分解酵素処理を行うことが可能である。次に交流電圧により第2の細胞を第1の細胞に微細孔にて接触させた後、融合電圧を印加することで、速やかに2細胞の細胞融合を行うことが可能である。 A specific example in which the process (3) is applied in the second example will be shown below. In the process (3), first, the first cell is mixed with a cell fusion solution of a normal electric cell fusion method (for example, 0.1 mM CaCl 2 , 0.2 mM MgCl 2 , 1 mg / mL in 300 mM mannitol aqueous solution). In a cell fusion solution supplemented with BSA (bovine serum albumin), the suspension is introduced, and the first cells are fixed in the micropores using an alternating voltage, and then sialic acid-degrading enzyme is contained in the state where the alternating voltage is applied. Substitution is performed with a normal cell fusion solution for electric cell fusion, and the sialic acid decomposition treatment of the first cell can be performed. In this case, since the first cells are fixed in the micropores, cell aggregation does not occur during the treatment with the sialic acid-degrading enzyme, and therefore, loss of the cells before cell fusion due to the sialic acid-degrading treatment should be avoided as much as possible. Can do. Next, the second cell is introduced into the cell fusion region. In this case as well, the cell fusion solution for suspending the second cell is a cell fusion solution for normal electric cell fusion containing sialic acid degrading enzyme, so that the sialic acid of the second cell in the cell fusion region is used. It is possible to perform a decomposing enzyme treatment. Next, by bringing the second cell into contact with the first cell with an alternating voltage through a micropore and then applying a fusion voltage, the two cells can be rapidly fused.

また以下に第2の例においてプロセス(4)を適用した具体例を示す。プロセス(4)においては、まず第1の細胞を通常の電気的細胞融合法の細胞融合液(例えば、300mMのマンニトール水溶液に0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSAを添加した細胞融合液)に懸濁して導入し、交流電圧を用いて第1の細胞を微細孔に固定した後、シアル酸分解酵素を含む無血清培地を導入してシアル酸分解処理を行う。この場合、第1の細胞は微細孔に固定されているため、シアル酸分解酵素での処理中には細胞凝集は起きず、従ってシアル酸分解処理による細胞融合前の細胞の損失を極力避けることができる。次に第2の細胞を細胞融合領域に導入する。この場合も第2の細胞を懸濁する細胞融合液として、シアル酸分解酵素を含む無血清培地を用いることで、細胞融合領域での第2の細胞のシアル酸分解酵素処理を行うことが可能である。しかしながら、本具体例で用いた無血清培地は、通常の電気的細胞融合用の細胞融合液よりも細胞の活性を維持するためには有利であるが、培地に含まれている塩分などの成分の影響で、融合電圧印加時の電圧降下が顕著になり、融合再生確率が低下してしまう。そこで、交流電圧により第1の細胞と第2の細胞を微細孔にて接触させた後、融合電圧印加前に通常の電気的細胞融合用の細胞融合液を2〜3回、細胞融合領域に導入し細胞融合液の置換をしてから融合電圧を印加し細胞融合を行うことができる。このようにする事で、培地に含まれていた塩分などの成分を除去し、融合電圧印加時の電圧降下を防ぎ、かつ細胞の活性を維持することが可能となり、融合再生確率の高い細胞融合を行うことが可能となる。 A specific example in which the process (4) is applied in the second example will be described below. In the process (4), first, the first cell is mixed with a cell fusion solution of a normal electric cell fusion method (for example, 0.1 mM CaCl 2 , 0.2 mM MgCl 2 , 1 mg / mL in 300 mM mannitol aqueous solution). In a cell fusion solution to which BSA has been added, the suspension is introduced and the first cells are fixed in micropores using an alternating voltage, and then a serum-free medium containing sialic acid-degrading enzyme is introduced to carry out sialic acid degradation treatment. Do. In this case, since the first cells are fixed in the micropores, cell aggregation does not occur during the treatment with the sialic acid-degrading enzyme, and therefore, loss of the cells before cell fusion due to the sialic acid-degrading treatment should be avoided as much as possible. Can do. Next, the second cell is introduced into the cell fusion region. In this case as well, a serum-free medium containing sialic acid-degrading enzyme can be used as a cell fusion solution for suspending the second cell, so that the second cell can be treated with sialic acid-degrading enzyme in the cell fusion region. It is. However, although the serum-free medium used in this specific example is more advantageous for maintaining the cell activity than a normal cell fusion solution for electric cell fusion, components such as salt contained in the medium are advantageous. As a result, the voltage drop at the time of applying the fusion voltage becomes remarkable, and the fusion reproduction probability decreases. Therefore, after bringing the first cell and the second cell into contact with each other through the micropores with an alternating voltage, a normal cell fusion solution for electric cell fusion is applied to the cell fusion region 2 to 3 times before applying the fusion voltage. After the introduction and replacement of the cell fusion solution, cell fusion can be performed by applying a fusion voltage. By doing this, it is possible to remove components such as salt contained in the medium, prevent voltage drop when applying fusion voltage, and maintain cell activity, and cell fusion with high fusion regeneration probability Can be performed.

第3の例として、細胞融合前にプロテアーゼなどの酵素で細胞を処理することで細胞膜上のタンパクを分解し、融合再生確率を向上させた事例が報告されている(例えば、上記した非特許文献3参照)。しかしながら一般に、従来の電気的細胞融合法では細胞融合領域に細胞を導入する前にプロテアーゼを用いて酵素処理を行う必要があり、酵素処理を行っている間に細胞が死滅したり、細胞の活性が低下したり、あるいは、細胞の容器への付着が発生したり細胞同士の凝集が生じることで細胞が損失し、結果として融合再生確率が低下するという問題があった。しかし本発明の細胞融合方法では、前述したプロセス(8)を適用する事で、細胞融合領域で細胞融合前に細胞のプロテアーゼ処理を簡便に行い、そのまま続けて細胞融合を行い、さらにプロテアーゼを除去することが可能である。   As a third example, a case has been reported in which cells on a cell membrane are decomposed by treating the cells with an enzyme such as a protease before cell fusion to improve the fusion regeneration probability (for example, the above-mentioned non-patent document). 3). However, in general, the conventional electric cell fusion method requires an enzyme treatment with a protease before introducing the cell into the cell fusion region, and the cell is killed during the enzyme treatment or the activity of the cell. There has been a problem that cells are lost due to decrease in cell adhesion, cell adhesion to the container, or aggregation between cells, resulting in a decrease in the probability of fusion regeneration. However, in the cell fusion method of the present invention, by applying the above-mentioned process (8), the cell protease treatment is simply performed before cell fusion in the cell fusion region, followed by cell fusion, and further removal of the protease. Is possible.

以下に第3の例においてプロセス(8)を適用した具体例を示す。プロセス(8)においては、まず第1の細胞を通常の電気的細胞融合用の細胞融合液に懸濁して細胞融合領域に導入し、交流電圧を用いて微細孔に第1の細胞を固定した後、交流電圧を印加した状態でプロテアーゼを含む通常の電気的細胞融合用の細胞融合液で細胞融合液の置換を行い、第1の細胞のプロテアーゼ処理を行うことができる。この場合、第1の細胞は微細孔に固定されているので、プロテアーゼ処理中に細胞同士の凝集は起きることがなく、細胞融合前の細胞の損失を避けることができる。次に交流電圧を印加した状態で第2の細胞を通常の電気的細胞融合用の細胞融合液に懸濁して細胞融合領域に導入する。次に、交流電圧により第2の細胞を第1の細胞に接触させた後、交流電圧を印加した状態でプロテアーゼを含む通常の電気的細胞融合用の細胞融合液で細胞融合液の置換を行い、第2の細胞のプロテアーゼ処理を行うことができる。しかしながら、プロテアーゼは細胞毒性があるため、従来の電気的細胞融合法では融合前または融合後に煩雑な細胞洗浄操作を繰り返すことで除去する必要があったが、本発明の細胞融合方法では細胞融合領域の細胞融合液を置換することで、プロテアーゼの除去が簡便に行える。すなわち、第1の細胞と第2の細胞のプロテアーゼ処理を行った後、融合電圧の印加前に、通常の電気的細胞融合用の細胞融合液を2〜3回、細胞融合領域に導入し細胞融合液の置換を行うことで、プロテアーゼを除去することができ、その後、融合電圧を印加し2細胞の融合を行う。このようにする事で、細胞融合時に細胞毒性を有するプロテアーゼが融合細胞内に入る事を防止することができ、融合細胞の活性を維持することができる。またさらに、細胞融合後、細胞融合領域の細胞融合液を、融合細胞を培養するための培地に速やかに置換することにより、融合細胞の活性の低下を防止でき、融合細胞をそのまま培地に移して増殖させることができるので、融合再生確率をさらに高めることができる。   A specific example in which the process (8) is applied in the third example will be shown below. In the process (8), first cells are suspended in a normal cell fusion solution for electric cell fusion and introduced into the cell fusion region, and the first cells are fixed in the micropores using an alternating voltage. Thereafter, the cell fusion solution can be replaced with a normal cell fusion solution for electric cell fusion containing protease in a state where an AC voltage is applied, and the protease treatment of the first cell can be performed. In this case, since the first cells are fixed in the micropores, aggregation between the cells does not occur during the protease treatment, and loss of the cells before cell fusion can be avoided. Next, with the alternating voltage applied, the second cells are suspended in a normal cell fusion solution for electric cell fusion and introduced into the cell fusion region. Next, after the second cell is brought into contact with the first cell by an AC voltage, the cell fusion solution is replaced with a normal cell fusion solution for electric cell fusion containing protease in a state where the AC voltage is applied. The protease treatment of the second cell can be performed. However, since protease is cytotoxic, it has been necessary to remove it by repeating a complicated cell washing operation before or after fusion in the conventional electric cell fusion method, but in the cell fusion method of the present invention, it is necessary to remove the cell fusion region. The protease can be easily removed by substituting the cell fusion solution. That is, after the protease treatment of the first cell and the second cell, and before the fusion voltage is applied, a normal cell fusion solution for electric cell fusion is introduced into the cell fusion region 2 to 3 times. By replacing the fusion solution, the protease can be removed, and then a fusion voltage is applied to fuse the two cells. By doing in this way, the protease which has cytotoxicity at the time of cell fusion can be prevented from entering the fused cell, and the activity of the fused cell can be maintained. Furthermore, after cell fusion, the cell fusion solution in the cell fusion region can be quickly replaced with a medium for culturing the fused cells, so that the decrease in the activity of the fused cells can be prevented. Since it can be propagated, the fusion regeneration probability can be further increased.

第4の例として、2種の細胞の細胞融合において、細胞を浸透圧より低張の糖溶液に懸濁して融合電圧を印加することで、従来よりも融合再生確率を向上させた事例が報告されている(例えば、非特許文献4参照)。この場合従来の電気的細胞融合法では、低張の糖溶液で細胞を処理する時間が長く、また融合後もしばらく低張の糖溶液中で細胞を放置しなければならないために、細胞融合時あるいは細胞融合後に細胞が破裂して死滅する細胞が多くなり、結果として融合再生確率が低下してしまうという問題点があった。しかし本発明の細胞融合方法では、前述したプロセス(6)またはプロセス(7)を適用することで、細胞融合領域の細胞融合液の置換が逐次可能であるため、細胞融合の直前に極めて短時間で細胞の低張液処理を行い、細胞の損失を防ぐことが可能である。   As a fourth example, in the case of cell fusion of two types of cells, a case was reported in which the fusion regeneration probability was improved by suspending the cells in a sugar solution that is less than osmotic pressure and applying a fusion voltage. (For example, refer nonpatent literature 4). In this case, in the conventional electric cell fusion method, the cells are treated with a hypotonic sugar solution for a long time, and after fusion, the cells must be left in the hypotonic sugar solution for a while. Alternatively, after cell fusion, the number of cells that rupture and die increases, resulting in a problem that the fusion regeneration probability is lowered. However, in the cell fusion method of the present invention, by applying the above-described process (6) or process (7), the cell fusion solution in the cell fusion region can be sequentially replaced. The cell can be treated with a hypotonic solution to prevent cell loss.

以下に第4の例においてプロセス(6)を適用した具体例を示す。プロセス(6)においては、第1の細胞を細胞と等張の糖溶液(例えば、300mMのマンニトール水溶液に、0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSAを添加した細胞融合液)に懸濁した状態で細胞融合領域に導入し、交流電圧により微細孔に第1の細胞を固定した後、第2の細胞を細胞と等張の糖溶液(例えば、300mMのマンニトール水溶液に、0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSAを添加した細胞融合液)に懸濁した状態で細胞融合領域に導入し、交流電圧により第1の細胞と第2の細胞を微細孔にて接触させた後、低張の糖溶液(例えば、200mMのマンニトール水溶液に、0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSAを添加した細胞融合液)を数回導入して細胞融合液の置換を行い、その後、融合電圧を印加することで、細胞を融合前に低張液処理する効果を得られる。この場合、従来の電気的細胞融合法のように、はじめから細胞を低張の糖溶液に浸しておく必要がないため、浸透圧低下による細胞へのダメージを最小限に抑えることが可能である。さらに、融合電圧印加直後に、再び細胞融合領域を等張の糖溶液で置換することで、融合後の静置処理中の融合細胞の破裂による損失を極力防ぐことができる。なお、置換を行う溶液の糖濃度は、融合すべき細胞の種類に適した任意の組成を用いることができることはいうまでもない。 A specific example in which the process (6) is applied in the fourth example will be described below. In the process (6), the first cell was added to a sugar solution that is isotonic with the cell (for example, 0.1 mM CaCl 2 , 0.2 mM MgCl 2 , 1 mg / mL BSA was added to a 300 mM mannitol aqueous solution). The cells are introduced into the cell fusion region in a suspended state in a cell fusion solution, and the first cells are fixed in the micropores with an alternating voltage, and then the second cells are made isotonic with the cells (for example, 300 mM mannitol). A cell fusion solution in which 0.1 mM CaCl 2 , 0.2 mM MgCl 2 , 1 mg / mL BSA is added) is suspended in an aqueous solution and introduced into the cell fusion region. after contacting the second cell with micropores, hypotonic sugar solutions (e.g., in 200mM mannitol solution, CaCl 2 0.1 mM, of 0.2mM of MgCl 2, 1 mg / mL B Performs substitution cell fusion solution by introducing several cell fusion solution) was added A, then, by applying a fusion voltage, an effect is obtained that processing hypotonic solution before fusion cells. In this case, unlike the conventional electric cell fusion method, since it is not necessary to immerse the cells in a hypotonic sugar solution from the beginning, it is possible to minimize damage to the cells due to a decrease in osmotic pressure. . Furthermore, by replacing the cell fusion region with an isotonic sugar solution again immediately after application of the fusion voltage, loss due to rupture of the fused cells during the stationary treatment after fusion can be prevented as much as possible. In addition, it cannot be overemphasized that arbitrary composition suitable for the kind of cell which should be united can be used for the sugar concentration of the solution which performs substitution.

また、以下に第4の例においてプロセス(7)を適用した具体例を示す。プロセス(7)においては、第1の細胞を細胞と等張の糖溶液(例えば、300mMのマンニトール水溶液に、0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSAを添加した細胞融合液)に懸濁した状態で細胞融合領域に導入し、交流電圧により微細孔に第1の細胞を固定する。次に低張の糖溶液(例えば、200mMのマンニトール水溶液に、0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSAを添加した細胞融合液)を数回導入して細胞融合液の置換を行う。次に、第2の細胞を細胞と等張の糖溶液(例えば、300mMのマンニトール水溶液に、0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSAを添加した細胞融合液)に懸濁した状態で細胞融合領域に導入し、交流電圧により第1の細胞と第2の細胞を微細孔にて接触させた後、融合電圧を印加する。このように、第1の細胞導入後に低張の糖溶液で置換する事で、第1の細胞のみ低張の糖溶液で処理することが可能である。この場合、半径の小さい第1の細胞の大きさを第2の細胞と融合しやすい大きさに調整する事で、融合再生確率を高めることが可能となる。さらに、融合電圧印加直後に、再び細胞融合領域を等張の糖溶液で置換することで、融合後の静置処理中の融合細胞の破裂による損失を極力防ぐことができる。なお、置換を行う溶液の糖濃度は、融合すべき細胞の種類に適した任意の組成を用いることができることはいうまでもない。 A specific example in which the process (7) is applied in the fourth example will be described below. In the process (7), the first cell was added to a sugar solution that is isotonic with the cell (for example, 0.1 mM CaCl 2 , 0.2 mM MgCl 2 , 1 mg / mL BSA was added to a 300 mM mannitol aqueous solution). The cells are introduced into the cell fusion region in a state suspended in a cell fusion solution, and the first cells are fixed in the micropores by an alternating voltage. Next, a hypotonic sugar solution (for example, a cell fusion solution in which 0.1 mM CaCl 2 , 0.2 mM MgCl 2 , 1 mg / mL BSA is added to a 200 mM mannitol aqueous solution) is introduced several times to perform cell fusion. Replace the liquid. Next, the second cells are made into an isotonic sugar solution with the cells (for example, a cell fusion solution in which 0.1 mM CaCl 2 , 0.2 mM MgCl 2 , 1 mg / mL BSA is added to a 300 mM mannitol aqueous solution) The cell is introduced into the cell fusion region in a suspended state, and the first cell and the second cell are brought into contact with each other through a micropore with an alternating voltage, and then the fusion voltage is applied. Thus, it is possible to treat only the first cells with the hypotonic sugar solution by replacing with the hypotonic sugar solution after the introduction of the first cells. In this case, the fusion reproduction probability can be increased by adjusting the size of the first cell having a small radius so that it can be easily fused with the second cell. Furthermore, by replacing the cell fusion region with an isotonic sugar solution again immediately after application of the fusion voltage, loss due to rupture of the fused cells during the stationary treatment after fusion can be prevented as much as possible. In addition, it cannot be overemphasized that arbitrary composition suitable for the kind of cell which should be united can be used for the sugar concentration of the solution which performs substitution.

第5の例として、2種の細胞の細胞融合において、細胞融合液中にポリエチレングリコールなどの融合促進作用のある添加剤を添加して融合電圧を印加することで、従来よりも融合再生確率を向上させた事例が報告されている(例えば、特許文献2、非特許文献5参照)。この場合、従来の電気的細胞融合法では、加えた添加剤がポリエチレングリコールなどの細胞にとって有害な成分であれば、細胞融合処理中に細胞の死滅が起きる他、融合後にはこれらの成分を除くための煩雑な細胞洗浄操作が必要であり、このため細胞の死滅、細胞の活性の低下、細胞の損失が生じ、結果として融合再生確率が低下するという課題があった。しかし本発明の細胞融合方法では細胞融合液の導入が逐次に可能であるため、前述したプロセス(2)またはプロセス(6)を適用する事で、これら添加剤を含む細胞融合液が細胞に与えるダメージを最小限に抑え、また、速やかにこれらの成分を細胞融合の前後に除去することが可能である。   As a fifth example, in the cell fusion of two types of cells, the fusion regeneration probability can be increased by adding a fusion voltage additive such as polyethylene glycol in the cell fusion solution and applying a fusion voltage. Improved cases have been reported (see, for example, Patent Document 2 and Non-Patent Document 5). In this case, in the conventional electric cell fusion method, if the added additive is a harmful component for cells such as polyethylene glycol, the cell is killed during the cell fusion treatment, and these components are removed after the fusion. For this reason, there is a problem in that complicated cell washing operations are required for this purpose, resulting in cell death, cell activity reduction, and cell loss, resulting in a decrease in fusion regeneration probability. However, since the cell fusion solution can be introduced sequentially in the cell fusion method of the present invention, the cell fusion solution containing these additives is given to the cells by applying the process (2) or the process (6) described above. It is possible to minimize damage and quickly remove these components before and after cell fusion.

以下に第5の例においてプロセス(2)を適用した具体例を示す。プロセス(2)においては、まず第1の細胞を通常の電気的細胞融合法の細胞融合液(例えば、300mMのマンニトール水溶液に0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSAを添加した細胞融合液)に懸濁して導入し、交流電圧を用いて第1の細胞を微細孔に固定する。次に、第2の細胞を通常の電気的細胞融合法の細胞融合液(例えば、300mMのマンニトール水溶液に0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSAを添加した細胞融合液)に懸濁して導入し、交流電圧を用いて第1の細胞と第2の細胞を微細孔にて接触させる。その後、融合促進作用のある添加剤(例えばポリエチレングリコール)を含む通常の電気的細胞融合法の細胞融合液を数回導入して細胞融合液の置換を行い、融合電圧を印加することで、融合促進作用のある添加剤を添加して細胞融合する事ができる。この場合、添加剤が細胞にとって有害である場合でも、融合直前に短時間でこれらの成分を細胞に作用させることができるため、細胞へのダメージを最小限に抑えることが可能である。 A specific example in which the process (2) is applied in the fifth example will be described below. In the process (2), first, the first cell is mixed with a cell fusion solution of a normal electric cell fusion method (for example, 0.1 mM CaCl 2 , 0.2 mM MgCl 2 , 1 mg / mL in 300 mM mannitol aqueous solution). The suspension is introduced into a cell fusion solution supplemented with BSA, and the first cells are fixed in the micropores using an alternating voltage. Next, the second cell is a cell fusion solution of a normal electric cell fusion method (for example, a cell obtained by adding 0.1 mM CaCl 2 , 0.2 mM MgCl 2 , 1 mg / mL BSA to a 300 mM mannitol aqueous solution). The suspension is introduced into the fusion solution), and the first cell and the second cell are brought into contact with each other through a micropore using an alternating voltage. Then, the cell fusion solution of the usual electric cell fusion method containing an additive (for example, polyethylene glycol) having a fusion promoting action is introduced several times to replace the cell fusion solution, and the fusion voltage is applied, thereby fusing Cell fusion can be achieved by adding an additive having a promoting action. In this case, even if the additive is harmful to the cells, since these components can act on the cells in a short time just before the fusion, damage to the cells can be minimized.

以下に第5の例においてプロセス(6)を適用した具体例を示す。プロセス(6)においては、まず第1の細胞を通常の電気的細胞融合法の細胞融合液(例えば、300mMのマンニトール水溶液に0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSAを添加した細胞融合液)に懸濁して導入し、交流電圧を用いて第1の細胞を微細孔に固定する。次に、第2の細胞を通常の電気的細胞融合法の細胞融合液(例えば、300mMのマンニトール水溶液に0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSAを添加した細胞融合液)に懸濁して導入し、交流電圧を用いて第1の細胞と第2の細胞を微細孔にて接触させる。その後、融合促進作用のある添加剤(例えばポリエチレングリコール)を含む通常の電気的細胞融合法の細胞融合液を数回導入して細胞融合液の置換を行い、融合電圧を印加することで、融合促進作用のある添加剤を添加して細胞融合する事ができる。この場合、添加剤が細胞にとって有害である場合でも、融合直前に短時間でこれらの成分を細胞に作用させることができるため、細胞へのダメージを最小限に抑えることが可能である。さらに、融合電圧の印加後に、通常の電気的細胞融合用の細胞融合液を2〜3回、細胞融合領域に導入し細胞融合液の置換を行うことで、添加剤の成分を速やかに除去し、融合細胞をそのまま培地に移して増殖させることが可能である。このようにする事で、従来の電気的細胞融合法では細胞毒性のある物質を添加剤として用いた場合、細胞融合後に煩雑な細胞洗浄操作を繰り返すことでこれらを除く必要があったが、本発明の細胞融合方法では、細胞融合領域の細胞融合液を置換することで、これらの成分の除去を簡便に行うことが可能となる。 A specific example in which the process (6) is applied in the fifth example will be described below. In the process (6), first, the first cell is mixed with a cell fusion solution of a normal electric cell fusion method (eg, 0.1 mM CaCl 2 , 0.2 mM MgCl 2 , 1 mg / mL in 300 mM mannitol aqueous solution). The suspension is introduced into a cell fusion solution supplemented with BSA, and the first cells are fixed in the micropores using an alternating voltage. Next, the second cell is a cell fusion solution of a normal electric cell fusion method (for example, a cell obtained by adding 0.1 mM CaCl 2 , 0.2 mM MgCl 2 , 1 mg / mL BSA to a 300 mM mannitol aqueous solution). The suspension is introduced into the fusion solution), and the first cell and the second cell are brought into contact with each other through a micropore using an alternating voltage. Then, the cell fusion solution of the usual electric cell fusion method containing an additive (for example, polyethylene glycol) having a fusion promoting action is introduced several times to replace the cell fusion solution, and the fusion voltage is applied, thereby fusing Cell fusion can be achieved by adding an additive having a promoting action. In this case, even if the additive is harmful to the cells, since these components can act on the cells in a short time just before the fusion, damage to the cells can be minimized. In addition, after applying the fusion voltage, a normal cell fusion solution for electric cell fusion is introduced into the cell fusion region 2 to 3 times to replace the cell fusion solution, thereby quickly removing the components of the additive. The fused cells can be directly transferred to a medium for growth. In this way, in the conventional electric cell fusion method, when a cytotoxic substance is used as an additive, it was necessary to remove these by repeating a complicated cell washing operation after cell fusion. In the cell fusion method of the invention, it is possible to easily remove these components by replacing the cell fusion solution in the cell fusion region.

また本発明の細胞融合方法では、特定の成分を含ませた組成の異なる複数の細胞処理液の入った細胞融合液を、第2の細胞の導入前、融合電圧の印加による細胞融合の前および細胞融合の後、の少なくとも一つの時期に、望む回数だけ置換可能であることから、例えば、前述した説明にあるように、第1から第5の例による効果を任意に組み合わせることも可能である。以下に、互いに異なる効果を有する細胞処理を組み合わせてプロセス(2)を適用した具体例を示す。この例では、第1の細胞と第2の細胞をプロテアーゼ処理した後に、細胞を浸透圧より低張の糖溶液に懸濁して融合電圧を印加することで、第3の例および第4の例に示した効果を組み合わせ、融合再生確率をより効果的に高めることが可能である。   Further, in the cell fusion method of the present invention, a cell fusion solution containing a plurality of cell treatment solutions having different compositions containing a specific component is introduced before the second cell introduction, before cell fusion by application of a fusion voltage, and Since it can be replaced as many times as desired at least at one time after cell fusion, for example, as described above, the effects of the first to fifth examples can be arbitrarily combined. . Below, the specific example which applied the process (2) combining the cell processing which has a mutually different effect is shown. In this example, after the first cell and the second cell are treated with protease, the cells are suspended in a sugar solution having a hypotonicity lower than the osmotic pressure, and a fusion voltage is applied, whereby the third and fourth examples are applied. It is possible to increase the fusion reproduction probability more effectively by combining the effects shown in.

プロセス(2)に複数の細胞処理効果を適用した具体例:まず第1の細胞を通常の電気的細胞融合用の細胞融合液に懸濁して細胞融合領域に導入し、交流電圧を用いて微細孔に第1の細胞を固定した後、交流電圧を印加した状態で第2の細胞を通常の電気的細胞融合用の細胞融合液に懸濁して細胞融合領域に導入する。次に、交流電圧により第2の細胞を第1の細胞に接触させた後、プロテアーゼを含む通常の電気的細胞融合用の細胞融合液で細胞融合液の置換を行い、第1の細胞と第2の細胞のプロテアーゼ処理を同時に行うことができる。この場合、第1の細胞は微細孔に固定されているので、プロテアーゼ処理中に細胞同士の凝集は起きることがなく、細胞融合前の細胞の損失を避けることができる。また、微細孔に固定した第1の細胞に対して2細胞一対を効率よく形成させるため、第2の細胞は過剰に用いることができ、第2の細胞自体の凝集は問題とはならない。次に、通常の電気的細胞融合用の細胞融合液を2〜3回、細胞融合領域に導入し細胞融合液の置換を行うことで、細胞毒性をもつプロテアーゼを除去することができ、融合細胞の活性を維持することができる。またさらに続いて、低張の糖溶液(例えば、200mMのマンニトール水溶液に、0.1mMのCaCl、0.2mMのMgCl、1mg/mLのBSAを添加した細胞融合液)を数回導入して細胞融合液の置換を行い、その後、融合電圧を印加することで、細胞を融合前に低張液処理する効果を得られる。この場合、従来の電気的細胞融合法のように、はじめから細胞を低張の糖溶液に浸しておく必要がないため、浸透圧低下による細胞へのダメージを最小限に抑えることが可能である。 Specific example of applying a plurality of cell treatment effects to process (2): First, the first cell is suspended in a normal cell fusion solution for electric cell fusion, introduced into the cell fusion region, and finely divided using an AC voltage. After fixing the first cells in the pores, the second cells are suspended in a normal cell fusion solution for electric cell fusion and introduced into the cell fusion region with an alternating voltage applied. Next, after the second cell is brought into contact with the first cell with an alternating voltage, the cell fusion solution is replaced with a normal cell fusion solution for electric cell fusion containing a protease. Protease treatment of two cells can be performed simultaneously. In this case, since the first cells are fixed in the micropores, aggregation between the cells does not occur during the protease treatment, and loss of the cells before cell fusion can be avoided. Moreover, in order to efficiently form a pair of two cells with respect to the first cells fixed in the micropores, the second cells can be used excessively, and the aggregation of the second cells themselves is not a problem. Next, by introducing the cell fusion solution for normal electric cell fusion into the cell fusion region 2 to 3 times and replacing the cell fusion solution, the protease having cytotoxicity can be removed. Activity can be maintained. Still further, a hypotonic sugar solution (for example, a cell fusion solution obtained by adding 0.1 mM CaCl 2 , 0.2 mM MgCl 2 , 1 mg / mL BSA to a 200 mM mannitol aqueous solution) was introduced several times. By replacing the cell fusion solution and then applying a fusion voltage, the effect of treating the cells with a hypotonic solution before fusion can be obtained. In this case, unlike the conventional electric cell fusion method, since it is not necessary to immerse the cells in a hypotonic sugar solution from the beginning, it is possible to minimize damage to the cells due to a decrease in osmotic pressure. .

このように、本発明の細胞融合方法では、細胞融合領域の細胞融合液を、異なる組成の細胞融合液を用いて任意の順序で望む回数だけ置換可能であることから、融合再生確率を高めるような複数の細胞処理を短時間で同時に実施することが可能となる。この場合、3つ以上の細胞処理工程を組み合わせることも当然可能であり、先に示したプロセス(2)から(8)のいずれにおいても複数の細胞処理が適用可能である。   As described above, in the cell fusion method of the present invention, the cell fusion solution in the cell fusion region can be replaced as many times as desired by using a cell fusion solution having a different composition, so that the fusion regeneration probability is increased. Multiple cell treatments can be performed simultaneously in a short time. In this case, it is naturally possible to combine three or more cell treatment steps, and a plurality of cell treatments can be applied in any of the processes (2) to (8) described above.

本発明によれば、以下の効果を奏することができる。
(1)本発明の細胞オ融合装置によれば、微細孔にて2細胞一対での細胞融合を確実に行うことができるうえ、2種類の細胞の入った細胞融合液以外に、細胞融合処理液の入った細胞融合液を少なくとも1種類以上、導入することが可能となり、細胞を細胞融合領域にいれ、微細孔に固定したままの状態、細胞融合領域内の細胞融合液の成分を変え、より高い融合再生確率を得られる細胞融合条件に変更する事が可能となる。
(2)本発明の細胞融合方法によれば、細胞融合の工程の任意のタイミングで、細胞融合液の成分を変更することが可能となり、より高い融合再生確率を得られる細胞融合条件に変更する事が可能となる。
(3)本発明の細胞融合方法によれば、融合再生確率を高める効果はあるものの、長時間細胞に接していると、細胞が死滅したり、細胞の活性が落ちたり、細胞が凝集したりするような成分を簡便かつ迅速に除去することが可能となり、細胞の損失を防止し、より高い融合再生確率を得ることができる。
(4)本発明の細胞融合方法によれば、細胞融合の工程の任意のタイミングで、融合再生確率を高める効果のある成分を簡便かつ迅速に導入することが可能となり、より高い融合再生確率を得ることができる。
According to the present invention, the following effects can be obtained.
(1) According to the cell fusion device of the present invention, cell fusion can be reliably performed with a pair of two cells in a micropore, and in addition to a cell fusion solution containing two types of cells, cell fusion treatment It is possible to introduce at least one kind of cell fusion solution containing liquid, put the cells in the cell fusion region, leave the cells fixed in the micropores, change the components of the cell fusion solution in the cell fusion region, It is possible to change the cell fusion conditions to obtain a higher fusion regeneration probability.
(2) According to the cell fusion method of the present invention, the components of the cell fusion solution can be changed at any timing of the cell fusion step, and the cell fusion conditions are changed to obtain a higher fusion regeneration probability. Things will be possible.
(3) According to the cell fusion method of the present invention, although there is an effect of increasing the fusion regeneration probability, if the cell is in contact with the cell for a long time, the cell is killed, the cell activity is decreased, or the cell is aggregated. Such a component can be removed easily and quickly, and loss of cells can be prevented, and a higher fusion regeneration probability can be obtained.
(4) According to the cell fusion method of the present invention, it is possible to easily and quickly introduce a component having an effect of increasing the fusion regeneration probability at an arbitrary timing of the cell fusion step, and a higher fusion regeneration probability. Obtainable.

本発明における基本的な細胞融合方法の概念を示す第1の図である。It is a 1st figure which shows the concept of the basic cell fusion method in this invention. 本発明における基本的な細胞融合方法の概念を示す第2の図である。It is a 2nd figure which shows the concept of the basic cell fusion method in this invention. 本発明における基本的な細胞融合方法の概念を示す第3の図である。It is a 3rd figure which shows the concept of the basic cell fusion method in this invention. 本発明における細胞融合装置の概念図及び、実施例1に用いた細胞融合装置の概念図である。1 is a conceptual diagram of a cell fusion device in the present invention and a conceptual diagram of a cell fusion device used in Example 1. FIG. 図4に示したXX’断面図である。FIG. 5 is a sectional view taken along line XX ′ shown in FIG. 4. 微細孔の平面形状に内接する最大円の直径が、微細孔に固定する2つの細胞の直径より大きい場合を示す概念図である。It is a conceptual diagram which shows the case where the diameter of the largest circle inscribed in the planar shape of a micropore is larger than the diameter of two cells fixed to a micropore. 微細孔の平面形状に内接する最大円の直径が、微細孔に固定する2つの細胞の直径より小さい場合を示す概念図である。It is a conceptual diagram which shows the case where the diameter of the largest circle inscribed in the planar shape of a micropore is smaller than the diameter of two cells fixed to a micropore. 微細孔の平面形状に内接する最大円の直径が第1の細胞より1〜2倍程度大きくかつ微細孔の深さが微細孔に固定した第1の細胞の直径より大きい場合を示す概念図である。It is a conceptual diagram showing a case where the diameter of the maximum circle inscribed in the planar shape of the micropore is about 1 to 2 times larger than the first cell and the depth of the micropore is larger than the diameter of the first cell fixed to the micropore. is there. 微細孔の平面形状に内接する最大円の直径が第1の細胞より1〜2倍程度大きくかつ微細孔の深さが微細孔に固定した第1の細胞の直径の以下である場合を示す概念図である。A concept showing a case where the diameter of the maximum circle inscribed in the planar shape of the micropore is about 1 to 2 times larger than the first cell and the depth of the micropore is equal to or less than the diameter of the first cell fixed to the micropore. FIG. 微細孔近傍の電界強度を示した図であり、横軸(X軸)は電極面からの距離(単位は任意)を示し、縦軸(Y軸)は電界強度(単位は任意)を示す。It is the figure which showed the electric field strength of a micropore vicinity, a horizontal axis (X-axis) shows the distance (unit is arbitrary) from an electrode surface, and a vertical axis | shaft (Y-axis) shows electric field strength (unit is arbitrary). 一般的なフォトリソグラフィーとエッチング方法の概略図である。It is the schematic of general photolithography and the etching method. 本発明に用いる交流電圧の波形の一例として、正弦波の代表的な波形を示した図であり、横軸(X軸)は時間を示し、縦軸(Y軸)は電圧を示す。FIG. 4 is a diagram showing a typical waveform of a sine wave as an example of an AC voltage waveform used in the present invention, where the horizontal axis (X axis) indicates time and the vertical axis (Y axis) indicates voltage. 本発明に用いる交流電圧の波形の一例として、三角波の代表的な波形を示した図であり、横軸(X軸)は時間を示し、縦軸(Y軸)は電圧を示す。As an example of the waveform of the AC voltage used in the present invention, it is a diagram showing a typical waveform of a triangular wave, the horizontal axis (X axis) shows time, and the vertical axis (Y axis) shows voltage. 本発明に用いる交流電圧の波形の一例として、台形波の代表的な波形を示した図であり、横軸(X軸)は時間を示し、縦軸(Y軸)は電圧を示す。It is the figure which showed the typical waveform of the trapezoid wave as an example of the waveform of the alternating voltage used for this invention, a horizontal axis (X-axis) shows time and a vertical axis | shaft (Y-axis) shows a voltage. 本発明に用いる交流電圧の波形の一例として、矩形波の代表的な波形を示した図であり、横軸(X軸)は時間を示し、縦軸(Y軸)は電圧を示す。FIG. 2 is a diagram showing a typical waveform of a rectangular wave as an example of an AC voltage waveform used in the present invention, where the horizontal axis (X axis) indicates time and the vertical axis (Y axis) indicates voltage.

以下、本発明の実施例について詳細に説明する。なお本発明は、これらの実施例のみに限定されるものではなく、発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでもない。   Examples of the present invention will be described in detail below. Needless to say, the present invention is not limited to these examples, and can be arbitrarily changed without departing from the scope of the invention.

(実施例1)
図4に実施例1に用いた細胞融合装置の概念図を示す。細胞融合装置は大きく分けて、細胞融合容器(13)と電源(4)から構成される。細胞融合容器は、図4に示すように上部電極(14)と下部電極(15)の間に、スペーサー(16)を配置し、複数の微細孔をアレイ状に形成した絶縁体(8)をスペーサーと下部電極で挟んだ構造を有する。なお後述するように、微細孔は、下部電極(15)上に配置した絶縁膜に一般的なフォトリソグラフィーとエッチングにより形成した。
Example 1
FIG. 4 shows a conceptual diagram of the cell fusion device used in Example 1. The cell fusion device is roughly divided into a cell fusion container (13) and a power source (4). As shown in FIG. 4, the cell fusion container has an insulator (8) in which a spacer (16) is arranged between an upper electrode (14) and a lower electrode (15), and a plurality of micropores are formed in an array. It has a structure sandwiched between a spacer and a lower electrode. As will be described later, the fine holes were formed in the insulating film disposed on the lower electrode (15) by general photolithography and etching.

上部電極と下部電極は、縦70mm×横40mm×厚さ1mmのパイレックス(登録商標)基板に、ITOを成膜(膜厚150nm)したものを用いた。スペーサーは、縦40mm×横40mm×厚さ1.5mmのシリコンシートの中央を縦20mm×横20mmにくりぬいた形状にして用いた。また図4に示すように、スペーサーには、細胞融合容器に細胞を導入、排出するため、細胞を導入する導入流路(29)及びそれに連通する導入口(19)と、細胞を排出する排出流路(30)及びそれに連通する排出口(20)を設けた。さらに図4に示すように、導入口には、細胞融合液導入流路(2)を介して容量1mLのシリンジA(34)、容量1mLのシリンジB(35)、容量10mLのシリンジC(36)を、細胞融合液導入切替え手段としてのバルブ(21)をそれぞれ介して接続した。   The upper electrode and the lower electrode were formed by depositing ITO (film thickness 150 nm) on a Pyrex (registered trademark) substrate 70 mm long × 40 mm wide × 1 mm thick. The spacer was used by hollowing out the center of a silicon sheet having a length of 40 mm, a width of 40 mm, and a thickness of 1.5 mm into a length of 20 mm and a width of 20 mm. In addition, as shown in FIG. 4, in order to introduce and discharge cells into the cell fusion container, the spacer has an introduction flow path (29) for introducing cells and an introduction port (19) communicating with the cells, and discharge for discharging cells. A flow path (30) and a discharge port (20) communicating therewith were provided. Further, as shown in FIG. 4, the introduction port has a 1 mL capacity syringe A (34), a 1 mL capacity syringe B (35), and a 10 mL capacity syringe C (36) via the cell fusion solution introduction channel (2). ) Were connected via valves (21) as cell fusion solution introduction switching means, respectively.

また、複数の微細孔を有する絶縁体(8)は、図11に示すフォトリソグラフィーとエッチングによる方法により下部電極に一体形成することで作製した。   Further, the insulator (8) having a plurality of fine holes was produced by integrally forming the lower electrode by a photolithography and etching method shown in FIG.

まずはじめにITO(23)を成膜したパイレックス(登録商標)ガラス(24)のITO成膜面にレジスト(25)を2.5μmの膜厚になるようスピンコーターを用いて塗布し、45分自然乾燥後、ホットプレートを用いてプリベーク(80℃、15分)を行った。レジストにはキシレン系のネガタイプレジストを用いた。次に、縦30mm×横30mmのエリアに、微細孔と微細孔の縦と横の間隔が30μmで、縦1000個×横1000個のアレイ状に並べた直径φ7μmの微細孔パターンを描いた露光用フォトマスク(26)を用いて、UV露光機にてレジストを露光(27)し、現像液(33)で現像した。露光時間と現像時間は、微細孔の深さがレジストの膜厚と等しい2.5μmになるように調整し、微細孔の底面にITOが露出するようにした。現像後、ホットプレートを用いてポストベーク(115℃、30分)を行いレジストを固めた。   First, a resist (25) was applied to the ITO film-forming surface of Pyrex (registered trademark) glass (24) on which ITO (23) was formed using a spin coater so as to have a film thickness of 2.5 μm. After drying, pre-baking (80 ° C., 15 minutes) was performed using a hot plate. A xylene negative resist was used as the resist. Next, an exposure depicting a microhole pattern having a diameter of 7 μm arranged in an array of 1000 vertical x 1000 horizontal in an area of 30 mm vertical by 30 mm horizontal and the vertical and horizontal spacing of the micropores is 30 μm. The resist was exposed (27) with a UV exposure machine using a photomask (26), and developed with a developer (33). The exposure time and development time were adjusted so that the depth of the micropores was 2.5 μm, which is equal to the film thickness of the resist, so that the ITO was exposed on the bottom surfaces of the micropores. After development, the resist was hardened by post-baking (115 ° C., 30 minutes) using a hot plate.

このようにして作製した上部電極(14)、スペーサー(16)、微細孔付き絶縁体一体型下部電極(28)を図5のように積層し圧着した。図5は、図4に示した細胞融合容器のAA’断面図である。スペーサーであるシリコンシートの表面は粘着性があり、圧着することで各部品は密着し、細胞を含有した細胞融合液を漏れなく細胞融合容器の中に入れることができた。スペーサーをくりぬいた面積が縦20mm×横20mmであることから、この空間に存在する微細孔の数は約40万個である。   The upper electrode (14), spacer (16), and fine hole-integrated insulator-integrated lower electrode (28) thus produced were laminated and pressure bonded as shown in FIG. FIG. 5 is a cross-sectional view taken along the line AA ′ of the cell fusion container shown in FIG. 4. The surface of the silicon sheet, which is a spacer, was sticky, and the parts were brought into close contact with each other by pressure bonding, and the cell fusion solution containing cells could be put into the cell fusion container without leakage. Since the area where the spacer is hollowed is 20 mm long × 20 mm wide, the number of micropores existing in this space is about 400,000.

電極間に電圧を印加する電源は、交流電源(5)として信号発生器(エヌエフ回路設計ブロック製、WF1966)、直流パルス電源(6)として細胞融合用電源(ネッパジーン製、LF101)を導電線(3)を介して接続し、交流電源と直流パルス電源は電源切替え機構(7)により電極への接続を切替えられるようにした。   As a power source for applying a voltage between the electrodes, a signal generator (NF circuit design block, WF1966) is used as an AC power source (5), and a cell fusion power source (manufactured by Nepagene, LF101) is used as a conductive wire (NF1). 3), the connection between the AC power supply and the DC pulse power supply can be switched by the power supply switching mechanism (7).

前述した細胞融合装置を用いて、マウスの脾臓細胞(直径約6μm)とマウスのミエローマ細胞(直径約10μm)を用いて細胞融合を行った。ミエローマ細胞は細胞融合する前にシアル酸分解酵素で処理したものを用い、マウスの脾臓細胞は、細胞融合領域に導入し微細孔に固定した後、細胞融合領域でシアル酸分解酵素処理した後、細胞融合し融合再生確率を確認した。   Using the above-described cell fusion apparatus, cell fusion was performed using mouse spleen cells (diameter about 6 μm) and mouse myeloma cells (diameter about 10 μm). Myeloma cells were treated with sialic acid degrading enzyme before cell fusion, and mouse spleen cells were introduced into the cell fusion region and fixed in micropores, then treated with sialic acid degrading enzyme in the cell fusion region, Cell fusion was performed and the fusion regeneration probability was confirmed.

まず、マウスから脾臓細胞を取り出した。密閉瓶中にキムタオルを入れ、セボフルラン(丸石製薬製)を用いてマウスを安楽死させた。70%消毒用エタノールをマウスに十分散布した後、クリーンベンチ内の解剖台に注射針で固定した。次にピンセットで外皮を摘み上げ解剖用ハサミで切り込みを入れ、まず外皮を切り取った。次に新しい別のハサミを用いて内皮を切り開き、脾臓を露出させ、ピンセットを用いて脾臓を体外に引き出しながら、ハサミで脾臓をマウスの体から切断した。50mL遠心チューブに10mLの10%FBS(ウシ血清)を含む動物細胞培養用の培地(以下、培地Aと称する)を入れておき、その中に脾臓を移して揺り動かし、表面を洗った。次に脾臓をφ9cmスミロン製シャーレの蓋の上に移し、2本のピンセットを用いて、摘出した脾臓の周りに付着した脂肪を除いた。φ9cmスミロン製シャーレ中に10mLの培地Aを入れ、40mLメッシュのセルストレーナ(Falcon製)中で脾臓を4〜5の小片になるように新しいハサミで切断し、5mLテルモシリンジの尾部の平坦部を用いて脾臓を十分すり潰した。セルストレーナとテルモシリンジの尾部に付着した脾臓細胞は培地Aで洗い流した。シャーレ中の脾臓細胞の入った懸濁液は50mL遠心チューブに移し、シャーレを培地Aで2回洗浄し、洗浄液も遠心チューブ内で混合した。脾臓細胞の入った懸濁液を1500rpm、室温で5分間遠心分離後、上清をアスピレータで吸引し、脾臓細胞のペレットを解きほぐした。次に1mLのFBS中に解きほぐした脾臓細胞を懸濁した後、赤血球破砕液(SIGMA製)を9mL加えてよく混合し、室温で3分間静置し、赤血球の破砕を行った。再び脾臓細胞の入った懸濁液を1500rpm、室温で5分間遠心分離後、上清をアスピレータで吸引し、細胞ペレットを解きほぐした後、20mLの培地Aに懸濁した(この状態の懸濁液を以下、脾臓細胞抽出液と称する)。セルストレーナを用いて、50mL遠心チューブ中に脾臓細胞抽出液を入れろ過し、この脾臓細胞が入った懸濁液の内、10mLを1500rpm、室温で5分間遠心分離後、上清をアスピレータで吸引し、脾臓細胞のペレットを解きほぐした。すぐに10mLの無血清動物細胞培養用の培地(以下、培地Bと称する)に解きほぐした脾臓細胞を懸濁させた後、1500rpm、室温で5分間遠心分離し、上清をアスピレータで吸引した後、脾臓細胞のペレットを解きほぐし、培地Bで脾臓細胞を洗浄した。   First, spleen cells were removed from the mouse. Kim towel was placed in a sealed bottle, and the mouse was euthanized using sevoflurane (manufactured by Maruishi Pharmaceutical). After 70% disinfectant ethanol was sufficiently sprayed on the mouse, it was fixed to a dissection table in a clean bench with an injection needle. Next, the outer skin was picked up with tweezers and cut with scissors for dissection, and the outer skin was first cut out. The endothelium was then cut open with another new scissors to expose the spleen, and the spleen was cut from the mouse body with scissors while the spleen was pulled out of the body using tweezers. A medium for animal cell culture (hereinafter referred to as medium A) containing 10 mL of 10% FBS (bovine serum) was placed in a 50 mL centrifuge tube, and the spleen was moved and shaken therein to wash the surface. Next, the spleen was transferred onto a lid of a petri dish made of φ9 cm Sumilon, and fat adhered around the extracted spleen was removed using two tweezers. Place 10 mL of medium A in a Petri dish made of φ9 cm Sumilon, cut the spleen with new scissors into 4-5 pieces in a 40 mL mesh cell strainer (Falcon), and cut the flat part of the tail of the 5 mL Terumo syringe. The spleen was ground thoroughly. Spleen cells adhering to the cell strainer and the tail of the Terumo syringe were washed away with medium A. The suspension containing the spleen cells in the petri dish was transferred to a 50 mL centrifuge tube, the petri dish was washed twice with medium A, and the washing solution was also mixed in the centrifuge tube. The suspension containing the spleen cells was centrifuged at 1500 rpm for 5 minutes at room temperature, and then the supernatant was aspirated with an aspirator to loosen the spleen cell pellets. Next, after suspending the undissolved spleen cells in 1 mL of FBS, 9 mL of erythrocyte disruption solution (manufactured by SIGMA) was added and mixed well, and the mixture was allowed to stand at room temperature for 3 minutes to disrupt the erythrocytes. The suspension containing the spleen cells was again centrifuged at 1500 rpm for 5 minutes at room temperature, and the supernatant was aspirated with an aspirator to unravel the cell pellet and then suspended in 20 mL of medium A (the suspension in this state). Is hereinafter referred to as a spleen cell extract). Using a cell strainer, put the spleen cell extract into a 50 mL centrifuge tube, filter, and centrifuge 10 mL of this spleen cell-containing suspension at 1500 rpm at room temperature for 5 minutes, and then aspirate the supernatant with an aspirator. Then, the spleen cell pellet was loosened. Immediately after suspending the undissolved spleen cells in 10 mL of serum-free animal cell culture medium (hereinafter referred to as medium B), the mixture was centrifuged at 1500 rpm for 5 minutes at room temperature, and the supernatant was aspirated with an aspirator. The pellet of spleen cells was unwound and the spleen cells were washed with medium B.

次に300mMのマンニトール、0.1mMのCaCl、0.1mMのMgCl、0.1mg/mLのBSAの入った20mLの細胞融合液(以下、細胞融合液Aと称する)に脾臓細胞を懸濁させた後、1500rpm、室温で5分間遠心分離し、上清をアスピレータで吸引した後、脾臓細胞のペレットを解きほぐし、細胞融合液Aで脾臓細胞を洗浄した。再び少量の細胞融合液Aに脾臓細胞を懸濁し、セルストレーナを用いて50mLファルコンチューブ内にろ過を行い、細胞融合液Aで希釈して、脾臓細胞の最終濃度を0.9×10個/mLに調整した脾臓細胞の入った細胞融合液を準備した。なお、300mMのマンニトールを主成分とする細胞融合液は、細胞の浸透圧とほぼ等張である。 Next, spleen cells were suspended in 20 mL of a cell fusion solution (hereinafter referred to as cell fusion solution A) containing 300 mM mannitol, 0.1 mM CaCl 2 , 0.1 mM MgCl 2 , and 0.1 mg / mL BSA. After turbidity, the mixture was centrifuged at 1500 rpm for 5 minutes at room temperature, and the supernatant was aspirated. Then, the spleen cell pellet was unwound and the spleen cells were washed with the cell fusion solution A. Again, spleen cells are suspended in a small amount of cell fusion solution A, filtered into a 50 mL Falcon tube using a cell strainer, diluted with cell fusion solution A, and the final concentration of spleen cells is 0.9 × 10 6 cells. A cell fusion solution containing spleen cells adjusted to / mL was prepared. A cell fusion solution containing 300 mM mannitol as a main component is almost isotonic with the osmotic pressure of cells.

また、ミエローマ細胞は常に1×10個/mL以下の濃度になるように、φ15cm浮遊培養用シャーレ中培地Aに懸濁し、37℃、5%のCOインキュベーター内で継代したものを用いた。細胞融合の前日、ミエローマ細胞の濃度が2.0×10個/mLとなるように培地Aにミエローマ細胞を懸濁し、φ15cm浮遊培養用シャーレ中、培地Aの液量40mLをミエローマ培養液とし、3枚培養を行った。ミエローマ培養液をシャーレから遠心チューブに移し、1000rpmで5分間遠心分離後、上清をアスピレータで吸引し、ミエローマの細胞ペレットを解きほぐした。すぐに40mLの培地Bを各チューブに分散するように加えてミエローマ細胞を懸濁させ、1本のチューブにまとめた後、再び1000rpm、室温で5分間遠心分離し、上清をアスピレータで吸引してミエローマ細胞のペレットを解きほぐした。0.2U/mLのシアル酸分解酵素(Sigma製)を含む10mLの培地Bにミエローマ細胞を再懸濁し、37℃で1時間処理した。次に1000pmで5分間遠心分離後、上清をアスピレータで吸引し、ミエローマ細胞のペレットを解きほぐした。すぐに50mLの培地Bを各チューブに分散するように加えてミエローマ細胞を懸濁させ、1本のチューブにまとめた後、再び1000rpm、室温で5分間遠心分離し、上清をアスピレータで吸引してミエローマ細胞のペレットを解きほぐした。20mLの培地Bにミエローマ細胞を再懸濁し、1000rpm、室温で5分間遠心分離後、上清をアスピレータで吸引し、ミエローマ細胞のペレットを解きほぐした。 In addition, the myeloma cells were suspended in the medium A in a φ15 cm suspension culture dish so that the concentration was always 1 × 10 6 cells / mL or less, and the cells were subcultured in a CO 2 incubator at 37 ° C. and 5%. It was. The day before cell fusion, suspend myeloma cells in medium A so that the concentration of myeloma cells is 2.0 × 10 5 cells / mL, and use 40 mL of medium A as a myeloma culture solution in a φ15 cm suspension culture dish. Three cultures were performed. The myeloma culture was transferred from the petri dish to a centrifuge tube, centrifuged at 1000 rpm for 5 minutes, and the supernatant was aspirated with an aspirator to loosen the myeloma cell pellet. Immediately add 40 mL of medium B to each tube to suspend the myeloma cells, combine them into one tube, centrifuge again at 1000 rpm at room temperature for 5 minutes, and aspirate the supernatant with an aspirator. Then, the pellet of the myeloma cells was loosened. Myeloma cells were resuspended in 10 mL of medium B containing 0.2 U / mL sialic acid-degrading enzyme (manufactured by Sigma) and treated at 37 ° C. for 1 hour. Next, after centrifugation at 1000 pm for 5 minutes, the supernatant was aspirated and the myeloma cell pellets were unwound. Immediately add 50 mL of medium B to each tube to suspend the myeloma cells, combine them into one tube, centrifuge again at 1000 rpm and room temperature for 5 minutes, and aspirate the supernatant with an aspirator. Then, the pellet of the myeloma cells was loosened. The myeloma cells were resuspended in 20 mL of medium B, centrifuged at 1000 rpm at room temperature for 5 minutes, the supernatant was aspirated with an aspirator, and the myeloma cell pellets were loosened.

次に、40mLの細胞融合液Aにミエローマ細胞を再懸濁し、1000rpm、室温で5分間遠心分離し、上清をアスピレータで吸引し、ミエローマ細胞のペレットを解きほぐした。再び少量の細胞融合液Aにミエローマ細胞を懸濁し、セルストレーナを用いて50mLファルコンチューブ内にろ過を行い、細胞融合液Aで希釈して、最終濃度を3.7×10個/mLに調整したシアル酸分解酵素で処理したミエローマ細胞の入った細胞融合液を準備した。 Next, the myeloma cells were resuspended in 40 mL of the cell fusion solution A, centrifuged at 1000 rpm at room temperature for 5 minutes, the supernatant was aspirated with an aspirator, and the myeloma cell pellet was unwound. The myeloma cells are suspended again in a small amount of the cell fusion solution A, filtered in a 50 mL falcon tube using a cell strainer, diluted with the cell fusion solution A, and the final concentration is 3.7 × 10 6 cells / mL. A cell fusion solution containing myeloma cells treated with the prepared sialic acid-degrading enzyme was prepared.

上記、脾臓細胞の入った細胞融合液を細胞融合装置のシリンジAに入れ、シアル酸分解酵素で処理したミエローマ細胞の入った細胞融合液をシリンジBに入れ、0.2U/mLのシアル酸分解酵素を含む動物細胞培養培地をシリンジCに入れ、細胞融合溶液AをシリンジDに入れた。   The cell fusion solution containing spleen cells is placed in syringe A of the cell fusion device, the cell fusion solution containing myeloma cells treated with sialic acid-degrading enzyme is placed in syringe B, and 0.2 U / mL sialic acid degradation is performed. Animal cell culture medium containing the enzyme was placed in syringe C, and cell fusion solution A was placed in syringe D.

まずはじめに、上記脾臓細胞の入った細胞融合液を600μL(損失分も考慮すると脾臓細胞数は約40万個)をシリンジAを用いて細胞融合領域に導入し、細胞融合領域内で脾臓細胞を十分に沈降させた。次に、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加し、約40万個の微細孔に、ほぼ1つの微細孔に1つずつ、脾臓細胞をアレイ状に固定した。続いて、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加したまま、シリンジCを用いて、0.2U/mLのシアル酸分解酵素を含む動物細胞培養培地600μLを3回に分けて細胞融合領域に導入し、交流電源を切断して電圧を印加せずに室温で45分間静置した。これにより、細胞融合領域内で脾臓細胞をシアル酸分解酵素で処理することができた。   First, 600 μL of the cell fusion solution containing the spleen cells (the number of spleen cells is approximately 400,000 considering the loss) is introduced into the cell fusion region using syringe A, and the spleen cells are introduced into the cell fusion region. It was allowed to settle sufficiently. Next, a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz is applied between the electrodes by an AC power source, and spleen cells are fixed in an array of approximately 400,000 micropores and one in each micropore. did. Subsequently, 3 μL of animal cell culture medium containing 0.2 U / mL sialic acid-degrading enzyme was added using syringe C, while a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz was applied between the electrodes by an AC power source. The cells were introduced into the cell fusion region in batches, and the AC power supply was cut off and allowed to stand at room temperature for 45 minutes without applying a voltage. As a result, spleen cells could be treated with sialic acid degrading enzyme in the cell fusion region.

次に、シリンジDを用いて細胞融合液Aを細胞融合領域に2〜3回導入し、細胞融合領域に入っていたシアル酸分解酵素を含む動物細胞培養培地を細胞融合液Aで置換した。   Next, the cell fusion solution A was introduced into the cell fusion region 2 to 3 times using the syringe D, and the animal cell culture medium containing the sialic acid degrading enzyme contained in the cell fusion region was replaced with the cell fusion solution A.

次に、上記シアル酸分解酵素で処理したミエローマ細胞の入った細胞融合液を600μL(細胞の損失分も考慮すると、ミエローマ細胞数は約200万個)をシリンジBを用いて細胞融合領域に導入した。この場合、脾臓細胞の数の約4〜5倍多いミエローマ細胞を細胞融合領域に導入したので、微細孔に固定された脾臓細胞の上に、少なくとも1つのミエローマ細胞が接触した状態になっているものと推定される。   Next, 600 μL of the cell fusion solution containing the myeloma cells treated with the above-mentioned sialic acid-degrading enzyme (the number of myeloma cells is about 2 million considering the loss of cells) is introduced into the cell fusion region using syringe B. did. In this case, since about 4 to 5 times as many myeloma cells as the number of spleen cells were introduced into the cell fusion region, at least one myeloma cell is in contact with the spleen cells fixed in the micropores. Estimated.

次に、電源切替え機構により電源を直流パルス電源(ネッパジーン株式会社製、LF101)に切替えて、電極間に電圧80V、パルス幅30μsの直流パルス電圧を印加し細胞融合を行い、そのまま10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地(H:ヒポキサンチン(hypoxanthine)、A:アミノプテリン(aminopterine)、T:チミジン(thymidine)を成分とする培地)に入れ、融合細胞の培養を行った。なお、HAT培地は、融合細胞のみを選択的に増殖させる培地である(以上を融合方法Aと称する)。   Next, the power source is switched to a direct current pulse power source (manufactured by Nepagene Co., Ltd., LF101) by the power source switching mechanism, a direct current pulse voltage with a voltage of 80 V and a pulse width of 30 μs is applied between the electrodes, cell fusion is performed, and the state is left for 10 minutes. After that, the cell suspension in the cell fusion container is placed in a HAT medium (H: medium containing hypoxanthine, A: aminopterine, T: thymidine). Went. The HAT medium is a medium for selectively growing only fused cells (the above is referred to as fusion method A).

次に同じ仕様の別の細胞融合容器を用い、別の融合プロセスにて細胞融合を行った。上記脾臓細胞の入った細胞融合液を600μL(損失分も考慮すると脾臓細胞数は約40万個)をシリンジAを用いて細胞融合領域に導入し、細胞融合領域内で脾臓細胞を十分に沈降させた。次に、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加し、約40万個の微細孔に、ほぼ1つの微細孔に1つずつ、脾臓細胞をアレイ状に固定した。続いて、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記シアル酸分解酵素で処理したミエローマ細胞の入った細胞融合液を600μL(細胞の損失分も考慮すると、ミエローマ細胞数は約200万個)をシリンジBを用いて細胞融合領域に導入した。次に、電源切替え機構により電源を直流パルス電源(ネッパジーン株式会社製、LF101)に切替えて、電極間に電圧80V、パルス幅30μsの直流パルス電圧を印加し細胞融合を行い、そのまま10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れ、融合細胞の培養を行った(以上を融合方法Bと称する)。   Next, another cell fusion container having the same specification was used, and cell fusion was performed in a different fusion process. 600 μL of the cell fusion solution containing the spleen cells (the number of spleen cells is approximately 400,000 considering the loss) is introduced into the cell fusion region using syringe A, and the spleen cells are sufficiently precipitated in the cell fusion region. I let you. Next, a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz is applied between the electrodes by an AC power source, and spleen cells are fixed in an array of approximately 400,000 micropores and one in each micropore. did. Subsequently, 600 μL of cell fusion solution containing myeloma cells treated with the above-mentioned sialic acid-degrading enzyme was applied while a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz was applied between the electrodes with an AC power source (considering cell loss). Then, about 2 million myeloma cells) were introduced into the cell fusion region using syringe B. Next, the power source is switched to a direct current pulse power source (manufactured by Nepagene Co., Ltd., LF101) by the power source switching mechanism, a direct current pulse voltage with a voltage of 80 V and a pulse width of 30 μs is applied between the electrodes, cell fusion is performed, and the state is left for 10 minutes Thereafter, the cell suspension in the cell fusion container was placed in a HAT medium, and the fused cells were cultured (the above is referred to as fusion method B).

細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、融合方法Aでは96個の融合細胞、融合方法Bでは54個の融合細胞を確認することができ、細胞融合容器に導入したマウスの脾臓細胞数約40万個に対してそれぞれ融合方法Aでは2.4/10000、融合方法Bでは1.8/10000の融合再生確率を得られた。融合方法Aの融合再生確率は、比較例1に示した通常の電気的細胞融合法における融合再生確率0.2/10000の12倍、比較例2の通常の電気的細胞融合法において細胞をシアル酸分解酵素で処理した場合の融合再生確率0.25/10000の約10倍であり、非常に高い融合再生確率を得ることができた。また、融合方法Aの融合再生確率は融合方法Bの融合再生確率に比べて1.3倍であり、融合領域内の微細孔に脾臓細胞を固定したままでシアル酸分解酵素処理を行い、そのまま溶液置換して融合することでより良好な融合再生確率を得ることができた。 The HAT medium containing the cell suspension was placed in a CO 2 incubator and cultured, and after 6 days, the number of fused cells was counted. As a result, 96 fused cells were obtained in fusion method A, and 54 fused cells were obtained in fusion method B. The fusion regeneration probability of 2.4 / 10000 for fusion method A and 1.8 / 10000 for fusion method B was obtained for approximately 400,000 spleen cells of mice introduced into the cell fusion container. It was. The fusion regeneration probability of fusion method A is 12 times the fusion regeneration probability of 0.2 / 10000 in the normal electrical cell fusion method shown in Comparative Example 1, and the cells are sialized in the normal electrical cell fusion method of Comparative Example 2. The fusion regeneration probability when treated with an acid-degrading enzyme was about 10 times the 0.25 / 10000 fusion regeneration rate, and a very high fusion regeneration probability could be obtained. In addition, the fusion regeneration probability of fusion method A is 1.3 times that of fusion method B, and sialic acid-degrading enzyme treatment is performed with the spleen cells fixed in the micropores in the fusion region. Better fusion regeneration probability could be obtained by solution replacement and fusion.

(比較例1)
比較例1として、通常の電気的細胞融合法を行った。電気的細胞融合法を行う電極には、電極間1mmの金製のワイヤー電極(ネッパジーン株式会社製、MSゴールドワイヤー電極)を用い、この電極に細胞融合用電源(ネッパジーン製、LF101)を接続した。
(Comparative Example 1)
As Comparative Example 1, a normal electric cell fusion method was performed. As an electrode for performing the electric cell fusion method, a gold wire electrode (Neppagene Co., Ltd., MS Gold Wire Electrode) having a 1 mm gap between the electrodes was used, and a cell fusion power source (Neppagene, LF101) was connected to this electrode. .

細胞は、実施例1に用いたマウスの脾臓細胞とマウスのミエローマ細胞を用いた。脾臓細胞とミエローマ細胞を4:1で混合し、実施例1で用いた細胞融合液Aに懸濁させ、1.7×10個/mLの密度になるように細胞融合液を調整した。 As the cells, mouse spleen cells and mouse myeloma cells used in Example 1 were used. Spleen cells and myeloma cells were mixed at a ratio of 4: 1, suspended in the cell fusion solution A used in Example 1, and the cell fusion solution was adjusted to a density of 1.7 × 10 7 cells / mL.

上記細胞融合液40μL(脾臓細胞数約60万個、ミエローマ細胞数約15万個)を電極間に注入し、細胞融合用電源を用いて、ピーク電圧10V、周波数3MHzの正弦波交流電圧を電極間に印加し、細胞融合を行うため、電圧値200V、パルス幅30μsの直流パルス電圧を印加した。10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れた。細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、12個の融合細胞を確認することができ、全マウス抗体産生細胞60万個に対して0.2/10000の融合再生確率を得られた。 40 μL of the cell fusion solution (approximately 600,000 spleen cells, approximately 150,000 myeloma cells) is injected between the electrodes, and a sine wave AC voltage with a peak voltage of 10 V and a frequency of 3 MHz is applied to the electrodes using a cell fusion power source. A DC pulse voltage having a voltage value of 200 V and a pulse width of 30 μs was applied in order to perform cell fusion. After standing for 10 minutes, the cell suspension in the cell fusion container was placed in HAT medium. The HAT medium containing the cell suspension was placed in a CO 2 incubator and cultured. The number of fused cells was counted after 6 days. As a result, 12 fused cells could be confirmed, and 600,000 total mouse antibody-producing cells were obtained. As a result, a fusion reproduction probability of 0.2 / 10000 was obtained.

(比較例2)
比較例2として、通常の電気的細胞融合法において、細胞をシアル酸分解酵素で処理する細胞融合を行った。電気的細胞融合法を行う電極には、電極間1mmの金製のワイヤー電極(ネッパジーン株式会社製、MSゴールドワイヤー電極)を用い、この電極に細胞融合用電源(ネッパジーン製、LF101)を接続した。
(Comparative Example 2)
As Comparative Example 2, cell fusion was performed by treating cells with a sialic acid-degrading enzyme in a normal electric cell fusion method. As an electrode for performing the electric cell fusion method, a gold wire electrode (Neppagene Co., Ltd., MS Gold Wire Electrode) having a 1 mm gap between the electrodes was used, and a cell fusion power source (Neppagene, LF101) was connected to this electrode. .

細胞は、実施例1に用いたマウスの脾臓細胞とマウスのミエローマ細胞を用いた。脾臓細胞とミエローマ細胞を4:1で混合し、実施例1で用いた細胞融合液Aに懸濁させ、さらに実施例1で用いた0.2U/mLのシアル酸分解酵素を含む動物細胞培養培地を適量加え1.7×10個/mLの密度になるように細胞融合液を調整し、室温で45分間静置した。なお、45分静置後、細胞融合液中の細胞の状態を確認したところ、細胞の凝集体が数多く見られた。 As the cells, mouse spleen cells and mouse myeloma cells used in Example 1 were used. Spleen cells and myeloma cells were mixed at a ratio of 4: 1, suspended in the cell fusion solution A used in Example 1, and further cultured with animal cells containing 0.2 U / mL sialic acid-degrading enzyme used in Example 1. An appropriate amount of the medium was added and the cell fusion solution was adjusted to a density of 1.7 × 10 7 cells / mL, and allowed to stand at room temperature for 45 minutes. When the state of the cells in the cell fusion solution was confirmed after standing for 45 minutes, many cell aggregates were observed.

上記細胞融合液40μL(脾臓細胞数約60万個、ミエローマ細胞数約15万個)を電極間に注入し、細胞融合用電源を用いて、ピーク電圧10V、周波数3MHzの正弦波交流電圧を電極間に印加し、細胞融合を行うため、電圧値200V、パルス幅30μsの直流パルス電圧を印加した。10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れた。細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、15個の融合細胞を確認することができ、全マウス抗体産生細胞60万個に対して0.25/10000の融合再生確率を得られた。 40 μL of the cell fusion solution (approximately 600,000 spleen cells, approximately 150,000 myeloma cells) is injected between the electrodes, and a sine wave AC voltage with a peak voltage of 10 V and a frequency of 3 MHz is applied to the electrodes using a cell fusion power source. A DC pulse voltage having a voltage value of 200 V and a pulse width of 30 μs was applied in order to perform cell fusion. After standing for 10 minutes, the cell suspension in the cell fusion container was placed in HAT medium. The HAT medium containing the cell suspension was placed in a CO 2 incubator and cultured, and after 6 days, the number of fused cells was counted. As a result, 15 fused cells could be confirmed, and 600,000 total mouse antibody-producing cells were produced. As a result, a fusion reproduction probability of 0.25 / 10000 was obtained.

(実施例2)
実施例1で使用した細胞融合装置を用いて、マウスの脾臓細胞とマウスのミエローマ細胞を用いて細胞融合を行った。実施例1で用いた300mMのマンニトールを主成分とする細胞融合液A、および浸透圧より低張の200mMのマンニトール、0.1mMのCaCl、0.1mMのMgCl、0.1mg/mLのBSAの入った細胞融合液Bにそれぞれ懸濁させた脾臓細胞とミエローマ細胞を用い、細胞融合を行った。
(Example 2)
Using the cell fusion device used in Example 1, cell fusion was performed using mouse spleen cells and mouse myeloma cells. Cell fusion solution A based on 300 mM mannitol used in Example 1, 200 mM mannitol hypotonic than osmotic pressure, 0.1 mM CaCl 2 , 0.1 mM MgCl 2 , 0.1 mg / mL Cell fusion was performed using spleen cells and myeloma cells suspended in cell fusion solution B containing BSA.

脾臓細胞は細胞融合液Aまたは細胞融合液Bに懸濁して最終濃度を0.8×10個/mLに調整した。また、ミエローマ細胞は細胞融合液Aに懸濁して最終濃度を6.7×10個/mLに調整した。 Spleen cells were suspended in cell fusion solution A or cell fusion solution B to adjust the final concentration to 0.8 × 10 6 cells / mL. The myeloma cells were suspended in the cell fusion solution A and the final concentration was adjusted to 6.7 × 10 6 cells / mL.

上記、脾臓細胞の入った細胞融合液Aを細胞融合装置のシリンジA、脾臓細胞の入った細胞融合液Bを細胞融合装置のシリンジB,ミエローマ細胞の入った細胞融合液Aを細胞融合装置のシリンジC、ミエローマ細胞の入った細胞融合液Bを細胞融合装置のシリンジD、に入れた。また、細胞融合液BをシリンジEに入れた。   The cell fusion solution A containing the spleen cells is the syringe A of the cell fusion device, the cell fusion solution B containing the spleen cells is the syringe B of the cell fusion device, and the cell fusion solution A containing the myeloma cells is the cell fusion device. Syringe C and cell fusion solution B containing myeloma cells were placed in syringe D of the cell fusion device. Moreover, the cell fusion solution B was put into the syringe E.

まずはじめに、上記脾臓細胞の入った細胞融合液Aを600μL(損失分も考慮すると脾臓細胞数は約40万個)をシリンジAを用いて細胞融合領域に導入し、細胞融合領域内で脾臓細胞を十分に沈降させた。次に、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加し、約40万個の微細孔に、ほぼ1つの微細孔に1つずつ、脾臓細胞をアレイ状に固定した。続いて、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記ミエローマ細胞の入った細胞融合液Aを600μL(細胞の損失分も考慮すると、ミエローマ細胞数は約350万個)をシリンジCを用いて細胞融合領域に導入した。この場合、脾臓細胞の数の約4〜5倍多いミエローマ細胞を細胞融合領域に導入したので、微細孔に固定された脾臓細胞の上に、少なくとも1つのミエローマ細胞が接触した状態になっているものと推定される。次に、引き続き、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加したまま、シリンジEを用いて600μLの細胞融合液Bを2回、細胞融合領域に導入し、細胞融合領域の細胞融合液を置換した(以上を融合方法Cと称する)。   First, 600 μL of the cell fusion solution A containing the spleen cells (the number of spleen cells is approximately 400,000 considering the loss) is introduced into the cell fusion region using the syringe A, and the spleen cells are introduced into the cell fusion region. Was allowed to settle sufficiently. Next, a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz is applied between the electrodes by an AC power source, and spleen cells are fixed in an array of approximately 400,000 micropores and one in each micropore. did. Subsequently, 600 μL of the cell fusion solution A containing the myeloma cells was applied while a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz was applied between the electrodes with an AC power supply (considering the loss of cells, the number of myeloma cells was About 3.5 million) were introduced into the cell fusion region using syringe C. In this case, since about 4 to 5 times as many myeloma cells as the number of spleen cells were introduced into the cell fusion region, at least one myeloma cell was in contact with the spleen cells fixed in the micropores. Estimated. Next, 600 μL of the cell fusion solution B was introduced twice into the cell fusion region using the syringe E while a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz was applied between the electrodes by an AC power source, The cell fusion solution in the fusion region was replaced (the above is referred to as fusion method C).

次に、電源切替え機構により電源を直流パルス電源(ネッパジーン株式会社製、LF101)に切替えて、電極間に電圧80V、パルス幅30μsの直流パルス電圧を印加し細胞融合を行い、そのまま10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れ、融合細胞の培養を行った。   Next, the power source is switched to a direct current pulse power source (manufactured by Nepagene Co., Ltd., LF101) by the power source switching mechanism, a direct current pulse voltage with a voltage of 80 V and a pulse width of 30 μs is applied between the electrodes, cell fusion is performed, and the state is left for 10 minutes. Thereafter, the cell suspension in the cell fusion container was placed in a HAT medium to culture the fused cells.

次に同じ仕様の別の細胞融合容器を用い、別の融合プロセスにて細胞融合を行った。上記脾臓細胞の入った細胞融合液Bを600μL(損失分も考慮すると脾臓細胞数は約40万個)をシリンジBを用いて細胞融合領域に導入し、細胞融合領域内で脾臓細胞を十分に沈降させた。次に、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加し、約40万個の微細孔に、ほぼ1つの微細孔に1つずつ、脾臓細胞をアレイ状に固定した。続いて、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記ミエローマ細胞の入った細胞融合液Bを600μL(細胞の損失分も考慮すると、ミエローマ細胞数は約400万個)をシリンジDを用いて細胞融合領域に導入した。この場合、脾臓細胞の数の約4〜5倍多いミエローマ細胞を細胞融合領域に導入したので、微細孔に固定された脾臓細胞の上に、少なくとも1つのミエローマ細胞が接触した状態になっているものと推定される。   Next, another cell fusion container having the same specification was used, and cell fusion was performed in a different fusion process. Using the syringe B, introduce 600 μL of the cell fusion solution B containing the spleen cells (the number of spleen cells is approximately 400,000 considering the loss) into the cell fusion region. Allowed to settle. Next, a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz is applied between the electrodes by an AC power source, and spleen cells are fixed in an array of approximately 400,000 micropores and one in each micropore. did. Subsequently, while applying a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz between the electrodes by an AC power source, 600 μL of the cell fusion solution B containing the myeloma cells (in consideration of cell loss, the number of myeloma cells is About 4 million) were introduced into the cell fusion region using syringe D. In this case, since about 4 to 5 times as many myeloma cells as the number of spleen cells were introduced into the cell fusion region, at least one myeloma cell is in contact with the spleen cells fixed in the micropores. Estimated.

次に、電源切替え機構により電源を直流パルス電源(ネッパジーン株式会社製、LF101)に切替えて、電極間に電圧80V、パルス幅30μsの直流パルス電圧を印加し細胞融合を行い、そのまま10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れ、融合細胞の培養を行った(以上を融合方法Dと称する)。   Next, the power source is switched to a direct current pulse power source (manufactured by Nepagene Co., Ltd., LF101) by the power source switching mechanism, a direct current pulse voltage with a voltage of 80 V and a pulse width of 30 μs is applied between the electrodes, cell fusion is performed, and the state is left for 10 minutes. Thereafter, the cell suspension in the cell fusion container was placed in a HAT medium, and the fused cells were cultured (the above is referred to as fusion method D).

細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、融合方法Cでは304個、融合方法Dでは220個の融合細胞を確認することができ、融合容器に導入したマウスの脾臓細胞数約40万個に対して融合方法Cでは7.6/10000、融合方法Dでは5.5/10000の融合再生確率を得られた。融合方法Cの融合再生確率は、比較例3の通常の電気的細胞融合法において、はじめから細胞の浸透圧よりも低張の200mMのマンニトールを主成分とした細胞融合液Bを用いて細胞融合した場合の融合再生確率0.23/10000の約33倍であり、非常に高い融合再生確率を得ることができた。また、融合方法Cの融合再生確率は融合方法Dの融合再生確率に比べて1.4倍であり、融合領域内の微細孔に脾臓細胞を固定したまま、融合直前に浸透圧より低張の糖溶液で置換して融合を行うことで、より良好な融合再生確率を得ることができた。 After culturing cells in a CO 2 incubator with HAT medium containing the cell suspension and counting the number of fused cells after 6 days, 304 fused cells in fusion method C and 220 fused cells in fusion method D should be confirmed. The fusion regeneration probability of 7.6 / 10000 for fusion method C and 5.5 / 10000 for fusion method D was obtained for approximately 400,000 spleen cells of mice introduced into the fusion container. The fusion regeneration probability of the fusion method C is the same as that in the normal electric cell fusion method of Comparative Example 3, using the cell fusion solution B mainly composed of 200 mM mannitol, which is hypotonic than the osmotic pressure of the cells from the beginning. In this case, the fusion reproduction probability was about 33 times the 0.23 / 10000, and a very high fusion reproduction probability could be obtained. In addition, the fusion regeneration probability of fusion method C is 1.4 times that of fusion method D, and the spleen cells are fixed in the micropores in the fusion region, and the hypotonicity is lower than the osmotic pressure immediately before the fusion. A better fusion regeneration probability could be obtained by substituting with a sugar solution for fusion.

(比較例3)
比較例3として、通常の電気的細胞融合法において、はじめから細胞の浸透圧よりも低張の200mMのマンニトールを主成分とした細胞融合液Bを用いて細胞融合を行った。電気的細胞融合法を行う電極には、電極間1mmの金製のワイヤー電極(ネッパジーン株式会社製、MSゴールドワイヤー電極)を用い、この電極に細胞融合用電源(ネッパジーン製、LF101)を接続した。
(Comparative Example 3)
As Comparative Example 3, cell fusion was performed using a cell fusion solution B composed mainly of 200 mM mannitol, which is hypotonic from the beginning of the cell osmotic pressure in a normal electric cell fusion method. As an electrode for performing the electric cell fusion method, a gold wire electrode (Neppagene Co., Ltd., MS Gold Wire Electrode) having a 1 mm gap between the electrodes was used, and a cell fusion power source (Neppagene, LF101) was connected to this electrode. .

細胞は、実施例2に用いたマウスの脾臓細胞とマウスのミエローマ細胞を用いた。脾臓細胞とミエローマ細胞を4:1で混合し、実施例2で用いた細胞融合液Bに懸濁させ1.7×10個/mLの密度になるように細胞融合液を調整した。なお、調整後、細胞融合液中の細胞の状態を確認したところ、死滅した細胞が数多く見られた。 As the cells, mouse spleen cells and mouse myeloma cells used in Example 2 were used. Spleen cells and myeloma cells were mixed at a ratio of 4: 1, suspended in the cell fusion solution B used in Example 2, and the cell fusion solution was adjusted to a density of 1.7 × 10 7 cells / mL. In addition, after the adjustment, when the state of the cells in the cell fusion solution was confirmed, many dead cells were seen.

上記細胞融合液40μL(脾臓細胞数約60万個、ミエローマ細胞数約15万個)を電極間に注入し、細胞融合用電源を用いて、ピーク電圧10V、周波数3MHzの正弦波交流電圧を電極間に印加し、細胞融合を行うため、電圧値200V、パルス幅30μsの直流パルス電圧を印加した。10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れた。細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、15個の融合細胞を確認することができ、全マウス抗体産生細胞60万個に対して0.23/10000の融合再生確率を得られた。 40 μL of the cell fusion solution (approximately 600,000 spleen cells, approximately 150,000 myeloma cells) is injected between the electrodes, and a sine wave AC voltage with a peak voltage of 10 V and a frequency of 3 MHz is applied to the electrodes using a cell fusion power source. A DC pulse voltage having a voltage value of 200 V and a pulse width of 30 μs was applied in order to perform cell fusion. After standing for 10 minutes, the cell suspension in the cell fusion container was placed in HAT medium. The HAT medium containing the cell suspension was placed in a CO 2 incubator and cultured, and after 6 days, the number of fused cells was counted. As a result, 15 fused cells could be confirmed, and 600,000 total mouse antibody-producing cells were produced. As a result, a fusion reproduction probability of 0.23 / 10000 was obtained.

(実施例3)
実施例3では実施例1で使用した細胞融合装置を用い、マウスの脾臓細胞とマウスのミエローマ細胞を用いて細胞融合を行った。ただし細胞融合容器は、微細孔間隔を20μmピッチとし、スペーサーをくりぬいた部分の微細孔数が100万個のものを用いた。脾臓細胞はセルバンカー中−80℃で凍結していたものを37℃にて解凍し、実施例1で用いた300mMのマンニトールを主成分とする細胞融合液A、および浸透圧より高張の500mMのマンニトール、0.1mMのCaCl、0.1mMのMgCl、0.1mg/mLのBSAの入った細胞融合液Cにそれぞれ懸濁させたものを用意した。また、ミエローマ細胞は細胞融合液Aに懸濁させたものを用いて細胞融合を行った。
(Example 3)
In Example 3, using the cell fusion apparatus used in Example 1, cell fusion was performed using mouse spleen cells and mouse myeloma cells. However, as the cell fusion container, one having a micropore interval of 20 μm and a number of micropores in the portion where the spacer was hollowed out was 1 million. The spleen cells were frozen in a cell banker at −80 ° C. and thawed at 37 ° C., and the cell fusion solution A mainly composed of 300 mM mannitol used in Example 1 and 500 mM of hypertonicity higher than osmotic pressure were used. Suspensions in cell fusion solution C containing mannitol, 0.1 mM CaCl 2 , 0.1 mM MgCl 2 , and 0.1 mg / mL BSA were prepared. In addition, cell fusion was performed using myeloma cells suspended in cell fusion solution A.

脾臓細胞は細胞融合液Aまたは細胞融合液Bに懸濁して最終濃度を1.7×10個/mLに調整した。また、ミエローマ細胞は細胞融合液Aに懸濁して最終濃度を6.7×10個/mLに調整した。 Spleen cells were suspended in cell fusion solution A or cell fusion solution B to adjust the final concentration to 1.7 × 10 6 cells / mL. The myeloma cells were suspended in the cell fusion solution A and the final concentration was adjusted to 6.7 × 10 6 cells / mL.

上記、脾臓細胞の入った細胞融合液Aを細胞融合装置のシリンジA、脾臓細胞の入った細胞融合液Bを細胞融合装置のシリンジB,ミエローマ細胞の入った細胞融合液Aを細胞融合装置のシリンジCに入れた。   The cell fusion solution A containing the spleen cells is the syringe A of the cell fusion device, the cell fusion solution B containing the spleen cells is the syringe B of the cell fusion device, and the cell fusion solution A containing the myeloma cells is the cell fusion device. Placed in syringe C.

まずはじめに、上記脾臓細胞の入った細胞融合液を600μL(損失分も考慮すると脾臓細胞数は約100万個)をシリンジAを用いて細胞融合領域に導入し、細胞融合領域内で脾臓細胞を十分に沈降させた。次に、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加し、約100万個の微細孔に、ほぼ1つの微細孔に1つずつ、脾臓細胞をアレイ状に固定した。続いて、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記ミエローマ細胞の入った細胞融合液を600μL(細胞の損失分も考慮すると、ミエローマ細胞数は約400万個)をシリンジCを用いて細胞融合領域に導入した。この場合、脾臓細胞の数の約4〜5倍多いミエローマ細胞を細胞融合領域に導入したので、微細孔に固定された脾臓細胞の上に、少なくとも1つのミエローマ細胞が接触した状態になっているものと推定される。   First, 600 μL of the cell fusion solution containing the spleen cells (about 1 million spleen cells considering the loss) is introduced into the cell fusion region using syringe A, and the spleen cells are introduced into the cell fusion region. It was allowed to settle sufficiently. Next, a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz is applied between the electrodes by an AC power source, and spleen cells are fixed in an array of about 1 million micropores, one in each micropore. did. Subsequently, 600 μL of the cell fusion solution containing the myeloma cells was applied while a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz was applied between the electrodes with an AC power supply (considering the loss of cells, the number of myeloma cells was about 4 million) were introduced into the cell fusion region using syringe C. In this case, since about 4 to 5 times as many myeloma cells as the number of spleen cells were introduced into the cell fusion region, at least one myeloma cell is in contact with the spleen cells fixed in the micropores. Estimated.

次に、電源切替え機構により電源を直流パルス電源(ネッパジーン株式会社製、LF101)に切替えて、電極間に電圧100V、パルス幅30μsの直流パルス電圧を印加し細胞融合を行い、そのまま10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れ、融合細胞の培養を行った(以上を融合方法Eと称する)。   Next, the power source switching mechanism is used to switch the power source to a DC pulse power source (LF101, manufactured by Nepagene Co., Ltd.), and a cell is fused by applying a DC pulse voltage with a voltage of 100 V and a pulse width of 30 μs between the electrodes, and left for 10 minutes. Thereafter, the cell suspension in the cell fusion container was placed in a HAT medium, and the fused cells were cultured (the above is referred to as fusion method E).

次に同じ仕様の別の細胞融合容器を用い、別の融合プロセスにて細胞融合を行った。上記脾臓細胞の入った細胞融合液Cを600μL(損失分も考慮すると脾臓細胞数は約100万個)をシリンジBを用いて細胞融合領域に導入し、細胞融合領域内で脾臓細胞を十分に沈降させた。次に、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加し、約100万個の微細孔に、ほぼ1つの微細孔に1つずつ、脾臓細胞をアレイ状に固定した。続いて、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記ミエローマ細胞の入った細胞融合液Aを600μL(細胞の損失分も考慮すると、ミエローマ細胞数は約400万個)をシリンジCを用いて細胞融合領域に導入した。この場合、脾臓細胞の数の約4〜5倍多いミエローマ細胞を細胞融合領域に導入したので、微細孔に固定された脾臓細胞の上に、少なくとも1つのミエローマ細胞が接触した状態になっているものと推定される。   Next, another cell fusion container having the same specification was used, and cell fusion was performed in a different fusion process. 600 μL of the cell fusion solution C containing the spleen cells (the number of spleen cells is about 1 million considering the loss) is introduced into the cell fusion region using the syringe B, and the spleen cells are sufficiently contained in the cell fusion region. Allowed to settle. Next, a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz is applied between the electrodes by an AC power source, and spleen cells are fixed in an array of about 1 million micropores, one in each micropore. did. Subsequently, 600 μL of the cell fusion solution A containing the myeloma cells was applied while a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz was applied between the electrodes with an AC power supply (considering the loss of cells, the number of myeloma cells was About 4 million) were introduced into the cell fusion region using syringe C. In this case, since about 4 to 5 times as many myeloma cells as the number of spleen cells were introduced into the cell fusion region, at least one myeloma cell is in contact with the spleen cells fixed in the micropores. Estimated.

次に、電源切替え機構により電源を直流パルス電源(ネッパジーン株式会社製、LF101)に切替えて、電極間に電圧100V、パルス幅30μsの直流パルス電圧を印加し細胞融合を行い、そのまま10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れ、融合細胞の培養を行った(以上を融合方法Fと称する)。   Next, the power source switching mechanism is used to switch the power source to a DC pulse power source (LF101, manufactured by Nepagene Co., Ltd.), and a cell is fused by applying a DC pulse voltage with a voltage of 100 V and a pulse width of 30 μs between the electrodes, and left for 10 minutes. Thereafter, the cell suspension in the cell fusion container was placed in a HAT medium, and the fused cells were cultured (the above is referred to as fusion method F).

細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、融合方法Eでは1794個、融合方法Fでは2293個の融合細胞を確認することができ、細胞融合容器に導入したマウスの脾臓細胞数約100万個に対してそれぞれ融合方法Eでは17.9/10000、融合方法Fでは22.9/10000の融合再生確率を得られた。融合方法Fの融合再生確率は、比較例4の通常の電気的細胞融合法において、はじめから凍結解凍した脾臓細胞を浸透圧と等張の300mMのマンニトールを主成分とした細胞融合液Aを用いて細胞融合した場合の融合再生確率0.16/10000の143.1倍であり、非常に高い融合再生確率を得ることができた。また、融合方法Fの融合再生確率は融合方法Eの融合再生確率の1.3倍であり、凍結解凍した脾臓細胞を浸透圧より高張の細胞融合液Bにあらかじめ懸濁してから細胞融合領域に導入し、最終的に細胞融合液Aに懸濁したミエローマを導入することで、細胞融合領域の細胞融合液の組成を細胞と等張の糖溶液として融合を行うことで、より良好な融合再生確率を得ることができた。 After culturing the cells in the HAT medium containing the cell suspension in a CO 2 incubator and counting the number of fused cells after 6 days, 1794 fusion cells in Fusion Method E and 2293 fused cells in Fusion Method F should be confirmed. The fusion regeneration probability of 17.9 / 10000 for fusion method E and 22.9 / 10000 for fusion method F was obtained for about 1 million spleen cells of mice introduced into the cell fusion container. The fusion regeneration probability of the fusion method F uses the cell fusion solution A mainly composed of 300 mM mannitol that is isotonic and isotonic with the spleen cells that were freeze-thawed from the beginning in the normal electric cell fusion method of Comparative Example 4. The fusion regeneration probability when the cells were fused was 143.1 times the 0.16 / 10000 fusion regeneration probability, and a very high fusion regeneration probability could be obtained. Further, the fusion regeneration probability of fusion method F is 1.3 times the fusion regeneration probability of fusion method E, and the freeze-thawed spleen cells are suspended in cell fusion solution B that is hypertonic than osmotic pressure before entering the cell fusion region. By introducing the myeloma suspended in the cell fusion solution A and finally, the composition of the cell fusion solution in the cell fusion region is fused as a sugar solution that is isotonic with the cells. Probability could be obtained.

(比較例4)
比較例4として、通常の電気的細胞融合法において、凍結解凍した脾臓細胞を細胞融合液に懸濁させたものを用いて細胞融合を行った。電気的細胞融合法を行う電極には、電極間1mmの金製のワイヤー電極(ネッパジーン株式会社製、MSゴールドワイヤー電極)を用い、この電極に細胞融合用電源(ネッパジーン製、LF101)を接続した。
(Comparative Example 4)
As Comparative Example 4, cell fusion was performed using a normal electric cell fusion method in which freeze-thawed spleen cells were suspended in a cell fusion solution. As an electrode for performing the electric cell fusion method, a gold wire electrode (Neppagene Co., Ltd., MS Gold Wire Electrode) having a 1 mm gap between the electrodes was used, and a cell fusion power source (Neppagene, LF101) was connected to this electrode. .

細胞は、実施例3に用いた細胞融合液Aに懸濁したマウスの脾臓細胞Aと細胞融合液Aに懸濁させたマウスのミエローマ細胞を用いた。脾臓細胞とミエローマ細胞を4:1で混合し、実施例1で用いた細胞融合液Aに懸濁させ1.7×10個/mLの密度になるように細胞融合液を調整した。なお、調整後、細胞融合液中の細胞の状態を確認したところ、死滅した細胞が数多く見られた。 As the cells, mouse spleen cells A suspended in the cell fusion solution A used in Example 3 and mouse myeloma cells suspended in the cell fusion solution A were used. Spleen cells and myeloma cells were mixed at a ratio of 4: 1, suspended in the cell fusion solution A used in Example 1, and the cell fusion solution was adjusted to a density of 1.7 × 10 7 cells / mL. In addition, after the adjustment, when the state of the cells in the cell fusion solution was confirmed, many dead cells were seen.

上記細胞融合液40μL(脾臓細胞数約60万個、ミエローマ細胞数約15万個)を電極間に注入し、細胞融合用電源を用いて、ピーク電圧10V、周波数3MHzの正弦波交流電圧を電極間に印加し、細胞融合を行うため、電圧値200V、パルス幅30μsの直流パルス電圧を印加した。10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れた。細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、10個の融合細胞を確認することができ、全マウス抗体産生細胞60万個に対して0.16/10000の融合再生確率を得られた。 40 μL of the cell fusion solution (approximately 600,000 spleen cells, approximately 150,000 myeloma cells) is injected between the electrodes, and a sine wave AC voltage with a peak voltage of 10 V and a frequency of 3 MHz is applied to the electrodes using a cell fusion power source. A DC pulse voltage having a voltage value of 200 V and a pulse width of 30 μs was applied in order to perform cell fusion. After standing for 10 minutes, the cell suspension in the cell fusion container was placed in HAT medium. The HAT medium containing the cell suspension was placed in a CO 2 incubator and cultured. The number of fused cells was counted after 6 days. As a result, 10 fused cells could be confirmed, and 600,000 total mouse antibody-producing cells were obtained. As a result, a fusion reproduction probability of 0.16 / 10000 was obtained.

(実施例4)
実施例3で使用した細胞融合装置を用いて、マウスの脾臓細胞とマウスのミエローマ細胞を用いて細胞融合を行った。脾臓細胞はマウスより抽出後、実施例1に示したように脾臓細胞抽出液を培地Bで1回、細胞融合液Aで1回洗浄を行い、細胞融合液Aに懸濁させて調製したもの(以下、脾臓細胞Aと称する)と、脾臓細胞抽出液を1500rpm、室温で5分間遠心分離後、上清をアスピレータで吸引し、脾臓細胞のペレットを解きほぐし、すぐに細胞融合液Aに懸濁させて調製したもの(以下、脾臓細胞Bと称する)を用意した。また、ミエローマ細胞は実施例1に示したように、培地Bで1回、細胞融合液Aで1回洗浄を行い、細胞融合液Aに懸濁させて調製したものを用いて細胞融合を行った。
Example 4
Using the cell fusion device used in Example 3, cell fusion was performed using mouse spleen cells and mouse myeloma cells. The spleen cells were extracted from the mouse, and the spleen cell extract was washed once with Medium B and once with Cell Fusion A and suspended in Cell Fusion A as shown in Example 1. (Hereinafter referred to as spleen cell A), the spleen cell extract was centrifuged at 1500 rpm for 5 minutes at room temperature, the supernatant was aspirated, the spleen cell pellet was unwound and immediately suspended in the cell fusion solution A Prepared (hereinafter referred to as spleen cells B). In addition, as shown in Example 1, myeloma cells were washed once with medium B and once with cell fusion solution A, and suspended in cell fusion solution A to perform cell fusion. It was.

脾臓細胞A及び、脾臓細胞Bは細胞融合液Aに懸濁して最終濃度を0.8×10個/mLに調整した。また、ミエローマ細胞は細胞融合液Aに懸濁して最終濃度を6.7×10個/mLに調整した。 Spleen cells A and spleen cells B were suspended in cell fusion solution A to adjust the final concentration to 0.8 × 10 6 cells / mL. The myeloma cells were suspended in the cell fusion solution A and the final concentration was adjusted to 6.7 × 10 6 cells / mL.

上記、脾臓細胞Aの入った細胞融合液Aを細胞融合装置のシリンジA、脾臓細胞Bの入った細胞融合液Aを細胞融合装置のシリンジB,ミエローマ細胞の入った細胞融合液Aを細胞融合装置のシリンジCに入れた。   The cell fusion solution A containing the spleen cell A is fused with the syringe A of the cell fusion device, the cell fusion solution A containing the spleen cell B is used with the syringe B of the cell fusion device, and the cell fusion solution A containing the myeloma cell is fused with the cell. Placed in syringe C of the device.

まずはじめに、上記脾臓細胞Aの入った細胞融合液Aを600μL(損失分も考慮すると脾臓細胞数は約50万個)をシリンジAを用いて細胞融合領域に導入し、細胞融合領域内で脾臓細胞を十分に沈降させた。次に、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加し、約100万個の微細孔の内、約半分の50万個の微細孔に対し、ほぼ1つの微細孔に1個ずつ、脾臓細胞をアレイ状に固定した。続いて、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記ミエローマ細胞の入った細胞融合液を600μL(細胞の損失分も考慮すると、ミエローマ細胞数は約400万個)をシリンジCを用いて細胞融合領域に導入した。この場合、脾臓細胞の数の約8〜10倍多いミエローマ細胞を細胞融合領域に導入したので、微細孔に固定された脾臓細胞の上に、少なくとも1つのミエローマ細胞が接触した状態になっているものと推定される。   First, 600 μL of the cell fusion solution A containing the spleen cells A (approximately 500,000 spleen cells considering the loss) is introduced into the cell fusion region using the syringe A, and the spleen is introduced into the cell fusion region. Cells were fully sedimented. Next, a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz is applied between the electrodes by an AC power source, and about one minute is divided into about one half of 500,000 fine holes. Spleen cells were fixed in an array, one per hole. Subsequently, 600 μL of the cell fusion solution containing the myeloma cells was applied while a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz was applied between the electrodes with an AC power supply (considering the loss of cells, the number of myeloma cells was about 4 million) was introduced into the cell fusion region using syringe C. In this case, since about 8-10 times as many myeloma cells as the number of spleen cells are introduced into the cell fusion region, at least one myeloma cell is in contact with the spleen cells fixed in the micropores. Estimated.

次に、電源切替え機構により電源を直流パルス電源(ネッパジーン株式会社製、LF101)に切替えて、電極間に電圧100V、パルス幅30μsの直流パルス電圧を印加し細胞融合を行い、そのまま10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れ、融合細胞の培養を行った(以上を融合方法Gと称する)。   Next, the power source switching mechanism is used to switch the power source to a DC pulse power source (LF101, manufactured by Nepagene Co., Ltd.), and a cell is fused by applying a DC pulse voltage with a voltage of 100 V and a pulse width of 30 μs between the electrodes, and left for 10 minutes. Thereafter, the cell suspension in the cell fusion container was placed in a HAT medium, and the fused cells were cultured (the above is referred to as fusion method G).

次に同じ仕様の別の細胞融合容器を用い、別の融合プロセスにて細胞融合を行った。上記脾臓細胞Bの入った細胞融合液Aを600μL(損失分も考慮すると脾臓細胞数は約50万個)をシリンジBを用いて細胞融合領域に導入し、細胞融合領域内で脾臓細胞を十分に沈降させた。次に、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加し、約100万個の微細孔に、ほぼ1つの微細孔に1つずつ、脾臓細胞をアレイ状に固定した。続いて、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記ミエローマ細胞の入った細胞融合液Aを600μL(細胞の損失分も考慮すると、ミエローマ細胞数は約400万個)をシリンジCを用いて細胞融合領域に導入した。この場合、脾臓細胞の数の約8〜10倍多いミエローマ細胞を細胞融合領域に導入したので、微細孔に固定された脾臓細胞の上に、少なくとも1つのミエローマ細胞が接触した状態になっているものと推定される。   Next, another cell fusion container having the same specification was used, and cell fusion was performed in a different fusion process. 600 μL of the cell fusion solution A containing the spleen cells B (the number of spleen cells is about 500,000 considering the loss) is introduced into the cell fusion region using the syringe B, and the spleen cells are sufficiently contained in the cell fusion region. It was allowed to settle. Next, a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz is applied between the electrodes by an AC power source, and spleen cells are fixed in an array of about 1 million micropores, one in each micropore. did. Subsequently, 600 μL of the cell fusion solution A containing the myeloma cells was applied while a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz was applied between the electrodes with an AC power supply (considering the loss of cells, the number of myeloma cells was About 4 million) were introduced into the cell fusion region using syringe C. In this case, since about 8-10 times as many myeloma cells as the number of spleen cells are introduced into the cell fusion region, at least one myeloma cell is in contact with the spleen cells fixed in the micropores. Estimated.

次に、電源切替え機構により電源を直流パルス電源(ネッパジーン株式会社製、LF101)に切替えて、電極間に電圧100V、パルス幅30μsの直流パルス電圧を印加し細胞融合を行い、そのまま10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れ、融合細胞の培養を行った(以上を融合方法Hと称する)。   Next, the power source switching mechanism is used to switch the power source to a DC pulse power source (LF101, manufactured by Nepagene Co., Ltd.), and a cell is fused by applying a DC pulse voltage with a voltage of 100 V and a pulse width of 30 μs between the electrodes, and left for 10 minutes. Thereafter, the cell suspension in the cell fusion container was placed in a HAT medium, and the fused cells were cultured (the above is referred to as fusion method H).

細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、融合方法Gでは1825個、融合方法Hでは1603個の融合細胞を確認することができ、細胞融合容器に導入したマウスの脾臓細胞数約50万個に対してそれぞれ融合方法Gでは36.5/10000、融合方法Hでは32.1/10000の融合再生確率を得られた。融合方法Bの融合再生確率は、比較例5の通常の電気的細胞融合法において、培地Bおよび細胞融合溶液Aで洗浄操作を行わない脾臓細胞と洗浄操作を行ったミエローマ細胞を混合して用いて細胞融合した場合の融合再生確率0.30/10000の107.0倍であり、非常に高い融合再生確率を得ることができた。また、融合方法Hの融合再生確率は融合方法Gの融合再生確率の0.88倍であり、洗浄操作を行わない脾臓細胞を用いた場合でも、洗浄操作を行ったミエローマを細胞融合液Aに懸濁して導入して融合することで、煩雑な細胞洗浄操作を省き、なおかつ良好な融合再生確率を得ることができた。 After culturing the cells in the CO 2 incubator with HAT medium containing the cell suspension and counting the number of fused cells after 6 days, 1825 fusion cells in Fusion Method G and 1603 fused cells in Fusion Method H should be confirmed. The fusion regeneration probability of 36.5 / 10000 for fusion method G and 32.1 / 10000 for fusion method H was obtained for approximately 500,000 mouse spleen cells introduced into the cell fusion container. The fusion regeneration probability of fusion method B is a mixture of spleen cells that are not washed with medium B and cell fusion solution A and myeloma cells that have been washed in the normal electrical cell fusion method of Comparative Example 5. Thus, the fusion regeneration probability of cell fusion was 107.0 times the 0.30 / 10000, and a very high fusion regeneration probability could be obtained. Further, the fusion regeneration probability of the fusion method H is 0.88 times the fusion regeneration probability of the fusion method G. Even when spleen cells not subjected to the washing operation are used, the washed myeloma is used as the cell fusion solution A. By suspending and introducing and fusing, a complicated cell washing operation can be omitted and a good fusion regeneration probability can be obtained.

(比較例5)
比較例5として、通常の電気的細胞融合法において、細胞洗浄操作を省略した脾臓細胞と洗浄操作を行ったミエローマ細胞を用いて細胞融合を行った。電気的細胞融合法を行う電極には、電極間1mmの金製のワイヤー電極(ネッパジーン株式会社製、MSゴールドワイヤー電極)を用い、この電極に細胞融合用電源(ネッパジーン製、LF101)を接続した。
(Comparative Example 5)
As Comparative Example 5, cell fusion was performed using spleen cells in which the cell washing operation was omitted and myeloma cells that had been washed in the usual electric cell fusion method. As an electrode for performing the electric cell fusion method, a gold wire electrode (Neppagene Co., Ltd., MS Gold Wire Electrode) having a 1 mm gap between the electrodes was used, and a cell fusion power source (Neppagene, LF101) was connected to this electrode. .

細胞は、実施例4に用いたマウスの脾臓細胞Bとマウスのミエローマ細胞を用いた。脾臓細胞とミエローマ細胞を4:1で混合し、実施例1で用いた細胞融合液Aに懸濁させ1.7×10個/mLの密度になるように細胞融合液を調整した。 The cells used were mouse spleen B and mouse myeloma cells used in Example 4. Spleen cells and myeloma cells were mixed at a ratio of 4: 1, suspended in the cell fusion solution A used in Example 1, and the cell fusion solution was adjusted to a density of 1.7 × 10 7 cells / mL.

上記細胞融合液40μL(脾臓細胞数約60万個、ミエローマ細胞数約15万個)を電極間に注入し、細胞融合用電源を用いて、ピーク電圧10V、周波数3MHzの正弦波交流電圧を電極間に印加し、細胞融合を行うため、電圧値200V、パルス幅30μsの直流パルス電圧を印加した。10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れた。細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、18個の融合細胞を確認することができ、全マウス抗体産生細胞60万個に対して0.30/10000の融合再生確率を得られた。 40 μL of the cell fusion solution (approximately 600,000 spleen cells, approximately 150,000 myeloma cells) is injected between the electrodes, and a sine wave AC voltage with a peak voltage of 10 V and a frequency of 3 MHz is applied to the electrodes using a cell fusion power source. A DC pulse voltage having a voltage value of 200 V and a pulse width of 30 μs was applied in order to perform cell fusion. After standing for 10 minutes, the cell suspension in the cell fusion container was placed in HAT medium. The HAT medium containing the cell suspension was placed in a CO 2 incubator and cultured, and after 6 days, the number of fused cells was counted. As a result, 18 fused cells could be confirmed, and 600,000 total mouse antibody-producing cells were obtained. As a result, a fusion reproduction probability of 0.30 / 10000 was obtained.

(実施例5)
実施例3で使用した細胞融合装置を用いて、マウスの脾臓細胞とマウスのミエローマ細胞を用いて細胞融合を行った。脾臓細胞はマウスより抽出後、実施例1に示したように脾臓細胞抽出液を1500rpm、室温で5分間遠心分離後、上清をアスピレータで吸引し、脾臓細胞のペレットを解きほぐし、すぐに細胞融合液Aに懸濁させて調製したものを用意した。またミエローマ細胞は、実施例1で用いたミエローマ培養液を、培地Bで1回、細胞融合液Aで1回洗浄を行い、細胞融合液Aに懸濁させて調製したもの(以下、ミエローマ細胞Aと称する)と、ミエローマ培養液の上清をアスピレータで吸引し、ミエローマ細胞のペレットを解きほぐし、すぐに細胞融合液Aに懸濁させて調製したもの(以下、ミエローマ細胞Bと称する)を用意した。
(Example 5)
Using the cell fusion device used in Example 3, cell fusion was performed using mouse spleen cells and mouse myeloma cells. After extracting spleen cells from the mouse, as shown in Example 1, the spleen cell extract was centrifuged at 1500 rpm for 5 minutes at room temperature, the supernatant was aspirated with an aspirator, the spleen cell pellet was unwound, and immediately cell fusion What was prepared by suspending in the liquid A was prepared. The myeloma cells were prepared by washing the myeloma culture solution used in Example 1 once with the medium B and once with the cell fusion solution A and suspending in the cell fusion solution A (hereinafter, myeloma cells). A), the supernatant of the myeloma culture solution is aspirated with an aspirator, the myeloma cell pellet is unwound, and immediately suspended in the cell fusion solution A (hereinafter referred to as myeloma cell B). did.

脾臓細胞は細胞融合液Aに懸濁して最終濃度を1.6×10個/mLに調整した。また、ミエローマ細胞A及びミエローマ細胞Bは、細胞融合液Aに懸濁して最終濃度を6.5×10個/mLに調整した。 Spleen cells were suspended in cell fusion solution A and the final concentration was adjusted to 1.6 × 10 6 cells / mL. In addition, myeloma cell A and myeloma cell B were suspended in cell fusion solution A to adjust the final concentration to 6.5 × 10 6 cells / mL.

上記、脾臓細胞の入った細胞融合液Aを細胞融合装置のシリンジA、ミエローマ細胞Aの入った細胞融合液Aを細胞融合装置のシリンジB,ミエローマ細胞Bの入った細胞融合液Aを細胞融合装置のシリンジCに入れた。また、脾臓細胞、ミエローマ細胞も入っていない細胞融合液AをシリンジDに入れた。   The cell fusion solution A containing the spleen cells is fused with the syringe A of the cell fusion device, the cell fusion solution A containing the myeloma cells A is used with the syringe B of the cell fusion device, and the cell fusion solution A containing the myeloma cells B is used with the cell fusion. Placed in syringe C of the device. In addition, cell fusion solution A containing neither spleen cells nor myeloma cells was placed in syringe D.

まずはじめに、上記脾臓細胞の入った細胞融合液Aを600μL(損失分も考慮すると脾臓細胞数は約100万個)をシリンジAを用いて細胞融合領域に導入し、細胞融合領域内で脾臓細胞を十分に沈降させた。次に、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加し、約100万個の微細孔に対し、ほぼ1つの微細孔に1個ずつ、脾臓細胞をアレイ状に固定した。   First, 600 μL of the cell fusion solution A containing the spleen cells (the number of spleen cells is about 1 million considering the loss) is introduced into the cell fusion region using the syringe A, and the spleen cells are introduced into the cell fusion region. Was allowed to settle sufficiently. Next, a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz is applied between the electrodes by an AC power source, and spleen cells are arranged in an array with about one million micropores, one in each micropore. Fixed.

続いて、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記ミエローマ細胞Aの入った細胞融合液を600μL(細胞の損失分も考慮すると、ミエローマ細胞数は約400万個)をシリンジBを用いて細胞融合領域に導入した。この場合、脾臓細胞の数の約4倍多いミエローマ細胞を細胞融合領域に導入したので、微細孔に固定された脾臓細胞の上に、少なくとも1つのミエローマ細胞が接触した状態になっているものと推定される。   Subsequently, 600 μL of the cell fusion solution containing the myeloma cells A was applied while a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz was applied between the electrodes with an AC power source (considering the loss of cells, the number of myeloma cells was About 4 million) were introduced into the cell fusion region using syringe B. In this case, since about four times as many myeloma cells as the number of spleen cells were introduced into the cell fusion region, at least one myeloma cell was in contact with the spleen cells fixed in the micropores. Presumed.

次に、電源切替え機構により電源を直流パルス電源(ネッパジーン株式会社製、LF101)に切替えて、電極間に電圧100V、パルス幅30μsの直流パルス電圧を印加し細胞融合を行い、そのまま10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れ、融合細胞の培養を行った(以上を融合方法Iと称する)。   Next, the power source switching mechanism is used to switch the power source to a DC pulse power source (LF101, manufactured by Nepagene Co., Ltd.), and a cell is fused by applying a DC pulse voltage with a voltage of 100 V and a pulse width of 30 μs between the electrodes, and left for 10 minutes. Thereafter, the cell suspension in the cell fusion container was placed in a HAT medium, and the fused cells were cultured (the above is referred to as fusion method I).

次に同じ仕様の別の細胞融合容器を用い、別の融合プロセスにて細胞融合を行った。上記脾臓細胞の入った細胞融合液Aを600μL(損失分も考慮すると脾臓細胞数は約100万個)をシリンジAを用いて細胞融合領域に導入し、細胞融合領域内で脾臓細胞を十分に沈降させた。次に、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加し、約100万個の微細孔に対し、ほぼ1つの微細孔に1つずつ、脾臓細胞をアレイ状に固定した。続いて、交流電源によりピーク電圧5V、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記ミエローマ細胞Bの入った細胞融合液Aを600μL(細胞の損失分も考慮すると、ミエローマ細胞数は約400万個)をシリンジCを用いて細胞融合領域に導入した。この場合、脾臓細胞の数の約4倍多いミエローマ細胞を細胞融合領域に導入したので、微細孔に固定された脾臓細胞の上に、少なくとも1つのミエローマ細胞が接触した状態になっているものと推定される。次に、シリンジDを用いて細胞融合液Aを細胞融合領域に2〜3回導入し、細胞融合領域に入った脾臓細胞とミエローマ細胞を細胞融合液Aで洗浄した。   Next, another cell fusion container having the same specification was used, and cell fusion was performed in a different fusion process. 600 μL of the cell fusion solution A containing the spleen cells (the number of spleen cells is about 1 million considering the loss) is introduced into the cell fusion region using the syringe A, and the spleen cells are sufficiently contained in the cell fusion region. Allowed to settle. Next, a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz is applied between the electrodes by an AC power source, and spleen cells are arranged in an array with approximately one million micropores, one in each micropore. Fixed. Subsequently, 600 μL of the cell fusion solution A containing the myeloma cells B was applied while a rectangular wave AC voltage having a peak voltage of 5 V and a frequency of 3 MHz was applied between the electrodes with an AC power supply (considering the loss of cells, the number of myeloma cells About 4 million) were introduced into the cell fusion region using syringe C. In this case, since about four times as many myeloma cells as the number of spleen cells were introduced into the cell fusion region, at least one myeloma cell was in contact with the spleen cells fixed in the micropores. Presumed. Next, the cell fusion solution A was introduced into the cell fusion region 2-3 times using the syringe D, and the spleen cells and myeloma cells that had entered the cell fusion region were washed with the cell fusion solution A.

次に、電源切替え機構により電源を直流パルス電源(ネッパジーン株式会社製、LF101)に切替えて、電極間に電圧100V、パルス幅30μsの直流パルス電圧を印加し細胞融合を行い、そのまま10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地に入れ、融合細胞の培養を行った(以上を融合方法Jと称する)。   Next, the power source switching mechanism is used to switch the power source to a DC pulse power source (LF101, manufactured by Nepagene Co., Ltd.), and a cell is fused by applying a DC pulse voltage with a voltage of 100 V and a pulse width of 30 μs between the electrodes, and left for 10 minutes. Thereafter, the cell suspension in the cell fusion container was placed in a HAT medium, and the fused cells were cultured (the above is referred to as fusion method J).

細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、融合方法Iでは1312個、融合方法Jでは3417個の融合細胞を確認することができ、細胞融合容器に導入したマウスの脾臓細胞数約100万個に対してそれぞれ融合方法Iでは13.1/10000、融合方法Jでは34.2/10000の融合再生確率を得られた。融合方法Jの融合再生確率は融合方法Iの融合再生確率の2.6倍であり、洗浄操作を行わない脾臓細胞と洗浄操作を行わないミエローマ細胞を用いた場合、脾臓細胞とミエローマ細胞を細胞融合領域に導入し微細孔に固定後、細胞融合領域に細胞融合液Aを導入することで脾臓細胞とミエローマ細胞を短時間に容易に洗浄することができ、良好な融合再生確率を得る事ができた。これは、細胞融合領域に入れる各細胞の調整段階での煩雑な細胞洗浄操作を省く事により、細胞活性が維持されたため、良好な融合再生確率を得る事ができたと考えられる。 After culturing the cells in the CO 2 incubator with the cell suspension in the CO 2 incubator and counting the number of fused cells after 6 days, 1312 fusion cells in Fusion Method I and 3417 fused cells in Fusion Method J should be confirmed. The fusion regeneration probability of 13.1 / 10000 for fusion method I and 34.2 / 10000 for fusion method J was obtained for approximately 1 million mouse spleen cells introduced into the cell fusion container. The fusion regeneration probability of fusion method J is 2.6 times the fusion regeneration probability of fusion method I. When spleen cells without washing operation and myeloma cells without washing operation are used, spleen cells and myeloma cells are treated as cells. Spleen cells and myeloma cells can be easily washed in a short time by introducing the cell fusion solution A into the cell fusion region after introduction into the fusion region and fixation in the micropores, and obtaining a good fusion regeneration probability. did it. This is probably because the cell activity was maintained by omitting a complicated cell washing operation in the adjustment stage of each cell to be inserted into the cell fusion region, and therefore a good fusion regeneration probability could be obtained.

1:細胞融合領域
2:細胞融合液導入流路
3:導電線
4:電源
5:交流電源
6:直流パルス電源
7:電源切替え機構
8:絶縁体
9:微細孔
10:誘電泳動力
11:電気力線の集中部位
12:電気力線
13:細胞融合容器
14:上部電極
15:下部電極
16:スペーサー
17:細胞融合液導入切替え手段
18:第1の細胞
19:導入口
20:排出口
21:バルブ
22:第2の細胞
23:ITO
24:パイレックス(登録商標)ガラス
25:レジスト
26:露光用フォトマスク
27:露光
28:現像液
29:導入流路
30:排出流路
31:ピーク電圧
32:融合細胞
33:現像液
34:シリンジA
35:シリンジB
36:シリンジC
37:シリンジD
38:シリンジE
1: Cell fusion region 2: Cell fusion solution introduction flow path 3: Conductive wire 4: Power supply 5: AC power supply 6: DC pulse power supply 7: Power supply switching mechanism 8: Insulator 9: Micropore 10: Dielectrophoretic force 11: Electricity Concentration site of force lines 12: Electric force lines 13: Cell fusion container 14: Upper electrode 15: Lower electrode 16: Spacer 17: Cell fusion solution introduction switching means 18: First cell 19: Inlet 20: Discharge 21: Valve 22: Second cell 23: ITO
24: Pyrex (registered trademark) glass 25: Resist 26: Photomask for exposure 27: Exposure 28: Developer 29: Introduction channel 30: Discharge channel 31: Peak voltage 32: Fusion cell 33: Developer 34: Syringe A
35: Syringe B
36: Syringe C
37: Syringe D
38: Syringe E

Claims (9)

細胞融合液導入口及び細胞融合液排出口を備え、細胞融合領域に対向して配置される導電部材からなる一対の電極と、前記一対の電極間に平板状のスペーサーを介して配置され、かつ前記対向して配置された電極の方向に貫通した複数の微細孔を有した平板状の絶縁体からなり、前記絶縁体が前記電極の内いずれか一方の電極の細胞融合領域側の電極面上に配置されている細胞融合容器と、電源と、3以上の細胞融合液を切替えて導入する細胞融合液導入切替え手段と、を備えた細胞融合装置であって、前記電源が前記一対の電極に交流電圧を印加する交流電源と直流パルス電圧を印加する直流パルス電源とを切替えて接続する電源切替え機構を有する、細胞融合装置。 A cell fusion solution inlet and a cell fusion solution discharge port, a pair of electrodes made of a conductive member disposed to face the cell fusion region, and a plate-like spacer disposed between the pair of electrodes; and It consists of a flat insulator having a plurality of fine holes penetrating in the direction of the electrodes arranged facing each other, and the insulator is on the electrode surface on the cell fusion region side of one of the electrodes A cell fusion device comprising a cell fusion container, a power source, and a cell fusion solution introduction switching means for switching and introducing three or more cell fusion solutions, wherein the power source is connected to the pair of electrodes. A cell fusion device comprising a power source switching mechanism for switching and connecting an AC power source for applying an AC voltage and a DC pulse power source for applying a DC pulse voltage. 前記細胞融合装置を用いて第1の細胞と第2の細胞とを細胞融合領域において融合する際、前記細胞融合領域に前記第1の細胞が入った細胞融合液を導入し、前記交流電圧を印加して前記微細孔内に前記第1の細胞を固定した後、前記細胞融合領域に前記第2の細胞が入った細胞融合液を導入し、前記交流電圧を印加して前記第1の細胞に前記第2の細胞を前記微細孔において接触させ、前記微細孔に直流パルス電圧を印加して、前記第1の細胞と前記第2の細胞とを細胞融合させる方法であって、前記細胞融合液導入切替え手段を用いて細胞融合処理液が入った細胞融合液を導入する時期を、前記第2の細胞の導入前、前記細胞融合の前および前記細胞融合の後、の少なくとも一の時期とする、細胞融合方法。 When the first cell and the second cell are fused in the cell fusion region using the cell fusion device, a cell fusion solution containing the first cell is introduced into the cell fusion region, and the alternating voltage is applied. After applying and fixing the first cell in the micropore, a cell fusion solution containing the second cell is introduced into the cell fusion region, and the alternating voltage is applied to the first cell. A cell fusion between the first cell and the second cell by contacting the second cell in the micropore and applying a DC pulse voltage to the micropore, The time when the cell fusion solution containing the cell fusion treatment solution is introduced using the solution introduction switching means is at least one time before the introduction of the second cell, before the cell fusion and after the cell fusion. A cell fusion method. 前記細胞融合処理液が入った細胞融合液が2以上であって、前記2以上の細胞融合処理液が入った細胞融合液が全て同じまたは一部異なるまたは全て異なる、のいずれかの細胞融合処理液が入った細胞融合液である、請求項2に記載の細胞融合方法。 The cell fusion solution containing two or more cell fusion solutions containing the cell fusion treatment solution, wherein the cell fusion solutions containing the two or more cell fusion treatment solutions are all the same, partly different, or all different. The cell fusion method according to claim 2, which is a cell fusion solution containing a solution. 前記細胞融合処理液が入った細胞融合液により、前記細胞融合領域の細胞融合液中の特定の成分を除去する、請求項2または請求項3に記載の細胞融合方法。 The cell fusion method according to claim 2 or 3, wherein a specific component in the cell fusion solution in the cell fusion region is removed with the cell fusion solution containing the cell fusion treatment solution. 前記細胞融合処理液が入った細胞融合液が特定の成分を含む溶液であり、前記細胞融合処理液が入った細胞融合液の導入により、前記細胞融合領域の細胞融合液中に前記特定の成分を導入する、請求項2〜4のいずれかに記載の細胞融合方法。 The cell fusion solution containing the cell fusion treatment solution is a solution containing a specific component, and the specific component is introduced into the cell fusion solution in the cell fusion region by introducing the cell fusion solution containing the cell fusion treatment solution. The cell fusion method according to any one of claims 2 to 4, wherein is introduced. 前記特定の成分が酵素である、請求項4または請求項5に記載の細胞融合方法。 The cell fusion method according to claim 4 or 5, wherein the specific component is an enzyme. 前記酵素が、シアル酸分解酵素またはプロテアーゼである、請求項6に記載の細胞融合方法。 The cell fusion method according to claim 6, wherein the enzyme is a sialic acid degrading enzyme or a protease. 前記特定の成分がカルシウムイオンである、請求項4〜7のいずれかに記載の細胞融合方法。 The cell fusion method according to claim 4, wherein the specific component is calcium ion. 前記特定の成分が融合再生確率を高める添加剤である、請求項4〜8のいずれかに記載の細胞融合方法。 The cell fusion method according to any one of claims 4 to 8, wherein the specific component is an additive for increasing the fusion regeneration probability.
JP2009067479A 2008-04-17 2009-03-19 Cell fusion device and cell fusion method Pending JP2009273458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067479A JP2009273458A (en) 2008-04-17 2009-03-19 Cell fusion device and cell fusion method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008107576 2008-04-17
JP2009067479A JP2009273458A (en) 2008-04-17 2009-03-19 Cell fusion device and cell fusion method

Publications (1)

Publication Number Publication Date
JP2009273458A true JP2009273458A (en) 2009-11-26

Family

ID=41439477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067479A Pending JP2009273458A (en) 2008-04-17 2009-03-19 Cell fusion device and cell fusion method

Country Status (1)

Country Link
JP (1) JP2009273458A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174391A (en) * 2011-03-10 2011-09-07 北京航空航天大学 Cell electrofusion chip
WO2011149032A1 (en) * 2010-05-26 2011-12-01 東ソー株式会社 Biological-sample affixing device
WO2013035252A1 (en) * 2011-09-07 2013-03-14 パナソニック株式会社 Microorganism quantity measurement cell and microorganism quantity measurement device comprising same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149032A1 (en) * 2010-05-26 2011-12-01 東ソー株式会社 Biological-sample affixing device
JPWO2011149032A1 (en) * 2010-05-26 2013-07-25 東ソー株式会社 Biological sample fixing device
CN102174391A (en) * 2011-03-10 2011-09-07 北京航空航天大学 Cell electrofusion chip
CN102174391B (en) * 2011-03-10 2014-05-07 北京航空航天大学 Cell electrofusion chip
WO2013035252A1 (en) * 2011-09-07 2013-03-14 パナソニック株式会社 Microorganism quantity measurement cell and microorganism quantity measurement device comprising same
CN103857784A (en) * 2011-09-07 2014-06-11 松下健康医疗器械株式会社 Microorganism quantity measurement cell and microorganism quantity measurement device comprising same

Similar Documents

Publication Publication Date Title
Chang et al. Controllable large‐scale transfection of primary mammalian cardiomyocytes on a nanochannel array platform
US20210324367A1 (en) Method and device for uniformly treating adherent cells
Heo et al. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes
US6916656B2 (en) Non-linear amplitude dielectrophoresis waveform for cell fusion
Hu et al. Cell electrofusion in microfluidic devices: A review
Şen et al. Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes
JP7313363B2 (en) Intracellular delivery and methods therefore
JP2009273458A (en) Cell fusion device and cell fusion method
JP2009254292A (en) Cell fusion apparatus and cell fusion method
JP4910716B2 (en) Cell fusion device and cell fusion method using the same
JP5903156B2 (en) Cell culture container, cell culture apparatus and cell culture method using the same
JP5847446B2 (en) Cell culture vessel and culture apparatus using the same
JP2011092120A (en) Method for preparing substrate for setting animal cell in array and method for preparing substrate on which animal cell is set in array
Mehrle et al. Determination of physical membrane properties of plant cell protoplasts via the electrofusion technique: prediction of optimal fusion yields and protoplast viability
US8790907B2 (en) Method for detachment and preparation of living microorganisms
JP5583532B2 (en) Cell accumulation method
WO2016157326A1 (en) Division/detachment member, culture vessel, and device
Hu et al. Automating CAR‐T transfection with micro and nano‐technologies
JP2013126381A (en) Cell fusion method
JP6451103B2 (en) Cell culture vessel
KR102499511B1 (en) Electrolytic treatment jig and electrolytic treatment method
EP2514819B1 (en) Method for immobilizing living microorganisms and method for preparing living microorganisms
JP6384048B2 (en) Cell culture method
CN108060078B (en) Gold-plated surface silicon nano-column electrode and application thereof
JP2016002047A (en) Substrate for cell culture and cell culture vessel