JP2009272323A - Semiconductor substrate grinding machine and grinding method - Google Patents

Semiconductor substrate grinding machine and grinding method Download PDF

Info

Publication number
JP2009272323A
JP2009272323A JP2008118830A JP2008118830A JP2009272323A JP 2009272323 A JP2009272323 A JP 2009272323A JP 2008118830 A JP2008118830 A JP 2008118830A JP 2008118830 A JP2008118830 A JP 2008118830A JP 2009272323 A JP2009272323 A JP 2009272323A
Authority
JP
Japan
Prior art keywords
grinding
semiconductor substrate
constant
moving mechanism
constant speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008118830A
Other languages
Japanese (ja)
Inventor
Takuya Soma
拓哉 相馬
Hiromi Obara
裕美 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008118830A priority Critical patent/JP2009272323A/en
Publication of JP2009272323A publication Critical patent/JP2009272323A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor substrate grinding machine that performs constant-speed grinding processing and constant-pressure grinding processing in a series of operations, makes a processed alteration layer thin, and improves processing efficiency. <P>SOLUTION: A slide base 8 sliding relatively to a base 6 is provided over the base 6, and at least one of a tool 3 and a grinding mechanism 5 is mounted on the slide base 8, which is further provided with is provided a constant-speed moving mechanism 12 which moves the tool and/or grinding mechanism at a constant speed to grind a semiconductor mechanism and a constant-pressure moving mechanism 13 which presses the semiconductor substrate 2 and a grinding member 4 with constant pressure to grind the semiconductor substrate 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体基板研削機及び研削方法に関する。   The present invention relates to a semiconductor substrate grinding machine and a grinding method.

従来、半導体基板の厚さを揃え、平坦度を効率よく向上させる方法として、砥粒を含んだ砥石(研削砥石)を回転させて半導体基板に押し当て、砥石の砥粒で半導体基板の表面を削り取る研削加工が一般的である。   Conventionally, as a method for efficiently improving the flatness by aligning the thickness of a semiconductor substrate, a grindstone (grinding grindstone) containing abrasive grains is rotated and pressed against the semiconductor substrate, and the surface of the semiconductor substrate is ground with the grindstone abrasive grains. The grinding process which scrapes off is common.

砥石を半導体基板に押し当てる方法としては、モータの駆動力で一定速度で押し当てていく方法(例えば、特許文献1参照)と、錘の負荷を利用するなどの方法で一定圧力で押し当てる方法が知られている。   As a method of pressing the grindstone against the semiconductor substrate, a method of pressing at a constant speed with a driving force of a motor (for example, refer to Patent Document 1) and a method of pressing at a constant pressure using a weight load or the like It has been known.

一定速度で砥石を半導体基板に押し当てる方法では、例えば、図6(a)および図6(b)に示す半導体基板研削機61が用いられる。この半導体基板研削機61では、ボールネジ62をモータ63により一定速度で回転させ、このボールネジ62の回転により研削機構64を載置したスライドベース65を移動させ、ベース66に固定された治具67の半導体基板68に研削機構64の砥石69を一定速度で押し当てて研削を行う。   In a method of pressing a grindstone against a semiconductor substrate at a constant speed, for example, a semiconductor substrate grinder 61 shown in FIGS. 6A and 6B is used. In this semiconductor substrate grinding machine 61, the ball screw 62 is rotated at a constant speed by a motor 63, the slide base 65 on which the grinding mechanism 64 is placed is moved by the rotation of the ball screw 62, and the jig 67 fixed to the base 66 is moved. Grinding is performed by pressing the grindstone 69 of the grinding mechanism 64 against the semiconductor substrate 68 at a constant speed.

しかし、このように一定速度で押し当てていく方法で研削加工を行うと、砥石69の切れ味が低下した状況でも強制的に送り込むため、半導体基板68の表面に深いキズが発生する場合がある。   However, when grinding is performed by a method of pressing at a constant speed in this way, the surface of the semiconductor substrate 68 may be deeply scratched because it is forcibly sent even when the sharpness of the grindstone 69 is lowered.

この深いキズの発生を防止する研削方法としては、例えば、一定速度で押し当てて研削を行う代わりに、砥石を押し当てていく力を錘の重量で制御し、半導体基板と砥石を一定圧力で押し当てて研削する方法がある。   As a grinding method to prevent the occurrence of deep scratches, for example, instead of pressing at a constant speed for grinding, the force for pressing the grindstone is controlled by the weight of the weight, and the semiconductor substrate and the grindstone are kept at a constant pressure. There is a method of grinding by pressing.

一定圧力で砥石を半導体基板に押し当てる方法では、例えば、図7(a)および図7(b)に示す半導体基板研削機71が用いられる。この半導体基板研削機71では、スライドベース72の側面にピン73を設け、そのピン73にワイヤ74の一端を固定し、そのワイヤ74を定滑車(ガイドロール)75に掛け、ワイヤ74の他端に錘76を接続している。   In a method of pressing a grindstone against a semiconductor substrate with a constant pressure, for example, a semiconductor substrate grinder 71 shown in FIGS. 7A and 7B is used. In this semiconductor substrate grinding machine 71, a pin 73 is provided on the side surface of the slide base 72, one end of the wire 74 is fixed to the pin 73, the wire 74 is hung on a fixed pulley (guide roll) 75, and the other end of the wire 74 is A weight 76 is connected to the.

この半導体基板研削機71では、モータ77でボールネジ78を回転させ、ボールネジ78の回転によりナット79が前進すると、スライドベース72は錘76の重量で引っ張られているため、ナット79に追従する。ベース80上に固定した治具81にスライドベース72に載置した研削機構82を近づけ、砥石83と半導体基板84とが接触すると、ナット79とスライドベース72が離れ、(加工圧)=(錘の重量)となり、加工圧を一定にして研削を行う。   In this semiconductor substrate grinding machine 71, when the ball screw 78 is rotated by the motor 77 and the nut 79 advances by the rotation of the ball screw 78, the slide base 72 follows the nut 79 because it is pulled by the weight of the weight 76. When the grinding mechanism 82 placed on the slide base 72 is brought close to the jig 81 fixed on the base 80 and the grindstone 83 and the semiconductor substrate 84 come into contact with each other, the nut 79 and the slide base 72 are separated, and (working pressure) = (weight) Thus, grinding is performed with a constant processing pressure.

通常、研削加工で形成された加工変質層(ダメージ層)は、次工程の研磨加工で取り去っている。研磨加工の方法としては、半導体基板をガラス製の研磨定盤に押し付け、これを摺動させながら研磨剤を研磨定盤上に供給して、半導体基板を研磨する方法が一般的である。   Usually, the work-affected layer (damaged layer) formed by grinding is removed by polishing in the next step. As a polishing method, a method is generally employed in which a semiconductor substrate is pressed against a glass polishing surface plate, and an abrasive is supplied onto the polishing surface plate while sliding the semiconductor substrate to polish the semiconductor substrate.

しかし、研磨加工では単位時間あたりの加工量(研削可能厚さ)が少ないため、研削加工で形成された加工変質層が厚いと、研磨加工で除去する量(厚さ)が多くなり、時間と費用がかかってしまう。そのため、半導体基板の製造効率の点からも、研削加工で形成される加工変質層は極力薄いほうが好ましい。   However, since the processing amount per unit time (thickness that can be ground) is small in polishing processing, if the work-affected layer formed by grinding processing is thick, the amount (thickness) to be removed by polishing processing increases. It costs money. Therefore, it is preferable that the work-affected layer formed by grinding is as thin as possible from the viewpoint of manufacturing efficiency of the semiconductor substrate.

特開平11−307489号公報Japanese Patent Application Laid-Open No. 11-307489

研削加工で形成される加工変質層を薄くする方法として、一定圧力で押し当てる方法が有効であるが、砥石の状態によって加工時間が変動してしまい、加工能率が低くなるという問題があった。加工時間の管理や加工効率の点では、一定圧力で押し当てる方法よりも、一定速度で押し当てていく方法が有効である。   As a method of thinning the work-affected layer formed by grinding, a method of pressing with a constant pressure is effective, but there is a problem that the processing time varies depending on the state of the grindstone and the processing efficiency is lowered. In terms of processing time management and processing efficiency, a method of pressing at a constant speed is more effective than a method of pressing at a constant pressure.

しかしながら、従来、1台の研削機で、一定速度の研削加工と一定圧力の研削加工を可能とする研削機はなかった。   However, heretofore, there has been no grinder capable of performing constant speed grinding and constant pressure grinding with a single grinding machine.

そこで、本発明の目的は、一定速度での研削加工と一定圧力での研削加工を一連の動作で行うことを可能とし、加工変質層を薄くし、かつ加工能率の向上を図った半導体基板研削機及び研削方法を提供することにある。   Accordingly, an object of the present invention is to grind a semiconductor substrate by which a grinding process at a constant speed and a grinding process at a constant pressure can be performed by a series of operations, a work-affected layer is thinned, and a machining efficiency is improved. It is to provide a machine and a grinding method.

本発明は上記目的を達成するために創案されたものであり、ベース上に、半導体基板を保持する治具と、その治具に保持された前記半導体基板に対向する研削部材を保持する研削機構とを設け、前記治具と前記研削機構の少なくともいずれか一方を他方に向かって移動自在に設け、前記半導体基板と前記研削部材とを相対的に回転させつつ接触させることで前記半導体基板を研削する半導体基板研削機において、前記ベース上に、そのベースに対して滑動自在に設けられたスライドベースを設け、前記治具と前記研削機構の少なくともいずれか一方を前記スライドベースに搭載し、さらに前記治具及び/又は前記研削機構を定速で移動して前記半導体基板を研削するための定速移動機構と、前記半導体基板と前記研削部材とを定圧で押圧して前記半導体基板を研削するための定圧移動機構とを前記スライドベースに設ける半導体基板研削機である。   The present invention was devised to achieve the above object, and a grinding mechanism for holding a jig for holding a semiconductor substrate on a base and a grinding member facing the semiconductor substrate held by the jig. And at least one of the jig and the grinding mechanism is movably provided toward the other, and the semiconductor substrate and the grinding member are rotated and brought into contact with each other to grind the semiconductor substrate. In the semiconductor substrate grinding machine, a slide base provided slidably with respect to the base is provided on the base, and at least one of the jig and the grinding mechanism is mounted on the slide base, and A constant speed moving mechanism for moving the jig and / or the grinding mechanism at a constant speed to grind the semiconductor substrate, and pressing the semiconductor substrate and the grinding member with a constant pressure. Serial and constant pressure moving mechanism for grinding the semiconductor substrate is a semiconductor substrate grinder provided on the slide base.

本発明は、前記治具または前記研削機構と前記定圧移動機構とを連結し、前記定速移動機構に、定速移動時に前記スライドベースを拘束し、前記定速移動機構から前記定圧移動機構に切り替える際に、前記スライドベースを開放する切り替え機構を設けた半導体基板研削機である。   The present invention connects the jig or the grinding mechanism and the constant pressure moving mechanism, and constrains the slide base to the constant speed moving mechanism when moving at a constant speed, from the constant speed moving mechanism to the constant pressure moving mechanism. A semiconductor substrate grinding machine provided with a switching mechanism that opens the slide base when switching.

本発明は、前記スライドベースを定速で移動させる定速移動機構は、ボールネジ機構と、そのボールネジを回転させるモータとからなる半導体基板研削機である。   In the present invention, the constant speed moving mechanism for moving the slide base at a constant speed is a semiconductor substrate grinder comprising a ball screw mechanism and a motor for rotating the ball screw.

本発明は、前記定圧移動機構は、前記スライドベースにワイヤを介して接続された錘と、前記ベースに保持されて前記ワイヤが巻き掛けられる定滑車とからなる半導体基板研削機である。   The present invention is the semiconductor substrate grinding machine, wherein the constant pressure moving mechanism includes a weight connected to the slide base via a wire, and a constant pulley that is held by the base and on which the wire is wound.

本発明は、前記スライドベースには、位置検出手段が設けられ、その位置検出手段で検出した前記スライドベースの位置により、前記定速移動機構から前記定圧移動機構に切り替える半導体基板研削機である。   The present invention is the semiconductor substrate grinding machine in which the slide base is provided with position detecting means, and the constant speed moving mechanism is switched to the constant pressure moving mechanism according to the position of the slide base detected by the position detecting means.

本発明は、治具に回転自在に保持された半導体基板と、その半導体基板に対向するように研削機構に回転自在に保持された研削部材とを接触させて前記半導体基板を研削する半導体基板研削方法において、前記ベース上に設けられた定速移動機構で前記治具または前記研削機構のいずれか一方を他方に向かって定速で移動させ、その定速移動機構で前記半導体基板と前記研削部材とを押圧して前記半導体基板を研削した後、前記治具または前記研削機構に連結された定圧移動機構で定圧で前記半導体基板と前記研削部材とをさらに押圧して研削する半導体基板研削方法である。   The present invention provides semiconductor substrate grinding in which a semiconductor substrate that is rotatably held by a jig and a grinding member that is rotatably held by a grinding mechanism so as to face the semiconductor substrate are brought into contact with each other to grind the semiconductor substrate. In the method, either the jig or the grinding mechanism is moved at a constant speed toward the other by a constant speed moving mechanism provided on the base, and the semiconductor substrate and the grinding member are moved by the constant speed moving mechanism. A semiconductor substrate grinding method of grinding the semiconductor substrate by further pressing the semiconductor substrate and the grinding member with a constant pressure by a constant pressure moving mechanism connected to the jig or the grinding mechanism. is there.

本発明は、前記定速移動機構で前記半導体基板の研削厚の80〜95%の厚さを研削した後、前記定圧移動機構で前記半導体基板と前記研削部材とをさらに押圧して残りの研削を行う半導体基板研削方法である。   In the present invention, after grinding a thickness of 80 to 95% of the grinding thickness of the semiconductor substrate by the constant speed moving mechanism, the semiconductor substrate and the grinding member are further pressed by the constant pressure moving mechanism to perform the remaining grinding. This is a method for grinding a semiconductor substrate.

本発明によれば、一定速度での研削加工と一定圧力での研削加工を一連の動作で行うことで、加工面でのキズの発生を抑制すると共に、加工能率を高くでき、半導体基板の製造効率を向上させることができる。   According to the present invention, by performing a series of operations of grinding at a constant speed and grinding at a constant pressure, it is possible to suppress the generation of scratches on the machined surface and increase the machining efficiency, thereby producing a semiconductor substrate. Efficiency can be improved.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、本実施形態に係る半導体基板研削機の側面図である。   FIG. 1 is a side view of a semiconductor substrate grinding machine according to the present embodiment.

図1に示すように、半導体基板研削機1は、半導体基板2を回転自在に保持する治具(ワーク軸)3と、研削部材としての砥石4を回転自在に保持する研削機構(砥石軸)5とを主に備える。治具3と研削機構5とは、半導体基板2と砥石4とが対向するように配置される。   As shown in FIG. 1, a semiconductor substrate grinding machine 1 includes a jig (work shaft) 3 that rotatably holds a semiconductor substrate 2 and a grinding mechanism (grind wheel shaft) that rotatably holds a grindstone 4 as a grinding member. 5 is mainly provided. The jig 3 and the grinding mechanism 5 are arranged so that the semiconductor substrate 2 and the grindstone 4 face each other.

治具3は、半導体基板2を回転自在に保持する基板保持部3aと、その基板保持部3aを回転させる駆動モータ(図示せず)などを有する治具本体3bとからなる。   The jig 3 includes a substrate holding portion 3a that rotatably holds the semiconductor substrate 2, and a jig main body 3b having a drive motor (not shown) that rotates the substrate holding portion 3a.

研削機構5は、砥石4を回転自在に保持する砥石保持部5aと、その砥石保持部5aを回転させる駆動モータ(図示せず)などを有する研削機構本体5bとからなる。砥石4としては、例えば、カップ型砥石を用いるとよい。   The grinding mechanism 5 includes a grindstone holding portion 5a that rotatably holds the grindstone 4, and a grinding mechanism main body 5b having a drive motor (not shown) that rotates the grindstone holding portion 5a. As the grindstone 4, for example, a cup-type grindstone may be used.

治具本体3bは、ベース6上に設けられた定盤7上に載置され、研削機構本体5bは、ベース6上に設けられたスライドベース8上に載置される。   The jig body 3 b is placed on a surface plate 7 provided on the base 6, and the grinding mechanism body 5 b is placed on a slide base 8 provided on the base 6.

ベース6上には、研削機構5の移動方向に沿ってレール9が設けられ、スライドベース8は、そのレール9に沿って移動自在に設けられた複数のガイド10上に設けられる。これにより、スライドベース8およびスライドベース8に載置された研削機構5は、治具3に向かって移動(滑動)自在とされる。   On the base 6, rails 9 are provided along the moving direction of the grinding mechanism 5, and the slide base 8 is provided on a plurality of guides 10 provided so as to be movable along the rails 9. As a result, the slide base 8 and the grinding mechanism 5 placed on the slide base 8 are movable (slidable) toward the jig 3.

また、スライドベース8には、スライドベース8の位置を検出する位置検出手段としてリニアスケール11が設けられる。   The slide base 8 is provided with a linear scale 11 as position detection means for detecting the position of the slide base 8.

リニアスケール11としては、例えば、一定のピッチで金属を蒸着したガラスを挟んで発光素子と受光素子を対向させ、受光素子で受光した光のパルスをカウントすることで位置を検出する光電方式のものなどを用いるとよい。また、リニアスケール11としては、0.1μmの精度で位置検出が可能なものを用いるとよい。   As the linear scale 11, for example, a photoelectric type that detects a position by counting light pulses received by a light receiving element with a light emitting element and a light receiving element facing each other with a glass on which metal is deposited at a constant pitch. It is good to use. Further, as the linear scale 11, it is preferable to use a linear scale that can detect the position with an accuracy of 0.1 μm.

さて、半導体基板研削機1では、ベース6上に研削機構5を定速で移動させるための定速移動機構12が設けられ、研削機構5を載置するスライドベース8には、定速移動機構12で半導体基板2と砥石4とを押圧して半導体基板2を研削した後に、定圧で半導体基板2と砥石4とをさらに押圧して研削するための定圧移動機構13が連結される。   In the semiconductor substrate grinding machine 1, a constant speed moving mechanism 12 for moving the grinding mechanism 5 at a constant speed is provided on the base 6, and the slide base 8 on which the grinding mechanism 5 is placed has a constant speed moving mechanism. After the semiconductor substrate 2 and the grindstone 4 are pressed at 12 to grind the semiconductor substrate 2, a constant pressure moving mechanism 13 for further pressing and grinding the semiconductor substrate 2 and the grindstone 4 with a constant pressure is connected.

図2(a)に示すように、定速移動機構12は、ボールネジ14とそのボールネジ14に噛合するナット15とからなるボールネジ機構と、そのボールネジ14を回転させるモータ16とからなる。ボールネジ14は、スライドベース8の下方にスライドベース8の移動方向に沿って配置され、ナット15はそのボールネジ14の回転によりボールネジ14に沿って移動するように設けられる。モータ16とボールネジ14との間には、モータ16のモータ軸からボールネジ14にトルクを伝えるためのカップリング17が設けられる。   As shown in FIG. 2A, the constant speed moving mechanism 12 includes a ball screw mechanism that includes a ball screw 14 and a nut 15 that meshes with the ball screw 14, and a motor 16 that rotates the ball screw 14. The ball screw 14 is arranged below the slide base 8 along the moving direction of the slide base 8, and the nut 15 is provided so as to move along the ball screw 14 by the rotation of the ball screw 14. A coupling 17 for transmitting torque from the motor shaft of the motor 16 to the ball screw 14 is provided between the motor 16 and the ball screw 14.

ナット15には、その後端部(図2下側(ベース6側))から上方に延びる舌片15aが形成され、スライドベース8の底面には、そのナット15の舌片15aを挿入するための凹部18が形成される。この凹部18の移動方向(図示左右方向)の長さは、舌片15aの移動方向の長さよりも十分大きく形成される。また、凹部18の幅(図示紙面方向の幅)は、舌片15aの幅と略同一に形成される。   The nut 15 is formed with a tongue piece 15a extending upward from the rear end portion (the lower side (base 6 side) in FIG. 2), and the bottom surface of the slide base 8 is used for inserting the tongue piece 15a of the nut 15 therein. A recess 18 is formed. The length of the concave portion 18 in the moving direction (the left-right direction in the figure) is formed sufficiently larger than the length of the tongue piece 15a in the moving direction. Further, the width of the concave portion 18 (the width in the drawing paper direction) is formed substantially the same as the width of the tongue piece 15a.

定圧移動機構13は、図1に示すように、スライドベース8にワイヤ22を介して接続された錘23と、ベース6に保持されてワイヤ22が巻き掛けられる定滑車(ガイドロール)24とからなる。   As shown in FIG. 1, the constant pressure moving mechanism 13 includes a weight 23 connected to the slide base 8 via a wire 22, and a constant pulley (guide roll) 24 that is held by the base 6 and on which the wire 22 is wound. Become.

スライドベース8の側面にはピン25が設けられ、そのピン25にワイヤ22の一端が接続される。ワイヤ22は、ピン25から前方(図示左方向)に延伸され、スライドベース8前方に設けられた定滑車24に巻き掛けられ、ワイヤ22の他端には錘23が接続される。   A pin 25 is provided on the side surface of the slide base 8, and one end of the wire 22 is connected to the pin 25. The wire 22 extends forward (leftward in the drawing) from the pin 25, is wound around a fixed pulley 24 provided in front of the slide base 8, and a weight 23 is connected to the other end of the wire 22.

定速移動機構12には、定速移動機構12から定圧移動機構13に切り替えるための切り替え機構として、エアシリンダ19が設けられる。   The constant speed moving mechanism 12 is provided with an air cylinder 19 as a switching mechanism for switching from the constant speed moving mechanism 12 to the constant pressure moving mechanism 13.

エアシリンダ19は、図2(a)および図2(b)に示すように、エアシリンダ本体19aと、そのエアシリンダ本体19aから伸縮自在に延びるクランプ19bとからなる。   As shown in FIGS. 2A and 2B, the air cylinder 19 includes an air cylinder main body 19a and a clamp 19b that extends from the air cylinder main body 19a so as to extend and contract.

エアシリンダ19は、スライドベース8の後端面Rから凹部18まで貫通する貫通穴20、およびナット15の舌片15aを貫通する貫通穴21にクランプ19bを挿入した状態で、スライドベース8の後端面Rに固定される。エアシリンダ19のクランプ19bの先端には、先端にナット15の貫通穴21よりも径が大きいフランジ部を有するキャップ19cが取り付けられる。   The air cylinder 19 has a rear end surface of the slide base 8 in a state where the clamp 19b is inserted into the through hole 20 that penetrates from the rear end surface R of the slide base 8 to the recess 18 and the through hole 21 that penetrates the tongue piece 15a of the nut 15. Fixed to R. A cap 19c having a flange portion having a diameter larger than that of the through hole 21 of the nut 15 is attached to the tip of the clamp 19b of the air cylinder 19.

このエアシリンダ19は、定速移動機構12で研削を行う際には、図2(a)に示すように、クランプ19bを短い状態で保持してナット15を凹部18後方の面に押し付けて、スライドベース8をナット15に拘束する。また、定速移動機構12から定圧移動機構13に切り替える際には、図2(b)に示すようにクランプ19bを伸ばして、ナット15からスライドベース8を開放する。   When grinding with the constant speed moving mechanism 12, the air cylinder 19 holds the clamp 19b in a short state and presses the nut 15 against the rear surface of the recess 18 as shown in FIG. The slide base 8 is restrained by the nut 15. When switching from the constant speed moving mechanism 12 to the constant pressure moving mechanism 13, the clamp 19 b is extended and the slide base 8 is released from the nut 15 as shown in FIG.

次に、本実施形態に係る半導体基板研削方法を、半導体基板研削機1の動作と共に説明する。   Next, the semiconductor substrate grinding method according to the present embodiment will be described together with the operation of the semiconductor substrate grinding machine 1.

まず、治具3の基板保持部3aに半導体基板2をセットすると共に、研削機構5の砥石保持部5aに砥石4をセットし、半導体基板2と砥石4を相対的に回転させる。このとき、エアシリンダ19は、図2(a)に示すように、クランプ19bを短い状態で保持してナット15を凹部18後方の面に押し付けて、ナット15にスライドベース8を拘束する。   First, the semiconductor substrate 2 is set on the substrate holding portion 3a of the jig 3, and the grindstone 4 is set on the grindstone holding portion 5a of the grinding mechanism 5, and the semiconductor substrate 2 and the grindstone 4 are relatively rotated. At this time, as shown in FIG. 2A, the air cylinder 19 holds the clamp 19 b in a short state and presses the nut 15 against the surface behind the recess 18 to restrain the slide base 8 to the nut 15.

その後、モータ16によりボールネジ14を所定の回転数で回転させて、ナット15を前方(図示左方向)に所定の速度で移動させる。スライドベース8はナット15に拘束されているため、スライドベース8およびスライドベース8上に載置された研削機構5は、治具3に向かって所定の速度で移動する。   Thereafter, the motor 16 rotates the ball screw 14 at a predetermined rotational speed, and moves the nut 15 forward (leftward in the figure) at a predetermined speed. Since the slide base 8 is restrained by the nut 15, the slide base 8 and the grinding mechanism 5 placed on the slide base 8 move toward the jig 3 at a predetermined speed.

この状態で、半導体基板2と砥石4とを接触させ、半導体基板2を所定の速度で研削する。   In this state, the semiconductor substrate 2 and the grindstone 4 are brought into contact with each other, and the semiconductor substrate 2 is ground at a predetermined speed.

このとき、定速移動機構12により半導体基板2を研削する厚さは、半導体基板2の研削厚(全研削厚)の80〜95%とする。これは、定速移動機構12により半導体基板2を研削する厚さが80%未満であると、定圧移動機構13で研削する厚さが厚くなり、研削に時間がかかって加工能率が低下してしまい、95%を超えると、定速移動機構12により半導体基板2を研削する際に半導体基板2の表面に生じたキズが、研削後に残ってしまう場合があるためである。さらに望ましくは、定速移動機構12により半導体基板2を研削する厚さは、半導体基板2の研削厚の90%程度であるとよい。   At this time, the thickness of grinding the semiconductor substrate 2 by the constant speed moving mechanism 12 is 80 to 95% of the grinding thickness (total grinding thickness) of the semiconductor substrate 2. This is because if the thickness of grinding the semiconductor substrate 2 by the constant speed moving mechanism 12 is less than 80%, the thickness to be ground by the constant pressure moving mechanism 13 becomes thick, and it takes time to grind and the processing efficiency decreases. Therefore, if it exceeds 95%, scratches generated on the surface of the semiconductor substrate 2 when the semiconductor substrate 2 is ground by the constant speed moving mechanism 12 may remain after grinding. More desirably, the thickness of grinding the semiconductor substrate 2 by the constant speed moving mechanism 12 is about 90% of the grinding thickness of the semiconductor substrate 2.

定速移動機構12での加工量(研削厚)と定圧移動機構13での加工量(研削厚)、およびこれらの切り替え位置は、リニアスケール11で検出するスライドベース8の位置によって制御するとよい。   The processing amount (grinding thickness) in the constant speed moving mechanism 12 and the processing amount (grinding thickness) in the constant pressure moving mechanism 13 and the switching position thereof may be controlled by the position of the slide base 8 detected by the linear scale 11.

定速移動機構12で半導体基板2を研削した後、エアシリンダ19によりナット15からスライドベース8を開放して、定速移動機構12から定圧移動機構13に切り替える。   After the semiconductor substrate 2 is ground by the constant speed moving mechanism 12, the slide base 8 is released from the nut 15 by the air cylinder 19, and the constant speed moving mechanism 12 is switched to the constant pressure moving mechanism 13.

エアシリンダ19のクランプ19bを伸ばし、ナット15からスライドベース8を開放すると、ナット15の前方にギャップが生じる。この状態でナット15を前進させると、ナット15とスライドベース8とが離れる。そして、スライドベース8は錘23の重量のみで前方に引っ張られるようになる。これにより、(加工圧)=(錘の重量)となり、一定の圧力(加工圧)で半導体基板2に砥石4を押し当てて研削することができる。   When the clamp 19 b of the air cylinder 19 is extended and the slide base 8 is released from the nut 15, a gap is generated in front of the nut 15. When the nut 15 is advanced in this state, the nut 15 and the slide base 8 are separated. The slide base 8 is pulled forward only by the weight of the weight 23. As a result, (processing pressure) = (weight of weight), and grinding can be performed by pressing the grindstone 4 against the semiconductor substrate 2 at a constant pressure (processing pressure).

研削終了後、モータ16によりボールネジ14を逆回転させ、ナット15を後方に移動させることで、スライドベース8および研削機構5を後退させ、半導体基板2および砥石4の回転を停止させる。その後、治具3から半導体基板2を取り外すと、表面が研削された半導体基板2が得られる。   After completion of grinding, the ball screw 14 is reversely rotated by the motor 16 and the nut 15 is moved backward, whereby the slide base 8 and the grinding mechanism 5 are retracted, and the rotation of the semiconductor substrate 2 and the grindstone 4 is stopped. Thereafter, when the semiconductor substrate 2 is removed from the jig 3, the semiconductor substrate 2 whose surface is ground is obtained.

以上説明したように、半導体基板研削機1では、研削機構5を治具3に向かって移動自在に設け、ベース6上に研削機構5を定速で移動させる定速移動機構12を設けると共に、研削機構5に、定速移動機構12で半導体基板2と砥石4とを押圧して半導体基板2を研削した後に、定圧で半導体基板2と砥石4とをさらに押圧して研削するための定圧移動機構13を連結している。   As described above, in the semiconductor substrate grinding machine 1, the grinding mechanism 5 is provided movably toward the jig 3, and the constant speed moving mechanism 12 for moving the grinding mechanism 5 at a constant speed is provided on the base 6, After the semiconductor substrate 2 and the grindstone 4 are pressed against the grinding mechanism 5 by the constant speed moving mechanism 12 to grind the semiconductor substrate 2, the constant pressure movement for further pressing and grinding the semiconductor substrate 2 and the grindstone 4 with constant pressure. The mechanism 13 is connected.

これにより、一定速度での研削加工と一定圧力での研削加工を一連の動作で行うことができる。よって、研削加工後の半導体基板2の加工変質層を薄くでき、キズのない加工面に仕上げることができ、さらに、加工能率を向上させることができ、半導体基板2の製造効率を向上させることができる。   Thereby, grinding at a constant speed and grinding at a constant pressure can be performed in a series of operations. Therefore, the work-affected layer of the semiconductor substrate 2 after grinding can be thinned, and the processed surface can be finished without any scratches. Further, the processing efficiency can be improved, and the manufacturing efficiency of the semiconductor substrate 2 can be improved. it can.

また、半導体基板研削機1では、定速移動機構12で半導体基板2の研削厚の80〜95%の厚さを研削した後、定圧移動機構13で半導体基板2と砥石4とをさらに押圧して残りの研削を行っている。これにより、さらに加工能率を向上させることができる。   Further, in the semiconductor substrate grinding machine 1, after grinding the thickness of 80 to 95% of the grinding thickness of the semiconductor substrate 2 by the constant speed moving mechanism 12, the semiconductor substrate 2 and the grindstone 4 are further pressed by the constant pressure moving mechanism 13. The remaining grinding is done. Thereby, processing efficiency can be improved further.

次に、本発明の他の実施の形態を説明する。   Next, another embodiment of the present invention will be described.

図3(a)および図3(b)に示す半導体基板研削機31は、基本的に図1の半導体基板研削機1と同じ構成であり、ナット15と一体に設けられ、ナット15からスライドベース8の後方に延びるエアシリンダ載置台32と、そのエアシリンダ載置台32上に設けられた定圧移動機構としてのエアシリンダ33とを備える。   A semiconductor substrate grinding machine 31 shown in FIGS. 3A and 3B has basically the same configuration as the semiconductor substrate grinding machine 1 in FIG. 1, and is provided integrally with the nut 15. 8, and an air cylinder 33 as a constant pressure moving mechanism provided on the air cylinder mounting table 32.

半導体基板研削機31では、図3(a)に示すように、定速移動機構12で研削する際、ナット15の舌片15aで凹部18前方の面を押すことで、スライドベース8を前方に一定の速度で移動させる。   In the semiconductor substrate grinding machine 31, as shown in FIG. 3A, when grinding with the constant speed moving mechanism 12, the slide base 8 is moved forward by pressing the front surface of the recess 18 with the tongue piece 15 a of the nut 15. Move at a constant speed.

また、半導体基板研削機31では、図3(b)に示すように、定速移動機構12から定圧移動機構に切り替える際、モータ16を停止してナット15の移動を停止させると共に、エアシリンダ33のクランプ33bを伸ばし、一定の圧力でスライドベース8を前方に押す。これにより、半導体基板2に砥石4を一定の圧力で押し当てて研削することができる。   In the semiconductor substrate grinding machine 31, as shown in FIG. 3B, when switching from the constant speed moving mechanism 12 to the constant pressure moving mechanism, the motor 16 is stopped to stop the movement of the nut 15, and the air cylinder 33 is stopped. The clamp 33b is extended and the slide base 8 is pushed forward with a constant pressure. Thereby, grinding can be performed by pressing the grindstone 4 against the semiconductor substrate 2 with a constant pressure.

半導体基板研削機31によれば、錘やワイヤ、定滑車などが不要となるので、より簡単な構成で一定速度での研削加工と一定圧力での研削加工を一連の動作で行うことができる。   According to the semiconductor substrate grinding machine 31, since a weight, a wire, a fixed pulley, and the like are not necessary, grinding processing at a constant speed and grinding processing at a constant pressure can be performed by a series of operations with a simpler configuration.

本実施形態では定圧移動機構としてエアシリンダ33を用いたが、スライドベース8を一定の圧力で押すものであればよく、例えば、油圧式のシリンダを用いてもよい。   In the present embodiment, the air cylinder 33 is used as the constant pressure moving mechanism. However, any mechanism that presses the slide base 8 with a constant pressure may be used. For example, a hydraulic cylinder may be used.

上記実施形態では、治具3を定盤7上に固定し、研削機構5をスライドベース8上に設けて移動可能としたが、研削機構5を定盤7上に固定し、治具3をスライドベース8上に設けて移動可能としてもよい。   In the above embodiment, the jig 3 is fixed on the surface plate 7 and the grinding mechanism 5 is provided on the slide base 8 to be movable. However, the grinding mechanism 5 is fixed on the surface plate 7 and the jig 3 is It may be provided on the slide base 8 so as to be movable.

以下、本発明の実施例および比較例を説明する。   Examples of the present invention and comparative examples will be described below.

(実施例)
図1の半導体基板研削機1を用い、以下の条件で半導体基板2を研削した。半導体基板2としては、径が5.08cm(2inch)のものを用いた。
(Example)
Using the semiconductor substrate grinding machine 1 of FIG. 1, the semiconductor substrate 2 was ground under the following conditions. A semiconductor substrate 2 having a diameter of 5.08 cm (2 inches) was used.

砥石サイズ:φ150カップ型砥石
砥石メッシュサイズ:#600(粒径:φ20〜φ30μm)
砥石回転数:1000rpm
ワーク(半導体基板)回転数:50rpm
トータル研削量(厚さ):100μm
(研削量0μm〜90μmを、送り込み速度0.2μm/sで研削し、研削量90μm〜100μmを錘重量(圧力)20N(0.036N/mm2)で研削した)
研削後の半導体基板2表面の走査型白色干渉法による測定画像と研削時間を図4に示す。
Whetstone size: φ150 cup type whetstone Whetstone mesh size: # 600 (particle size: φ20 to φ30 μm)
Grinding wheel rotation speed: 1000rpm
Workpiece (semiconductor substrate) rotation speed: 50 rpm
Total grinding amount (thickness): 100 μm
(The grinding amount of 0 μm to 90 μm was ground at a feeding speed of 0.2 μm / s, and the grinding amount of 90 μm to 100 μm was ground with a weight (pressure) of 20 N (0.036 N / mm 2 ))
FIG. 4 shows an image measured by the scanning white interference method on the surface of the semiconductor substrate 2 after grinding and the grinding time.

(比較例1)
図6の半導体基板研削機61を用い、以下の条件で半導体基板を研削した。半導体基板としては、径が5.08cm(2inch)のものを用いた。
(Comparative Example 1)
The semiconductor substrate was ground under the following conditions using the semiconductor substrate grinder 61 of FIG. A semiconductor substrate having a diameter of 5.08 cm (2 inches) was used.

砥石サイズ:φ150カップ型砥石
砥石メッシュサイズ:#600(粒径:φ20〜φ30μm)
砥石回転数:1000rpm
ワーク(半導体基板)回転数:50rpm
送り込み速度:0.2μm/s
研削量(厚さ):100μm
研削後の半導体基板表面の走査型白色干渉法による測定画像と研削時間を図5に示す。
Whetstone size: φ150 cup type whetstone Whetstone mesh size: # 600 (particle size: φ20 to φ30 μm)
Grinding wheel rotation speed: 1000rpm
Workpiece (semiconductor substrate) rotation speed: 50 rpm
Feeding speed: 0.2 μm / s
Grinding amount (thickness): 100 μm
FIG. 5 shows a measurement image of the surface of the semiconductor substrate after grinding by the scanning white interference method and grinding time.

(比較例2)
図7の半導体基板研削機71を用い、以下の条件で半導体基板を研削した。半導体基板としては、径が5.08cm(2inch)のものを用いた。
(Comparative Example 2)
The semiconductor substrate was ground under the following conditions using the semiconductor substrate grinder 71 of FIG. A semiconductor substrate having a diameter of 5.08 cm (2 inches) was used.

砥石サイズ:φ150カップ型砥石
砥石メッシュサイズ:#600(粒径:φ20〜φ30μm)
砥石回転数:1000rpm
ワーク回転数:50rpm
錘重量(圧力):20N(0.036N/mm2
研削量(厚さ):100μm
研削後の半導体基板表面の走査型白色干渉法による測定画像と研削時間を図5に示す。
Whetstone size: φ150 cup type whetstone Whetstone mesh size: # 600 (particle size: φ20 to φ30 μm)
Grinding wheel rotation speed: 1000rpm
Work rotation speed: 50rpm
Weight (pressure): 20 N (0.036 N / mm 2 )
Grinding amount (thickness): 100 μm
FIG. 5 shows a measurement image of the surface of the semiconductor substrate after grinding by the scanning white interference method and grinding time.

図5に示すように、一定速度で研削した比較例1の半導体基板の表面にはキズが発生しているのに対し、一定圧力で研削した比較例2の半導体基板の表面には深いキズがなく、全面均一の研削痕が確認された。また、比較例1では設定通り500秒/100μmで加工を完了しているのに対し、比較例2では、600〜800秒/100μmとなっており、加工時間が安定していない。   As shown in FIG. 5, the surface of the semiconductor substrate of Comparative Example 1 ground at a constant speed has scratches, whereas the surface of the semiconductor substrate of Comparative Example 2 ground at a constant pressure has deep scratches. No uniform grinding marks were observed on the entire surface. In Comparative Example 1, processing is completed at 500 seconds / 100 μm as set, whereas in Comparative Example 2, the processing time is 600 to 800 seconds / 100 μm, and the processing time is not stable.

よって、研削後の表面は一定圧力での研削(比較例2)が適しているが、加工時間の管理では一定速度での研削(比較例1)が適しているといえる。   Therefore, grinding with a constant pressure (Comparative Example 2) is suitable for the ground surface, but it can be said that grinding at a constant speed (Comparative Example 1) is suitable for managing the processing time.

これに対し、図4に示すように、一定速度での加工と一定圧力での加工を一連の動作で行った本発明による実施例では、研削後の半導体基板2の表面には深いキズがなく、加工時間は505〜510秒/100μmと一定速度で研削した場合(比較例1)と大差なく研削できた。   On the other hand, as shown in FIG. 4, in the embodiment according to the present invention in which processing at a constant speed and processing at a constant pressure are performed in a series of operations, the surface of the semiconductor substrate 2 after grinding has no deep scratches. The processing time was 505 to 510 seconds / 100 μm, and grinding was possible without much difference from the case of grinding at a constant speed (Comparative Example 1).

以上の結果より、本発明によれば、研削後の半導体基板をキズのない加工面に仕上げることができ、さらに加工時間を短くでき、加工能率を高くすることができることが分かる。   From the above results, it can be seen that according to the present invention, the ground semiconductor substrate can be finished to a scratch-free processed surface, the processing time can be shortened, and the processing efficiency can be increased.

本発明の半導体基板研削機の側面図である。It is a side view of the semiconductor substrate grinding machine of this invention. 図2(a)は、図1の半導体基板研削機の定速研削時の要部拡大断面図であり、図2(b)は定圧研削時の要部拡大断面図である。FIG. 2A is an enlarged cross-sectional view of the main part during constant speed grinding of the semiconductor substrate grinder of FIG. 1, and FIG. 2B is an enlarged cross-sectional view of the main part during constant pressure grinding. 図3(a)は、本発明の他の実施形態の半導体基板研削機の定速研削時の要部拡大断面図であり、図3(b)は定圧研削時の要部拡大断面図である。FIG. 3A is an enlarged cross-sectional view of a main part during constant speed grinding of a semiconductor substrate grinder according to another embodiment of the present invention, and FIG. 3B is an enlarged cross-sectional view of the main part during constant pressure grinding. . 本発明の半導体基板研削機で研削した半導体基板表面の走査型白色干渉法による測定画像である。It is a measurement image by the scanning white interference method of the semiconductor substrate surface ground with the semiconductor substrate grinding machine of this invention. 従来の半導体基板研削機で研削した半導体基板表面の走査型白色干渉法による測定画像である。It is the measurement image by the scanning white interference method of the semiconductor substrate surface ground with the conventional semiconductor substrate grinding machine. 図6(a)は、従来の半導体基板研削機の側面図であり、図6(b)はその要部拡大断面図である。FIG. 6A is a side view of a conventional semiconductor substrate grinding machine, and FIG. 6B is an enlarged cross-sectional view of the main part thereof. 図7(a)は、従来の半導体基板研削機の側面図であり、図7(b)はその要部拡大断面図である。Fig.7 (a) is a side view of the conventional semiconductor substrate grinding machine, and FIG.7 (b) is the principal part expanded sectional view.

符号の説明Explanation of symbols

1 半導体基板研削機
2 半導体基板
3 治具
4 砥石(研削部材)
5 研削機構
6 ベース
8 スライドベース
12 定速移動機構
13 定圧移動機構
1 Semiconductor substrate grinding machine 2 Semiconductor substrate 3 Jig 4 Grinding wheel (grinding member)
5 Grinding mechanism 6 Base 8 Slide base 12 Constant speed moving mechanism 13 Constant pressure moving mechanism

Claims (7)

ベース上に、半導体基板を保持する治具と、その治具に保持された前記半導体基板に対向する研削部材を保持する研削機構とを設け、前記治具と前記研削機構の少なくともいずれか一方を他方に向かって移動自在に設け、前記半導体基板と前記研削部材とを相対的に回転させつつ接触させることで前記半導体基板を研削する半導体基板研削機において、
前記ベース上に、そのベースに対して滑動自在に設けられたスライドベースを設け、前記治具と前記研削機構の少なくともいずれか一方を前記スライドベースに搭載し、さらに前記治具及び/又は前記研削機構を定速で移動して前記半導体基板を研削するための定速移動機構と、前記半導体基板と前記研削部材とを定圧で押圧して前記半導体基板を研削するための定圧移動機構とを前記スライドベースに設けることを特徴とする半導体基板研削機。
A jig for holding the semiconductor substrate and a grinding mechanism for holding a grinding member facing the semiconductor substrate held by the jig are provided on the base, and at least one of the jig and the grinding mechanism is provided. In a semiconductor substrate grinder that grinds the semiconductor substrate by providing the semiconductor substrate and the grinding member while rotating relative to each other, so as to be movable toward the other side,
A slide base that is slidable relative to the base is provided on the base, and at least one of the jig and the grinding mechanism is mounted on the slide base, and the jig and / or the grinding is further mounted. A constant speed moving mechanism for grinding the semiconductor substrate by moving the mechanism at a constant speed; and a constant pressure moving mechanism for grinding the semiconductor substrate by pressing the semiconductor substrate and the grinding member with a constant pressure. A semiconductor substrate grinder provided on a slide base.
前記治具または前記研削機構と前記定圧移動機構とを連結し、前記定速移動機構に、定速移動時に前記スライドベースを拘束し、前記定速移動機構から前記定圧移動機構に切り替える際に、前記スライドベースを開放する切り替え機構を設けた請求項1記載の半導体基板研削機。   When connecting the jig or the grinding mechanism and the constant pressure moving mechanism, constraining the slide base during constant speed movement to the constant speed moving mechanism, and switching from the constant speed moving mechanism to the constant pressure moving mechanism, The semiconductor substrate grinding machine according to claim 1, further comprising a switching mechanism that opens the slide base. 前記スライドベースを定速で移動させる定速移動機構は、ボールネジ機構と、そのボールネジを回転させるモータとからなる請求項2記載の半導体基板研削機。   3. The semiconductor substrate grinding machine according to claim 2, wherein the constant speed moving mechanism for moving the slide base at a constant speed includes a ball screw mechanism and a motor for rotating the ball screw. 前記定圧移動機構は、前記スライドベースにワイヤを介して接続された錘と、前記ベースに保持されて前記ワイヤが巻き掛けられる定滑車とからなる請求項2または3記載の半導体基板研削機。   4. The semiconductor substrate grinding machine according to claim 2, wherein the constant pressure moving mechanism includes a weight connected to the slide base via a wire, and a constant pulley that is held by the base and on which the wire is wound. 前記スライドベースには、位置検出手段が設けられ、その位置検出手段で検出した前記スライドベースの位置により、前記定速移動機構から前記定圧移動機構に切り替える請求項1〜4いずれかに記載の半導体基板研削機。   5. The semiconductor according to claim 1, wherein the slide base is provided with position detection means, and the constant-speed movement mechanism is switched to the constant-pressure movement mechanism according to the position of the slide base detected by the position detection means. Substrate grinding machine. 治具に回転自在に保持された半導体基板と、その半導体基板に対向するように研削機構に回転自在に保持された研削部材とを接触させて前記半導体基板を研削する半導体基板研削方法において、
前記ベース上に設けられた定速移動機構で前記治具または前記研削機構のいずれか一方を他方に向かって定速で移動させ、その定速移動機構で前記半導体基板と前記研削部材とを押圧して前記半導体基板を研削した後、前記治具または前記研削機構に連結された定圧移動機構で定圧で前記半導体基板と前記研削部材とをさらに押圧して研削することを特徴とする半導体基板研削方法。
In a semiconductor substrate grinding method for grinding a semiconductor substrate by contacting a semiconductor substrate rotatably held by a jig and a grinding member rotatably held by a grinding mechanism so as to face the semiconductor substrate,
Either one of the jig or the grinding mechanism is moved at a constant speed toward the other by a constant speed moving mechanism provided on the base, and the semiconductor substrate and the grinding member are pressed by the constant speed moving mechanism. Then, after grinding the semiconductor substrate, the semiconductor substrate and the grinding member are further pressed and ground with a constant pressure by the constant pressure moving mechanism connected to the jig or the grinding mechanism. Method.
前記定速移動機構で前記半導体基板の研削厚の80〜95%の厚さを研削した後、前記定圧移動機構で前記半導体基板と前記研削部材とをさらに押圧して残りの研削を行う請求項6記載の半導体基板研削方法。   The ground of 80 to 95% of the grinding thickness of the semiconductor substrate is ground by the constant speed moving mechanism, and then the semiconductor substrate and the grinding member are further pressed by the constant pressure moving mechanism to perform the remaining grinding. 6. The semiconductor substrate grinding method according to 6.
JP2008118830A 2008-04-30 2008-04-30 Semiconductor substrate grinding machine and grinding method Pending JP2009272323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118830A JP2009272323A (en) 2008-04-30 2008-04-30 Semiconductor substrate grinding machine and grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118830A JP2009272323A (en) 2008-04-30 2008-04-30 Semiconductor substrate grinding machine and grinding method

Publications (1)

Publication Number Publication Date
JP2009272323A true JP2009272323A (en) 2009-11-19

Family

ID=41438651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118830A Pending JP2009272323A (en) 2008-04-30 2008-04-30 Semiconductor substrate grinding machine and grinding method

Country Status (1)

Country Link
JP (1) JP2009272323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101537746B1 (en) * 2013-09-03 2015-07-20 이승훈 grinding machine for cast-iron product
US10173296B2 (en) 2015-09-30 2019-01-08 Tokyo Seimitsu Co., Ltd. Grinding machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101537746B1 (en) * 2013-09-03 2015-07-20 이승훈 grinding machine for cast-iron product
US10173296B2 (en) 2015-09-30 2019-01-08 Tokyo Seimitsu Co., Ltd. Grinding machine

Similar Documents

Publication Publication Date Title
JP4913517B2 (en) Wafer grinding method
JP4986568B2 (en) Wafer grinding method
US8033893B2 (en) Grinding method of a disk-shaped substrate and grinding apparatus
JP5385049B2 (en) Cutting and polishing equipment
CN101383281B (en) Wafer grinding method and grinding apparatus
JP5192355B2 (en) Wafer chamfer removal method and grinding apparatus
JP2006231470A (en) Sizing method and device of double-sided polishing machine
JP2009272323A (en) Semiconductor substrate grinding machine and grinding method
CN107403738B (en) Method for evaluating defect removal performance
CN110842779A (en) Origin position setting mechanism and origin position setting method for grinding device
JP7002295B2 (en) Processing method and processing equipment for plate-shaped workpieces
JP2017127936A (en) Grinding device
JP2007335521A (en) Method for grinding outer periphery of wafer
JP6633954B2 (en) Wafer chamfering method
JP2009078326A (en) Wafer chamfering device and wafer chamfering method
JP2008207302A (en) Grinding wheel dressing method and dressing tool
JP7127994B2 (en) Dressing board and dressing method
JP4733805B2 (en) Processing method and processing apparatus for forming rectangular member into rod-shaped member
JP2017205810A (en) Cutting device
JP5443131B2 (en) Cutting and polishing equipment
JP2011224697A (en) Method of adjusting polishing pad
JP2017103387A (en) Wafer dividing method and wafer dividing device
JP2012135851A (en) Grinding device
JP5484171B2 (en) Polishing pad groove forming method
JP5484172B2 (en) Method for forming tapered surface of polishing pad