JP2009269989A - Silicon-containing polymer, preparation method thereof and optical material - Google Patents

Silicon-containing polymer, preparation method thereof and optical material Download PDF

Info

Publication number
JP2009269989A
JP2009269989A JP2008121152A JP2008121152A JP2009269989A JP 2009269989 A JP2009269989 A JP 2009269989A JP 2008121152 A JP2008121152 A JP 2008121152A JP 2008121152 A JP2008121152 A JP 2008121152A JP 2009269989 A JP2009269989 A JP 2009269989A
Authority
JP
Japan
Prior art keywords
silicon
formula
group
containing polymer
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008121152A
Other languages
Japanese (ja)
Other versions
JP5322491B2 (en
Inventor
Tatatomi Nishikubo
忠臣 西久保
Hiroto Kudo
宏人 工藤
Makoto Miyasaka
誠 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Kanagawa University
Original Assignee
JSR Corp
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp, Kanagawa University filed Critical JSR Corp
Priority to JP2008121152A priority Critical patent/JP5322491B2/en
Publication of JP2009269989A publication Critical patent/JP2009269989A/en
Application granted granted Critical
Publication of JP5322491B2 publication Critical patent/JP5322491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel silicon-containing polymer which includes a low refractive index and is excellent in heat resistance, its preparation method, and an optical material. <P>SOLUTION: The silicon-containing polymer is represented by formula (1). The optical material includes the silicon-containing polymer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シルセストオキサン骨格を有する含ケイ素ポリマーおよびその製造方法、並びにこの含ケイ素ポリマーよりなる光学材料に関する。   The present invention relates to a silicon-containing polymer having a silsestooxane skeleton, a method for producing the same, and an optical material comprising the silicon-containing polymer.

近年、光学レンズ、光学フィルム、光ファイバー、光導波路などの光学製品に用いられる光学材料としては、軽量、成形加工性などの観点から、ガラスなどの無機材料に代わり有機高分子材料が使用されている。かかる有機高分子材料としては、目的とする光学製品に要求される、屈折率や、透明性、低複屈折性、低光伝送損失性、高耐熱性などの光学特性に応じて種々のものが用いられており、低屈折率が要求される光学材料としては、主に含フッ素ポリマーが用いられている。
然るに、フッ素などのハロゲンを含有する化合物は、焼却時にダイオキシンなどの有害物質が発生するものであるため、環境負荷低減化の観点から、非フッ素系のポリマーの開発が望まれている。
そして、最近においては、優れた耐熱性、透明性を有する有機−無機ハイブリッド材料として、シルセスキオキサン誘導体から得られる、分枝骨格を有する含ケイ素ポリマーが提案されている(特許文献1乃至特許文献4等参照。)
In recent years, as an optical material used for optical products such as an optical lens, an optical film, an optical fiber, and an optical waveguide, an organic polymer material is used instead of an inorganic material such as glass from the viewpoint of light weight and moldability. . Such organic polymer materials include various materials depending on optical properties such as refractive index, transparency, low birefringence, low optical transmission loss, and high heat resistance required for the target optical product. As an optical material that is used and requires a low refractive index, a fluorine-containing polymer is mainly used.
However, since halogen-containing compounds such as fluorine generate harmful substances such as dioxins during incineration, development of non-fluorine polymers is desired from the viewpoint of reducing environmental impact.
Recently, silicon-containing polymers having a branched skeleton obtained from silsesquioxane derivatives have been proposed as organic-inorganic hybrid materials having excellent heat resistance and transparency (Patent Documents 1 to Patent). (Refer to Reference 4 etc.)

特開2006−70049号公報JP 2006-70049 A 特開2007−182528号公報JP 2007-182528 A 特開2007−298841号公報JP 2007-298841 A 特開2007−308527号公報JP 2007-308527 A

本発明は、屈折率が低く、優れた耐熱性を有する新規な含ケイ素ポリマーおよびその製造方法、並びにこの含ケイ素ポリマーよりなる光学材料を提供することにある。   An object of the present invention is to provide a novel silicon-containing polymer having a low refractive index and excellent heat resistance, a method for producing the same, and an optical material comprising the silicon-containing polymer.

本発明の含ケイ素ポリマーは、下記式(1)で表されるものである。   The silicon-containing polymer of the present invention is represented by the following formula (1).

Figure 2009269989
Figure 2009269989

〔式(1)において、Rは、フェニル基、シクロアルキル基またはアルキル基を示し、Xは3価の基を示す。〕 [In Formula (1), R shows a phenyl group, a cycloalkyl group, or an alkyl group, X shows a trivalent group. ]

本発明の含ケイ素ポリマーにおいては、上記式(1)におけるXが、下記式(a)、下記式(b)または下記式(c)で表される3価の基であることが好ましい。   In the silicon-containing polymer of the present invention, X in the above formula (1) is preferably a trivalent group represented by the following formula (a), the following formula (b), or the following formula (c).

Figure 2009269989
Figure 2009269989

〔式(c)において、R1 は、シクロペンチル基またはシクロヘキシル基を示す。〕 [In Formula (c), R 1 represents a cyclopentyl group or a cyclohexyl group. ]

本発明の含ケイ素ポリマーの製造方法は、下記式(2)で表されるシルセスキオキサン誘導体と、下記式(3)で表されるトリビニル化合物とをヒドロシリル化反応させることを特徴とする。   The method for producing a silicon-containing polymer of the present invention is characterized in that a silsesquioxane derivative represented by the following formula (2) and a trivinyl compound represented by the following formula (3) are hydrosilylated.

Figure 2009269989
Figure 2009269989

〔式(2)において、Rは、フェニル基、シクロアルキル基またはアルキル基を示し、式(3)において、Xは3価の基を示す。〕 [In Formula (2), R shows a phenyl group, a cycloalkyl group, or an alkyl group, and in Formula (3), X shows a trivalent group. ]

本発明の含ケイ素ポリマーの製造方法においては、上記式(3)におけるXが、上記式(a)、上記式(b)または上記式(c)で表される3価の基であることが好ましい。   In the method for producing a silicon-containing polymer of the present invention, X in the above formula (3) is a trivalent group represented by the above formula (a), the above formula (b), or the above formula (c). preferable.

本発明の光学材料は、上記の含ケイ素ポリマーよりなることを特徴とする。   The optical material of the present invention is characterized by comprising the above silicon-containing polymer.

本発明の含ケイ素ポリマーは、屈折率が低く、優れた耐熱性を有するものであり、光学レンズ、光学フィルム、光ファイバー、光導波路などの光学製品に用いられる光学材料として有用である。   The silicon-containing polymer of the present invention has a low refractive index and excellent heat resistance, and is useful as an optical material used in optical products such as optical lenses, optical films, optical fibers, and optical waveguides.

以下、本発明の実施の形態について説明する。
本発明の含ケイ素ポリマーは、上記式(1)で表されるものである。上記式(1)において、Rは、フェニル基、シクロアルキル基またはアルキル基であり、好ましくはフェニル基である。また、Xは3価の基であり、好ましくは上記式(a)、上記式(b)または上記式(c)で表される3価の基である。これらの中では、化学構造中に空隙を有することから、式(c)で表される基を有するものが、より低い屈折率が得られる。
本発明の含ケイ素ポリマーにおいては、ゲルパーミエーションクロマトグラフィーによって測定される標準ポリスチレン換算の数平均分子量Mnが5×103 〜5×105 、分子量分布Mw/Mnが1.5〜10であることが好ましい。
Embodiments of the present invention will be described below.
The silicon-containing polymer of the present invention is represented by the above formula (1). In the above formula (1), R is a phenyl group, a cycloalkyl group or an alkyl group, preferably a phenyl group. X is a trivalent group, preferably a trivalent group represented by the above formula (a), the above formula (b) or the above formula (c). In these, since it has a space | gap in a chemical structure, what has group represented by Formula (c) has a lower refractive index.
In the silicon-containing polymer of the present invention, the number average molecular weight Mn in terms of standard polystyrene measured by gel permeation chromatography is 5 × 10 3 to 5 × 10 5 , and the molecular weight distribution Mw / Mn is 1.5 to 10. It is preferable.

本発明の含ケイ素ポリマーは、上記式(2)で表されるシルセスキオキサン誘導体(以下、「特定のシルセスキオキサン誘導体」という。)と、上記式(3)で表されるトリビニル化合物(以下、「特定のトリビニル化合物」という。)とを、ヒドロシリル化反応により重合させることによって得られる。ここで、特定のシルセスキオキサン誘導体は、例えば国際公開WO03/024870号パンプレットに記載された方法によって得られる。   The silicon-containing polymer of the present invention comprises a silsesquioxane derivative represented by the above formula (2) (hereinafter referred to as “specific silsesquioxane derivative”) and a trivinyl compound represented by the above formula (3). (Hereinafter referred to as “specific trivinyl compound”) is polymerized by a hydrosilylation reaction. Here, the specific silsesquioxane derivative is obtained, for example, by the method described in International Publication WO 03/024870 Pamplet.

特定のトリビニル化合物の具体例としては、トリビニルメチルシラン、1,3,5−トリビニル−1,3,5−トリメチルシクロトリシロキサン、endo−3,7,14−トリス(ジメチルシリロキシ)−1,3,5,7,9,11,14−ヘプタシクロペンチルトリシクロ[7.3.3.15,11]ヘプタシロキサン、トリビニルメトキシシラン、トリビニルエトキシシラン、1,3,5−トリビニル−1,1,3,5,5−ペンタメチルトリシロキサン、トリス(ビニルジメチルシロキシ)メチルシラン、トリス(ビニルジメチルシロキシ)フェニルシラン、1,3,5−トリビニル−1,3,5−トリメチルシクロトリシラザンなどを挙げることができ、これらの中では、上記式(3)におけるXが、上記式(a)、上記式(b)または上記式(c)で表されるもの、具体的には、トリビニルメチルシラン、1,3,5−トリビニル−1,3,5−トリメチルシクロトリシロキサン、endo−3,7,14−トリス(ジメチルシリロキシ)−1,3,5,7,9,11,14−ヘプタシクロペンチルトリシクロ[7.3.3.15,11]ヘプタシロキサンが好ましい。 Specific examples of the specific trivinyl compound include trivinylmethylsilane, 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane, endo-3,7,14-tris (dimethylsilyloxy) -1. 3,5,7,9,11,14-heptacyclopentyltricyclo [7.3.3.1 5,11 ] heptasiloxane, trivinylmethoxysilane, trivinylethoxysilane, 1,3,5-trivinyl- 1,1,3,5,5-pentamethyltrisiloxane, tris (vinyldimethylsiloxy) methylsilane, tris (vinyldimethylsiloxy) phenylsilane, 1,3,5-trivinyl-1,3,5-trimethylcyclotrisilazane Among these, X in the above formula (3) is the above formula (a), the above formula (b), or What is represented by the above formula (c), specifically, trivinylmethylsilane, 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane, endo-3,7,14-tris ( butyldimethylsilyloxy) -1,3,5,7,9,11,14- hepta cyclopentanol tilt Li cyclo [7.3.3.1 5 and 11] hept siloxane is preferable.

特定のシルセスキオキサン誘導体と特定のトリビニル化合物との使用割合は、特定のシルセスキオキサン誘導体におけるSiH基:特定のトリビニル化合物におけるビニル基が、モル比で3:2〜1:1となる割合が好ましい。   The use ratio of the specific silsesquioxane derivative and the specific trivinyl compound is such that the molar ratio of SiH group in the specific silsesquioxane derivative to vinyl group in the specific trivinyl compound is 3: 2 to 1: 1. A proportion is preferred.

特定のシルセスキオキサン誘導体と特定のトリビニル化合物とのヒドロシリル化反応においては、必要に応じて溶媒を用いることができる。かかる溶媒としては、ヒドロシリル化反応の進行を阻害しないものであれば特に限定されず、種々のものを用いることができ、その具体例としては、ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、塩化メチレン、四塩化炭素等のハロゲン化炭化水素系溶媒、酢酸エチル等のエステル系溶媒などが挙げられる。これらの中では、芳香族炭化水素系溶媒が好ましく、特にトルエンが好ましい。
溶媒の使用量は、特定のシルセスキオキサン誘導体の濃度が0.01〜1mol/Lとなる量が好ましい。
In the hydrosilylation reaction between a specific silsesquioxane derivative and a specific trivinyl compound, a solvent can be used as necessary. Such a solvent is not particularly limited as long as it does not inhibit the progress of the hydrosilylation reaction, and various solvents can be used. Specific examples thereof include aliphatic hydrocarbon solvents such as hexane and heptane, benzene, and the like. Aromatic hydrocarbon solvents such as toluene and xylene, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, halogenated hydrocarbon solvents such as methylene chloride and carbon tetrachloride, ester solvents such as ethyl acetate, etc. It is done. Among these, aromatic hydrocarbon solvents are preferable, and toluene is particularly preferable.
The amount of the solvent used is preferably such that the concentration of the specific silsesquioxane derivative is 0.01 to 1 mol / L.

ヒドロシリル化反応触媒としては、特に限定されるものではなく、種々のものを用いることができるが、白金−ジビニルテトラメチルジシロキサン錯体(カルステッド触媒:Karstedt’s catalyst)、ヘキサクロロ白金(IV)酸六水和物(スパイエル触媒:Speier’s catalyst)などの白金錯体化合物を好適に用いることができる。
このような触媒の使用割合は、特定のシルセスキオキサン誘導体中のSiH基1molに対し、例えば1×10-5〜1×10-3molである。
また、ヒドロシリル化反応の反応条件としては、例えば反応温度が25〜120℃、反応時間が0.5〜24時間である。
The hydrosilylation reaction catalyst is not particularly limited, and various catalysts can be used, but platinum-divinyltetramethyldisiloxane complex (Carstedt's catalyst), hexachloroplatinum (IV) acid hexa A platinum complex compound such as a hydrate (Speier's catalyst) can be preferably used.
The use ratio of such a catalyst is, for example, 1 × 10 −5 to 1 × 10 −3 mol with respect to 1 mol of SiH groups in the specific silsesquioxane derivative.
Moreover, as reaction conditions of hydrosilylation reaction, reaction temperature is 25-120 degreeC, for example, and reaction time is 0.5 to 24 hours.

本発明の含ケイ素ポリマーは、汎用の有機溶媒に可溶なものである。かかる有機溶媒の具体例としては、トルエン、キシレン、メシチレン等の芳香族炭化水素類、アセトン、エチルメチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、N−メチルピロリドン等のケトン類、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、γ−ブチロラクトン、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、ジクロロメタン、クロロホルム、1,2−ジクロロエタン等の塩化脂肪族炭化水素類などが挙げられる。   The silicon-containing polymer of the present invention is soluble in a general-purpose organic solvent. Specific examples of such organic solvents include aromatic hydrocarbons such as toluene, xylene and mesitylene, ketones such as acetone, ethyl methyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone and N-methylpyrrolidone, formamide, N Amides such as N, N-dimethylformamide and N, N-dimethylacetamide, ethers such as γ-butyrolactone, diethyl ether, tetrahydrofuran and dioxane, chlorinated aliphatic hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane, etc. Is mentioned.

本発明の含ケイ素ポリマーは、屈折率が低く、優れた耐熱性を有するものであり、光学レンズ、光学フィルム、光ファイバー、光導波路などの光学製品に用いられる光学材料として有用である。   The silicon-containing polymer of the present invention has a low refractive index and excellent heat resistance, and is useful as an optical material used in optical products such as optical lenses, optical films, optical fibers, and optical waveguides.

以下、本発明の具体的な実施例について説明するが、本発明はこれらに限定されるものではない。
以下の実施例において、特定のシルセスキオキサン誘導体としては、式(2)において、Rがフェニル基のものを使用した。
また、数平均分子量Mnおよび分子量分布Mw/Mnは、ゲルパーミエーションクロマトグラフィーによって測定された標準ポリスチレン換算のものを示す。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.
In the following examples, as the specific silsesquioxane derivative, one in which R is a phenyl group in the formula (2) was used.
Further, the number average molecular weight Mn and the molecular weight distribution Mw / Mn indicate those in terms of standard polystyrene measured by gel permeation chromatography.

〈実施例1〉
特定のシルセスキオキサン誘導体0.15g(130μmol)およびトリビニルメチルシラン0.011g(86.7μmol)を(SiH基:ビニル基がモル比で1:1)、乾燥トルエン0.5mLに溶解し(特定のシルセスキオキサン誘導体の濃度が0.26mol/L)、この溶液に白金−ジビニルテトラメチルジシロキサン錯体0.1Mキシレン溶液2.6μL(0.26μmol,SiH基1molに対して1×10-4molとなる量)を室温で添加した。その後、反応溶液は淡黄色に変色し、当該反応溶液を50℃で1時間反応させた。そして、反応溶液をメタノールを用いて再沈殿処理することにより精製し、減圧乾燥することにより、白色粉末0.15gを得た。収率は93%であった。
得られた生成物を 1H−NMR分析した結果、式(1)においてRがフェニル基、Xが式(a)で表される基である含ケイ素ポリマーであることが確認された。生成物の 1H−NMRスペクトル図を図1に示す。
得られたポリマーの数平均分子量Mnは98100、分子量分布Mw/Mnは5.30であった。
また、このポリマーは、トルエン、テトラヒドロフラン、クロロホルム、クロロベンゼンなどの汎用有機溶媒に可溶なものであった。
<Example 1>
A specific silsesquioxane derivative (0.15 g, 130 μmol) and trivinylmethylsilane (0.011 g, 86.7 μmol) (SiH group: vinyl group in a molar ratio of 1: 1) were dissolved in 0.5 mL of dry toluene. (The concentration of a specific silsesquioxane derivative is 0.26 mol / L). In this solution, 2.6 μL of a platinum-divinyltetramethyldisiloxane complex 0.1 M xylene solution (0.26 μmol, 1 × 1 mol of SiH group) 10 -4 mol) was added at room temperature. Thereafter, the reaction solution turned pale yellow, and the reaction solution was reacted at 50 ° C. for 1 hour. The reaction solution was purified by reprecipitation treatment with methanol and dried under reduced pressure to obtain 0.15 g of a white powder. The yield was 93%.
As a result of 1 H-NMR analysis of the obtained product, it was confirmed that in the formula (1), R is a phenyl group and X is a silicon-containing polymer in which X is a group represented by the formula (a). A 1 H-NMR spectrum of the product is shown in FIG.
The number average molecular weight Mn of the obtained polymer was 98100, and the molecular weight distribution Mw / Mn was 5.30.
Moreover, this polymer was soluble in general purpose organic solvents such as toluene, tetrahydrofuran, chloroform, chlorobenzene and the like.

〈実施例2〉
特定のシルセスキオキサン誘導体0.15g(130μmol)および1,3,5−トリビニル−1,3,5−トリメチルシクロトリシロキサン0.022g(86.7μmol)を(SiH基:ビニル基がモル比で1:1)、乾燥トルエン0.5mLに溶解し(特定のシルセスキオキサン誘導体の濃度が0.26mol/L)、この溶液に白金−ジビニルテトラメチルジシロキサン錯体0.1Mキシレン溶液2.6μL(0.26μmol,SiH基1molに対して1×10-4molとなる量)を室温で添加した。その後、反応溶液は淡黄色に変色し、当該反応溶液を50℃で1.5時間反応させた。そして、反応溶液をメタノールを用いて再沈殿処理することにより精製し、減圧乾燥することにより、白色粉末0.12gを得た。収率は68%であった。
得られた生成物を 1H−NMR分析した結果、式(1)においてRがフェニル基、Xが式(b)で表される基である含ケイ素ポリマーであることが確認された。生成物の 1H−NMRスペクトル図を図2に示す。
得られたポリマーの数平均分子量Mnは51600、分子量分布Mw/Mnは2.80であった。
また、このポリマーは、トルエン、テトラヒドロフラン、クロロホルム、クロロベンゼンなどの汎用有機溶媒に可溶なものであった。
<Example 2>
0.15 g (130 μmol) of a specific silsesquioxane derivative and 0.022 g (86.7 μmol) of 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane (SiH group: vinyl group in molar ratio) 1: 1) and dissolved in 0.5 mL of dry toluene (concentration of a specific silsesquioxane derivative is 0.26 mol / L), and a platinum-divinyltetramethyldisiloxane complex 0.1 M xylene solution is added to this solution. 6 μL (0.26 μmol, 1 × 10 −4 mol relative to 1 mol of SiH groups) was added at room temperature. Thereafter, the reaction solution turned pale yellow, and the reaction solution was reacted at 50 ° C. for 1.5 hours. The reaction solution was purified by reprecipitation treatment with methanol and dried under reduced pressure to obtain 0.12 g of a white powder. The yield was 68%.
As a result of 1 H-NMR analysis of the obtained product, it was confirmed that it was a silicon-containing polymer in which R is a phenyl group and X is a group represented by the formula (b) in the formula (1). A 1 H-NMR spectrum of the product is shown in FIG.
The number average molecular weight Mn of the obtained polymer was 51600, and the molecular weight distribution Mw / Mn was 2.80.
Moreover, this polymer was soluble in general purpose organic solvents such as toluene, tetrahydrofuran, chloroform, chlorobenzene and the like.

〈実施例3〉
特定のシルセスキオキサン誘導体76.7mg(66.5μmol)およびendo−3,7,14−トリス(ジメチルシリロキシ)−1,3,5,7,9,11,14−ヘプタシクロペンチルトリシクロ[7.3.3.15,11]ヘプタシロキサン50.0mg(44.3μmol)を(SiH基:ビニル基がモル比で1:1)、乾燥トルエン0.5mLに溶解し(特定のシルセスキオキサン誘導体の濃度が0.13mol/L)、この溶液に白金−ジビニルテトラメチルジシロキサン錯体0.1Mキシレン溶液1.3μL(0.26μmol,SiH基1molに対して1×10-4molとなる量)を室温で添加した。その後、反応溶液は淡黄色に変色し、当該反応溶液を50℃で1時間反応させた。そして、反応溶液をメタノールを用いて再沈殿処理することにより精製し、減圧乾燥することにより、白色粉末95.8mgを得た。収率は76%であった。
得られた生成物を 1H−NMR分析した結果、式(1)においてRがフェニル基、Xが式(c)で表される基(但し、R1 がいずれもシクロペンチル基)である含ケイ素ポリマーであることが確認された。生成物の 1H−NMRスペクトル図を図3に示す。
得られたポリマーの数平均分子量Mnは12700、分子量分布Mw/Mnは3.32であった。
また、このポリマーは、トルエン、テトラヒドロフラン、クロロホルム、クロロベンゼンなどの汎用有機溶媒に可溶なものであった。
<Example 3>
76.7 mg (66.5 μmol) of a specific silsesquioxane derivative and endo-3,7,14-tris (dimethylsilyloxy) -1,3,5,7,9,11,14-heptacyclopentyltricyclo [ 7.3.3.1 5 and 11] hept siloxane 50.0mg (44.3μmol) and (SiH group: 1 with a vinyl group molar ratio: 1), was dissolved in dry toluene 0.5 mL (specific Shirusesuki The concentration of the oxane derivative was 0.13 mol / L), and this solution was added with 1.3 μL of a platinum-divinyltetramethyldisiloxane complex 0.1 M xylene solution (0.26 μmol, 1 × 10 −4 mol with respect to 1 mol of SiH groups). Was added at room temperature. Thereafter, the reaction solution turned pale yellow, and the reaction solution was reacted at 50 ° C. for 1 hour. Then, the reaction solution was purified by reprecipitation treatment with methanol and dried under reduced pressure to obtain 95.8 mg of white powder. The yield was 76%.
As a result of 1 H-NMR analysis of the resulting product, silicon-containing compounds in which R is a phenyl group and X is a group represented by the formula (c) in formula (1) (wherein R 1 is a cyclopentyl group) It was confirmed to be a polymer. A 1 H-NMR spectrum of the product is shown in FIG.
The number average molecular weight Mn of the obtained polymer was 12700, and the molecular weight distribution Mw / Mn was 3.32.
Moreover, this polymer was soluble in general purpose organic solvents such as toluene, tetrahydrofuran, chloroform, chlorobenzene and the like.

[ポリマーの特性]
実施例1〜実施例3で得られた含ケイ素ポリマー、および参考例として、1,4−ビス(ジメチルシリル)ベンゼンとトリビニルメチルシランとをヒドロシリル化反応により重合して得られた含ケイ素ポリマー(数平均分子量Mn=14500,分子量分布Mw/Mn=10.3)について、下記(1)および下記(2)の特性を調べた。
(1)5%重量減少温度:
窒素雰囲気下、昇温温度10℃/minの条件で、熱重量−示唆熱分析を行うことにより、5%重量減少温度を測定した。
(2)屈折率:
ポリマーをトルエンに溶解し、得られた溶液をスピンコート法によりシリコン基板上に塗布して乾燥させることにより、厚みが0.1μmの薄膜を製造し、この薄膜について、エリプソメーターにより、波長632.8nmの光の屈折率を測定した。
結果を表1に示す。
[Polymer characteristics]
The silicon-containing polymer obtained in Examples 1 to 3 and, as a reference example, the silicon-containing polymer obtained by polymerizing 1,4-bis (dimethylsilyl) benzene and trivinylmethylsilane by a hydrosilylation reaction Regarding (number average molecular weight Mn = 14500, molecular weight distribution Mw / Mn = 10.3), the following properties (1) and (2) were examined.
(1) 5% weight loss temperature:
Under a nitrogen atmosphere, a thermogravimetric-suggested thermal analysis was performed under the condition of a temperature elevation temperature of 10 ° C./min, and a 5% weight loss temperature was measured.
(2) Refractive index:
The polymer is dissolved in toluene, and the resulting solution is applied onto a silicon substrate by a spin coating method and dried to produce a thin film having a thickness of 0.1 μm. The thin film is subjected to a wavelength of 632. The refractive index of 8 nm light was measured.
The results are shown in Table 1.


Figure 2009269989
Figure 2009269989

表1の結果から明らかなように、実施例1〜実施例3に係る含ケイ素ポリマーは、屈折率が低く、高い耐熱性を有するものであることが確認された。   As is clear from the results in Table 1, it was confirmed that the silicon-containing polymers according to Examples 1 to 3 have a low refractive index and high heat resistance.

実施例1で得られたポリマーの 1H−NMRスペクトル図である。1 is a 1 H-NMR spectrum diagram of the polymer obtained in Example 1. FIG. 実施例2で得られたポリマーの 1H−NMRスペクトル図である。2 is a 1 H-NMR spectrum diagram of the polymer obtained in Example 2. FIG. 実施例3で得られたポリマーの 1H−NMRスペクトル図である。2 is a 1 H-NMR spectrum diagram of the polymer obtained in Example 3. FIG.

Claims (5)

下記式(1)で表される含ケイ素ポリマー。
Figure 2009269989
〔式(1)において、Rは、フェニル基、シクロアルキル基またはアルキル基を示し、Xは3価の基を示す。〕
A silicon-containing polymer represented by the following formula (1).
Figure 2009269989
[In Formula (1), R shows a phenyl group, a cycloalkyl group, or an alkyl group, X shows a trivalent group. ]
式(1)におけるXが、下記式(a)、下記式(b)または下記式(c)で表される3価の基であることを特徴とする請求項1に記載の含ケイ素ポリマー。
Figure 2009269989
〔式(c)において、R1 は、シクロペンチル基またはシクロヘキシル基を示す。〕
2. The silicon-containing polymer according to claim 1, wherein X in the formula (1) is a trivalent group represented by the following formula (a), the following formula (b), or the following formula (c).
Figure 2009269989
[In Formula (c), R 1 represents a cyclopentyl group or a cyclohexyl group. ]
下記式(2)で表されるシルセスキオキサン誘導体と、下記式(3)で表されるトリビニル化合物とをヒドロシリル化反応させることを特徴とする含ケイ素ポリマーの製造方法。

Figure 2009269989
〔式(2)において、Rは、フェニル基、シクロアルキル基、アルキル基を示し、式(3)において、Xは3価の基を示す。〕
A method for producing a silicon-containing polymer, wherein a silsesquioxane derivative represented by the following formula (2) and a trivinyl compound represented by the following formula (3) are hydrosilylated.

Figure 2009269989
[In Formula (2), R shows a phenyl group, a cycloalkyl group, and an alkyl group, and in Formula (3), X shows a trivalent group. ]
式(3)におけるXが、請求項2に記載の式(a)、式(b)または式(c)で表される3価の基であることを特徴とする請求項3に記載の含ケイ素ポリマーの製造方法。   X in formula (3) is a trivalent group represented by formula (a), formula (b) or formula (c) according to claim 2, A method for producing a silicon polymer. 請求項1または請求項2に記載の含ケイ素ポリマーよりなることを特徴とする光学材料。   An optical material comprising the silicon-containing polymer according to claim 1.
JP2008121152A 2008-05-07 2008-05-07 Silicon-containing polymer, method for producing the same, and optical material Expired - Fee Related JP5322491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008121152A JP5322491B2 (en) 2008-05-07 2008-05-07 Silicon-containing polymer, method for producing the same, and optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008121152A JP5322491B2 (en) 2008-05-07 2008-05-07 Silicon-containing polymer, method for producing the same, and optical material

Publications (2)

Publication Number Publication Date
JP2009269989A true JP2009269989A (en) 2009-11-19
JP5322491B2 JP5322491B2 (en) 2013-10-23

Family

ID=41436846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121152A Expired - Fee Related JP5322491B2 (en) 2008-05-07 2008-05-07 Silicon-containing polymer, method for producing the same, and optical material

Country Status (1)

Country Link
JP (1) JP5322491B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831077A (en) * 2010-05-14 2010-09-15 华东理工大学 Phenylo boric acid-silane-ethynyl polymer and preparation method thereof
JP2012131935A (en) * 2010-12-22 2012-07-12 Kaneka Corp Organopolysiloxane composition and cured product
JP2012144607A (en) * 2011-01-11 2012-08-02 Kaneka Corp Organopolysiloxane-based composition, and cured material
JP2012149131A (en) * 2011-01-17 2012-08-09 Shin-Etsu Chemical Co Ltd Silicone resin composition and optical semiconductor device using the composition
JP2014509668A (en) * 2011-03-28 2014-04-21 ヘンケル・チャイナ・カンパニー・リミテッド Curable silicone resin for LED encapsulation
WO2022030354A1 (en) * 2020-08-06 2022-02-10 Jnc株式会社 Siloxane polymer, siloxane polymer composition, and molded article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070049A (en) * 2003-03-11 2006-03-16 Chisso Corp Polymer obtained by using silsesquioxane derivative
JP2006299150A (en) * 2005-04-22 2006-11-02 Asahi Kasei Corp Composition for sealant and optical device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070049A (en) * 2003-03-11 2006-03-16 Chisso Corp Polymer obtained by using silsesquioxane derivative
JP2006299150A (en) * 2005-04-22 2006-11-02 Asahi Kasei Corp Composition for sealant and optical device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831077A (en) * 2010-05-14 2010-09-15 华东理工大学 Phenylo boric acid-silane-ethynyl polymer and preparation method thereof
JP2012131935A (en) * 2010-12-22 2012-07-12 Kaneka Corp Organopolysiloxane composition and cured product
JP2012144607A (en) * 2011-01-11 2012-08-02 Kaneka Corp Organopolysiloxane-based composition, and cured material
JP2012149131A (en) * 2011-01-17 2012-08-09 Shin-Etsu Chemical Co Ltd Silicone resin composition and optical semiconductor device using the composition
KR101749775B1 (en) 2011-01-17 2017-06-21 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone resin composition and optical semiconductor device using said composition
JP2014509668A (en) * 2011-03-28 2014-04-21 ヘンケル・チャイナ・カンパニー・リミテッド Curable silicone resin for LED encapsulation
WO2022030354A1 (en) * 2020-08-06 2022-02-10 Jnc株式会社 Siloxane polymer, siloxane polymer composition, and molded article
WO2022030353A1 (en) * 2020-08-06 2022-02-10 Jnc株式会社 Siloxane polymer, siloxane polymer composition and molded body

Also Published As

Publication number Publication date
JP5322491B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5322491B2 (en) Silicon-containing polymer, method for producing the same, and optical material
CN104411787B (en) Siloxane hard coating resin composition
CN101517001B (en) At low temperature, fast hardening composition for preparing protecting film, protecting film prepared therefrom, and substrate comprising the same
JP5223978B2 (en) Fluorine-containing resin composition for optical element sealing, and cured product
JP6150157B2 (en) Nonlinear optically active copolymer
US20030216537A1 (en) Low loss optical material
Huang et al. Sterically encumbered fluorene-based poly (arylene ether) s containing spiro-annulated substituents on the main chain
EP0772060B1 (en) Polysiloxane resin containing optically-functional constituents and transparent optically-functional element obtained therefrom
JP5654050B2 (en) NOVEL FLUORINE COMPOUND, COMPOSITION CONTAINING THE SAME, MOLDED BODY USING THE SAME, AND METHOD FOR PRODUCING MOLDED BODY
JPWO2017159815A1 (en) Non-linear optically active copolymer with alicyclic groups
KR20180081163A (en) Polyimide film
Cho et al. Novel highly fluorinated perfluorocyclobutane-based phosphazene polymers for photonic applications
KR20100131312A (en) Fluorinated polysilsesquioxane and method for preparing the same
KR20130125224A (en) Ladder-type thiol-based silsesquioxane polymer and method for preparing the same
Sangermano et al. Fluorinated alcohols as surface‐active agents in cationic photopolymerization of epoxy monomers
Mori et al. Synthesis and characterization of water-soluble silsesquioxane-based nanoparticles by hydrolytic condensation of triethoxysilane derived from 2-hydroxyethyl acrylate
Chen et al. Supramolecular template-directed synthesis of soluble quadruple-chain ladder polyphenylsiloxane (Ph-QCLP) with high molecular weight
JP2009145872A (en) Germanium containing photosensitive resin composition and refractive index control method
Brigo et al. New hybrid organic–inorganic sol–gel positive resist
Nam et al. Anisotropic Polysilsesquioxanes with Fluorescent Organic Bridges: Transcription of Strong π− π Interactions of Organic Bridges to the Long-Range Ordering of Silsesquioxanes
O’Brien et al. Effects of refractive index modifiers and UV light on an epoxy-functional inorganic–organic hybrid sol–gel derived thin film system
JP5481017B2 (en) Method for producing ladder polymer derivative
Xu et al. Preparation of poly (methyl methacrylate‐co‐maleic anhydride)/SiO2 TiO2 hybrid materials and their thermo‐and photodegradation behaviors
Ciesielczyk et al. Evaluation of physicochemical properties of a new group of SiO2/silane/POSS hybrid materials
JPH10101717A (en) Organic/inorganic polymer composite and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees