WO2023008522A1 - Combustion device, and combustion method - Google Patents

Combustion device, and combustion method Download PDF

Info

Publication number
WO2023008522A1
WO2023008522A1 PCT/JP2022/029088 JP2022029088W WO2023008522A1 WO 2023008522 A1 WO2023008522 A1 WO 2023008522A1 JP 2022029088 W JP2022029088 W JP 2022029088W WO 2023008522 A1 WO2023008522 A1 WO 2023008522A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
storage material
combustion
furnace
hydrogen
Prior art date
Application number
PCT/JP2022/029088
Other languages
French (fr)
Japanese (ja)
Inventor
一芳 伊藤
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to KR1020247003177A priority Critical patent/KR20240042607A/en
Priority to AU2022316664A priority patent/AU2022316664A1/en
Priority to JP2023538616A priority patent/JPWO2023008522A1/ja
Publication of WO2023008522A1 publication Critical patent/WO2023008522A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/04Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air lump and gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/01Fluidised bed combustion apparatus in a fluidised bed of catalytic particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V30/00Apparatus or devices using heat produced by exothermal chemical reactions other than combustion

Definitions

  • the present invention relates to a combustion device that generates combustion.
  • Combustion devices that generate combustion include a fluidized bed (BFB: Bubbling Fluidized Bed) boiler and a circulating fluidized bed that burns fuel through a fluidized bed or fluidized bed formed by a fluidized material such as silica sand that flows in the combustion chamber.
  • BFB Bubbling Fluidized Bed
  • CFB Circulating Fluidized Bed
  • Patent Literature 1 discloses a CFB boiler.
  • BFB boilers and CFB boilers can achieve high combustion efficiency by using a high-temperature fluid material that flows in the combustion chamber as a medium. It is suitable for burning fuels of unstable quality such as tires, etc., and flame-retardant fuels. However, since these fuels are mainly composed of carbon, they generate greenhouse gases such as carbon dioxide when burned, which may further exacerbate global warming.
  • the present invention has been made in view of these circumstances, and its purpose is to provide a combustion apparatus capable of reducing the generation of greenhouse gases.
  • a combustion apparatus includes a combustion chamber that generates combustion, and a hydrogen storage material supply unit that supplies a hydrogen storage material capable of releasing stored hydrogen when heated to the combustion chamber. , provided. Even if the hydrogen released from the hydrogen storage material is burned in the combustion chamber, it is mainly water that is produced, so that the generation of greenhouse gases can be reduced.
  • Another aspect of the present invention is a combustion method.
  • This method includes a hydrogen storage material supply step of supplying a hydrogen storage material capable of releasing stored hydrogen when heated to a combustion chamber, and a combustion step of burning the hydrogen released from the hydrogen storage material in the combustion chamber.
  • FIG. 1 shows the overall configuration of a circulating fluidized bed boiler
  • the combustion device of the present invention is any device that generates combustion.
  • the combustion apparatus when configured as a boiler, the hydrogen released from the hydrogen storage material is supplied through a fluidized bed or a fluidized bed formed by a fluidized material such as silica sand flowing in the combustion chamber or a granular hydrogen storage material described later.
  • the combustion device can be configured as a BFB boiler or a CFB boiler that burns the fuel containing.
  • the combustion device can also be configured as a rotary kiln. In this embodiment, configuration examples of a CFB boiler and a rotary kiln will be specifically described.
  • Fig. 1 shows the overall configuration of a CFB boiler (circulating fluidized bed boiler) as a combustion device.
  • the fuel containing hydrogen released from the hydrogen storage alloy is supplied and burned in the furnace 11 in which fluid materials such as silica sand and granular hydrogen storage alloy flow, and the fuel generated in the combustion unit 1
  • the fluidized material is supplied to the steam generation unit 2 that generates steam from water by heat, the fluidized material circulation unit 3 as a circulation unit that collects the fluidized material that has come out of the furnace 11 and returns it to the furnace 11 , and the combustion unit 1 .
  • a heat transfer unit 4 that heats air, water supplied to the steam generation unit 2, and steam generated in the steam generation unit 2 by high-temperature exhaust gas from the combustion unit 1, and soot and dust in the exhaust gas from the heat transfer unit 4.
  • a dust collector 5 for separating and collecting dust and a chimney 6 for releasing the exhaust gas cleaned by the dust collector 5 to the atmosphere are provided.
  • the combustion section 1 has a furnace 11 as a combustion chamber.
  • the furnace 11 has a vertically elongated cylindrical shape, and has a tapered bottom to enable efficient combustion by increasing the density of solid fuels and fluid materials containing hydrogen-absorbing alloys.
  • the bottom portion of the furnace 11 may not be tapered, and the furnace 11 may be formed in a cylindrical shape with a substantially constant cross-sectional shape from the top to the bottom.
  • the area indicated by "A" at the bottom of the furnace 11 indicates a fluidized bed (also called fluidized bed or sand bed) formed by high-density fluidized material.
  • a powdery, particulate, or massive fluidizing material such as silica sand or a hydrogen-absorbing alloy is fluidized by air as a fluidizing fluid supplied from the bottom of the furnace 11 .
  • Solid fuel such as coal or biomass put into the fluidized bed A or hydrogen released from the hydrogen storage alloy put into the fluidized bed A is stirred in the fluidized bed A with a high temperature fluid material and It burns efficiently by repeated contact with air.
  • the fluidized material rises in the furnace 11 due to the ascending air current generated by combustion, the fluidized material also exists in the free board B, which is the space above the fluidized bed A.
  • the density of the fluidized material in the freeboard B is lower than the density of the fluidized material in the fluidized bed A, and decreases toward the top of the furnace 11 .
  • the freeboard B the fuel that has not been completely burned in the fluidized bed A is burned while coming into contact with the floating fluidized material.
  • Silica sand was exemplified as the fluidizing material, but any material may be used as long as it functions as a medium for transferring heat to the fuel while maintaining a solid state without burning even in the high-temperature furnace 11 and flowing.
  • Sand, stones such as limestone, and ash may also be used. Since the hydrogen storage material such as the hydrogen storage alloy that supports hydrogen as fuel also functions as a fluid material, a sufficient amount of the hydrogen storage material for realizing the function of the fluidized bed A is supplied to the furnace 11. If so, it is not necessary to supply other fluid materials such as silica sand to the furnace 11 . As described above, with the hydrogen storage material such as the hydrogen storage alloy, the fuel (hydrogen) and fluid material (hydrogen storage material before and after hydrogen release) can be supplied to the furnace 11 at once.
  • a perforated plate (also called a dispersion plate) 121 is provided as a fluid permeable part made of a porous material that allows fluid including air to pass through.
  • the air box 122 which is a space directly below the perforated plate 121, supplies pressurized air supplied from the first blower 71 as a blower via the first flow control valve 71A into the furnace 11 via the perforated plate 121. It constitutes a flowing fluid supply section (air supply section).
  • the pressurized air supplied to the bottom of the furnace 11 by the wind box 122 fluidizes the fluid material to form the fluidized bed A and is used to burn the fuel in the fluidized bed A or the freeboard B.
  • a carbon-free fluid fuel such as ammonia or hydrogen or a carbon-free fuel is supplied from the wind box 122 through the perforated plate 121 into the furnace 11 together with pressurized air, and is burned in the fluidized bed A or the freeboard B.
  • a carbon-free fluid fuel such as ammonia or hydrogen or a carbon-free fuel is supplied from the wind box 122 through the perforated plate 121 into the furnace 11 together with pressurized air, and is burned in the fluidized bed A or the freeboard B.
  • a second blower 72 provided in addition to the first blower 71 has a second flow rate of Pressurized air is supplied into the freeboard B through the control valve 72A.
  • the perforated plate 121 is used as an example to describe the fluid permeable portion, but the fluid permeable portion may be anything as long as it can cause the fluid material to flow in the fluidized bed A. It may be formed from a number of plates with slits formed therein.
  • an external circulation mechanism 13 having a circulation path outside the furnace 11 is provided.
  • the external circulation mechanism 13 includes an extraction tube 131 that communicates with the bottom of the furnace 11 and can extract a part of the fluidized material in the fluidized bed A, and controls the opening and closing of the extraction tube 131 to control the flow rate of the fluidized material, that is, the extraction tube.
  • An on-off valve 132 capable of adjusting the amount of the fluidized material withdrawn by the extraction pipe 131, a fluidized material conveyor 133 such as a bucket conveyor that conveys upward the fluidized material extracted by the extraction pipe 131, and corresponding to the upper part of the fluidized bed
  • a fluid material silo 134 is provided on the outer periphery of the furnace 11 and receives the fluid material conveyed by the fluid material conveyer 133 , and a fluid material re-injection unit 135 reintroduces the fluid material stored in the fluid material silo 134 into the furnace 11 .
  • the extraction pipe 131, the on-off valve 132, the fluid material conveyor 133, the fluid material silo 134, and the fluid material re-injection unit 135 constitute a fluid material circulation path that connects the bottom surface and the side surface of the furnace 11 outside the furnace 11. . That is, the fluid material extracted from the bottom surface of the furnace 11 by the extraction pipe 131 passes through the on-off valve 132, the fluid material conveyor 133, and the fluid material silo 134, and is discharged from the side surface of the furnace 11 by the fluid material re-injection unit 135. It is put into the fluidized bed A again. As will be described later, this circulation path is provided with a recovery section 17 for recovering a part or all of the hydrogen storage material such as a hydrogen storage alloy contained in the circulating fluid material.
  • the furnace wall which is the side wall of the furnace 11, has a hydrogen storage material supply unit 14 that supplies a hydrogen storage material such as a hydrogen storage alloy into the furnace 11, and a fuel supply unit that supplies a fuel different from the hydrogen storage material into the furnace 11. 15 and a starting unit 16 for starting the CFB boiler.
  • a hydrogen storage material supply unit 14 supplies the hydrogen storage material that also functions as the fluid material
  • the fluid material supply unit that supplies other fluid materials such as silica sand into the furnace 11 is the hydrogen storage material. It may be provided in addition to the supply unit 14 .
  • the hydrogen storage material supply unit 14 includes a funnel-shaped hopper 141 that stores the hydrogen storage material, a crushing unit 142 that crushes the hydrogen storage material discharged from the bottom of the hopper 141 into granules, and the hydrogen that has been crushed by the crushing unit 142.
  • a feeder 143 is provided for feeding stock material into the furnace 11 .
  • the hydrogen storage material is a material capable of releasing stored hydrogen when heated, and is exemplified by a hydrogen storage alloy.
  • Hydrogen Storage Alloy, Hydrogen Absorbing Alloy, Metal Hydride is an alloy that reacts with hydrogen to store or absorb hydrogen in the form of a metal hydride compound and releases hydrogen when heated.
  • AB2 type (based on alloys of transition elements such as titanium, manganese, zirconium, nickel, etc.), AB5 type such as LaNi 5 , ReNi 5 (one rare earth element, niobium, zirconium, five nickel, alloys containing transition elements such as cobalt and aluminum), Ti-Fe (titanium-iron) type, V (vanadium) type, Mg (magnesium) type, Pd (palladium) type, Ca (calcium) type etc. are known.
  • the Ti-Fe type which is available at a relatively low cost, needs to be placed in a high temperature environment of about 450 ° C in order to efficiently store or release hydrogen, and it is popular because of its complexity. was not progressing.
  • the furnace 11 which reaches a high temperature of about 900° C. during normal operation (in order to suppress the generation of harmful substances such as dioxin and carbon monoxide due to incomplete combustion, the freeboard B is also installed in the furnace 11).
  • the hydrogen-absorbing alloy can be naturally heated by heating, and the hydrogen-absorbing alloy can be naturally heated.
  • hydrogen storage alloys or hydrogen as carbon-free fuels replace some or all of the conventional carbon-containing fuels such as coal, biomass, sludge, waste wood, etc. with clean fuels with low greenhouse gas emissions. can.
  • the hydrogen storage material is not limited to the hydrogen storage alloy, and any material that can release the stored hydrogen when heated may be used.
  • the organic macromolecules or organic polymers capable of storing hydrogen disclosed in WO2015/005280 may also be used as the hydrogen storage material in this embodiment.
  • the pulverizing unit 142 pulverizes the hydrogen storage material such as the hydrogen storage alloy into granules before being supplied to the furnace 11 .
  • the size of the hydrogen storage alloy suitable for transportation to the CFB boiler or hopper 141 may differ from the size of the hydrogen storage alloy suitable for releasing hydrogen in the furnace 11 and functioning as a fluid material before and after releasing hydrogen.
  • the pulverizing unit 142 pulverizes the hydrogen storage alloy into particles having a particle size suitable for the latter. If there is not much difference between the particle diameters suitable for the former and the latter, the pulverizing section 142 may not be provided.
  • the terms “particle”, “granular”, and “particle size” do not refer to specific sizes or dimensions, and if the hydrogen storage material supplied into the furnace 11 can release hydrogen as fuel, the size and dimensions can be changed. does not matter.
  • the terms “lump”, “lump”, and “lump diameter” used for relatively large particles, and the terms “powder”, “powder”, and “powder diameter” used for relatively small particles are used in the present embodiment. Included in “particle”, “granular”, and “particle size”.
  • a required amount of the granular hydrogen storage material pulverized by the pulverizing unit 142 is fed into the furnace 11 by a feeder 143 whose rotation speed is controllable.
  • the fuel supply unit 15 supplies a solid fuel different from the hydrogen storage material into the furnace 11.
  • the fuel supply unit 15 includes a funnel-shaped hopper 151 that stores solid fuel, and a feeder 152 that supplies the solid fuel discharged from the bottom of the hopper 151 into the furnace 11 . By controlling the rotation speed of the feeder 152 , a required amount of solid fuel is introduced into the furnace 11 .
  • the solid fuel supplied into the furnace 11 by the fuel supply unit 15 is not particularly limited, but examples thereof include various types of coal such as anthracite, bituminous coal, lignite, biomass, sludge, and waste wood.
  • high combustion efficiency can be achieved by using the high-temperature fluid material that flows within the furnace 11 as a medium, so that even low-quality fuel and flame-retardant fuel can be efficiently burned.
  • the solid fuel mentioned above is a carbon-containing fuel that contains carbon, but the fuel supply unit 15 may add or replace the solid fuel with fluid fuel or carbon-free fuel that does not contain carbon, such as ammonia or hydrogen. It may be supplied into the furnace 11 .
  • the starting unit 16 that starts the CFB boiler includes a starting fuel reservoir 161 , a starting fuel control valve 162 and a starting burner 163 .
  • the starting fuel reservoir 161 stores heavy oil as carbon-containing fuel.
  • the starting fuel control valve 162 controls the amount of heavy oil supplied from the starting fuel reservoir 161 to the starting burner 163 .
  • the starting fuel control valve 162 is opened when the CFB boiler is started, and supplies the heavy oil stored in the starting fuel reservoir 161 to the starting burner 163 .
  • the starting burner 163 heats the fluidized material in the fluidized bed A with a flame generated by combustion of the heavy oil supplied from the starting fuel control valve 162 .
  • the starting burner 163 Since the starting burner 163 is provided with a downward inclination, the surface of the fluidized bed A formed by the fluidized material is directly heated, and the temperature of the fluidized bed A and the inside of the furnace 11 is efficiently raised. Since the starting burner 163 heats the sand-like fluidized bed A from above in this way, it is also called a sand top burner.
  • the starting fuel control valve 162 is closed and the heavy oil to the starting burner 163 is supplied. stop the supply.
  • the hydrogen released by the hydrogen storage material supplied from the hydrogen storage material supply unit 14 and the fuel different from the hydrogen storage material supplied from the fuel supply unit 15 are burned in the high-temperature furnace 11. .
  • the hydrogen storage material flows within the furnace 11 and functions as a fluid material that mediates the combustion of the fuel. It is recovered by a recovery unit 17 provided on the path.
  • the recovery unit 17 that recovers the hydrogen storage material from the bottom of the furnace 11 includes a separation unit 171 that separates and recovers excess hydrogen storage material from the fluid material circulating through the external circulation mechanism 13 .
  • the separation unit 171 can separate substances having desired properties by using differences in mechanical or dynamic properties such as mass, density, particle size, shape, etc., and physical properties such as magnetism. For example, even if the fluid material circulating in the external circulation mechanism 13 contains a fluid material other than a hydrogen-absorbing alloy such as silica sand, or ash or soot generated by combustion in the furnace 11, hydrogen Only the storage alloy can be efficiently separated and recovered.
  • the magnetic separator 1711 can efficiently separate and recover only the magnetic hydrogen storage alloy by magnetism.
  • the fluid material circulating in the external circulation mechanism 13 contains hydrogen storage alloys with different particle sizes, only the hydrogen storage alloys with a desired particle size range can be efficiently separated and recovered. .
  • the hydrogen storage alloy separated and recovered after releasing hydrogen in this way is transported to a hydrogen filling facility (not shown) and refilled with hydrogen. Reused as fuel.
  • the CFB boiler can be efficiently operated by introducing the hydrogen storage material that functions as a hydrogen fuel source and fluid material into the furnace 11, and the existing carbon-containing fuel can be replaced with hydrogen fuel. Emission of effect gas can be reduced.
  • the combustion section 1 of the CFB boiler has been described in detail above. Next, the configuration of the CFB boiler other than the combustion section 1 will be described.
  • the steam generating unit 2 includes a drum 21 that stores water for generating steam, a water supply pipe 22 that supplies water to the drum 21, a water pipe 23 that guides the water in the drum 21 into the high-temperature furnace 11 to heat it, A steam pipe 24 is provided for discharging steam generated from water heated in the water pipe 23 from the drum 21 as the output of the CFB boiler.
  • the water supply pipe 22 meanders in the heat transfer section 4 through which the high-temperature exhaust gas of the combustion section 1 passes to form an economizer that preheats the water supply
  • the steam pipe 24 is a heat transfer section through which the high-temperature exhaust gas of the combustion section 1 passes.
  • a superheater that superheats steam is configured by meandering inside 4 .
  • the pressurized air supplied into the furnace 11 by the first blower 71 and the second blower 72 is also preheated by the high-temperature exhaust gas inside the heat transfer section 4 .
  • the fluidizing material circulation unit 3 includes a cyclone 31 that separates and collects the fluidizing material containing the granular hydrogen-absorbing alloy from the exhaust gas discharged from the upper part of the furnace 11 , and the fluidizing material collected by the cyclone 31 is passed through the furnace 11 . It has a seal pot 32 that returns to the
  • the cyclone 31 is a cyclone-type powder separator having a generally cylindrical upper portion and a generally conical lower portion, and generates an air flow spirally descending along the inner wall. Fluid materials such as granular hydrogen-absorbing alloys contained in the exhaust gas from the furnace 11 are collected by coming into contact with the inner wall of the cyclone 31 and falling down while descending spirally along the airflow.
  • a seal pot 32 provided below the cyclone 31 is filled with a fluid material to prevent backflow of unburned gas from the furnace 11 to the cyclone 31.
  • the fluid material such as granular hydrogen-absorbing alloy filled in the seal pot 32 is gradually returned into the furnace 11 in the form of being pushed out by the weight of the fluid material newly collected by the cyclone 31 .
  • FIG. 2 shows the overall configuration of a rotary kiln 100 as a combustion device.
  • the rotary kiln 100 includes a rotary kiln 200 and a secondary combustion chamber 300 as combustion chambers, a communication chute (connecting portion) 400, and an electric furnace 600 as a recovery portion.
  • the rotary kiln 100 is a combustion apparatus that separates a metal-containing workpiece W into slag and metal by means of a rotary furnace 200 or an electric furnace 600 and recovers the metal.
  • the objects to be processed W containing metal are, for example, substrates of electronic devices, electric wire scraps, and copper, gold and silver slag.
  • the rotary kiln 100 can recover metals such as Cu (copper), Au (gold), Ag (silver), Pb (lead), Sn (tin), and Pd (palladium) from these workpieces W to be processed.
  • metals such as Cu (copper), Au (gold), Ag (silver), Pb (lead), Sn (tin), and Pd (palladium) from these workpieces W to be processed.
  • a hydrogen storage alloy hydrogen storage material H
  • the hydrogen storage alloy can be separated and recovered together with the metal.
  • a rotary furnace 200 that burns and melts the object W to be processed is formed in a cylindrical shape, and the inner wall is lined with a refractory material.
  • the workpiece W charged into the rotary furnace 200 is burned or melted at about 1400-1500° C. by hot air from the burner 10 .
  • Fuel oil is supplied to the burner 10 together with air from the fuel supply unit.
  • hydrogen released from the hydrogen storage material H introduced into the rotary furnace 200 together with the workpiece W can also be used as fuel.
  • the amount of fuel oil that generates greenhouse gases can be reduced.
  • the rotary furnace 200 during combustion treatment is rotationally driven around a cylindrical shaft, and while stirring the object W to be treated and the hydrogen storage material H inside, hydrogen released from the hydrogen storage material H stirs the object W to be treated. Burn efficiently. Since the rotating shaft of the rotary furnace 200 is inclined downward, the material to be processed W flows from the high-side inlet 2a to the low-side outlet 2b together with the hydrogen storage material H while being burned. On the side of the inlet 2a of the rotary furnace 200, there is a charging chute 7 for charging the workpiece W and the hydrogen storage material H, and a loading chute 7 for pushing the charged workpiece W and the hydrogen storage material H into the rotary furnace 200. A pusher 8 is provided.
  • the burned material W to be processed and the melted hydrogen storage material H are separated into slag S and metal M1 due to the difference in specific gravity.
  • combustible substances in the object to be processed W are thermally decomposed into gas.
  • the metal M1 (including the hydrogen storage alloy) separated from the object to be processed W and the hydrogen storage material H is in a molten or semi-molten state and accumulates on the lower layer side. be.
  • the peripheral wall 2c forming the bottom (lower part in FIG. 2) of the cylindrical rotary furnace 200 whose axial direction is substantially horizontal is covered with the molten metal M1 (including the hydrogen storage alloy) accumulated at the bottom of the rotary furnace 200.
  • a tapping nozzle (exhaust port) 9 is provided as a collecting portion capable of downwardly discharging the .
  • the tapping nozzle 9 is kept closed while the rotary furnace 200 rotates and burns or melts the workpiece W and the hydrogen storage material H.
  • the accumulated metal M1 can be separated and recovered from the tapping nozzle 9. - ⁇ The metal M1 and slag S that have not been separated and recovered by the tapping nozzle 9 are thrown into the electric furnace 600 from the bottom of the secondary combustion chamber 300 .
  • the secondary combustion chamber 300 connected to the outlet 2b at the right end of the rotary furnace 200 further burns the gas generated in the rotary furnace 200 to decompose dioxins and malodorous substances and supply them to the exhaust gas treatment equipment.
  • a burner 110 for secondary combustion is provided near the outlet 2b of the rotary furnace 200, and a supply unit and a stirring blower for supplying urea, air, and SCC temperature-controlled water are provided above the burner 110.
  • Fuel oil is supplied to the burner 110 together with air from a fuel supply unit. Since the fuel and gas can be effectively burned, the amount of fuel oil used in the burner 110 for secondary combustion can be reduced.
  • a communication chute 400 extending downward from the connection between the rotary furnace 200 and the secondary combustion chamber 300 is a communication passage that connects the rotary furnace 200 and the electric furnace 600 .
  • the wall of the communication chute 400 is provided at a position where the slag S discharged from the outlet 2b of the rotary furnace 200 does not contact. Therefore, the slag S discharged from the outlet 2b of the rotary furnace 200 drops without coming into contact with the wall of the connecting chute 400 and is thrown into the electric furnace 600.
  • an emergency burner 120 is provided to melt the slag S in case it adheres to the walls of the connecting chute 400 .
  • the electric furnace 600 is connected to the rotary furnace 200 via a communication chute 400, and heats the metal containing the hydrogen storage alloy from the melted material W and the hydrogen storage material H put into the rotary furnace 200 by electrical heat treatment. separate. Specifically, the electric furnace 600 can recover the metal containing the hydrogen-absorbing alloy remaining in the slag S separated in the rotary furnace 200 .
  • An electric furnace 600 configured as an electric resistance heating furnace includes a tank 20 in which a molten material is retained to separate a metal M2 containing a hydrogen-absorbing alloy from the slag S, and electrodes 21A, 21B, and 21C for electrically heating the slag S. Prepare. In the bath 20 heated by the electrodes 21A, 21B, 21C, a layer of metal M2 containing a molten hydrogen-absorbing alloy is formed on the lower side and a layer of molten slag S is formed on the upper side.
  • the electric furnace 600 is provided with a coke supply device 22A, which supplies coke as a reducing agent into the tank 20 through a supply line 22B.
  • the slag S that has undergone combustion treatment, that is, oxidation treatment, in the rotary furnace 200 contains metal oxides, but the metal oxides can be recovered by being reduced to metal M2 by the reducing action of coke. In addition to coke, coal, waste carbon, or the like may be used as the reducing agent.
  • the bath 20 of the electric furnace 600 as described above at about 1400-1500° C. similar to that of the rotary furnace 200 by means of the electrodes 21A, 21B, and 21C, the slag S is retained for about 3-6 hours.
  • metal M2 including hydrogen storage alloy
  • the metal M2 containing the hydrogen-absorbing alloy is discharged from the metal recovery line 230 connected to the lower part of the tank 20, and the slag S not containing the metal M2 is discharged from the slag recovery line 240 connected to the upper part of the tank 20. Ejected.
  • the hydrogen storage material H functioning as a hydrogen fuel source into the rotary kiln 200, the combustion efficiency in the rotary kiln 100 can be improved, and the existing fuel oil as a carbon-containing fuel can be replaced with hydrogen fuel. This can reduce greenhouse gas emissions.
  • the hydrogen storage material H is a hydrogen storage alloy, the hydrogen storage alloy can be efficiently recovered together with the metals M1 and M2 by the tapping nozzle 9 and the electric furnace 600 as the recovery unit.
  • a CFB boiler was explained as an example of a boiler in FIG. 1, the present invention can also be applied to a BFB boiler (a bubbling fluidized bed boiler).
  • the configuration of the BFB boiler is the same as that of the CFB boiler except that it does not include the fluid material circulation unit 3 that collects the fluid material that has flowed out of the furnace 11 and returns it to the inside of the furnace 11 .
  • each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources.
  • Processors, ROMs, RAMs, and other LSIs can be used as hardware resources.
  • Programs such as operating systems and applications can be used as software resources.
  • the present invention relates to a combustion device that generates combustion.
  • Combustion section 3 Fluid material circulation section 9 Tapping nozzle 10 Burner 11 Furnace 14 Hydrogen storage material supply section 15
  • Fuel supply section 17 Recovery section 31 Cyclone 100 Rotary kiln 110 Burner 120 Burner 142 Crushing section, 171 separation section, 200 rotary furnace, 300 secondary combustion chamber, 600 electric furnace, 1711 magnetic separation section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

As this combustion device, a circulating fluidized bed boiler comprises: a furnace (11) that generates combustion; a hydrogen storage material supply unit (14) that supplies, to the furnace (11), a granular hydrogen storage material such as a hydrogen occlusion alloy capable of releasing stored hydrogen when heated; a fluidized material circulation unit (3) that collects the granular hydrogen storage material that has left the furnace (11) and returns same to the interior of the furnace (11); a recovery unit (17) that recovers the hydrogen storage material from the bottom of the furnace (11); and a fuel supply unit (15) that supplies, to the furnace (11), fuel that is different from the hydrogen storage material. The hydrogen storage material is a hydrogen occlusion alloy. The hydrogen storage material is granular. A pulverization unit is further provided for pulverizing, into a granular form, the hydrogen storage material before same is supplied to a combustion chamber.

Description

燃焼装置、燃焼方法Combustion device, combustion method
 本発明は燃焼を発生させる燃焼装置に関する。 The present invention relates to a combustion device that generates combustion.
 燃焼を発生させる燃焼装置として、燃焼室内で流動する珪砂等の流動材によって形成される流動層または流動床を媒介として燃料を燃焼させる気泡型流動床(BFB:Bubbling Fluidized Bed)ボイラや循環流動層(CFB:Circulating Fluidized Bed)ボイラが知られている。特許文献1にはCFBボイラが開示されている。 Combustion devices that generate combustion include a fluidized bed (BFB: Bubbling Fluidized Bed) boiler and a circulating fluidized bed that burns fuel through a fluidized bed or fluidized bed formed by a fluidized material such as silica sand that flows in the combustion chamber. (CFB: Circulating Fluidized Bed) boilers are known. Patent Literature 1 discloses a CFB boiler.
特開2012-255612号公報JP 2012-255612 A
 BFBボイラやCFBボイラは、燃焼室内で流動する高温の流動材を媒介とすることで高い燃焼効率を実現できるため、バイオマス(バイオ燃料)、スラッジ(汚泥)、廃材(廃紙、廃プラスチック、廃タイヤ等)等の不安定な品質の燃料や難燃性の燃料の燃焼に好適である。しかし、これらの燃料はいずれも炭素を主成分とするため、燃焼時に二酸化炭素等の温室効果ガスを発生させてしまい、地球温暖化を更に悪化させる恐れがある。 BFB boilers and CFB boilers can achieve high combustion efficiency by using a high-temperature fluid material that flows in the combustion chamber as a medium. It is suitable for burning fuels of unstable quality such as tires, etc., and flame-retardant fuels. However, since these fuels are mainly composed of carbon, they generate greenhouse gases such as carbon dioxide when burned, which may further exacerbate global warming.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、温室効果ガスの発生を低減できる燃焼装置を提供することにある。 The present invention has been made in view of these circumstances, and its purpose is to provide a combustion apparatus capable of reducing the generation of greenhouse gases.
 上記課題を解決するために、本発明のある態様の燃焼装置は、燃焼を発生させる燃焼室と、貯蔵した水素を加熱時に放出可能な水素貯蔵材料を燃焼室に供給する水素貯蔵材料供給部と、を備える。水素貯蔵材料から放出された水素が燃焼室で燃焼しても生成されるのは主に水であるため温室効果ガスの発生を低減できる。 In order to solve the above problems, a combustion apparatus according to one aspect of the present invention includes a combustion chamber that generates combustion, and a hydrogen storage material supply unit that supplies a hydrogen storage material capable of releasing stored hydrogen when heated to the combustion chamber. , provided. Even if the hydrogen released from the hydrogen storage material is burned in the combustion chamber, it is mainly water that is produced, so that the generation of greenhouse gases can be reduced.
 本発明の別の態様は、燃焼方法である。この方法は、貯蔵した水素を加熱時に放出可能な水素貯蔵材料を燃焼室に供給する水素貯蔵材料供給ステップと、水素貯蔵材料から放出された水素を燃焼室で燃焼させる燃焼ステップと、を備える。 Another aspect of the present invention is a combustion method. This method includes a hydrogen storage material supply step of supplying a hydrogen storage material capable of releasing stored hydrogen when heated to a combustion chamber, and a combustion step of burning the hydrogen released from the hydrogen storage material in the combustion chamber.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above constituent elements, and any conversion of the expression of the present invention between methods, devices, systems, recording media, computer programs, etc. are also effective as embodiments of the present invention.
 本発明によれば、燃焼装置における温室効果ガスの発生を低減できる。 According to the present invention, it is possible to reduce the generation of greenhouse gases in the combustion device.
循環流動層ボイラの全体的な構成を示す。1 shows the overall configuration of a circulating fluidized bed boiler; ロータリーキルンの全体的な構成を示す。The overall configuration of the rotary kiln is shown.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施形態は例示であり、本発明の範囲を何ら限定するものではない。実施形態に記述される個々の特徴やそれらの組合せは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description and drawings, the same or equivalent components, members, and processes are denoted by the same reference numerals, and overlapping descriptions are omitted as appropriate. The scales and shapes of the illustrated parts are set for convenience in order to facilitate explanation, and should not be construed as limiting unless otherwise specified. The embodiments are illustrative and do not limit the scope of the invention in any way. Individual features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 本発明の燃焼装置は、燃焼を発生させる任意の装置である。例えば燃焼装置をボイラとして構成する場合、燃焼室内で流動する珪砂や後述する粒状の水素貯蔵材料等の流動材によって形成される流動層または流動床を媒介として、水素貯蔵材料から放出された水素を含む燃料を燃焼させるBFBボイラやCFBボイラとして燃焼装置を構成できる。また、燃焼装置はロータリーキルンとしても構成できる。本実施形態ではCFBボイラとロータリーキルンの構成例について具体的に説明する。 The combustion device of the present invention is any device that generates combustion. For example, when the combustion apparatus is configured as a boiler, the hydrogen released from the hydrogen storage material is supplied through a fluidized bed or a fluidized bed formed by a fluidized material such as silica sand flowing in the combustion chamber or a granular hydrogen storage material described later. The combustion device can be configured as a BFB boiler or a CFB boiler that burns the fuel containing. The combustion device can also be configured as a rotary kiln. In this embodiment, configuration examples of a CFB boiler and a rotary kiln will be specifically described.
 図1は、燃焼装置としてのCFBボイラ(循環流動層ボイラ)の全体的な構成を示す。CFBボイラは、珪砂や粒状の水素吸蔵合金等の流動材が流動する火炉11内に水素吸蔵合金から放出される水素を含む燃料を供給して燃焼させる燃焼部1と、燃焼部1で発生した熱によって水から蒸気を発生させる蒸気発生部2と、火炉11外に出た流動材を捕集して火炉11内に戻す循環部としての流動材循環部3と、燃焼部1に供給される空気、蒸気発生部2に供給される水、蒸気発生部2で発生する蒸気を燃焼部1の高温の排気によって加熱する伝熱部4と、伝熱部4からの排気中の煤や粉塵を分離して捕集する集塵装置5と、集塵装置5によって清浄化された排気を大気に放出する煙突6を備える。 Fig. 1 shows the overall configuration of a CFB boiler (circulating fluidized bed boiler) as a combustion device. In the CFB boiler, the fuel containing hydrogen released from the hydrogen storage alloy is supplied and burned in the furnace 11 in which fluid materials such as silica sand and granular hydrogen storage alloy flow, and the fuel generated in the combustion unit 1 The fluidized material is supplied to the steam generation unit 2 that generates steam from water by heat, the fluidized material circulation unit 3 as a circulation unit that collects the fluidized material that has come out of the furnace 11 and returns it to the furnace 11 , and the combustion unit 1 . A heat transfer unit 4 that heats air, water supplied to the steam generation unit 2, and steam generated in the steam generation unit 2 by high-temperature exhaust gas from the combustion unit 1, and soot and dust in the exhaust gas from the heat transfer unit 4. A dust collector 5 for separating and collecting dust and a chimney 6 for releasing the exhaust gas cleaned by the dust collector 5 to the atmosphere are provided.
 燃焼部1は燃焼室としての火炉11を備える。火炉11は鉛直方向に長尺の筒状であり、水素吸蔵合金を含む固形燃料や流動材の密度を高めて効率的な燃焼を可能とするため底部が先細り形状となっている。なお、火炉11の底部は先細り形状でなくてもよく、頂部から底部まで略一定の断面形状の筒状に火炉11を形成してもよい。火炉11の底部の「A」で示される領域は、高密度の流動材によって形成される流動層(流動床や砂層とも呼ばれる)を示す。流動層Aでは、珪砂や水素吸蔵合金等の粉末状、粒子状、塊状の流動材が、火炉11の底部から供給される流動流体としての空気によって流動している。流動層Aに投入された石炭やバイオマス等の固形燃料または流動層Aに投入された水素吸蔵合金から放出された燃料としての水素は、流動層A内で撹拌されるように高温の流動材および空気と繰り返し接触することで効率的に燃焼される。 The combustion section 1 has a furnace 11 as a combustion chamber. The furnace 11 has a vertically elongated cylindrical shape, and has a tapered bottom to enable efficient combustion by increasing the density of solid fuels and fluid materials containing hydrogen-absorbing alloys. The bottom portion of the furnace 11 may not be tapered, and the furnace 11 may be formed in a cylindrical shape with a substantially constant cross-sectional shape from the top to the bottom. The area indicated by "A" at the bottom of the furnace 11 indicates a fluidized bed (also called fluidized bed or sand bed) formed by high-density fluidized material. In the fluidized bed A, a powdery, particulate, or massive fluidizing material such as silica sand or a hydrogen-absorbing alloy is fluidized by air as a fluidizing fluid supplied from the bottom of the furnace 11 . Solid fuel such as coal or biomass put into the fluidized bed A or hydrogen released from the hydrogen storage alloy put into the fluidized bed A is stirred in the fluidized bed A with a high temperature fluid material and It burns efficiently by repeated contact with air.
 なお、燃焼に伴って生じる上昇気流によって流動材は火炉11内を上昇するため、流動層Aより上方の空間であるフリーボードBにも流動材は存在する。フリーボードBにおける流動材の密度は、流動層Aにおける流動材の密度よりも低く、火炉11の上方に行くほど低くなる。フリーボードBでは、流動層Aで完全燃焼されなかった燃料が浮遊する流動材と接触しながら燃焼される。なお、流動材としては珪砂を例示したが、高温の火炉11内でも燃焼されずに固体状態を維持して流動しながら燃料に熱を伝える媒介として機能するものであればよく、例えば、その他の砂、石灰石等の石、灰でもよい。なお、燃料としての水素の担持体である水素吸蔵合金等の水素貯蔵材料は流動材としても機能するため、流動層Aの機能を実現する上で十分な量の水素貯蔵材料が火炉11に供給される場合は、珪砂等の他の流動材を火炉11に供給しなくてもよい。このように、水素吸蔵合金等の水素貯蔵材料によれば、燃料(水素)と流動材(水素放出前後の水素貯蔵材料)を一挙に火炉11に供給できる。 In addition, since the fluidized material rises in the furnace 11 due to the ascending air current generated by combustion, the fluidized material also exists in the free board B, which is the space above the fluidized bed A. The density of the fluidized material in the freeboard B is lower than the density of the fluidized material in the fluidized bed A, and decreases toward the top of the furnace 11 . In the freeboard B, the fuel that has not been completely burned in the fluidized bed A is burned while coming into contact with the floating fluidized material. Silica sand was exemplified as the fluidizing material, but any material may be used as long as it functions as a medium for transferring heat to the fuel while maintaining a solid state without burning even in the high-temperature furnace 11 and flowing. Sand, stones such as limestone, and ash may also be used. Since the hydrogen storage material such as the hydrogen storage alloy that supports hydrogen as fuel also functions as a fluid material, a sufficient amount of the hydrogen storage material for realizing the function of the fluidized bed A is supplied to the furnace 11. If so, it is not necessary to supply other fluid materials such as silica sand to the furnace 11 . As described above, with the hydrogen storage material such as the hydrogen storage alloy, the fuel (hydrogen) and fluid material (hydrogen storage material before and after hydrogen release) can be supplied to the furnace 11 at once.
 火炉11の底部には、空気を含む流体を透過させる多孔質材料で構成された流体透過部としての多孔板(分散板とも呼ばれる)121が設けられる。多孔板121の直下の空間である風箱122は、送風機としての第1ブロワ71から第1流量制御バルブ71Aを介して供給される加圧空気を、多孔板121を介して火炉11内に供給する流動流体供給部(空気供給部)を構成する。風箱122によって火炉11の底部に供給された加圧空気は、流動材を流動させて流動層Aを形成すると共に、流動層AまたはフリーボードBにおける燃料の燃焼に使われる。 At the bottom of the furnace 11, a perforated plate (also called a dispersion plate) 121 is provided as a fluid permeable part made of a porous material that allows fluid including air to pass through. The air box 122, which is a space directly below the perforated plate 121, supplies pressurized air supplied from the first blower 71 as a blower via the first flow control valve 71A into the furnace 11 via the perforated plate 121. It constitutes a flowing fluid supply section (air supply section). The pressurized air supplied to the bottom of the furnace 11 by the wind box 122 fluidizes the fluid material to form the fluidized bed A and is used to burn the fuel in the fluidized bed A or the freeboard B.
 なお、アンモニアや水素等の炭素を含有しない流体燃料または炭素非含有燃料を、加圧空気と共に風箱122から多孔板121を介して火炉11内に供給し、流動層AやフリーボードBで燃焼させてもよい。石炭、バイオマス、スラッジ、廃材等の従来の炭素含有燃料の一部または全部を炭素非含有燃料で置き換えることでCFBボイラ等の燃焼装置における温室効果ガスの発生を低減できる。後述するように、固形燃料として水素吸蔵合金等の水素貯蔵材料を使用することも、温室効果ガスの排出量の少ないクリーンな燃料による従来燃料の代替に繋がる。 In addition, a carbon-free fluid fuel such as ammonia or hydrogen or a carbon-free fuel is supplied from the wind box 122 through the perforated plate 121 into the furnace 11 together with pressurized air, and is burned in the fluidized bed A or the freeboard B. You may let Replacing some or all of conventional carbon-containing fuels, such as coal, biomass, sludge, and waste wood, with non-carbon-containing fuels can reduce greenhouse gas emissions in combustion equipment such as CFB boilers. As will be described later, using a hydrogen storage material such as a hydrogen storage alloy as a solid fuel also leads to an alternative to conventional fuels with clean fuels that emit less greenhouse gases.
 第1ブロワ71に加えて設けられる第2ブロワ72は、フリーボードBにおける燃料の燃焼を促進して不完全燃焼によるダイオキシンや一酸化炭素等の有害物質の発生を抑制するために、第2流量制御バルブ72Aを介して加圧空気をフリーボードB内に供給する。なお、図1では多孔板121を例として流体透過部を説明したが、流体透過部は流動層Aにおいて流動材を流動させることができるものであればよく、例えば火炉11内に流動流体を供給するスリットが形成された多数の板から形成されてもよい。 A second blower 72 provided in addition to the first blower 71 has a second flow rate of Pressurized air is supplied into the freeboard B through the control valve 72A. In FIG. 1, the perforated plate 121 is used as an example to describe the fluid permeable portion, but the fluid permeable portion may be anything as long as it can cause the fluid material to flow in the fluidized bed A. It may be formed from a number of plates with slits formed therein.
 流動層Aにおける流動材を循環させるために、火炉11外の循環経路を有する外部循環機構13が設けられる。外部循環機構13は、火炉11の底部に連通して流動層Aにおける流動材の一部を抜き出し可能な抜出管131と、抜出管131を開閉制御して流動材の流量すなわち抜出管131による流動材の抜き出し量を調節可能な開閉弁132と、抜出管131で抜き出された流動材を上方に搬送するバケットコンベア等の流動材コンベア133と、流動層Aの上部に対応する火炉11の外周に設けられ流動材コンベア133によって搬送された流動材を受け入れる流動材サイロ134と、流動材サイロ134に貯蔵された流動材を火炉11内に再投入する流動材再投入部135を備える。 In order to circulate the fluidized material in the fluidized bed A, an external circulation mechanism 13 having a circulation path outside the furnace 11 is provided. The external circulation mechanism 13 includes an extraction tube 131 that communicates with the bottom of the furnace 11 and can extract a part of the fluidized material in the fluidized bed A, and controls the opening and closing of the extraction tube 131 to control the flow rate of the fluidized material, that is, the extraction tube. An on-off valve 132 capable of adjusting the amount of the fluidized material withdrawn by the extraction pipe 131, a fluidized material conveyor 133 such as a bucket conveyor that conveys upward the fluidized material extracted by the extraction pipe 131, and corresponding to the upper part of the fluidized bed A A fluid material silo 134 is provided on the outer periphery of the furnace 11 and receives the fluid material conveyed by the fluid material conveyer 133 , and a fluid material re-injection unit 135 reintroduces the fluid material stored in the fluid material silo 134 into the furnace 11 . Prepare.
 抜出管131、開閉弁132、流動材コンベア133、流動材サイロ134、流動材再投入部135は、火炉11の底面と側面の間を火炉11外で連結する流動材の循環経路を構成する。すなわち、火炉11の底面から抜出管131によって抜き出された流動材は、開閉弁132、流動材コンベア133、流動材サイロ134を経由して、流動材再投入部135によって火炉11の側面から流動層A内に再投入される。後述するように、この循環経路には循環する流動材に含まれる水素吸蔵合金等の水素貯蔵材料の一部または全部を回収するための回収部17が設けられる。 The extraction pipe 131, the on-off valve 132, the fluid material conveyor 133, the fluid material silo 134, and the fluid material re-injection unit 135 constitute a fluid material circulation path that connects the bottom surface and the side surface of the furnace 11 outside the furnace 11. . That is, the fluid material extracted from the bottom surface of the furnace 11 by the extraction pipe 131 passes through the on-off valve 132, the fluid material conveyor 133, and the fluid material silo 134, and is discharged from the side surface of the furnace 11 by the fluid material re-injection unit 135. It is put into the fluidized bed A again. As will be described later, this circulation path is provided with a recovery section 17 for recovering a part or all of the hydrogen storage material such as a hydrogen storage alloy contained in the circulating fluid material.
 火炉11の側壁である炉壁には、水素吸蔵合金等の水素貯蔵材料を火炉11内に供給する水素貯蔵材料供給部14と、水素貯蔵材料と異なる燃料を火炉11内に供給する燃料供給部15と、CFBボイラを起動する起動部16が設けられる。なお、流動材としても機能する水素貯蔵材料を水素貯蔵材料供給部14が供給するため図示を省略したが、珪砂等の他の流動材を火炉11内に供給する流動材供給部を水素貯蔵材料供給部14に加えて設けてもよい。水素貯蔵材料供給部14は、水素貯蔵材料を貯留する漏斗状のホッパ141と、ホッパ141の底部から排出された水素貯蔵材料を粒状に粉砕する粉砕部142と、粉砕部142で粉砕された水素貯蔵材料を火炉11内に供給するフィーダ143を備える。 The furnace wall, which is the side wall of the furnace 11, has a hydrogen storage material supply unit 14 that supplies a hydrogen storage material such as a hydrogen storage alloy into the furnace 11, and a fuel supply unit that supplies a fuel different from the hydrogen storage material into the furnace 11. 15 and a starting unit 16 for starting the CFB boiler. Although the illustration is omitted because the hydrogen storage material supply unit 14 supplies the hydrogen storage material that also functions as the fluid material, the fluid material supply unit that supplies other fluid materials such as silica sand into the furnace 11 is the hydrogen storage material. It may be provided in addition to the supply unit 14 . The hydrogen storage material supply unit 14 includes a funnel-shaped hopper 141 that stores the hydrogen storage material, a crushing unit 142 that crushes the hydrogen storage material discharged from the bottom of the hopper 141 into granules, and the hydrogen that has been crushed by the crushing unit 142. A feeder 143 is provided for feeding stock material into the furnace 11 .
 水素貯蔵材料は貯蔵した水素を加熱時に放出可能な材料であり水素吸蔵合金が例示される。水素吸蔵合金(Hydrogen Storage Alloy, Hydrogen Absorbing Alloy, Metal Hydride)は、水素と反応して金属水素化合物の形で水素を貯蔵または吸蔵し、加熱されると水素を放出する性質を有する合金であり、AB2型(チタン、マンガン、ジルコニウム、ニッケル等の遷移元素の合金を基礎とするもの)、LaNi5、ReNi5等のAB5型(1個の希土類元素、ニオブ、ジルコニウムに対して5個のニッケル、コバルト、アルミニウム等の遷移元素を含む合金を基礎とするもの)、Ti-Fe(チタン-鉄)型、V(バナジウム)型、Mg(マグネシウム)型、Pd(パラジウム)型、Ca(カルシウム)型等が知られている。 The hydrogen storage material is a material capable of releasing stored hydrogen when heated, and is exemplified by a hydrogen storage alloy. Hydrogen Storage Alloy, Hydrogen Absorbing Alloy, Metal Hydride is an alloy that reacts with hydrogen to store or absorb hydrogen in the form of a metal hydride compound and releases hydrogen when heated. AB2 type (based on alloys of transition elements such as titanium, manganese, zirconium, nickel, etc.), AB5 type such as LaNi 5 , ReNi 5 (one rare earth element, niobium, zirconium, five nickel, alloys containing transition elements such as cobalt and aluminum), Ti-Fe (titanium-iron) type, V (vanadium) type, Mg (magnesium) type, Pd (palladium) type, Ca (calcium) type etc. are known.
 このような水素吸蔵合金のうち比較的安価に入手可能なTi-Fe型は、水素を効率的に吸蔵または放出させるために約450℃の高温環境下に置く必要があり、その煩雑さ故に普及が進んでいなかった。これに対して本実施形態では、通常運転時に約900℃の高温になる火炉11(不完全燃焼によるダイオキシンや一酸化炭素等の有害物質の発生を抑制するため、火炉11内はフリーボードBも含めて約800℃以上に維持されるのが一般的である)によって水素吸蔵合金を自然に加熱できるため、燃料としての水素の放出と燃焼を火炉11内で一挙に実現できる。このように、炭素非含有燃料としての水素吸蔵合金または水素によって、石炭、バイオマス、スラッジ、廃材等の従来の炭素含有燃料の一部または全部を温室効果ガスの排出量の少ないクリーンな燃料で置換できる。 Among these hydrogen storage alloys, the Ti-Fe type, which is available at a relatively low cost, needs to be placed in a high temperature environment of about 450 ° C in order to efficiently store or release hydrogen, and it is popular because of its complexity. was not progressing. On the other hand, in this embodiment, the furnace 11, which reaches a high temperature of about 900° C. during normal operation (in order to suppress the generation of harmful substances such as dioxin and carbon monoxide due to incomplete combustion, the freeboard B is also installed in the furnace 11). The hydrogen-absorbing alloy can be naturally heated by heating, and the hydrogen-absorbing alloy can be naturally heated. In this way, hydrogen storage alloys or hydrogen as carbon-free fuels replace some or all of the conventional carbon-containing fuels such as coal, biomass, sludge, waste wood, etc. with clean fuels with low greenhouse gas emissions. can.
 なお、火炉11での燃焼に十分な量の燃料(水素)が水素貯蔵材料供給部14から供給される場合は、水素貯蔵材料と異なる燃料を火炉11内に供給する後述の燃料供給部15を設けなくてもよい。また、水素貯蔵材料は水素吸蔵合金に限らず、貯蔵した水素を加熱時に放出可能な材料であればよい。例えば、国際公開第2015/005280号に開示されている水素を貯蔵可能な有機高分子または有機ポリマーも、本実施形態における水素貯蔵材料として使用できる可能性がある。 In addition, when a sufficient amount of fuel (hydrogen) for combustion in the furnace 11 is supplied from the hydrogen storage material supply unit 14, a fuel supply unit 15 described later that supplies a fuel different from the hydrogen storage material into the furnace 11 is used. It does not have to be provided. Further, the hydrogen storage material is not limited to the hydrogen storage alloy, and any material that can release the stored hydrogen when heated may be used. For example, the organic macromolecules or organic polymers capable of storing hydrogen disclosed in WO2015/005280 may also be used as the hydrogen storage material in this embodiment.
 粉砕部142は、火炉11に供給される前の水素吸蔵合金等の水素貯蔵材料を粒状に粉砕する。CFBボイラまたはホッパ141までの運搬に適した水素吸蔵合金の大きさと、火炉11内での水素放出や水素放出前後の流動材としての機能に適した水素吸蔵合金の大きさは異なる場合があり、粉砕部142で後者に適した粒径の粒子に水素吸蔵合金を粉砕する。なお、前者と後者に適した粒径に大差がない場合は粉砕部142を設けなくてもよい。ここで、「粒子」「粒状」「粒径」との用語は、特定の大きさや寸法を指すものではなく、火炉11内に供給された水素貯蔵材料が燃料としての水素を放出できれば大きさや寸法は問わない。例えば、比較的大きな粒子に用いられる「塊」「塊状」「塊径」の用語や、比較的小さな粒子に用いられる「粉」「粉状」「粉径」の用語は、本実施形態における「粒子」「粒状」「粒径」に包含される。粉砕部142で粉砕された粒状の水素貯蔵材料は、回転数を制御可能なフィーダ143によって必要量が火炉11内に投入される。 The pulverizing unit 142 pulverizes the hydrogen storage material such as the hydrogen storage alloy into granules before being supplied to the furnace 11 . The size of the hydrogen storage alloy suitable for transportation to the CFB boiler or hopper 141 may differ from the size of the hydrogen storage alloy suitable for releasing hydrogen in the furnace 11 and functioning as a fluid material before and after releasing hydrogen. The pulverizing unit 142 pulverizes the hydrogen storage alloy into particles having a particle size suitable for the latter. If there is not much difference between the particle diameters suitable for the former and the latter, the pulverizing section 142 may not be provided. Here, the terms "particle", "granular", and "particle size" do not refer to specific sizes or dimensions, and if the hydrogen storage material supplied into the furnace 11 can release hydrogen as fuel, the size and dimensions can be changed. does not matter. For example, the terms "lump", "lump", and "lump diameter" used for relatively large particles, and the terms "powder", "powder", and "powder diameter" used for relatively small particles are used in the present embodiment. Included in "particle", "granular", and "particle size". A required amount of the granular hydrogen storage material pulverized by the pulverizing unit 142 is fed into the furnace 11 by a feeder 143 whose rotation speed is controllable.
 燃料供給部15は水素貯蔵材料と異なる固形燃料を火炉11内に供給する。燃料供給部15は、固形燃料を貯留する漏斗状のホッパ151と、ホッパ151の底部から排出される固形燃料を火炉11内に供給するフィーダ152を備える。フィーダ152の回転数を制御することで、必要量の固形燃料が火炉11内に投入される。 The fuel supply unit 15 supplies a solid fuel different from the hydrogen storage material into the furnace 11. The fuel supply unit 15 includes a funnel-shaped hopper 151 that stores solid fuel, and a feeder 152 that supplies the solid fuel discharged from the bottom of the hopper 151 into the furnace 11 . By controlling the rotation speed of the feeder 152 , a required amount of solid fuel is introduced into the furnace 11 .
 燃料供給部15が火炉11内に供給する固形燃料は特に限定されるものではないが、例えば、無煙炭、瀝青炭、褐炭等の各種の石炭、バイオマス、スラッジ、廃材が挙げられる。CFBボイラでは、火炉11内で流動する高温の流動材を媒介とすることで高い燃焼効率を実現できるため、品質の低い燃料や難燃性の燃料も効率的に燃焼できる。なお、上で挙げた固形燃料は炭素を含有する炭素含有燃料であるが、燃料供給部15はアンモニアや水素等の炭素を含有しない流体燃料または炭素非含有燃料を固形燃料に加えてまたは代えて火炉11内に供給してもよい。 The solid fuel supplied into the furnace 11 by the fuel supply unit 15 is not particularly limited, but examples thereof include various types of coal such as anthracite, bituminous coal, lignite, biomass, sludge, and waste wood. In the CFB boiler, high combustion efficiency can be achieved by using the high-temperature fluid material that flows within the furnace 11 as a medium, so that even low-quality fuel and flame-retardant fuel can be efficiently burned. The solid fuel mentioned above is a carbon-containing fuel that contains carbon, but the fuel supply unit 15 may add or replace the solid fuel with fluid fuel or carbon-free fuel that does not contain carbon, such as ammonia or hydrogen. It may be supplied into the furnace 11 .
 CFBボイラを起動する起動部16は、起動燃料貯留部161と、起動燃料制御バルブ162と、起動バーナ163を備える。起動燃料貯留部161は、炭素含有燃料としての重油を貯留する。起動燃料制御バルブ162は、起動燃料貯留部161から起動バーナ163への重油の供給量を制御する。具体的には、起動燃料制御バルブ162はCFBボイラの起動時に開状態となり、起動燃料貯留部161に貯留された重油を起動バーナ163に供給する。起動バーナ163は、起動燃料制御バルブ162から供給された重油の燃焼による炎で流動層Aにおける流動材を加熱する。起動バーナ163は下方に傾斜して設けられるため、流動材によって形成される流動層Aの表面が直接加熱され、流動層Aおよび火炉11内が効率的に昇温する。このように起動バーナ163は砂状の流動層Aを上方から加熱するため砂上バーナとも呼ばれる。 The starting unit 16 that starts the CFB boiler includes a starting fuel reservoir 161 , a starting fuel control valve 162 and a starting burner 163 . The starting fuel reservoir 161 stores heavy oil as carbon-containing fuel. The starting fuel control valve 162 controls the amount of heavy oil supplied from the starting fuel reservoir 161 to the starting burner 163 . Specifically, the starting fuel control valve 162 is opened when the CFB boiler is started, and supplies the heavy oil stored in the starting fuel reservoir 161 to the starting burner 163 . The starting burner 163 heats the fluidized material in the fluidized bed A with a flame generated by combustion of the heavy oil supplied from the starting fuel control valve 162 . Since the starting burner 163 is provided with a downward inclination, the surface of the fluidized bed A formed by the fluidized material is directly heated, and the temperature of the fluidized bed A and the inside of the furnace 11 is efficiently raised. Since the starting burner 163 heats the sand-like fluidized bed A from above in this way, it is also called a sand top burner.
 流動層Aおよび火炉11内が十分に昇温したCFBボイラの起動後、具体的には流動層Aにおいて水素貯蔵材料からの水素の放出および燃焼が可能となった後(前述のTi-Fe型の水素吸蔵合金にあっては水素の放出に必要な約450℃より十分に高い温度に流動層Aがなった後)、起動燃料制御バルブ162は閉状態となって起動バーナ163への重油の供給を停止する。以降の通常運転状態では、水素貯蔵材料供給部14から供給される水素貯蔵材料が放出する水素や、燃料供給部15から供給される水素貯蔵材料と異なる燃料が高温の火炉11内で燃焼される。燃料としての水素を放出した後の水素貯蔵材料は火炉11内で流動して燃料の燃焼を媒介する流動材として機能するが、必要量を超える水素貯蔵材料は外部循環機構13における流動材の循環経路に設けられる回収部17で回収される。 After startup of the CFB boiler in which the fluidized bed A and the inside of the furnace 11 are sufficiently heated, specifically after hydrogen can be released and burned from the hydrogen storage material in the fluidized bed A (the above-mentioned Ti-Fe type After the fluidized bed A reaches a temperature sufficiently higher than about 450° C. required for hydrogen release in the case of the hydrogen storage alloy of (1), the starting fuel control valve 162 is closed and the heavy oil to the starting burner 163 is supplied. stop the supply. In the subsequent normal operating state, the hydrogen released by the hydrogen storage material supplied from the hydrogen storage material supply unit 14 and the fuel different from the hydrogen storage material supplied from the fuel supply unit 15 are burned in the high-temperature furnace 11. . After releasing hydrogen as fuel, the hydrogen storage material flows within the furnace 11 and functions as a fluid material that mediates the combustion of the fuel. It is recovered by a recovery unit 17 provided on the path.
 火炉11の底部から水素貯蔵材料を回収する回収部17は、外部循環機構13を循環する流動材から余分な水素貯蔵材料を分離して回収する分離部171を備える。分離部171は、質量、密度、粒径、形状等の機械的または力学的性質や磁性等の物性の違いを利用して所望の性状の物を分離可能である。例えば、外部循環機構13を循環する流動材の中に、珪砂等の水素吸蔵合金以外の流動材や、火炉11内の燃焼によって生成した灰や煤が含まれている場合であっても、水素吸蔵合金のみを効率的に分離回収できる。特に、Ti-Fe型等の磁性を有する水素吸蔵合金の場合、磁気分離部1711が磁気によって磁性を有する水素吸蔵合金のみを効率的に分離回収できる。また、外部循環機構13を循環する流動材の中に、粒径の異なる水素吸蔵合金が含まれている場合であっても、所望の粒径範囲の水素吸蔵合金のみを効率的に分離回収できる。このようにして分離回収された水素放出後の水素吸蔵合金は、不図示の水素充填設備に運搬されて水素が再充填された後、水素貯蔵材料供給部14のホッパ141に再投入されて水素燃料として再利用される。 The recovery unit 17 that recovers the hydrogen storage material from the bottom of the furnace 11 includes a separation unit 171 that separates and recovers excess hydrogen storage material from the fluid material circulating through the external circulation mechanism 13 . The separation unit 171 can separate substances having desired properties by using differences in mechanical or dynamic properties such as mass, density, particle size, shape, etc., and physical properties such as magnetism. For example, even if the fluid material circulating in the external circulation mechanism 13 contains a fluid material other than a hydrogen-absorbing alloy such as silica sand, or ash or soot generated by combustion in the furnace 11, hydrogen Only the storage alloy can be efficiently separated and recovered. In particular, in the case of a magnetic hydrogen storage alloy such as a Ti—Fe type, the magnetic separator 1711 can efficiently separate and recover only the magnetic hydrogen storage alloy by magnetism. In addition, even when the fluid material circulating in the external circulation mechanism 13 contains hydrogen storage alloys with different particle sizes, only the hydrogen storage alloys with a desired particle size range can be efficiently separated and recovered. . The hydrogen storage alloy separated and recovered after releasing hydrogen in this way is transported to a hydrogen filling facility (not shown) and refilled with hydrogen. Reused as fuel.
 以上の構成によれば、水素燃料源および流動材として機能する水素貯蔵材料を火炉11に投入することでCFBボイラを効率的に運転できると共に、既存の炭素含有燃料を水素燃料に置き換えることで温室効果ガスの排出量を低減できる。 According to the above configuration, the CFB boiler can be efficiently operated by introducing the hydrogen storage material that functions as a hydrogen fuel source and fluid material into the furnace 11, and the existing carbon-containing fuel can be replaced with hydrogen fuel. Emission of effect gas can be reduced.
 以上、CFBボイラの燃焼部1について詳細に説明した。続いて、CFBボイラの燃焼部1以外の構成を説明する。蒸気発生部2は、蒸気を発生させる水を貯留するドラム21と、ドラム21に水を供給する給水管22と、ドラム21内の水を高温の火炉11内に導いて加熱する水管23と、水管23で加熱された水から発生した蒸気をCFBボイラの出力としてドラム21から排出する蒸気管24を備える。給水管22は燃焼部1の高温の排気が通る伝熱部4内を蛇行することで給水を予熱する節炭器を構成し、蒸気管24は燃焼部1の高温の排気が通る伝熱部4内を蛇行することで蒸気を過熱する過熱器を構成する。同様に、第1ブロワ71および第2ブロワ72が火炉11内に供給する加圧空気も伝熱部4内の高温の排気によって予熱される。 The combustion section 1 of the CFB boiler has been described in detail above. Next, the configuration of the CFB boiler other than the combustion section 1 will be described. The steam generating unit 2 includes a drum 21 that stores water for generating steam, a water supply pipe 22 that supplies water to the drum 21, a water pipe 23 that guides the water in the drum 21 into the high-temperature furnace 11 to heat it, A steam pipe 24 is provided for discharging steam generated from water heated in the water pipe 23 from the drum 21 as the output of the CFB boiler. The water supply pipe 22 meanders in the heat transfer section 4 through which the high-temperature exhaust gas of the combustion section 1 passes to form an economizer that preheats the water supply, and the steam pipe 24 is a heat transfer section through which the high-temperature exhaust gas of the combustion section 1 passes. A superheater that superheats steam is configured by meandering inside 4 . Similarly, the pressurized air supplied into the furnace 11 by the first blower 71 and the second blower 72 is also preheated by the high-temperature exhaust gas inside the heat transfer section 4 .
 流動材循環部3は、火炉11の上部から排出された排気から粒状の水素吸蔵合金を含む流動材を分離して捕集するサイクロン31と、サイクロン31で捕集された流動材を火炉11内に戻すシールポット32を備える。サイクロン31は、上部が略円筒状および下部が略円錐状に形成されたサイクロン式粉体分離器であり、内壁に沿って螺旋状に降下する気流を発生させる。火炉11からの排気に含まれる粒状の水素吸蔵合金等の流動材は、気流に沿って螺旋状に降下する際にサイクロン31の内壁に接触して落下することで捕集される。 The fluidizing material circulation unit 3 includes a cyclone 31 that separates and collects the fluidizing material containing the granular hydrogen-absorbing alloy from the exhaust gas discharged from the upper part of the furnace 11 , and the fluidizing material collected by the cyclone 31 is passed through the furnace 11 . It has a seal pot 32 that returns to the The cyclone 31 is a cyclone-type powder separator having a generally cylindrical upper portion and a generally conical lower portion, and generates an air flow spirally descending along the inner wall. Fluid materials such as granular hydrogen-absorbing alloys contained in the exhaust gas from the furnace 11 are collected by coming into contact with the inner wall of the cyclone 31 and falling down while descending spirally along the airflow.
 サイクロン31の下方に設けられるシールポット32は流動材で充填されており、火炉11からサイクロン31への未燃ガス等の逆流を防止する。シールポット32に充填された粒状の水素吸蔵合金等の流動材は、サイクロン31が新たに捕集する流動材の重みによって押し出される形で、徐々に火炉11内に戻される。 A seal pot 32 provided below the cyclone 31 is filled with a fluid material to prevent backflow of unburned gas from the furnace 11 to the cyclone 31. The fluid material such as granular hydrogen-absorbing alloy filled in the seal pot 32 is gradually returned into the furnace 11 in the form of being pushed out by the weight of the fluid material newly collected by the cyclone 31 .
 図2は、燃焼装置としてのロータリーキルン100の全体的な構成を示す。ロータリーキルン100は、燃焼室としての回転炉200および二次燃焼室300と、連絡シュート(接続部)400と、回収部としての電気炉600を備える。ロータリーキルン100は、金属を含有する被処理物Wを回転炉200や電気炉600によってスラグと金属に分離し、金属を回収する燃焼装置である。金属を含有する被処理物Wは、例えば電子機器等の基板、電線屑、銅金銀滓である。ロータリーキルン100は、これらの被処理物Wから、Cu(銅)、Au(金)、Ag(銀)、Pb(鉛)、Sn(錫)、Pd(パラジウム)等の金属を回収できる。また、後述するように、被処理物Wに加えて水素燃料源としての水素吸蔵合金(水素貯蔵材料H)がロータリーキルン100に投入される場合、上記の金属と共に水素吸蔵合金も分離回収できる。 FIG. 2 shows the overall configuration of a rotary kiln 100 as a combustion device. The rotary kiln 100 includes a rotary kiln 200 and a secondary combustion chamber 300 as combustion chambers, a communication chute (connecting portion) 400, and an electric furnace 600 as a recovery portion. The rotary kiln 100 is a combustion apparatus that separates a metal-containing workpiece W into slag and metal by means of a rotary furnace 200 or an electric furnace 600 and recovers the metal. The objects to be processed W containing metal are, for example, substrates of electronic devices, electric wire scraps, and copper, gold and silver slag. The rotary kiln 100 can recover metals such as Cu (copper), Au (gold), Ag (silver), Pb (lead), Sn (tin), and Pd (palladium) from these workpieces W to be processed. As will be described later, when a hydrogen storage alloy (hydrogen storage material H) as a hydrogen fuel source is put into the rotary kiln 100 in addition to the workpiece W, the hydrogen storage alloy can be separated and recovered together with the metal.
 被処理物Wを燃焼して溶融させる回転炉200は円筒状に形成され、内壁が耐火材で内張りされている。回転炉200内に投入された被処理物Wは、バーナ10からの熱風によって約1400-1500℃で燃焼ないし溶融される。バーナ10には空気と共に燃料供給部から燃料油が供給されるが、本実施形態では回転炉200内に被処理物Wと共に投入される水素貯蔵材料Hから放出される水素も燃料として利用できるため、温室効果ガスを発生させる燃料油の使用量を低減できる。 A rotary furnace 200 that burns and melts the object W to be processed is formed in a cylindrical shape, and the inner wall is lined with a refractory material. The workpiece W charged into the rotary furnace 200 is burned or melted at about 1400-1500° C. by hot air from the burner 10 . Fuel oil is supplied to the burner 10 together with air from the fuel supply unit. In this embodiment, hydrogen released from the hydrogen storage material H introduced into the rotary furnace 200 together with the workpiece W can also be used as fuel. , the amount of fuel oil that generates greenhouse gases can be reduced.
 燃焼処理中の回転炉200は円筒状の軸の周りに回転駆動され、内部の被処理物Wおよび水素貯蔵材料Hを撹拌しながら、水素貯蔵材料Hから放出される水素によって被処理物Wを効率的に燃焼する。回転炉200の回転軸は下方に傾斜して設けられるため、被処理物Wは燃焼されながら高い側の入口2aから低い側の出口2bに水素貯蔵材料Hと共に流動する。回転炉200の入口2a側には、被処理物Wおよび水素貯蔵材料Hを投入するための投入シュート7と、投入された被処理物Wおよび水素貯蔵材料Hを回転炉200へ押し込むための投入プッシャ8が設けられる。 The rotary furnace 200 during combustion treatment is rotationally driven around a cylindrical shaft, and while stirring the object W to be treated and the hydrogen storage material H inside, hydrogen released from the hydrogen storage material H stirs the object W to be treated. Burn efficiently. Since the rotating shaft of the rotary furnace 200 is inclined downward, the material to be processed W flows from the high-side inlet 2a to the low-side outlet 2b together with the hydrogen storage material H while being burned. On the side of the inlet 2a of the rotary furnace 200, there is a charging chute 7 for charging the workpiece W and the hydrogen storage material H, and a loading chute 7 for pushing the charged workpiece W and the hydrogen storage material H into the rotary furnace 200. A pusher 8 is provided.
 回転炉200内では、燃焼された被処理物Wおよび水素貯蔵材料H(水素吸蔵合金)の溶融物が、比重差によってスラグSと金属M1に分離される。また、被処理物W中の可燃物は熱分解されてガスになる。被処理物Wおよび水素貯蔵材料Hから分離した金属M1(水素吸蔵合金を含む)は、溶融状態または半溶融状態となって下層側に溜まり、その表面がスラグSで覆われるため酸化が防止される。略水平方向を軸方向とする円筒状の回転炉200の底部(図2の下部)を構成する周壁2cには、回転炉200の底部に溜まっている溶融した金属M1(水素吸蔵合金を含む)を下方向に排出可能な回収部としてのタッピング用ノズル(排出口)9が設けられる。 Within the rotary furnace 200, the burned material W to be processed and the melted hydrogen storage material H (hydrogen storage alloy) are separated into slag S and metal M1 due to the difference in specific gravity. In addition, combustible substances in the object to be processed W are thermally decomposed into gas. The metal M1 (including the hydrogen storage alloy) separated from the object to be processed W and the hydrogen storage material H is in a molten or semi-molten state and accumulates on the lower layer side. be. The peripheral wall 2c forming the bottom (lower part in FIG. 2) of the cylindrical rotary furnace 200 whose axial direction is substantially horizontal is covered with the molten metal M1 (including the hydrogen storage alloy) accumulated at the bottom of the rotary furnace 200. A tapping nozzle (exhaust port) 9 is provided as a collecting portion capable of downwardly discharging the .
 タッピング用ノズル9は、回転炉200が回転しながら被処理物Wおよび水素貯蔵材料Hを燃焼または溶融している間は閉状態に維持される。被処理物Wおよび水素貯蔵材料Hの燃焼または溶融が完了し、回転炉200の回転が停止した後にタッピング用ノズル9を開状態にすることで、回転炉200の底部においてスラグSより下層側に溜まっている金属M1をタッピング用ノズル9から分離回収できる。なお、タッピング用ノズル9で分離回収し切れなかった金属M1やスラグSは、二次燃焼室300の底部から電気炉600に投入される。 The tapping nozzle 9 is kept closed while the rotary furnace 200 rotates and burns or melts the workpiece W and the hydrogen storage material H. By opening the tapping nozzle 9 after the workpiece W and the hydrogen storage material H are completely burned or melted and the rotary furnace 200 stops rotating, The accumulated metal M1 can be separated and recovered from the tapping nozzle 9. - 特許庁The metal M1 and slag S that have not been separated and recovered by the tapping nozzle 9 are thrown into the electric furnace 600 from the bottom of the secondary combustion chamber 300 .
 回転炉200の右端の出口2bと接続される二次燃焼室300は、回転炉200内で発生したガスを更に燃焼することで、ダイオキシンや悪臭物質等を分解し、排ガス処理設備へ供給する。二次燃焼室300には、回転炉200の出口2b付近に二次燃焼用のバーナ110が設けられ、その上方に尿素、空気、SCC温調水を供給する供給部や攪拌ブロワが設けられる。バーナ110には空気と共に燃料供給部から燃料油が供給されるが、本実施形態では回転炉200内に投入される水素貯蔵材料Hから放出される水素によって、回転炉200内で被処理物Wやガスを効果的に燃焼できるため、二次燃焼用のバーナ110での燃料油の使用量を低減できる。 The secondary combustion chamber 300 connected to the outlet 2b at the right end of the rotary furnace 200 further burns the gas generated in the rotary furnace 200 to decompose dioxins and malodorous substances and supply them to the exhaust gas treatment equipment. In the secondary combustion chamber 300, a burner 110 for secondary combustion is provided near the outlet 2b of the rotary furnace 200, and a supply unit and a stirring blower for supplying urea, air, and SCC temperature-controlled water are provided above the burner 110. Fuel oil is supplied to the burner 110 together with air from a fuel supply unit. Since the fuel and gas can be effectively burned, the amount of fuel oil used in the burner 110 for secondary combustion can be reduced.
 回転炉200と二次燃焼室300の接続部から下方に延在する連絡シュート400は、回転炉200と電気炉600を接続する連絡通路である。連絡シュート400の壁は、回転炉200の出口2bから排出されるスラグSが接触しない位置に設けられる。このため、回転炉200の出口2bから排出されるスラグSは、連絡シュート400の壁と接触することなく落下して電気炉600に投入される。一方で、スラグSが連絡シュート400の壁に付着した場合に備えて、それを溶融するための非常用のバーナ120が設けられる。 A communication chute 400 extending downward from the connection between the rotary furnace 200 and the secondary combustion chamber 300 is a communication passage that connects the rotary furnace 200 and the electric furnace 600 . The wall of the communication chute 400 is provided at a position where the slag S discharged from the outlet 2b of the rotary furnace 200 does not contact. Therefore, the slag S discharged from the outlet 2b of the rotary furnace 200 drops without coming into contact with the wall of the connecting chute 400 and is thrown into the electric furnace 600. As shown in FIG. On the other hand, an emergency burner 120 is provided to melt the slag S in case it adheres to the walls of the connecting chute 400 .
 電気炉600は、連絡シュート400を介して回転炉200と接続され、回転炉200に投入された被処理物Wおよび水素貯蔵材料Hの溶融物から、電気による加熱処理によって水素吸蔵合金を含む金属を分離させる。具体的には、回転炉200内で分離されたスラグS中に残存している水素吸蔵合金を含む金属を電気炉600で回収できる。電気抵抗加熱炉として構成される電気炉600は、溶融物を滞留させてスラグSから水素吸蔵合金を含む金属M2を分離させる槽20と、スラグSを電気によって加熱する電極21A、21B、21Cを備える。電極21A、21B、21Cによって加熱された槽20内では、下側に溶融した水素吸蔵合金を含む金属M2の層が形成され、上側に溶融したスラグSの層が形成される。 The electric furnace 600 is connected to the rotary furnace 200 via a communication chute 400, and heats the metal containing the hydrogen storage alloy from the melted material W and the hydrogen storage material H put into the rotary furnace 200 by electrical heat treatment. separate. Specifically, the electric furnace 600 can recover the metal containing the hydrogen-absorbing alloy remaining in the slag S separated in the rotary furnace 200 . An electric furnace 600 configured as an electric resistance heating furnace includes a tank 20 in which a molten material is retained to separate a metal M2 containing a hydrogen-absorbing alloy from the slag S, and electrodes 21A, 21B, and 21C for electrically heating the slag S. Prepare. In the bath 20 heated by the electrodes 21A, 21B, 21C, a layer of metal M2 containing a molten hydrogen-absorbing alloy is formed on the lower side and a layer of molten slag S is formed on the upper side.
 電気炉600にはコークス供給装置22Aが設けられ、還元剤としてのコークスを供給ライン22Bを介して槽20内に供給する。回転炉200での燃焼処理すなわち酸化処理を経たスラグSには金属酸化物が含まれているが、コークスの還元作用によって金属酸化物を金属M2に還元して回収できる。なお、還元剤としてはコークスの他、石炭や廃カーボン等を使用してもよい。以上のような電気炉600の槽20を電極21A、21B、21Cによって回転炉200と同様の約1400-1500℃に維持してスラグSを約3-6時間滞留させることによって、スラグS中の略全量の金属成分を金属M2(水素吸蔵合金を含む)として回収できる。具体的には、槽20の下部に接続される金属回収ライン230から水素吸蔵合金を含む金属M2が排出され、槽20の上部に接続されるスラグ回収ライン240から金属M2を含まないスラグSが排出される。 The electric furnace 600 is provided with a coke supply device 22A, which supplies coke as a reducing agent into the tank 20 through a supply line 22B. The slag S that has undergone combustion treatment, that is, oxidation treatment, in the rotary furnace 200 contains metal oxides, but the metal oxides can be recovered by being reduced to metal M2 by the reducing action of coke. In addition to coke, coal, waste carbon, or the like may be used as the reducing agent. By maintaining the bath 20 of the electric furnace 600 as described above at about 1400-1500° C. similar to that of the rotary furnace 200 by means of the electrodes 21A, 21B, and 21C, the slag S is retained for about 3-6 hours. Almost all metal components can be recovered as metal M2 (including hydrogen storage alloy). Specifically, the metal M2 containing the hydrogen-absorbing alloy is discharged from the metal recovery line 230 connected to the lower part of the tank 20, and the slag S not containing the metal M2 is discharged from the slag recovery line 240 connected to the upper part of the tank 20. Ejected.
 以上の構成によれば、水素燃料源として機能する水素貯蔵材料Hを回転炉200に投入することでロータリーキルン100における燃焼効率を向上できると共に、既存の炭素含有燃料としての燃料油を水素燃料に置き換えることで温室効果ガスの排出量を低減できる。また、水素貯蔵材料Hが水素吸蔵合金である場合、回収部としてのタッピング用ノズル9や電気炉600によって、金属M1、M2と共に水素吸蔵合金を効率的に回収できる。 According to the above configuration, by putting the hydrogen storage material H functioning as a hydrogen fuel source into the rotary kiln 200, the combustion efficiency in the rotary kiln 100 can be improved, and the existing fuel oil as a carbon-containing fuel can be replaced with hydrogen fuel. This can reduce greenhouse gas emissions. Moreover, when the hydrogen storage material H is a hydrogen storage alloy, the hydrogen storage alloy can be efficiently recovered together with the metals M1 and M2 by the tapping nozzle 9 and the electric furnace 600 as the recovery unit.
 以上、本発明を実施形態に基づいて説明した。実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. It should be understood by those skilled in the art that the embodiments are examples, and that various modifications can be made to combinations of each component and each treatment process, and such modifications are also within the scope of the present invention.
 図1ではボイラの例としてCFBボイラを説明したが、本発明はBFBボイラ(気泡型流動床ボイラ)にも適用できる。BFBボイラの構成は、火炉11外に出た流動材を捕集して火炉11内に戻す流動材循環部3を備えない点を除いて、CFBボイラと同様である。 Although a CFB boiler was explained as an example of a boiler in FIG. 1, the present invention can also be applied to a BFB boiler (a bubbling fluidized bed boiler). The configuration of the BFB boiler is the same as that of the CFB boiler except that it does not include the fluid material circulation unit 3 that collects the fluid material that has flowed out of the furnace 11 and returns it to the inside of the furnace 11 .
 なお、実施形態で説明した各装置の機能構成はハードウェア資源またはソフトウェア資源により、あるいはハードウェア資源とソフトウェア資源の協働により実現できる。ハードウェア資源としてプロセッサ、ROM、RAM、その他のLSIを利用できる。ソフトウェア資源としてオペレーティングシステム、アプリケーション等のプログラムを利用できる。 Note that the functional configuration of each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources. Processors, ROMs, RAMs, and other LSIs can be used as hardware resources. Programs such as operating systems and applications can be used as software resources.
 本発明は燃焼を発生させる燃焼装置に関する。 The present invention relates to a combustion device that generates combustion.
 1 燃焼部、3 流動材循環部、9 タッピング用ノズル、10 バーナ、11 火炉、14 水素貯蔵材料供給部、15 燃料供給部、17 回収部、31 サイクロン、100 ロータリーキルン、110 バーナ、120 バーナ、142 粉砕部、171 分離部、200 回転炉、300 二次燃焼室、600 電気炉、1711 磁気分離部。 1 Combustion section 3 Fluid material circulation section 9 Tapping nozzle 10 Burner 11 Furnace 14 Hydrogen storage material supply section 15 Fuel supply section 17 Recovery section 31 Cyclone 100 Rotary kiln 110 Burner 120 Burner 142 Crushing section, 171 separation section, 200 rotary furnace, 300 secondary combustion chamber, 600 electric furnace, 1711 magnetic separation section.

Claims (10)

  1.  燃焼を発生させる燃焼室と、
     貯蔵した水素を加熱時に放出可能な水素貯蔵材料を前記燃焼室に供給する水素貯蔵材料供給部と、
     を備える燃焼装置。
    a combustion chamber for generating combustion;
    a hydrogen storage material supply unit that supplies a hydrogen storage material capable of releasing stored hydrogen when heated to the combustion chamber;
    A combustion device comprising a
  2.  前記水素貯蔵材料は水素吸蔵合金である、請求項1に記載の燃焼装置。 The combustion device according to claim 1, wherein the hydrogen storage material is a hydrogen storage alloy.
  3.  前記水素貯蔵材料は粒状である、請求項1または2に記載の燃焼装置。 The combustion device according to claim 1 or 2, wherein the hydrogen storage material is granular.
  4.  前記燃焼室に供給される前の前記水素貯蔵材料を粒状に粉砕する粉砕部を更に備える、請求項3に記載の燃焼装置。 The combustion apparatus according to claim 3, further comprising a pulverizing section for pulverizing the hydrogen storage material into granules before being supplied to the combustion chamber.
  5.  前記燃焼室外に出た粒状の前記水素貯蔵材料を捕集して前記燃焼室内に戻す循環部を更に備える、請求項3に記載の燃焼装置。 The combustion apparatus according to claim 3, further comprising a circulation unit that collects the granular hydrogen storage material coming out of the combustion chamber and returns it to the combustion chamber.
  6.  前記燃焼室の底部から前記水素貯蔵材料を回収する回収部を更に備える、請求項1または2に記載の燃焼装置。 The combustion device according to claim 1 or 2, further comprising a recovery unit that recovers the hydrogen storage material from the bottom of the combustion chamber.
  7.  前記水素貯蔵材料が磁性を有する場合、前記回収部は磁気によって当該水素貯蔵材料を分離する磁気分離部を更に備える、請求項6に記載の燃焼装置。 The combustion apparatus according to claim 6, wherein when the hydrogen storage material has magnetism, the recovery unit further includes a magnetic separation unit that separates the hydrogen storage material by magnetism.
  8.  前記水素貯蔵材料と異なる燃料を前記燃焼室に供給する燃料供給部を更に備える、請求項1または2に記載の燃焼装置。 The combustion apparatus according to claim 1 or 2, further comprising a fuel supply section for supplying a fuel different from the hydrogen storage material to the combustion chamber.
  9.  前記燃焼装置は、循環流動層ボイラ、気泡型流動床ボイラ、ロータリーキルンの少なくともいずれかである、請求項1または2に記載の燃焼装置。 The combustion apparatus according to claim 1 or 2, wherein the combustion apparatus is at least one of a circulating fluidized bed boiler, a bubbling fluidized bed boiler, and a rotary kiln.
  10.  貯蔵した水素を加熱時に放出可能な水素貯蔵材料を燃焼室に供給する水素貯蔵材料供給ステップと、
     前記水素貯蔵材料から放出された水素を前記燃焼室で燃焼させる燃焼ステップと、
     を備える燃焼方法。
    a hydrogen storage material supply step of supplying a hydrogen storage material capable of releasing stored hydrogen when heated to the combustion chamber;
    a combustion step of burning hydrogen released from the hydrogen storage material in the combustion chamber;
    Combustion method comprising:
PCT/JP2022/029088 2021-07-29 2022-07-28 Combustion device, and combustion method WO2023008522A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247003177A KR20240042607A (en) 2021-07-29 2022-07-28 Combustion device, combustion method
AU2022316664A AU2022316664A1 (en) 2021-07-29 2022-07-28 Combustion device, and combustion method
JP2023538616A JPWO2023008522A1 (en) 2021-07-29 2022-07-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021123951 2021-07-29
JP2021-123951 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023008522A1 true WO2023008522A1 (en) 2023-02-02

Family

ID=85086994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029088 WO2023008522A1 (en) 2021-07-29 2022-07-28 Combustion device, and combustion method

Country Status (4)

Country Link
JP (1) JPWO2023008522A1 (en)
KR (1) KR20240042607A (en)
AU (1) AU2022316664A1 (en)
WO (1) WO2023008522A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938946A (en) * 1988-04-13 1990-07-03 Carbotek, Inc. Lunar hydrogen recovery process
JPH11210995A (en) * 1998-01-27 1999-08-06 Agency Of Ind Science & Technol Hydrogen storage device using hydrogen storage alloy fluidized bed
JP2003146616A (en) * 2001-11-16 2003-05-21 Osaka Gas Co Ltd Hydrogen refining apparatus using hydrogen storage material
US20140262965A1 (en) * 2013-03-14 2014-09-18 Accelergy Corporation Liquid Fuel Production Process and Apparatus Employing Direct and Indirect Coal Liquefaction
JP2020041173A (en) * 2018-09-07 2020-03-19 三菱日立パワーシステムズ株式会社 Hydrogen production system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490751B2 (en) 2011-06-09 2014-05-14 住友重機械工業株式会社 Additive for circulating fluidized bed boiler and method for operating circulating fluidized bed boiler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938946A (en) * 1988-04-13 1990-07-03 Carbotek, Inc. Lunar hydrogen recovery process
JPH11210995A (en) * 1998-01-27 1999-08-06 Agency Of Ind Science & Technol Hydrogen storage device using hydrogen storage alloy fluidized bed
JP2003146616A (en) * 2001-11-16 2003-05-21 Osaka Gas Co Ltd Hydrogen refining apparatus using hydrogen storage material
US20140262965A1 (en) * 2013-03-14 2014-09-18 Accelergy Corporation Liquid Fuel Production Process and Apparatus Employing Direct and Indirect Coal Liquefaction
JP2020041173A (en) * 2018-09-07 2020-03-19 三菱日立パワーシステムズ株式会社 Hydrogen production system

Also Published As

Publication number Publication date
KR20240042607A (en) 2024-04-02
AU2022316664A1 (en) 2024-02-15
JPWO2023008522A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
EP1286113B1 (en) Apparatus for fluidized-bed gasification and melt combustion
CN101351530B (en) Oil-derived hydrocarbon converter having an integrated combustion installation comprising carbon dioxide capture
CN101294708A (en) City life rubbish fluidized bed gasification combustion processing method
JPH0631345B2 (en) Method and apparatus for gasifying or burning solid carbonaceous material
CN101357327A (en) Regeneration method and device of waste powdered activated carbon rotary fluidization
JP2003004211A5 (en)
US20040141891A1 (en) Waste treatment apparatus and method
WO1997049953A1 (en) Method for fusion treating a solid waste for gasification
CN1277342A (en) Drying, gasifying and melting process of treating domestic refuse
WO2023008522A1 (en) Combustion device, and combustion method
JPS5810643B2 (en) Shoukiya Chrono Kairyo
WO2023017803A1 (en) Combustion apparatus and combustion method
CN215411851U (en) Biomass combustion furnace based on circulating fluidized bed technology
JP2016169426A (en) Apparatus and method for recovering metal smelting raw material from waste incineration ash and apparatus and method for recovering metal from waste incineration ash
JP4918833B2 (en) Waste melting furnace and waste melting furnace operating method
JP4209701B2 (en) Combustible material gasification method and apparatus, and gasification melting system
JP2000282062A (en) Combustion and gasification furnace of low grade fuel
CN205856557U (en) A kind of for carbonaceous material circulation calciner
WO2024090056A1 (en) Calcium carbonate recovery method, calcium carbonate recovery device, and calcium carbonate recovery program
JP2007147270A (en) Processing method, and gasifying and melting device for waste
CN116146987B (en) Device and method for incinerating and disposing oil residue gasified filter cake
TW200424479A (en) Gasification and slagging combustion method and apparatus
JP4410125B2 (en) Waste treatment facilities and waste treatment methods
JP2006223961A (en) Method for separating char and noncombustible by means of fluidized layer
JP3544953B2 (en) Waste treatment method and gasification and melting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538616

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2401000608

Country of ref document: TH

Ref document number: AU2022316664

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022316664

Country of ref document: AU

Date of ref document: 20220728

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE