JP2009270814A - Combustion equipment, and method for operating the combustion equipment - Google Patents

Combustion equipment, and method for operating the combustion equipment Download PDF

Info

Publication number
JP2009270814A
JP2009270814A JP2009026172A JP2009026172A JP2009270814A JP 2009270814 A JP2009270814 A JP 2009270814A JP 2009026172 A JP2009026172 A JP 2009026172A JP 2009026172 A JP2009026172 A JP 2009026172A JP 2009270814 A JP2009270814 A JP 2009270814A
Authority
JP
Japan
Prior art keywords
combustion
magnetic
combustion chamber
fes
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009026172A
Other languages
Japanese (ja)
Other versions
JP5301306B2 (en
Inventor
Ryuichi Agawa
隆一 阿川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2009026172A priority Critical patent/JP5301306B2/en
Publication of JP2009270814A publication Critical patent/JP2009270814A/en
Application granted granted Critical
Publication of JP5301306B2 publication Critical patent/JP5301306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide combustion equipment suppressing generation of clinker and enabling stable combustion in a fluidized bed combustion chamber. <P>SOLUTION: A boiler equipment 1 comprises a fluidized bed combustion tower 5 using coal containing FeS<SB>2</SB>as its fuel, a magnetic discriminator 13 for discriminating magnetic powder Am containing FeS<SB>1-x</SB>(x=0 to 0.2) from ash Ba discharged from the combustion tower 5, and a powder returning line 17 for returning nonmagnetic ash An from which the FeS<SB>1-x</SB>(x=0 to 0.2) is separated by the magnetic discriminator 13 to the combustion tower 5. As a result, the FeS<SB>1-x</SB>(x=0 to 0.2) which might produce highly-viscous clinker can be actively recovered from the combustion tower 5, and generation of the clinker can be suppressed, which enables the stable combustion in the fluidized bed combustion tower 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、硫化物含有の石炭を燃料とする流動床式の燃焼室を備えた燃焼設備及び燃焼設備の運転方法に関する。   The present invention relates to a combustion facility having a fluidized bed combustion chamber using sulfide-containing coal as a fuel, and a method for operating the combustion facility.

従来から流動床式焼却炉を備えたボイラ設備などの燃焼設備が知られている。例えば、特許文献1には、燃焼室である炉区内に燃料を含む粒状材料が投入されて流動床が形成され、流動床内に空気を通過させることによって流動床を流動化させ、この流動床の形成によって比較的低温にての燃料の燃焼を促進する流動床式燃焼装置が記載されている。   Conventionally, combustion equipment such as boiler equipment equipped with a fluidized bed incinerator is known. For example, in Patent Document 1, a granular material containing fuel is introduced into a furnace section that is a combustion chamber to form a fluidized bed, and the fluidized bed is fluidized by passing air through the fluidized bed. A fluidized bed combustor is described that facilitates combustion of fuel at relatively low temperatures by forming a bed.

ボイラ設備などの燃焼設備に適用される燃料として多種多様な燃料の適用が求められており、特に、従来の石炭に代えて低品位炭の使用が望まれている。低品位炭の中には、硫化物、例えば二硫化鉄(FeS)を多く含む石炭が存在する。このような低品位炭は、炉区内でFeS(1−x)に熱分解された後、さらにFeS(1−x)内の硫黄(S)が熱分解されて硫黄酸化物(SO)となる。硫黄酸化物(SO)の大気放出は環境等に配慮してできるだけ抑える必要があり、そのために炉区内には石灰石等の吸着材が投入される。 Various fuels are required to be used as fuel applied to combustion equipment such as boiler equipment, and in particular, it is desired to use low-grade coal instead of conventional coal. Among low-grade coals, there are coals rich in sulfides, for example, iron disulfide (FeS 2 ). Such low-grade coal is thermally decomposed into FeS (1-x) in the furnace section, and then sulfur (S) in FeS (1-x) is further thermally decomposed to form sulfur oxide (SO x ). It becomes. It is necessary to suppress the release of sulfur oxide (SO x ) into the atmosphere as much as possible in consideration of the environment. For this purpose, an adsorbent such as limestone is introduced into the furnace section.

特開平4−227403号公報JP-A-4-227403

従来の燃焼設備では、石炭中に含まれる硫化物を硫黄酸化物にまで熱分解させている。例えば、二硫化鉄(FeS)の場合、熱分解によってFeS(1−x)とし、さらに熱分解させて硫黄酸化物(SO)にしている。ここで、FeS(1−x)を硫黄酸化物(SO)にまで熱分解させるためには、900℃程度の高温を維持したまま炉(燃焼室)内で長時間保持する必要がある。しかしながら、FeS(1−x)は鉄などに比べて融点が低く、燃焼室内に長時間滞留すると粘性の高いクリンカーとなって流動床の流動化を不安定にする虞があり、燃焼室内での燃焼を不安定にする可能性があった。 In a conventional combustion facility, sulfide contained in coal is thermally decomposed to sulfur oxide. For example, in the case of iron disulfide (FeS 2 ), it is converted to FeS (1-x) by thermal decomposition, and is further thermally decomposed to sulfur oxide (SO x ). Here, in order to thermally decompose FeS (1-x) to sulfur oxide (SO x ), it is necessary to hold it in a furnace (combustion chamber) for a long time while maintaining a high temperature of about 900 ° C. However, FeS (1-x) has a lower melting point than iron or the like, and if it stays in the combustion chamber for a long time, it may become a viscous clinker and may make fluidized bed fluidization unstable. There was a possibility of destabilizing the combustion.

本発明は、以上の課題を解決することを目的としており、石炭中の硫化物に起因したクリンカーの発生を抑制し、流動床式の燃焼室での安定した燃焼を可能にする燃焼設備を提供することを目的とする。   The present invention aims to solve the above problems, and provides a combustion facility that suppresses the generation of clinker due to sulfides in coal and enables stable combustion in a fluidized bed combustion chamber. The purpose is to do.

本発明は、硫化物含有の石炭を燃料とする流動床式の燃焼室を備える燃焼設備において、燃焼室から排出された灰のうち、磁性物を磁力選別によって分離する磁選手段と、磁選手段によって磁性物を分離された非磁性物を燃焼室に返送する返送ラインと、を備えることを特徴とする。   The present invention relates to a combustion facility having a fluidized bed combustion chamber that uses sulfide-containing coal as a fuel, and magnetic separation means that separates magnetic materials by magnetic separation from the ash discharged from the combustion chamber, and magnetic separation means. And a return line for returning the non-magnetic material from which the magnetic material has been separated to the combustion chamber.

本発明では、燃焼室で生成された灰のうち、硫化金属を磁選手段による磁力選別によって分離し、非磁性物のみを燃焼室に返送する。非磁性物は流動床を形成する流動材料として再利用されるため、流動床を維持するための流動材料の追加投入量を抑えることができる。その結果、流動材料の低減に伴う流動床の不安定化を抑えながら、FeS(1−x)などの硫化金属が硫黄酸化物(SO)にまで熱分解されるのを待たずに、硫化金属を灰として積極的に燃焼室から排出できる。その結果として、粘性の高いクリンカー生成の虞のある硫化金属を燃焼室から積極的に回収でき、クリンカーの発生を抑制でき、流動床式の燃焼室での安定した燃焼を可能にする。 In the present invention, among the ash produced in the combustion chamber, the metal sulfide is separated by magnetic separation by the magnetic separation means, and only the non-magnetic material is returned to the combustion chamber. Since the non-magnetic material is reused as a fluidized material that forms a fluidized bed, it is possible to suppress the additional input amount of fluidized material for maintaining the fluidized bed. As a result, while preventing the fluidized bed from becoming unstable due to the reduction of the fluidized material, without waiting for the metal sulfides such as FeS (1-x) to be thermally decomposed to sulfur oxide (SO X ), The metal can be actively discharged from the combustion chamber as ash. As a result, it is possible to positively collect metal sulfides that may generate a highly viscous clinker from the combustion chamber, suppress the generation of clinker, and enable stable combustion in a fluidized bed combustion chamber.

さらに、磁選手段によって分離された磁性物を受け入れる焙焼炉と、焙焼炉内での磁性物の加熱によって生成される金属を回収する金属回収部と、を更に備えると好適である。磁性物中の硫化金属は、焙焼炉内で硫黄(S)が熱分解されて硫黄酸化物(SO)と金属が生成され、その金属を金属回収部で回収することができる。特に、低品位炭としての石炭中には、鉄などの他に希少金属であるインジウムを含んでいる可能性もあり、石炭中からこれらの金属を効率よく回収できるので資源の有効利用が可能になる。 Further, it is preferable to further include a roasting furnace that receives the magnetic material separated by the magnetic separation means, and a metal recovery unit that recovers the metal generated by heating the magnetic material in the roasting furnace. In the metal sulfide, sulfur (S) is thermally decomposed in a roasting furnace to produce sulfur oxide (SO x ) and a metal, and the metal can be recovered by the metal recovery unit. In particular, coal as low-grade coal may contain indium, which is a rare metal in addition to iron, etc., and these metals can be efficiently recovered from the coal, enabling effective use of resources. Become.

焙焼炉から排出された燃焼排ガスを燃焼室に返送する排ガス返送ラインを更に備えると好適である。焙焼炉で生じた酸化硫黄(SO)含有の燃焼排ガスを燃焼室に返送することで、酸化硫黄を効率的に処理できる。 It is preferable to further include an exhaust gas return line for returning the combustion exhaust gas discharged from the roasting furnace to the combustion chamber. By returning the combustion exhaust gas containing sulfur oxide (SO X ) generated in the roasting furnace to the combustion chamber, the sulfur oxide can be treated efficiently.

さらに、焙焼炉の熱源としてプラズマトーチを用いると好適である。焙焼炉の熱源としてプラズマトーチを用いると、通常の燃料燃焼バーナに比べて焙焼炉内の酸素濃度を低く抑えることが可能になる。その結果として、焙焼炉で生成された金属の酸化を抑制できる。さらに、プラズマトーチを用いることで排ガス量の低減も可能である。   Furthermore, it is preferable to use a plasma torch as a heat source for the roasting furnace. When a plasma torch is used as a heat source for a roasting furnace, the oxygen concentration in the roasting furnace can be kept lower than that of a normal fuel combustion burner. As a result, the oxidation of the metal generated in the roasting furnace can be suppressed. Furthermore, the amount of exhaust gas can be reduced by using a plasma torch.

さらに、燃焼室で得た熱を利用して発電する発電手段を更に備え、発電手段で発電された電力の少なくとも一部は、プラズマトーチに供給されると好適である。発電手段で発電された電力の少なくとも一部を利用できるので、別の発電施設から電力の供給を受ける必要はなくなる。   Furthermore, it is preferable that a power generation means for generating power using heat obtained in the combustion chamber is further provided, and at least a part of the power generated by the power generation means is supplied to the plasma torch. Since at least part of the power generated by the power generation means can be used, it is not necessary to receive power from another power generation facility.

また、本発明は、硫化物含有の石炭を燃料とする流動床式の燃焼室を備えた燃焼設備の運転方法において、燃焼室から排出された灰を引き抜き、その灰のうち、磁性物を磁力選別によって分離除去し、残りの非磁性物を燃焼室に返送することを特徴とする。本発明によれば、炉内クリンカー生成の虞のある硫化金属のみを積極的に回収でき、炉内クリンカーの発生を抑制して燃焼効率を向上させることができる。本発明によれば、粘性の高いクリンカー生成の虞のある硫化金属を燃焼室から積極的に回収でき、クリンカーの発生を抑制でき、流動床式の燃焼室での安定した燃焼を可能にする。   Further, the present invention relates to a method for operating a combustion facility having a fluidized bed type combustion chamber using sulfide-containing coal as fuel, extracting ash discharged from the combustion chamber, and magnetic material from the ash is magnetically extracted. It is characterized by being separated and removed by sorting and returning the remaining non-magnetic material to the combustion chamber. According to the present invention, it is possible to positively recover only metal sulfides that are likely to generate in-furnace clinker, and to suppress the generation of in-furnace clinker and improve combustion efficiency. ADVANTAGE OF THE INVENTION According to this invention, the metal sulfide which has a possibility of producing | generating a highly viscous clinker can be actively collect | recovered from a combustion chamber, generation | occurrence | production of a clinker can be suppressed, and the stable combustion in a fluidized bed type combustion chamber is enabled.

本発明によれば、石炭中の硫化物に起因したクリンカーの発生を抑制し、流動床式の燃焼室での安定した燃焼を可能にする。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the clinker resulting from the sulfide in coal is suppressed, and the stable combustion in a fluid bed type combustion chamber is enabled.

本発明の第1実施形態に係るボイラ設備を概略的に示す図である。It is a figure showing roughly boiler equipment concerning a 1st embodiment of the present invention. 本実施形態に係る磁力選別器を概略的に示す断面図である。It is sectional drawing which shows schematically the magnetic selector which concerns on this embodiment. 本実施形態に係るキルン回転炉を概略的に示す断面図である。It is sectional drawing which shows schematically the kiln rotary furnace which concerns on this embodiment. 燃焼塔内の温度とFeS及びFeSの濃度との関係を示すグラフである。It is a graph showing the relationship between the temperature and the FeS and concentration of FeS 2 in the combustion tower. 燃焼経過時間及び燃焼塔内の温度とSO及びO濃度との関係を示すグラフである。It is a graph showing the relationship between the temperature and SO 2 and O 2 concentration in the combustion time elapsed and the combustion tower. FeとFeSとの相状態図である。It is a phase state diagram of Fe and FeS. 本発明の第2実施形態に係るボイラ設備を概略的に示す図である。It is a figure showing roughly boiler equipment concerning a 2nd embodiment of the present invention.

以下、本発明に係る燃焼設備の好適な実施形態について図面を参照しながら説明する。図1は、第1実施形態に係る燃焼設備を概略的に示す図、図2は磁力選別器を概略的に示す図、図3はキルン回転炉を概略的に示す図である。
(第1実施形態)
Hereinafter, a preferred embodiment of a combustion facility according to the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically illustrating a combustion facility according to the first embodiment, FIG. 2 is a diagram schematically illustrating a magnetic separator, and FIG. 3 is a diagram schematically illustrating a kiln rotary furnace.
(First embodiment)

図1に示されるように、ボイラ設備1(燃焼設備)は発電施設などに設置され、石炭、特に硫化物を多く含む低品位炭を燃料にする燃焼装置3を備えている。燃焼装置3は、流動床式の燃焼室である燃焼塔5と、燃焼塔5で生じた煙道ガスから固形物を分離するサイクロン分離器7と、煙道ガスから熱を回収する熱交換部9と、熱交換部9から排出される排ガス中の煤塵を除去するバグフィルタ11とを備えている。この種のボイラ設備1はCFBボイラとも呼ばれる。   As shown in FIG. 1, a boiler facility 1 (combustion facility) is installed in a power generation facility or the like, and includes a combustion device 3 that uses coal, particularly low-grade coal containing a large amount of sulfide as fuel. The combustion apparatus 3 includes a combustion tower 5 that is a fluidized bed combustion chamber, a cyclone separator 7 that separates solids from the flue gas generated in the combustion tower 5, and a heat exchange unit that recovers heat from the flue gas. 9 and a bag filter 11 for removing dust in the exhaust gas discharged from the heat exchange unit 9. This type of boiler equipment 1 is also called a CFB boiler.

燃焼塔5内には、燃料としての石炭C1と、硫黄(S)を除去する吸着材料としての石灰石とが投入される。燃焼塔5には、下部から空気が供給され、石炭C1及び石灰石を含む固形物は流動化され、可燃性材料からなる流動床Fbが形成される。流動床Fbの形成により、石炭C1の燃焼が促進される。燃焼の結果として生じる燃焼ガスは、固形物の一部を随伴しながら燃焼塔5内を上昇する。   In the combustion tower 5, coal C1 as fuel and limestone as an adsorbing material for removing sulfur (S) are charged. Air is supplied to the combustion tower 5 from below, and the solid matter containing coal C1 and limestone is fluidized to form a fluidized bed Fb made of a combustible material. By the formation of the fluidized bed Fb, the combustion of the coal C1 is promoted. The combustion gas generated as a result of the combustion rises in the combustion tower 5 with a part of the solid matter.

サイクロン分離器7は、燃焼塔5に隣接して配置されており、燃焼塔5から排出された煙道ガス及び煙道ガスに随伴された粒状固形物を受け入れ、遠心分離作用によって煙道ガスと粒状固形物とを分離し、粒状固形物は燃焼塔5に戻し、煙道ガスは熱交換部9に送り込む。   The cyclone separator 7 is disposed adjacent to the combustion tower 5 and receives the flue gas discharged from the combustion tower 5 and the particulate solid accompanying the flue gas, and is separated from the flue gas by a centrifugal separation action. The particulate solid is separated, the particulate solid is returned to the combustion tower 5, and the flue gas is sent to the heat exchange unit 9.

熱交換部9では、煙道ガスからの熱を蒸気等で回収する。煙道ガスに同伴された煤塵中の硫黄の一部は、熱交換部9で燃焼する。また、バグフィルタ11は、熱交換部9から排出された排ガス中の煤塵を捕捉し、バグフィルタ11を通過した排ガスは、他の処理設備に送られたり、大気に放出されたりする。   In the heat exchange part 9, the heat from the flue gas is recovered by steam or the like. Part of the sulfur in the dust accompanying the flue gas burns in the heat exchange unit 9. Moreover, the bag filter 11 captures soot and dust in the exhaust gas discharged from the heat exchange unit 9, and the exhaust gas that has passed through the bag filter 11 is sent to another processing facility or released to the atmosphere.

また、ボイラ設備1は、燃焼塔5から排出された灰Baを受け入れる磁力選別器13(磁選手段)と、磁力選別器13によって磁力選別された非磁性物を篩い作用によって選別する振動篩器15と、振動篩器15によって選別された粒径の細かい灰分を燃焼塔5に戻す粉体返送ライン17(返送ライン)と、磁力選別器13によって磁力選別された磁性物を再度燃焼させるキルン回転炉19と、キルン回転炉19から排出された残渣Rfを回収する残渣回収部21と、キルン回転炉19からの燃焼排ガスを燃焼塔5及び熱交換部9に返送する排ガス返送ライン23と、を備えている。   In addition, the boiler equipment 1 includes a magnetic separator 13 (magnetic separator) that receives the ash Ba discharged from the combustion tower 5 and a vibration sieve 15 that selects nonmagnetic substances magnetically selected by the magnetic separator 13 by a sieving action. A powder return line 17 (return line) for returning the fine ash having a particle size selected by the vibration sieve 15 to the combustion tower 5, and a kiln rotary furnace for again burning the magnetic material selected by the magnetic separator 13 19, a residue recovery unit 21 that recovers the residue Rf discharged from the kiln rotary furnace 19, and an exhaust gas return line 23 that returns the combustion exhaust gas from the kiln rotary furnace 19 to the combustion tower 5 and the heat exchange unit 9. ing.

燃焼塔5に投入される石炭(低品位炭)C1中には、二硫化鉄(FeS)などの硫化物が多く含まれており、燃焼塔5内において可燃物の燃焼と同時にFeS及びFeS(1-x)などが熱分解して硫黄酸化物(SO)になる。ここで、燃焼塔5内での燃焼によって生じる物質と流動床Fbへの影響について図4〜図6を参照して説明する。図4は燃焼塔5内の温度とFeS及びFeSの濃度変化との関係を示すグラフである。図5は燃焼経過時間及び燃焼塔5内の温度(炉内温度)と燃焼塔5の上端出口(炉出口)でのSO及びOの濃度変化との関係を示すグラフである。また、図6はFeとFeSとの相状態図である。 Coal (low-grade coal) C1 charged into the combustion tower 5 contains a large amount of sulfides such as iron disulfide (FeS 2 ), and in the combustion tower 5 simultaneously with combustion of combustibles, FeS 2 and FeS (1-x) and the like are thermally decomposed into sulfur oxide (SO x ). Here, the substance produced by the combustion in the combustion tower 5 and the influence on the fluidized bed Fb will be described with reference to FIGS. FIG. 4 is a graph showing the relationship between the temperature in the combustion tower 5 and changes in the concentrations of FeS 2 and FeS. FIG. 5 is a graph showing the relationship between the elapsed combustion time, the temperature in the combustion tower 5 (furnace temperature), and the change in the concentration of SO 2 and O 2 at the upper end outlet (furnace outlet) of the combustion tower 5. FIG. 6 is a phase diagram of Fe and FeS.

図4に示されるように、二硫化鉄(FeS)を多く含有する石炭C1(低品位炭)は、500°C程度以上にまで加熱されると二硫化鉄(FeS)が熱分解されてFeS1−x(x=0〜0.2)が生成される。図5に示されるように、この段階で生じる硫黄酸化物(SOx)によって、例えば、燃焼塔5内のSOの濃度は急激に上昇してピークに達し、その後急速に減少する。 As shown in FIG. 4, iron disulfide coal C1 (low rank coal) containing a large amount of (FeS 2), when heated to above about 500 ° C iron disulfide (FeS 2) is thermally decomposed Thus, FeS 1-x (x = 0 to 0.2) is generated. As shown in FIG. 5, for example, the sulfur oxide (SOx) generated at this stage rapidly increases the SO 2 concentration in the combustion tower 5 to a peak, and then rapidly decreases.

FeS1−x(x=0〜0.2)を硫黄酸化物(SOx)になるまで熱分解させるには、900°C程度に加熱した状態を長時間保持する必要がある。図6に示されるように、FeS1−x(x=0〜0.2)は融点が低く、FeS1−x(x=0〜0.2)が長期に渡って燃焼塔5内に滞留すると、FeS1−x(x=0〜0.2)と他の灰分とによってクリンカーが生成される。クリンカーは粘性が高く、流動床Fbを形成する固形物に付着すると流動化を阻害する要因になり、燃焼塔5内での燃焼を不安定にする虞がある。そこで、本実施形態に係るボイラ設備1では、クリンカーの生成を抑えるために、燃焼塔5内の灰(ボトムアッシュ)Baを早期に引き抜いて磁力選別器13に送り込んでいる。 In order to thermally decompose FeS 1-x (x = 0 to 0.2) until it becomes sulfur oxide (SOx), it is necessary to keep the state heated to about 900 ° C. for a long time. As shown in FIG. 6, FeS 1-x (x = 0 to 0.2) has a low melting point, and FeS 1-x (x = 0 to 0.2) stays in the combustion tower 5 over a long period of time. Then, a clinker is produced | generated by FeS1 -x (x = 0-0.2) and another ash content. The clinker has a high viscosity, and if it adheres to the solids forming the fluidized bed Fb, it becomes a factor that hinders fluidization, and there is a possibility that the combustion in the combustion tower 5 becomes unstable. Therefore, in the boiler equipment 1 according to the present embodiment, the ash (bottom ash) Ba in the combustion tower 5 is extracted early and sent to the magnetic separator 13 in order to suppress the generation of clinker.

燃焼塔5の底部には、灰Baを排出するための排出部5aが設けられており、排出部5aには、磁力選別器13に連絡する粉体移送ライン25が接続されている。粉体移送ライン25には、スクリューコンベヤなどの粉体移送手段が配置されている。   A discharge part 5a for discharging ash Ba is provided at the bottom of the combustion tower 5, and a powder transfer line 25 communicating with the magnetic separator 13 is connected to the discharge part 5a. In the powder transfer line 25, powder transfer means such as a screw conveyor is arranged.

磁力選別器13には、FeS1−x(x=0〜0.2)を含む灰Baが送り込まれる。FeS1−x(x=0〜0.2)は磁性を帯びており、FeS1−x(x=0〜0.2)を含む磁性物と、灰分を主体とする非磁性物とは磁力選別器13によって磁力選別される。 Ash Ba containing FeS 1-x (x = 0 to 0.2) is fed into the magnetic separator 13. FeS 1-x (x = 0 to 0.2) is magnetized, and a magnetic substance containing FeS 1-x (x = 0 to 0.2) and a non-magnetic substance mainly composed of ash are magnetic. Magnetic sorting is performed by the sorter 13.

図2に示されるように、磁力選別器13は、FeS1−x(x=0〜0.2)を含む灰Baを受け入れ、且つ振動ふるいによってFeS1−x(x=0〜0.2)を他の灰分から剥離させるホッパ13aを備える。さらに、磁力選別器13は、ホッパ13aから流下するFeS1−x(x=0〜0.2)を吸着する左右一対の磁気ドラム13bと、この磁気ドラム13bの周面に摺接することで磁気ドラム13bの周面に吸着された粒子状のFeS1−x(x=0〜0.2)を回収する左右一対のスクレーパ13cと、を備えている。なお、スクレーパ13cによって掻き取られた磁性物としての粉体(以下、「磁性粉」という)AmにはFeS1−x(x=0〜0.2)が濃縮されており、この磁性粉Amは、コンベヤなどの移送装置によってキルン回転炉19まで移送される。 As shown in FIG. 2, the magnetic force sorter 13, FeS 1-x (x = 0~0.2) receiving ash Ba containing, FeS 1-x (x = 0~0.2 by and vibrating screen ) 13a is peeled off from other ash. Further, the magnetic separator 13 is magnetically coupled with a pair of left and right magnetic drums 13b that adsorb FeS 1-x (x = 0 to 0.2) flowing down from the hopper 13a and a peripheral surface of the magnetic drum 13b. A pair of left and right scrapers 13c for collecting particulate FeS 1-x (x = 0 to 0.2) adsorbed on the peripheral surface of the drum 13b. Note that FeS 1-x (x = 0 to 0.2) is concentrated in powder (hereinafter referred to as “magnetic powder”) Am as a magnetic material scraped off by the scraper 13c, and this magnetic powder Am Is transferred to the kiln rotary furnace 19 by a transfer device such as a conveyor.

磁気ドラム13bの間から流下する非磁性物としての灰分(以下、「非磁性灰」という)Anは、振動篩器15に投入される。振動篩器15では非磁性灰Anを粒径によって選別し、篩上の粒径の大きな非磁性灰Anについては他の処理施設に移送するか、または廃棄処分とし、粒径の小さな非磁性灰Anについては粉体返送ライン17によって燃焼塔5に返送する。粉体返送ライン17にはスクリューコンベヤなどの移送手段が配置されている。   Ash content (hereinafter referred to as “non-magnetic ash”) An that flows from between the magnetic drums 13 b as non-magnetic material is put into the vibration sieve 15. In the vibration sieve 15, the nonmagnetic ash An is sorted by the particle size, and the nonmagnetic ash An having a large particle size on the sieve is transferred to another processing facility or disposed of as a non-magnetic ash having a small particle size. An is returned to the combustion tower 5 by the powder return line 17. Transfer means such as a screw conveyor is arranged in the powder return line 17.

燃焼塔5に返送された非磁性灰Anは、流動床Fbを形成する流動材料(「ベット材」ともいう)になる。非磁性灰Anを返送することで、流動材料の新規の追加投入量を抑えることができ、特に、非磁性灰AnはFeS1−x(x=0〜0.2)が除去されているのでクリンカーの発生を抑制するのに有効である。 The nonmagnetic ash An returned to the combustion tower 5 becomes a fluidized material (also referred to as “bed material”) that forms the fluidized bed Fb. By returning the non-magnetic ash An, it is possible to suppress a new additional input amount of the fluid material. In particular, since the non-magnetic ash An has FeS 1-x (x = 0 to 0.2) removed. It is effective in suppressing the generation of clinker.

図3に示されるように、キルン回転炉19は、縦型キルンもあるが、本実施形態では横型キルンを採用している。キルン回転炉19は、磁性粉Amを焙焼する円筒形状の焙焼炉27と、焙焼炉27から排出される燃焼排ガスを二次燃焼する二次燃焼室29とを備えている。   As shown in FIG. 3, the kiln rotary furnace 19 includes a vertical kiln, but a horizontal kiln is employed in this embodiment. The kiln rotary furnace 19 includes a cylindrical roasting furnace 27 for roasting magnetic powder Am, and a secondary combustion chamber 29 for secondary combustion of combustion exhaust gas discharged from the roasting furnace 27.

焙焼炉27の外周には歯車27aが設けられ、焙焼炉27は図示しないモータによって軸線L回りに回転する。焙焼炉27は、磁性粉Amを受入れ側Usから排出側Dsへ移動させることができるように、受入れ側Usから排出側Dsに向けて下方に傾斜されている。焙焼炉27と二次燃焼室29とは、焙焼炉27が回転可能に且つ接合部の気密が保持されるように接合されている。磁性粉Amを酸化焙焼した後の残渣Rfと燃焼排ガスとは、焙焼炉27の排出口から二次燃焼室29に導入され、残渣Rfは落下し、燃焼排ガスは上昇する。燃焼排ガスは、二次燃焼室29で二次燃焼された後、返送管を配管した排ガス返送ライン23を介して燃焼塔5及び熱交換部9(図1参照)に返送される。   A gear 27a is provided on the outer periphery of the roasting furnace 27, and the roasting furnace 27 is rotated around the axis L by a motor (not shown). The roasting furnace 27 is inclined downward from the receiving side Us toward the discharging side Ds so that the magnetic powder Am can be moved from the receiving side Us to the discharging side Ds. The roasting furnace 27 and the secondary combustion chamber 29 are joined so that the roasting furnace 27 can rotate and the airtightness of the joint is maintained. The residue Rf and the combustion exhaust gas after oxidizing and roasting the magnetic powder Am are introduced into the secondary combustion chamber 29 from the discharge port of the roasting furnace 27, the residue Rf falls, and the combustion exhaust gas rises. The combustion exhaust gas is subjected to secondary combustion in the secondary combustion chamber 29 and then returned to the combustion tower 5 and the heat exchange unit 9 (see FIG. 1) via an exhaust gas return line 23 having a return pipe.

焙焼炉27の受入れ側Usの端面であるフロントウォール27bには、定量供給装置33に連結される受入口27cが形成されている。また、フロントウォール27bには、加熱手段であるバーナ31が貫通して配置されている。バーナ31は、フロントウォール27bから焙焼炉27の排出側Dsに向かって火炎を放射する。バーナ31には、図示しない燃料ポンプによって燃料タンクから重油等の燃料が供給される。バーナ31には、図示しないブロアを介して燃焼用空気が供給される。   A receiving wall 27 c connected to the fixed quantity supply device 33 is formed in the front wall 27 b which is an end surface on the receiving side Us of the roasting furnace 27. In addition, a burner 31 as a heating means is disposed through the front wall 27b. The burner 31 emits a flame from the front wall 27 b toward the discharge side Ds of the roasting furnace 27. Fuel such as heavy oil is supplied to the burner 31 from a fuel tank by a fuel pump (not shown). Combustion air is supplied to the burner 31 through a blower (not shown).

定量供給装置33は、フロントウォール27bの受入口27cに接続されたシリンダ部33aと、シリンダ部33a内を往復動する押出部33bと、押出部33bの往復動を駆動制御する供給器33cと、シリンダ部33a内に連通するホッパ33dとを備えている。ホッパ33dには、磁力選別器13からの磁性粉Amが投入される。ホッパ33d内に堆積する磁性粉Amは、押出部33bの往復動によって定量ずつが焙焼炉27内に供給される。定量供給装置33は、スクリューコンベヤなどによって磁性粉Amを焙焼炉27内に供給する装置であってもよい。   The fixed amount supply device 33 includes a cylinder part 33a connected to the receiving port 27c of the front wall 27b, a pushing part 33b that reciprocates within the cylinder part 33a, a feeder 33c that drives and controls the reciprocating movement of the pushing part 33b, A hopper 33d communicating with the cylinder portion 33a is provided. The magnetic powder Am from the magnetic separator 13 is put into the hopper 33d. A fixed amount of the magnetic powder Am deposited in the hopper 33d is supplied into the roasting furnace 27 by the reciprocating motion of the pushing portion 33b. The fixed amount supply device 33 may be a device that supplies the magnetic powder Am into the roasting furnace 27 by a screw conveyor or the like.

焙焼炉27内へ供給された磁性粉Amは、供給当初からバーナ31によって加熱される。磁性粉Amは、焙焼炉27内において、攪拌されながら900℃程度まで加熱され、受入れ側Usから排出側Dsに移動する。焙焼炉27の受入れ側Usには、図示しない空気供給ラインが接続されており、焙焼炉27内で磁性粉Amが移動する方向と焙焼炉27に導入される空気とが並行になる。このようなガス流れを持つキルン回転炉19は並流式と呼ばれる。なお、本実施形態は並流式であるが、磁性粉Amの移動方向と焙焼炉27に導入される空気とが対向する向流式のキルン回転炉19であってもよい。   The magnetic powder Am supplied into the roasting furnace 27 is heated by the burner 31 from the beginning of supply. In the roasting furnace 27, the magnetic powder Am is heated to about 900 ° C. while being stirred, and moves from the receiving side Us to the discharging side Ds. An air supply line (not shown) is connected to the receiving side Us of the roasting furnace 27, and the direction in which the magnetic powder Am moves in the roasting furnace 27 and the air introduced into the roasting furnace 27 are in parallel. . The kiln rotary furnace 19 having such a gas flow is called a parallel flow type. In addition, although this embodiment is a parallel flow type, the counterflow type kiln rotary furnace 19 with which the moving direction of magnetic powder Am and the air introduced into the roasting furnace 27 oppose may be sufficient.

焙焼炉27内の磁性粉Am中に含まれるFeS1−x(x=0〜0.2)は、硫黄(S)が熱分解されて酸化硫黄(SO)になり、残渣Rf中にはFe若しくはFeOとして鉄分が残留する。酸化硫黄(SO)を含む燃焼排ガスと残渣Rfとは、焙焼炉27から二次燃焼室29に排出される。二次燃焼室29には、残渣Rfと飛翔ダストとを分離するための二股式の第1排出口29a及び第2排出口29bが設けられている。残渣Rfの出口となる第1排出口29aは、焙焼炉27側に設けられ、飛翔ダストの出口となる第2排出口29bは、二次燃焼室29の傾斜した側面側に設けられている。残渣Rfは、第1排出口29aに達し、第1排出口29aから排出される。一方、飛翔ダストは、二次燃焼室29で流速が落ちて落下し、第2排出口29bから排出される。飛翔ダストには、未燃焼分が多く含まれており、二股式の第1,第2排出口29bを設けることで、飛翔ダストのみを回収でき、その飛翔ダストを再度焙焼炉27や燃焼塔5に投入するようにすることもできる。 In FeS 1-x (x = 0 to 0.2) contained in the magnetic powder Am in the roasting furnace 27, sulfur (S) is thermally decomposed to become sulfur oxide (SO X ), and in the residue Rf Remains iron as Fe or FeO. The combustion exhaust gas containing sulfur oxide (SO X ) and the residue Rf are discharged from the roasting furnace 27 to the secondary combustion chamber 29. The secondary combustion chamber 29 is provided with a bifurcated first discharge port 29a and a second discharge port 29b for separating the residue Rf and the flying dust. The first discharge port 29 a serving as the outlet for the residue Rf is provided on the roasting furnace 27 side, and the second discharge port 29 b serving as the outlet for the flying dust is provided on the inclined side surface side of the secondary combustion chamber 29. . The residue Rf reaches the first discharge port 29a and is discharged from the first discharge port 29a. On the other hand, the flying dust drops at a lower flow velocity in the secondary combustion chamber 29 and is discharged from the second discharge port 29b. The flying dust contains a large amount of unburned matter, and by providing the bifurcated first and second discharge ports 29b, only the flying dust can be recovered, and the flying dust is again recovered from the roasting furnace 27 and the combustion tower. 5 can also be used.

第1排出口29aには、残渣回収部21に接続されたスクリューコンベヤ(粉体移送部)35が接続されている。スクリューコンベヤ35の入口は、第1排出口29aに接続されており、出口は残渣回収部21に接続されている。鉄原料(FeまたはFeO)を含む残渣Rfは残渣回収部21で回収される。残渣Rfは、鉄分が主体であり、純度の高い鉄原料として電炉精錬メーカーにて有効利用可能である。また、残渣Rf中には微量の希少金属(例えば、インジウム)が含まれている可能性もあり、そのような希少金属を効率良く回収できる。残渣回収部21は本発明の金属回収部に相当する。   A screw conveyor (powder transfer unit) 35 connected to the residue collection unit 21 is connected to the first discharge port 29a. The inlet of the screw conveyor 35 is connected to the first discharge port 29 a, and the outlet is connected to the residue recovery unit 21. The residue Rf containing the iron raw material (Fe or FeO) is recovered by the residue recovery unit 21. The residue Rf is mainly composed of iron, and can be effectively used by an electric furnace refining maker as a high-purity iron material. Further, the residue Rf may contain a trace amount of rare metal (for example, indium), and such a rare metal can be efficiently recovered. The residue collection unit 21 corresponds to the metal collection unit of the present invention.

次に、ボイラ設備1の運転方法について説明する。ボイラ設備1の燃焼塔5内に低品位炭である石炭C1及び石灰石を投入し、900℃程度に加熱して石炭C1を燃焼させる。石炭C1中の硫化鉄(FeS)は、燃焼塔5内でFeS1−x(x=0〜0.2)に分解され、その結果、燃焼塔5内のSO濃度は急激に上昇し、ピークに到達すると急激に減少する(図5参照)。FeS1−x(x=0〜0.2)によるクリンカーの生成を抑止するため、所定の時間が経過すると燃焼塔5内の灰Ba(ボトムアッシュ)を引き抜く。この所定の時間は、例えば、SO濃度がピークを超えて減少し、その後再び上昇すると想定されるまでの時間としたり、引き抜いた灰Ba中のFeS1−xの含有量を分析調査し、濃度から想定される時間、例えば、30分から80分程度としたり、適宜に決定できる。 Next, the operation method of the boiler equipment 1 will be described. Coal C1 and limestone, which are low-grade coal, are charged into the combustion tower 5 of the boiler facility 1 and heated to about 900 ° C. to burn the coal C1. Iron sulfide (FeS 2 ) in the coal C 1 is decomposed into FeS 1-x (x = 0 to 0.2) in the combustion tower 5, and as a result, the SO 2 concentration in the combustion tower 5 rapidly increases. When the peak is reached, it decreases rapidly (see FIG. 5). In order to suppress the generation of clinker by FeS 1-x (x = 0 to 0.2), the ash Ba (bottom ash) in the combustion tower 5 is extracted after a predetermined time has elapsed. This predetermined time is, for example, the time until the SO 2 concentration decreases beyond the peak and is assumed to rise again thereafter, or the content of FeS 1-x in the extracted ash Ba is analyzed and investigated. The time estimated from the concentration, for example, about 30 to 80 minutes, or can be appropriately determined.

次に、燃焼塔5内から引き抜いた灰Baは磁力選別器13に投入され、磁力選別器13によってFeS1−x(x=0〜0.2)を含む磁性粉Amと、灰分を含む非磁性灰Anとに分離される。さらに、非磁性灰Anは、振動篩器15によって粒径を整えられ、細粒分のみが燃焼塔5に返送される。 Next, the ash Ba extracted from the combustion tower 5 is put into the magnetic separator 13, and the magnetic separator 13 contains the magnetic powder Am containing FeS1 -x (x = 0 to 0.2) and the non-ash containing ash. Separated into magnetic ash An. Furthermore, the particle size of the nonmagnetic ash An is adjusted by the vibration sieve 15 and only the fine particles are returned to the combustion tower 5.

一方で、FeS1−x(x=0〜0.2)が濃縮された磁性粉Amは、キルン回転炉19の焙焼炉27に投入される。焙焼炉27では、磁性粉Amを900℃程度に加熱してFeS1−x(x=0〜0.2)を酸化硫黄(SO)と鉄とに熱分解させる。ここで鉄は、Feまたは酸化鉄(FeO)として残渣Rf中に残留する。SOを含む燃焼排ガスは、燃焼塔5及び熱交換部9に返送され、鉄原料(FeまたはFeO)を含む残渣Rfは残渣回収部21で回収される。焙焼炉27から排出されたFe分が主体の固形物残渣Rfを回収することで、純度の高い鉄原料として電炉精錬メーカーにて有効利用可能である。 On the other hand, the magnetic powder Am enriched with FeS 1-x (x = 0 to 0.2) is charged into the roasting furnace 27 of the kiln rotary furnace 19. In the roasting furnace 27, the magnetic powder Am is heated to about 900 ° C., and FeS 1-x (x = 0 to 0.2) is thermally decomposed into sulfur oxide (SO X ) and iron. Here, iron remains in the residue Rf as Fe or iron oxide (FeO). The combustion exhaust gas containing SO X is returned to the combustion tower 5 and the heat exchange unit 9, and the residue Rf containing the iron raw material (Fe or FeO) is recovered by the residue recovery unit 21. By recovering the solid residue Rf mainly composed of Fe discharged from the roasting furnace 27, it can be effectively used by an electric furnace refining maker as a high-purity iron material.

以上のボイラ設備1及びボイラ設備1に運転方法では、流動床式の燃焼塔5を備える燃焼装置3で生成されたFeS1−x(x=0〜0.2)などの硫化金属を含む灰Baのうち、FeS1−x(x=0〜0.2)が濃縮された磁性粉Amを磁力選別し、非磁性灰Anのみを燃焼塔5に返送する。非磁性灰Anは流動床Fbを形成する流動材料として再利用されるため、流動床Fbを維持するための流動材料の追加投入量を抑えることができる。その結果、流動材料の低減に伴う流動床Fbの不安定化を抑えながら、燃焼塔5で生成されたFeS(1−x)などの硫化金属が硫黄酸化物(SO)にまで熱分解されるのを待たずに灰Baとして積極的に燃焼塔5から排出できる。その結果として、粘性の高いクリンカー生成の虞のある硫化金属を燃焼塔5から積極的に回収でき、クリンカーの発生を抑制でき、流動床式の燃焼塔5での安定した燃焼を可能にする。 In the operation method of the boiler equipment 1 and the boiler equipment 1 described above, the ash containing metal sulfide such as FeS 1-x (x = 0 to 0.2) generated by the combustion apparatus 3 including the fluidized bed type combustion tower 5 is used. Among the Ba, magnetic powder Am enriched with FeS 1-x (x = 0 to 0.2) is magnetically selected, and only the nonmagnetic ash An is returned to the combustion tower 5. Since the non-magnetic ash An is reused as the fluidized material that forms the fluidized bed Fb, the additional input amount of fluidized material for maintaining the fluidized bed Fb can be suppressed. As a result, metal sulfide such as FeS (1-x) generated in the combustion tower 5 is thermally decomposed into sulfur oxide (SO X ) while suppressing instability of the fluidized bed Fb due to reduction of the fluidized material. It can be actively discharged from the combustion tower 5 as ash Ba without waiting. As a result, it is possible to positively recover metal sulfides that are likely to generate a highly viscous clinker from the combustion tower 5, suppress the generation of clinker, and enable stable combustion in the fluidized bed type combustion tower 5.

さらに、本実施形態では、磁性粉Am中のFeS(1−x)(x=0〜0.2)などの硫化金属は、焙焼炉27内で硫黄(S)が熱分解されて硫黄酸化物(SO)となり、鉄などの金属が含まれる残渣Rfが生成され、その残渣Rfを残渣回収部21で回収することができる。特に、低品位炭としての石炭C1中には、鉄などの他にインジウムなどの希少金属を含んでいる可能性が高い。従って、本実施形態によれば、石炭C1中からこれらの金属を効率よく回収することで資源の更なる有効利用が可能になる。 Further, in the present embodiment, the metal sulfide Am such as FeS (1-x) (x = 0 to 0.2) in the magnetic powder Am is oxidized by sulfur decomposition of sulfur (S) in the roasting furnace 27. object (SO X), and the is residue Rf which include metal such as iron is produced, it is possible to recover the residue Rf in the residue recovery unit 21. In particular, the coal C1 as low-grade coal is likely to contain a rare metal such as indium in addition to iron. Therefore, according to this embodiment, further effective utilization of resources becomes possible by efficiently recovering these metals from the coal C1.

また、焙焼炉27で生じた酸化硫黄(SO)含有の燃焼排ガスを燃焼塔5及び熱交換部9に返送するので、酸化硫黄(SO)を効率的に処理できる。
(第2実施形態)
In addition, the sulfur oxide (SO X ) -containing combustion exhaust gas generated in the roasting furnace 27 is returned to the combustion tower 5 and the heat exchange unit 9, so that the sulfur oxide (SO X ) can be treated efficiently.
(Second Embodiment)

次に、図7を参照して、第2実施形態に係るボイラ設備について説明する。図7は、第2実施形態に係るボイラ設備を概略的に示す図である。なお、第2実施形態に係るボイラ設備については、第1実施形態に係るボイラ設備との相違点を中心に説明し、第1実施形態と同様の要素や部材については、同一の符号を付して詳細説明を省略する。   Next, with reference to FIG. 7, the boiler equipment which concerns on 2nd Embodiment is demonstrated. FIG. 7 is a diagram schematically showing the boiler facility according to the second embodiment. In addition, about the boiler equipment which concerns on 2nd Embodiment, it demonstrates centering around difference with the boiler equipment which concerns on 1st Embodiment, and attaches | subjects the same code | symbol about the element and member similar to 1st Embodiment. Detailed description will be omitted.

図1に示されるように、ボイラ設備(燃焼設備)1Bは、石炭、特に硫化物を多く含む低品位炭を燃料にする燃焼装置3を備えている。燃焼装置3は、流動床式の燃焼室である燃焼塔5と、燃焼塔5で生じた煙道ガスから固形物を分離するサイクロン分離器7と、燃焼塔5で生成された飽和蒸気を、煙道ガスからの熱によって更に加熱して過熱蒸気を生成する蒸気過熱器(蒸気過熱手段)51と、蒸気過熱器51から排出される煙道ガス中の煤塵を除去するバグフィルタ11と、を備えている。この種のボイラ設備1BはCFBボイラとも呼ばれる。   As shown in FIG. 1, a boiler facility (combustion facility) 1B includes a combustion device 3 that uses coal, particularly low-grade coal containing a large amount of sulfide as fuel. The combustion apparatus 3 includes a combustion tower 5 that is a fluidized bed combustion chamber, a cyclone separator 7 that separates solids from flue gas generated in the combustion tower 5, and saturated steam generated in the combustion tower 5 A steam superheater (steam superheating means) 51 that further heats by the heat from the flue gas to generate superheated steam, and a bag filter 11 that removes dust in the flue gas discharged from the steam superheater 51. I have. This type of boiler equipment 1B is also called a CFB boiler.

また、ボイラ設備1Bは、蒸気過熱器51で生成された過熱蒸気を受け入れることで回転するタービンを備え、そのタービンの回転によって発電する発電装置(発電手段)53を備えている。   Moreover, the boiler equipment 1B includes a turbine that rotates by receiving superheated steam generated by the steam superheater 51, and includes a power generation device (power generation means) 53 that generates power by the rotation of the turbine.

磁力選別器13によって磁力選別された磁性粉Amは、コンベヤなどの移送装置によってキルン回転炉19まで移送される。本実施形態に係るキルン回転炉19では、焙焼炉27の熱源として、バーナ31に代えて、プラズマトーチ55を利用しており、焙焼炉27内に供給された磁性粉Amは、プラズマトーチ55によって、焙焼炉27内で攪拌されながら900℃程度まで加熱される。   The magnetic powder Am subjected to magnetic separation by the magnetic separator 13 is transferred to the kiln rotary furnace 19 by a transfer device such as a conveyor. In the kiln rotary furnace 19 according to the present embodiment, a plasma torch 55 is used instead of the burner 31 as a heat source of the roasting furnace 27, and the magnetic powder Am supplied into the roasting furnace 27 is a plasma torch. 55 is heated to about 900 ° C. while being stirred in the roasting furnace 27.

プラズマトーチ55は、例えば、非移行型の直流プラズマトーチ55であり、筒状の筐体(シュラウド)の内部には中空円筒状の陽極部と陰極部とが配置されており、陽極部と陰極部との間でアークが発生する。陽極部と陰極部との間には、空気、アルゴンまたは窒素などのプラズマガスが供給され、プラズマジェットを発生させて焙焼炉27内を加熱する。プラズマトーチ55には、プラズマガスをプラズマトーチ55に供給するガス供給装置57と、所定の電位をプラズマトーチ23にかける発電装置53とが接続されている。   The plasma torch 55 is, for example, a non-migrating DC plasma torch 55, and a hollow cylindrical anode part and a cathode part are arranged inside a cylindrical casing (shroud). An arc is generated between the two parts. A plasma gas such as air, argon or nitrogen is supplied between the anode part and the cathode part, and a plasma jet is generated to heat the inside of the roasting furnace 27. A gas supply device 57 that supplies plasma gas to the plasma torch 55 and a power generation device 53 that applies a predetermined potential to the plasma torch 23 are connected to the plasma torch 55.

磁性粉Am中のFeS(1−x)(x=0〜0.2)などの硫化金属は、焙焼炉27内で加熱されることによって、硫黄(S)が熱分解されて硫黄酸化物(SO)となり、鉄などの金属が含まれる残渣Rfが生成され、その残渣Rfを残渣回収部21で回収することができる。特に、低品位炭としての石炭C1中には、鉄などの他にインジウムなどの希少金属を含んでいる可能性が高い。従って、本実施形態によれば、石炭C1中からこれらの金属を効率よく回収することで資源の更なる有効利用が可能になる。 Metal sulfides such as FeS (1-x) (x = 0 to 0.2) in the magnetic powder Am are heated in the roasting furnace 27, so that sulfur (S) is thermally decomposed and sulfur oxides. (SO X ) and a residue Rf containing a metal such as iron is generated, and the residue Rf can be recovered by the residue recovery unit 21. In particular, the coal C1 as low-grade coal is likely to contain a rare metal such as indium in addition to iron. Therefore, according to this embodiment, further effective utilization of resources becomes possible by efficiently recovering these metals from the coal C1.

特に本実施形態では、プラズマトーチ55を熱源として利用することで、燃料燃焼バーナに比べて焙焼炉27内の酸素濃度を低く抑えることが可能になる。焙焼炉27内の酸素濃度を薄くすることで、残渣Rf中の金属、例えば、鉄が下記の式(1)に示されるように再酸化してしまうのを抑止できる。さらに、プラズマトーチ55を利用することで排ガス量も低減でき、その結果として、排ガスを大気に放出するための処理負担が低減する。   In particular, in the present embodiment, by using the plasma torch 55 as a heat source, the oxygen concentration in the roasting furnace 27 can be suppressed to be lower than that of the fuel combustion burner. By reducing the oxygen concentration in the roasting furnace 27, it is possible to prevent the metal, for example, iron in the residue Rf from being reoxidized as shown in the following formula (1). Further, the amount of exhaust gas can be reduced by using the plasma torch 55, and as a result, the processing burden for releasing the exhaust gas to the atmosphere is reduced.

2Fe+O=2FeO ・・(1) 2Fe + O 2 = 2FeO (1)

また、発電装置53は、プラズマトーチ55に電力を供給可能に接続されており、発電した電力のうち、すくなくとも一部をプラズマトーチ55に供給する。その結果、このボイラ設備1Bでは、プラズマトーチ55を駆動するために、別の発電施設から電力の供給を受ける必要はなく、経済的である。   The power generation device 53 is connected to the plasma torch 55 so as to be able to supply power, and supplies at least a part of the generated power to the plasma torch 55. As a result, the boiler equipment 1B is economical because it is not necessary to receive power from another power generation facility in order to drive the plasma torch 55.

以上、本発明をその実施形態に基づき具体的に説明したが、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では、硫化物として二硫化鉄、硫化金属としてFeS1−x(x=0〜0.2)を例示して説明したが、鉄以外の金属、例えばコバルト、ガリウム、インジウム、モリブデン、ニッケル、銀またはスズと硫黄との化合物であってもよい。 As mentioned above, although this invention was concretely demonstrated based on the embodiment, this invention is not limited to the said embodiment. For example, in the above embodiment, iron disulfide is exemplified as the sulfide, and FeS 1-x (x = 0 to 0.2) is exemplified as the metal sulfide. However, metals other than iron, such as cobalt, gallium, indium, It may be a compound of molybdenum, nickel, silver or tin and sulfur.

また、上記第2の実施形態では、キルン回転炉の炉本体にプラズマトーチを取り付ける態様を説明したが、炉本体とは別のチャンバを設け、そのチャンバにプラズマトーチを取り付け、そのプラズマトーチによってチャンバ内で加熱された高温ガスをキルン回転炉の焙焼炉内に供給して焙焼炉内を加熱する態様であってもよい。この態様も、焙焼炉の熱源としてプラズマトーチを用いていることになる。   In the second embodiment, the mode in which the plasma torch is attached to the furnace main body of the kiln rotary furnace has been described. However, a chamber different from the furnace main body is provided, and the plasma torch is attached to the chamber. The aspect which heats the inside of a roasting furnace by supplying the hot gas heated inside in the roasting furnace of a kiln rotary furnace may be sufficient. This aspect also uses a plasma torch as a heat source for the roasting furnace.

1,1B…ボイラ設備(燃焼設備)、5…燃焼塔(燃焼室)、17…粉体返送ライン(返送ライン)、19…磁力選別器(磁選手段)、21…残渣回収部(金属回収部)、23…排ガス返送ライン、27…焙焼炉、55…プラズマトーチ、53…発電装置(発電手段)、Am…磁性粉(磁性物)、An…非磁性灰(非磁性物)、Ba…灰、C1…石炭、Rf…流動床。   DESCRIPTION OF SYMBOLS 1,1B ... Boiler equipment (combustion equipment), 5 ... Combustion tower (combustion chamber), 17 ... Powder return line (return line), 19 ... Magnetic separator (magnetic separation means), 21 ... Residue collection part (metal collection part) ), 23 ... exhaust gas return line, 27 ... roasting furnace, 55 ... plasma torch, 53 ... power generation device (power generation means), Am ... magnetic powder (magnetic material), An ... non-magnetic ash (non-magnetic material), Ba ... Ash, C1 ... coal, Rf ... fluidized bed.

Claims (6)

硫化物含有の石炭を燃料とする流動床式の燃焼室を備える燃焼設備において、
前記燃焼室から排出された灰のうち、磁性物を磁力選別によって分離する磁選手段と、
前記磁選手段によって前記磁性物を分離された非磁性物を前記燃焼室に返送する返送ラインと、を備えることを特徴とする燃焼設備。
In a combustion facility equipped with a fluidized bed type combustion chamber using sulfide-containing coal as fuel,
Of the ash discharged from the combustion chamber, magnetic separation means for separating magnetic materials by magnetic separation,
A combustion facility, comprising: a return line for returning the non-magnetic material separated from the magnetic material by the magnetic separation means to the combustion chamber.
前記磁選手段によって分離された磁性物を受け入れる焙焼炉と、
前記焙焼炉内での前記磁性物の加熱によって生成される金属を回収する金属回収部と、を更に備えることを特徴とする請求項1記載の燃焼設備。
A roasting furnace for receiving the magnetic material separated by the magnetic separation means;
The combustion facility according to claim 1, further comprising: a metal recovery unit that recovers a metal generated by heating the magnetic substance in the roasting furnace.
前記焙焼炉から排出された燃焼排ガスを前記燃焼室に返送する排ガス返送ラインを更に備えることを特徴とする請求項2記載の燃焼設備。   The combustion equipment according to claim 2, further comprising an exhaust gas return line for returning the combustion exhaust gas discharged from the roasting furnace to the combustion chamber. 前記焙焼炉の熱源としてプラズマトーチを用いることを特徴とする請求項2または3記載の燃焼設備。   The combustion facility according to claim 2 or 3, wherein a plasma torch is used as a heat source of the roasting furnace. 前記燃焼室で得た熱を利用して発電する発電手段を更に備え、前記発電手段で発電された電力の少なくとも一部は、前記プラズマトーチに供給されることを特徴とする請求項4記載の燃焼設備。   5. The power generation unit according to claim 4, further comprising a power generation unit configured to generate power using heat obtained in the combustion chamber, wherein at least a part of the power generated by the power generation unit is supplied to the plasma torch. Combustion equipment. 硫化物含有の石炭を燃料とする流動床式の燃焼室を備えた燃焼設備の運転方法において、
前記燃焼室から排出された灰を引き抜き、前記灰のうち、磁性物を磁力選別によって分離除去し、残りの非磁性物を前記燃焼室に返送することを特徴とする燃焼設備の運転方法。
In a method for operating a combustion facility equipped with a fluidized bed combustion chamber that uses sulfide-containing coal as fuel,
A method for operating a combustion facility, wherein the ash discharged from the combustion chamber is extracted, magnetic materials are separated and removed from the ash by magnetic separation, and the remaining non-magnetic materials are returned to the combustion chamber.
JP2009026172A 2008-04-11 2009-02-06 Combustion facility and method of operating combustion facility Active JP5301306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009026172A JP5301306B2 (en) 2008-04-11 2009-02-06 Combustion facility and method of operating combustion facility

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008103503 2008-04-11
JP2008103503 2008-04-11
JP2009026172A JP5301306B2 (en) 2008-04-11 2009-02-06 Combustion facility and method of operating combustion facility

Publications (2)

Publication Number Publication Date
JP2009270814A true JP2009270814A (en) 2009-11-19
JP5301306B2 JP5301306B2 (en) 2013-09-25

Family

ID=41437523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009026172A Active JP5301306B2 (en) 2008-04-11 2009-02-06 Combustion facility and method of operating combustion facility

Country Status (1)

Country Link
JP (1) JP5301306B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180112889A (en) 2017-04-03 2018-10-15 한국에너지기술연구원 Chemical Looping Combustor Using Magnetic Oxygen Carrier Particles and Loop Seal Equipped with Magnetic Separator
KR101985912B1 (en) * 2018-07-11 2019-06-04 강원대학교산학협력단 Recycling method of bottom ash from fluidized bed combusition boiler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159638A (en) * 1992-11-25 1994-06-07 Ebara Corp Fluidized-bed combustion equipment for combustibles including iron component
JPH10185113A (en) * 1996-12-25 1998-07-14 Ebara Corp Method for separating and circulating discharge solid matter of fluidized bed gasification furnace
JP2001132930A (en) * 1999-11-05 2001-05-18 Mitsubishi Heavy Ind Ltd Method and device for changing incineration ash to resource
JP2002316096A (en) * 2001-04-18 2002-10-29 Ebara Corp Separator for incombustibles of fluidized bed gasification furnace and separation method for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159638A (en) * 1992-11-25 1994-06-07 Ebara Corp Fluidized-bed combustion equipment for combustibles including iron component
JPH10185113A (en) * 1996-12-25 1998-07-14 Ebara Corp Method for separating and circulating discharge solid matter of fluidized bed gasification furnace
JP2001132930A (en) * 1999-11-05 2001-05-18 Mitsubishi Heavy Ind Ltd Method and device for changing incineration ash to resource
JP2002316096A (en) * 2001-04-18 2002-10-29 Ebara Corp Separator for incombustibles of fluidized bed gasification furnace and separation method for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180112889A (en) 2017-04-03 2018-10-15 한국에너지기술연구원 Chemical Looping Combustor Using Magnetic Oxygen Carrier Particles and Loop Seal Equipped with Magnetic Separator
KR101952009B1 (en) 2017-04-03 2019-02-26 한국에너지기술연구원 Chemical Looping Combustor Using Magnetic Oxygen Carrier Particles and Loop Seal Equipped with Magnetic Separator
US10307768B2 (en) 2017-04-03 2019-06-04 Korea Institute Of Energy Research Chemical looping combustor using magnetic oxygen carrier particles and loop seal equipped with magnetic separator
KR101985912B1 (en) * 2018-07-11 2019-06-04 강원대학교산학협력단 Recycling method of bottom ash from fluidized bed combusition boiler

Also Published As

Publication number Publication date
JP5301306B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP2015507732A (en) Chemical loop combustion method with ash and fines removal at the oxidation zone outlet and plant using the method
Schwebel et al. Experimental comparison of two different ilmenites in fluidized bed and fixed bed chemical-looping combustion
JP5301306B2 (en) Combustion facility and method of operating combustion facility
US8277766B2 (en) Methods for the concentration of vanadium from carbonaceous feedstock materials
JP5224490B2 (en) Processing method of smoke from furnace
EP3091284B1 (en) Gasification melting facility
CN104154762A (en) Smelting gas dedusting and purifying method for submerged arc furnace and smelting system of submerged arc furnace
JP2008224154A (en) Metal recovery method for combustion facility
CN104197725A (en) Method for dedusting and purifying of smelting smoke of submerged arc furnace and comprehensive utilization of sensible heat and latent heat of smelting smoke
JP6305196B2 (en) Cement kiln exhaust gas treatment equipment
JP5259256B2 (en) Vanadium recovery unit
JP2010190522A (en) Vanadium recovering device and vanadium recovering system
JP6260404B2 (en) Exhaust gas treatment method and treatment apparatus
JP3820247B2 (en) Heavy metal recovery device, heavy metal recovery method and waste treatment device
JP5570106B2 (en) Cement kiln exhaust gas treatment apparatus and treatment method
JP6287477B2 (en) Exhaust gas treatment method and treatment apparatus
JPS6096823A (en) Disposal of burning unsuitable refuse
JP2001165426A (en) Method and equipment for reducing dioxin and related compound in refuse gasification melting apparatus of char separation system
JP2013076149A (en) Recycling system
WO2023008522A1 (en) Combustion device, and combustion method
WO2024090056A1 (en) Calcium carbonate recovery method, calcium carbonate recovery device, and calcium carbonate recovery program
KR102567157B1 (en) Combustion ash treatment method and system, and petroleum fuel combustion plant
WO2023017803A1 (en) Combustion apparatus and combustion method
JP2010236848A (en) Combustion equipment
JP2006223961A (en) Method for separating char and noncombustible by means of fluidized layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Ref document number: 5301306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150