JP2009269432A - Tire with lug, and manufacturing method of the same - Google Patents

Tire with lug, and manufacturing method of the same Download PDF

Info

Publication number
JP2009269432A
JP2009269432A JP2008120132A JP2008120132A JP2009269432A JP 2009269432 A JP2009269432 A JP 2009269432A JP 2008120132 A JP2008120132 A JP 2008120132A JP 2008120132 A JP2008120132 A JP 2008120132A JP 2009269432 A JP2009269432 A JP 2009269432A
Authority
JP
Japan
Prior art keywords
tread
tire
lug
vibration absorbing
unvulcanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008120132A
Other languages
Japanese (ja)
Inventor
Sunao Shida
直 志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008120132A priority Critical patent/JP2009269432A/en
Publication of JP2009269432A publication Critical patent/JP2009269432A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tire for an agricultural machine, enhancing the vibration ride quality performance, in particular, the vibration ride quality performance during the travel on a smooth road without degrading the traction performance. <P>SOLUTION: A first vibration absorbing rubber 32 and a second vibration absorbing rubber 34 having the modulus lower than that of a tread rubber 24 are arranged within a lug 26 corresponding to a center area 40 and within the lug 26 corresponding to a side area 42 of a tire 10 comprising a bead core 20 and a carcass 16, a tread 22 provided on the outer side in the radial direction of the carcass 16 and a plurality of lugs 26 formed in the tread 22. Thus, the vibration ride quality performance is enhanced without degrading the traction performance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はトレッドに複数のラグを形成したラグ付きタイヤに関し、特に湿田、軟弱地及び泥濘地などの圃場を走行する農業用車両に好適なラグ付きタイヤ及びラグ付きタイヤの製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a tire with a lug in which a plurality of lugs are formed on a tread, and more particularly to a tire with a lug suitable for an agricultural vehicle that travels in a farm field such as a wet field, soft land, and muddy land, and a method for manufacturing the tire with lug. .

従来、トレッドに所定の間隔を開けて複数のラグをハの字状に形成したラグ付きタイヤとして、農業機械用タイヤなどがある。農業機械用タイヤでは、基本的な性能であるトラクション性能を確保するためにトレッド幅をできるだけ広く、例えば、タイヤの総幅よりもトレッド幅を広く設定すること等が一般的に行われている。しかし、農業機械用タイヤではトラクション性能と振動乗り心地性能とが二律背反の関係にあるため、所定のトラクション性能を確保するには振動乗り心地性能を犠牲にせざるを得ないといった問題点があった。   2. Description of the Related Art Conventionally, as a tire with a lug in which a plurality of lugs are formed in a square shape with a predetermined interval in a tread, there are agricultural machinery tires and the like. In agricultural machinery tires, in order to ensure traction performance, which is a basic performance, the tread width is set as wide as possible, for example, the tread width is generally set wider than the total width of the tire. However, since tires for agricultural machinery have a trade-off relationship between traction performance and vibration ride comfort performance, there is a problem in that vibration ride comfort performance must be sacrificed in order to ensure a predetermined traction performance.

この問題点を解決するために、従来から農業機械用タイヤの振動乗り心地性能を改善する手法が種々提案、実現されている(例えば、特許文献1及び特許文献2参照)。また、振動乗り心地性能を改善する手法の一つとして、タイヤ周方向又はタイヤ幅方向から見て、ラグ同士の一部がオーバーラップするようにラグを形成する技術が知られている。
特開2006−224784号公報 特開2004−299459号公報
In order to solve this problem, various methods for improving the vibration ride comfort performance of agricultural machine tires have been proposed and implemented (see, for example, Patent Document 1 and Patent Document 2). Further, as one method for improving the vibration ride comfort performance, a technique is known in which lugs are formed so that the lugs partially overlap each other when viewed from the tire circumferential direction or the tire width direction.
JP 2006-224784 A JP 2004-299459 A

ところで、近年、農業機械用タイヤを装着した農業用車両(例えば、農業トラクター等)も舗装路等の良路を走行する機会が増加しており、従来それほど注目されていなかった農業機械用タイヤの振動乗り心地性能が注目されるようになってきている。前述したように、農業機械用タイヤの振動乗り心地性能を改善する手法が種々提案、実現されているが、これらの手法では、トラクション性能と二律背反の関係にある振動乗り心地性能をユーザーが満足するレベルまで向上させることができない。   By the way, in recent years, agricultural vehicles equipped with agricultural machinery tires (for example, agricultural tractors, etc.) have also increased opportunities to travel on good roads such as paved roads. Vibration ride comfort performance is gaining attention. As described above, various methods for improving the vibration riding comfort performance of agricultural machinery tires have been proposed and realized, but with these methods, the user satisfies the vibration riding comfort performance that is in a trade-off relationship with traction performance. It cannot be improved to the level.

また、近年、タイヤの総幅とトレッド幅とを略同一として、トラクション性能を大きく低下させることなく振動乗り心地性能を向上させる農業機械用タイヤも提供されているが、振動乗り心地性能は十分には改良されておらず、市場では、振動乗り心地性能がさらに改良された農業機械用タイヤの提供が強く望まれている。   In recent years, agricultural machinery tires have been provided that improve the ride comfort of the vibration without substantially reducing the traction performance by making the total width of the tire and the tread width substantially the same. In the market, it is strongly desired to provide tires for agricultural machinery with further improved vibration ride performance.

そこで本発明は、上記事実を考慮して、トラクション性能を低下させることなく、振動乗り心地性能、特に良路走行時における振動乗り心地性能を改良したラグ付きタイヤ及びラグ付きタイヤの製造方法を提供することを目的としている。   In view of the above, the present invention provides a lug-equipped tire and a lug-equipped tire manufacturing method that improve vibration ride comfort performance, particularly vibration ride comfort performance on a good road, without reducing traction performance. The purpose is to do.

ラグ付きタイヤ(所謂、ラグパターンのタイヤ)において、前述したトラクション性能と振動乗り心地性能とが二律背反の関係にあることを考慮した上で、発明者はトラクション性能と振動乗り心地性能との双方を維持向上させる手法を検討した。一般的に、ラグ付きタイヤが装着された農業用車両の振動乗り心地性能の低下は、主にトレッドパターンに基づくピッチ成分(以下、パターンピッチ成分)によって引き起こされている。   Considering that the traction performance and the vibration ride performance described above are in a trade-off relationship in a tire with a lug (so-called lug pattern tire), the inventor has determined both the traction performance and the vibration ride performance. The method of maintaining and improving was examined. Generally, a decrease in vibration ride comfort performance of an agricultural vehicle equipped with a lug-equipped tire is mainly caused by a pitch component based on a tread pattern (hereinafter referred to as a pattern pitch component).

特にラグ付きタイヤの場合には、トレッドの接地圧分布がW字型で大きくなりやすい特徴がある。これは、トレッドの中央部(タイヤ赤道面近傍)、及びトレッドの端部近傍では接地圧が高くなりやすい、ということを意味している。つまり、ラグのタイヤ赤道面近傍の部分、及びラグのタイヤ幅方向外側の端部分の接地圧は高くなりやすいということである。このことから発明者は、パターンピッチ成分がラグ付きタイヤの転動による振動、具体的にはラジアルフォースバリエーション(以下RFV)を引き起こすことに着目し本発明を完成させた。   Particularly in the case of tires with lugs, the tread contact pressure distribution is W-shaped and tends to be large. This means that the contact pressure tends to be high at the center of the tread (near the tire equator) and near the end of the tread. That is, the contact pressure of the lug near the tire equatorial plane and the end of the lug on the outer side in the tire width direction are likely to be high. Thus, the inventor has completed the present invention by paying attention to the fact that the pattern pitch component causes vibration due to rolling of the tire with lugs, specifically, radial force variation (hereinafter referred to as RFV).

そこで本発明の請求項1に記載のラグ付きタイヤは、タイヤ幅方向断面において、路面と接触する踏面の曲率半径がタイヤ赤道面を跨ぐ中央区域よりも前記中央区域から連続する側部区域で小さいトレッドと、前記トレッドに形成され、前記トレッドのタイヤ幅方向の中央部から側部に向けて延びる複数のラグと、前記中央区域に対応する前記ラグの内部及び前記側部区域に対応する前記ラグの内部に設けられ、前記トレッドを形成するトレッドゴムよりもモジュラスが低い振動吸収ゴムと、を備える。   Therefore, in the tire with a lug according to claim 1 of the present invention, in the cross section in the tire width direction, the radius of curvature of the tread surface contacting the road surface is smaller in the side area continuous from the central area than in the central area straddling the tire equatorial plane. A tread, a plurality of lugs formed on the tread and extending from a central part in a tire width direction of the tread toward a side part, and the lugs corresponding to the inside and the side part of the lug corresponding to the central area And a vibration-absorbing rubber having a lower modulus than that of the tread rubber forming the tread.

請求項1に記載のラグ付きタイヤでは、トレッドの中央区域(以下、トレッド中央区域)に対応するラグの内部、及び、トレッドの側部区域(以下、トレッド側部区域)に対応するラグの内部にトレッドゴムよりもモジュラスが低い振動吸収ゴムが配置されるため、荷重時におけるトレッド中央区域とトレッド側部区域のタイヤ径方向への変位が増大し、トレッドの接地圧分布が均一になる。これにより、ラグ付きタイヤの転動時における振動(具体的には、RFV)が小さくなり、振動乗り心地性能が改良される。以上のことから、本発明のラグ付きタイヤは、トラクション性能を低下させることなく、振動乗り心地性能、特に良路走行時における振動乗り心地性能を改良することができる。なお、ラグの踏面はトレッドの踏面に含まれる。   In the tire with a lug according to claim 1, the inside of the lug corresponding to the central area of the tread (hereinafter referred to as the tread central area) and the inside of the lug corresponding to the side area of the tread (hereinafter referred to as the tread side area). Since a vibration absorbing rubber having a lower modulus than that of the tread rubber is disposed in the tire, displacement of the tread central area and the tread side area in the tire radial direction at the time of load increases, and the contact pressure distribution of the tread becomes uniform. Thereby, the vibration (specifically, RFV) at the time of rolling of the tire with the lug is reduced, and the vibration riding comfort performance is improved. From the above, the lug-equipped tire of the present invention can improve the vibration riding comfort performance, particularly the vibration riding comfort performance when traveling on a good road, without reducing the traction performance. In addition, the tread surface of the lug is included in the tread surface.

本発明の請求項2に記載のラグ付きタイヤは、前記トレッドの中央区域は、トレッド幅の40〜60%の範囲を満たす。   In the tire with a lug according to claim 2 of the present invention, the central area of the tread satisfies a range of 40 to 60% of the tread width.

請求項2に記載のラグ付きタイヤでは、例えば、タイヤ幅方向断面において、トレッド中央域の踏面がタイヤ幅方向に沿ってフラットな場合、トレッド中央区域の範囲がトレッド幅の40%未満であれば、フラット部分が減少するためトラクション性に寄与するラグ投影面積が減少してトラクション性が低下する。また、トレッド中央区域の範囲がトレッド幅の60%超えであれば、フラット部分が増加するためラグ投影面積が増加してトラクション性が向上するが、トレッド中央区域のフラット部分からトレッド側部区域の端部への落ち高が減少するためラテラルフォースバリエーション(LFV)の悪化に繋がり振動乗り心地性能が悪化する。従って、トレッド中央区域は、トレッド幅の40〜60%の範囲を満たすことが好ましい。   In the tire with a lug according to claim 2, for example, in the cross section in the tire width direction, when the tread in the tread central area is flat along the tire width direction, the tread central area is less than 40% of the tread width. Since the flat portion is reduced, the projected area of the lag contributing to the traction property is reduced, and the traction property is lowered. In addition, if the range of the tread central area exceeds 60% of the tread width, the flat part increases and the lag projection area increases, improving the traction, but the tread side area from the flat part of the tread central area is improved. Since the falling height to the end portion is reduced, the lateral force variation (LFV) is deteriorated and the vibration riding comfort performance is deteriorated. Therefore, it is preferable that the tread central area satisfies the range of 40 to 60% of the tread width.

一般にゴムの変位は、モジュラス物性によって決定される。このため、本発明の請求項3に記載のラグ付きタイヤは、前記振動吸収ゴムの100%モジュラスは、前記トレッドゴムの100%モジュラスの30〜70%の範囲を満たす。   Generally, the displacement of rubber is determined by the modulus physical properties. For this reason, in the tire with lugs according to claim 3 of the present invention, the 100% modulus of the vibration absorbing rubber satisfies the range of 30 to 70% of the 100% modulus of the tread rubber.

請求項3に記載のラグ付きタイヤでは、振動吸収ゴムの100%モジュラスがトレッドゴムの100%モジュラスの70%を越えると、トレッド中央区域とトレッド側部区域のタイヤ径方向の変位が小さくなり過ぎて、トレッドの接地圧を落としつつ接地圧分布を均一にする効果が十分に得られない。また、振動吸収ゴムの100%モジュラスがトレッドゴムの100%モジュラスの30%未満だと、トレッド中央区域とトレッド側部区域のタイヤ径方向の変位が大きくなり過ぎて、トレッドの接地圧が落ちすぎ、接地圧分布を均一にする効果が得られない。従って、振動吸収ゴムの100%モジュラスは、トレッドゴムの100%モジュラスの30〜70%を満たすことが好ましい。   In the tire with a lug according to claim 3, when the 100% modulus of the vibration absorbing rubber exceeds 70% of the 100% modulus of the tread rubber, the displacement in the tire radial direction in the tread central area and the tread side area becomes too small. Thus, the effect of making the ground pressure distribution uniform while reducing the ground pressure of the tread cannot be sufficiently obtained. Also, if the vibration-absorbing rubber 100% modulus is less than 30% of the tread rubber 100% modulus, the tread center area and the tread side area will have excessive displacement in the tire radial direction, and the tread contact pressure will drop too much. The effect of making the ground pressure distribution uniform cannot be obtained. Therefore, the 100% modulus of the vibration absorbing rubber preferably satisfies 30 to 70% of the 100% modulus of the tread rubber.

本発明の請求項4に記載のラグ付きタイヤは、前記側部区域に対応する前記ラグの内部の振動吸収ゴムの最大厚さは、トレッドハンプ部におけるタイヤ周方向に隣接する前記ラグ間のラグ溝の溝深さの5〜20%の範囲を満たし、前記中央区域に対応する前記ラグの内部の振動吸収ゴムの最大厚さは、前記ラグ溝のタイヤ赤道面上の溝深さの10〜40%の範囲を満たす。   In the tire with lugs according to claim 4 of the present invention, the maximum thickness of the vibration absorbing rubber inside the lugs corresponding to the side areas is the lugs between the lugs adjacent in the tire circumferential direction in the tread hump portion. The maximum thickness of the vibration-absorbing rubber inside the lug corresponding to the central zone is 5 to 20% of the groove depth of the groove, and is 10 to 10 of the groove depth on the tire equatorial plane of the lug groove. Fill the range of 40%.

請求項4に記載のラグ付きタイヤでは、トレッド側部区域に対応するラグの内部の振動吸収ゴムの最大厚さがトレッドハンプ部におけるラグ溝の溝深さの20%を超えると、トレッド側部区域のタイヤ径方向変位が大きくなり過ぎて、接地圧が落ちすぎ接地圧分布を均一にする効果が十分に得られない。結果として振動乗り心地性能を十分に向上できなくなる。また、接地圧が落ちすぎることで偏摩耗性能への影響がでてくる。一方、トレッド側部区域に対応するラグの内部の振動吸収ゴムの最大厚さがトレッドハンプ部におけるラグ溝の溝深さの5%未満になると、トレッド側部区域のタイヤ径方向変位が小さくなり過ぎて、接地圧を落とす効果が十分に得られず接地圧分布を均一にできない。   In the tire with a lug according to claim 4, when the maximum thickness of the vibration absorbing rubber inside the lug corresponding to the tread side area exceeds 20% of the groove depth of the lug groove in the tread hump, the tread side The tire radial displacement of the area becomes too large, and the contact pressure is too low, and the effect of making the contact pressure distribution uniform cannot be obtained sufficiently. As a result, the vibration ride comfort performance cannot be sufficiently improved. Moreover, the influence on uneven wear performance comes out because ground pressure falls too much. On the other hand, if the maximum thickness of the vibration absorbing rubber inside the lug corresponding to the tread side section is less than 5% of the groove depth of the lug groove in the tread hump section, the tire radial displacement in the tread side section becomes small. Thus, the effect of lowering the contact pressure cannot be obtained sufficiently and the contact pressure distribution cannot be made uniform.

また、トレッド中央区域に対応するラグの内部の振動吸収ゴムの最大厚さがラグ溝のタイヤ赤道面上の溝深さの40%を超えると、トレッド中央区域のタイヤ径方向変位が大きくなり過ぎて、接地圧が落ちすぎ接地圧分布を均一にする効果が十分に得られない。結果として振動乗り心地性能を十分に向上できなくなる。また、接地圧が落ちすぎることで偏摩耗性能への影響がでてくる。一方、トレッド中央区域に対応するラグの内部の振動吸収ゴムの最大厚さがラグ溝のタイヤ赤道面上の溝深さの10%未満になると、トレッド中央区域のタイヤ径方向変位が小さくなり過ぎて、接地圧を落とす効果が十分に得られず接地圧分布を均一にできない。   Also, if the maximum thickness of the vibration absorbing rubber inside the lug corresponding to the tread central area exceeds 40% of the groove depth on the tire equator surface of the lug groove, the tire radial displacement in the tread central area becomes too large. As a result, the contact pressure is too low and the effect of making the contact pressure distribution uniform cannot be obtained sufficiently. As a result, the vibration ride comfort performance cannot be sufficiently improved. Moreover, the influence on uneven wear performance comes out because ground pressure falls too much. On the other hand, if the maximum thickness of the vibration absorbing rubber inside the lug corresponding to the tread central area is less than 10% of the groove depth on the tire equator surface of the lug groove, the tire radial displacement in the tread central area becomes too small. Therefore, the effect of lowering the contact pressure cannot be obtained sufficiently, and the contact pressure distribution cannot be made uniform.

従って、トレッド側部区域に対応するラグの内部の振動吸収ゴムの最大厚さが、トレッドハンプ部におけるラグ溝の溝深さの5〜20%を満たし、トレッド中央区域に対応するラグの内部の振動吸収ゴムの最大厚さが、ラグ溝の赤道面上の溝深さの10〜40%を満たすことが好ましい。なお、ここで言うトレッドハンプ部とは、トレッドの厚みが最大となる部位を示している。   Therefore, the maximum thickness of the vibration-absorbing rubber inside the lug corresponding to the tread side area satisfies 5 to 20% of the groove depth of the lug groove in the tread hump, and the internal thickness of the lug corresponding to the tread central area It is preferable that the maximum thickness of the vibration absorbing rubber satisfy 10 to 40% of the groove depth on the equator plane of the lug groove. In addition, the tread hump part said here has shown the site | part where the thickness of a tread becomes the maximum.

本発明の請求項5に記載のラグ付きタイヤは、前記中央区域に対応する前記ラグの内部の振動吸収ゴムと前記側部区域に対応する前記ラグの内部の振動吸収ゴムとが連続している。   In the tire with a lug according to claim 5 of the present invention, the vibration absorbing rubber inside the lug corresponding to the central area and the vibration absorbing rubber inside the lug corresponding to the side area are continuous. .

請求項5に記載のラグ付きタイヤでは、トレッド中央区域に対応するラグの内部の振動吸収ゴムと、トレッド側部区域に対応するラグの内部の振動吸収ゴムとが連続しているため、全体的に振動吸収効果を高めることができる。   In the tire with a lug according to claim 5, since the vibration absorbing rubber inside the lug corresponding to the tread central area and the vibration absorbing rubber inside the lug corresponding to the tread side area are continuous, The vibration absorbing effect can be enhanced.

本発明の請求項6に記載のラグ付きタイヤの製造方法は、前記トレッドの中央区域及び前記トレッドの側部区域に前記振動吸収ゴムが配置されるように未加硫のトレッドゴムと未加硫の振動吸収ゴムとを一体的に押し出し、帯状の第1の未加硫トレッド部材を成形する工程と、前記未加硫のトレッドゴムを押し出して帯状の第2の未加硫トレッド部材を成形する工程と、前記第1の未加硫トレッド部材と前記第2の未加硫トレッド部材との間に前記未加硫の振動吸収ゴムが配置されるように前記第1の未加硫トレッド部材と前記第2の未加硫トレッド部材とを積層する工程と、を備える。   According to a sixth aspect of the present invention, there is provided a method of manufacturing a tire with a lug, the unvulcanized tread rubber and the unvulcanized rubber so that the vibration absorbing rubber is disposed in a central area of the tread and a side area of the tread. A step of forming the first unvulcanized tread member in a band shape by integrally extruding the vibration absorbing rubber, and a second unvulcanized tread member in a band shape by extruding the unvulcanized tread rubber. And the first unvulcanized tread member so that the unvulcanized vibration absorbing rubber is disposed between the first unvulcanized tread member and the second unvulcanized tread member. Laminating the second unvulcanized tread member.

請求項6に記載のラグ付きタイヤの製造方法では、まず、未加硫のトレッドゴムと未加硫の振動吸収ゴムとを一体的に押し出して帯状の第1の未加硫トレッド部材を成形する。次に、未加硫のトレッドゴムを押し出して帯状の第2の未加硫トレッド部材を成形する。そして、第1の未加硫トレッド部材と第2の未加硫トレッド部材との間に未加硫の振動吸収ゴムが配置されるように第1の未加硫トレッド部材と第2の未加硫トレッド部材とを積層する。これにより、内部に未加硫の振動吸収ゴムが配置された未加硫のトレッド(第1の未加硫トレッド部材と第2の未加硫トレッド部材との積層体)が成形される。ここで、未加硫のトレッドゴムと未加硫の振動吸収ゴムとを一体的に押し出して第1の未加硫トレッド部材を成形するため、第1の未加硫トレッド部材へのエア入り(空気が混入すること)が抑制される。結果、加硫タイヤへのエア入りが抑制される。   In the method for manufacturing a tire with lugs according to claim 6, first, the unvulcanized tread rubber and the unvulcanized vibration absorbing rubber are integrally extruded to form the first unvulcanized tread member in a band shape. . Next, an unvulcanized tread rubber is extruded to form a belt-shaped second unvulcanized tread member. Then, the first unvulcanized tread member and the second unvulcanized tread member are arranged such that an unvulcanized vibration absorbing rubber is disposed between the first unvulcanized tread member and the second unvulcanized tread member. A sulfur tread member is laminated. Thereby, the unvulcanized tread (laminated body of the first unvulcanized tread member and the second unvulcanized tread member) in which the unvulcanized vibration absorbing rubber is disposed inside is molded. Here, in order to form the first unvulcanized tread member by integrally extruding the unvulcanized tread rubber and the unvulcanized vibration absorbing rubber, the air enters the first unvulcanized tread member ( Mixing of air) is suppressed. As a result, entry of air into the vulcanized tire is suppressed.

本発明のラグ付きタイヤは、トラクション性能を低下させることなく、振動乗り心地性能、特に良路走行時における振動乗り心地性能を改良することができる。また、本発明のラグ付きタイヤの製造方法によって製造されたラグ付きタイヤは、トラクション性能を低下させることなく、振動乗り心地性能、特に良路走行時における振動乗り心地性能を改良することができる。   The lug-equipped tire of the present invention can improve the vibration ride comfort performance, particularly the vibration ride comfort performance when traveling on a good road, without reducing the traction performance. Moreover, the lug-equipped tire produced by the method for producing a lug-equipped tire according to the present invention can improve the vibration ride comfort performance, particularly the vibration ride comfort performance when traveling on a good road, without lowering the traction performance.

[第1実施形態]
(構成)次に、本発明のラグ付きタイヤの第1実施形態を図1乃至図2にしたがって説明する。なお、本実施形態のラグ付きタイヤは、農業車両(例えば農業用トラクター等)用の農業機械用空気入りタイヤ10(以下、タイヤ10)であり、その内部構造はバイアス構造となっている。図1は、本実施形態のタイヤ10のトレッドパターンを示す平面図である。図2は、図1の2−2線断面図である。
[First Embodiment]
(Configuration) Next, a first embodiment of a lug-equipped tire according to the present invention will be described with reference to FIGS. In addition, the tire with a lug of this embodiment is a pneumatic tire 10 for an agricultural machine (hereinafter referred to as a tire 10) for an agricultural vehicle (for example, an agricultural tractor or the like), and its internal structure is a bias structure. FIG. 1 is a plan view showing a tread pattern of the tire 10 of the present embodiment. 2 is a cross-sectional view taken along line 2-2 of FIG.

図2に示すように、タイヤ10は、タイヤ赤道面CL(以下、赤道面CL)に対して交差する方向に延びるコードが埋設された第1のカーカスプライ12及び第2のカーカスプライ14から構成されたカーカス16を備えている。なお、本実施形態では、カーカス16が2枚のカーカスプライで構成されているが、本発明はこの構成に限定されず、カーカス16が1枚、又は3枚以上のカーカスプライで構成されてもよい。   As shown in FIG. 2, the tire 10 includes a first carcass ply 12 and a second carcass ply 14 in which a cord extending in a direction intersecting with the tire equatorial plane CL (hereinafter, the equatorial plane CL) is embedded. The carcass 16 is provided. In the present embodiment, the carcass 16 is composed of two carcass plies, but the present invention is not limited to this structure, and the carcass 16 may be composed of one or three or more carcass plies. Good.

(カーカス)
第1のカーカスプライ12及び第2のカーカスプライ14は、各々両端部分がビード部18に埋設されているビードコア20の周りに、タイヤ内側から外側へ向かって巻き上げられている。第1のカーカスプライ12は、被覆ゴム中に赤道面CLに交差する方向に延びる複数本のコード(例えば、ナイロン等の有機繊維コード又はスチール等の金属繊維コード)を平行に並べて埋設したものであり、第2のカーカスプライ14も被覆ゴム中に赤道面CLに交差する方向に延びる複数本のコード(例えば、ナイロン等の有機繊維コード又はスチール等の金属繊維コード)を平行に並べて埋設したものである。また、第1のカーカスプライ12のコードと第2のカーカスプライ14のコードとは互いに交差しており、赤道面CLに対して互いに反対方向に傾斜している。
(Carcass)
The first carcass ply 12 and the second carcass ply 14 are respectively wound up around the bead core 20 in which both end portions are embedded in the bead portion 18 from the tire inner side to the outer side. The first carcass ply 12 is formed by embedding a plurality of cords (for example, an organic fiber cord such as nylon or a metal fiber cord such as steel) that extend in a direction intersecting the equator plane CL in the coated rubber in parallel. There is also a second carcass ply 14 in which a plurality of cords (for example, an organic fiber cord such as nylon or a metal fiber cord such as steel) extending in a direction intersecting the equator plane CL are embedded in the coated rubber in parallel. It is. Further, the cords of the first carcass ply 12 and the cords of the second carcass ply 14 intersect each other and are inclined in opposite directions with respect to the equator plane CL.

(トレッド)
カーカス16のタイヤ径方向外側にはトレッド22が設けられている。このトレッド22はトレッドゴム24によって形成されている。また、トレッド22にはタイヤ幅方向の中央部から側部に向かってタイヤ周方向に傾斜しながら延びる突条のラグ26が複数形成されている(図1参照)。このラグ26は赤道面CLを挟んで左右交互にタイヤ周方向に所定の間隔を置いて配置されている。このラグ26は具体的には、赤道面CLを挟んで一方側(図1では左側)に配置される第1のラグ26Aと、赤道面CLを挟んで他方側(図1では右側)に配置される第2のラグ26Bとから構成されている。なお、トレッド22のラグ26以外の凹部分をラグ溝28と呼ぶ。また、本実施形態のトレッド22の踏面は、タイヤ幅方向断面において赤道面CL上よりもタイヤ幅方向外側の端部がタイヤ径方向内側となり、トレッド22のラグ溝28の溝深さは赤道面CLからトレッド22のタイヤ幅方向外側の端部に向かって深くなっている。
(tread)
A tread 22 is provided outside the carcass 16 in the tire radial direction. The tread 22 is formed by a tread rubber 24. The tread 22 is formed with a plurality of protruding lugs 26 that extend while inclining in the tire circumferential direction from the center in the tire width direction toward the side (see FIG. 1). The lugs 26 are alternately arranged on the left and right sides of the equatorial plane CL at predetermined intervals in the tire circumferential direction. Specifically, the lug 26 is disposed on one side (left side in FIG. 1) with the equator plane CL in between, and on the other side (right side in FIG. 1) with the equator plane CL in between. And the second lug 26B. Note that the concave portion of the tread 22 other than the lug 26 is referred to as a lug groove 28. Further, in the tread 22 of the present embodiment, the tread 22 has a tread 22 with an end portion on the outer side in the tire width direction on the equatorial plane CL in the cross section in the tire width direction and an inner side in the tire radial direction. It is deeper from CL toward the outer end of the tread 22 in the tire width direction.

図2に示すように、トレッド22は赤道面CLを跨ぐ中央区域40と、中央区域40のタイヤ幅方向両側で中央区域40に連続する側部区域42とから構成されている。また、タイヤ幅方向断面において、側部区域42のトレッド22の踏面の曲率半径(第2の曲率半径R2)が中央区域40のトレッド22の踏面の曲率半径(第1の曲率半径R1)よりも小さくなっている。これは即ち、本実施形態では、トレッド22の踏面とラグ26の踏面27とが同一のものを指すことから、中央区域40の第1のラグ26Aの踏面の曲率半径が第1の曲率半径R1であり、側部区域42の第1のラグ26Aの踏面の曲率半径が第2の曲率半径R2であることを意味する。また、同様に、中央区域40の第2のラグ26Bの踏面の曲率半径が第1の曲率半径R1であり、側部区域42の第2のラグ26Bの踏面の曲率半径が第2の曲率半径R2であることを意味する。   As shown in FIG. 2, the tread 22 includes a central area 40 that straddles the equator plane CL, and side areas 42 that are continuous with the central area 40 on both sides in the tire width direction of the central area 40. Further, in the cross section in the tire width direction, the curvature radius (second curvature radius R2) of the tread 22 in the side section 42 is larger than the curvature radius (first curvature radius R1) of the tread 22 in the center section 40. It is getting smaller. That is, in this embodiment, since the tread 22 and the lug 26 have the same tread surface 27, the radius of curvature of the tread surface of the first lug 26A in the central area 40 is the first radius of curvature R1. This means that the radius of curvature of the tread surface of the first lug 26A in the side section 42 is the second radius of curvature R2. Similarly, the curvature radius of the tread surface of the second lug 26B in the central section 40 is the first curvature radius R1, and the curvature radius of the tread surface of the second lug 26B in the side section 42 is the second curvature radius. Means R2.

またラグ26は踏面27のタイヤ幅方向最外側の踏面外端部44からタイヤ径方向内側に延びるラグ外側壁46を有している。なお、本実施形態では、ラグ26の踏面外端部44がタイヤ幅方向断面において角張っているため、第1のラグ26Aの踏面外端部44Aと第2のラグ26Bの踏面外端部44Bとのタイヤ幅方向に沿った距離がトレッド幅TWを指す。また、図5に示すように、ラグ26の踏面外端部44がタイヤ幅方向断面において角張っていない場合(例えば、弧状の場合)には、第1のラグ26Aの踏面27A(曲率半径R2部分)の延長線(二点鎖線)とラグ外側壁46Aの延長線(二点鎖線)との第1の交点と、第2のラグ26Bの踏面27B(図示省略)の延長線とラグ外側壁46B(図示省略)の延長線との第2の交点とのタイヤ幅方向に沿った距離がトレッド幅TWを指す。   The lug 26 has a lug outer wall 46 that extends inward in the tire radial direction from the outermost end surface 44 of the tread surface 27 in the tire width direction. In the present embodiment, since the tread outer end 44 of the lug 26 is angular in the tire width direction cross section, the tread outer end 44A of the first lug 26A and the tread outer end 44B of the second lug 26B The distance along the tire width direction indicates the tread width TW. Further, as shown in FIG. 5, when the tread outer end 44 of the lug 26 is not angular in the tire width direction cross section (for example, in the case of an arc), the tread 27A (curvature radius R2 portion) of the first lug 26A ) And a first intersection of an extension line (two-dot chain line) of the lug outer wall 46A, an extension line of the tread 27B (not shown) of the second lug 26B, and the lug outer wall 46B. The distance along the tire width direction with the second intersection with the extension line (not shown) indicates the tread width TW.

また、トレッド22の中央区域40は、トレッド幅TWの40〜60%の範囲を満たすことが好ましい。なお、トレッド22の中央区域40の範囲は、図2に示すように、タイヤ幅方向に沿って計測するものである。
さらに、第1の曲率半径R1は符号Hで示すタイヤ半径の2倍以上に設定されることが好ましい。なお、本実施形態では、第1の曲率半径R1は、無限大、つまりタイヤ幅方向に沿った直線となっている。
さらにまた、ラグ26の踏面外端部44とタイヤ最大径となるトレッド22の赤道面CL上の点とのタイヤ径方向の距離を落ち高H1としたとき、落ち高H1がトレッド幅TWの6〜10%となるように第2の曲率半径R2を設定することが好ましい。
Moreover, it is preferable that the center area 40 of the tread 22 satisfies the range of 40 to 60% of the tread width TW. The range of the central area 40 of the tread 22 is measured along the tire width direction as shown in FIG.
Furthermore, it is preferable that the first radius of curvature R1 is set to be not less than twice the tire radius indicated by the symbol H. In the present embodiment, the first radius of curvature R1 is infinite, that is, a straight line along the tire width direction.
Furthermore, when the distance in the tire radial direction between the tread outer end 44 of the lug 26 and the point on the equatorial plane CL of the tread 22 that is the maximum tire diameter is a drop height H1, the drop height H1 is 6 of the tread width TW. It is preferable to set the second radius of curvature R2 to be -10%.

(振動吸収ゴム)
中央区域40に対応するラグ26の内部には、トレッドゴム24よりもモジュラスが低い第1の振動吸収ゴム32が配置されている。また、側部区域42に対応するラグ26の内部には、トレッドゴム24よりもモジュラスが低い第2の振動吸収ゴム34が配置されている。具体的には、ラグ26の厚み方向の中間部に第1の振動吸収ゴム32、及び第2の振動吸収ゴム34が配置されている。また、第1の振動吸収ゴム32とカーカス16との距離が略一定となっており、同様に、第2の振動吸収ゴム34とカーカスとの距離も略一定となっている。なお、その他の実施形態では、第1の振動吸収ゴム32とカーカス16との距離が略一定でなくてもよく、第2の振動吸収ゴム34とカーカスとの距離も略一定でなくてもよい。
(Vibration absorbing rubber)
A first vibration absorbing rubber 32 having a modulus lower than that of the tread rubber 24 is disposed inside the lug 26 corresponding to the central area 40. In addition, a second vibration absorbing rubber 34 having a modulus lower than that of the tread rubber 24 is disposed inside the lug 26 corresponding to the side section 42. Specifically, the first vibration absorbing rubber 32 and the second vibration absorbing rubber 34 are disposed in the middle portion of the lug 26 in the thickness direction. Further, the distance between the first vibration absorbing rubber 32 and the carcass 16 is substantially constant, and similarly, the distance between the second vibration absorbing rubber 34 and the carcass is also substantially constant. In other embodiments, the distance between the first vibration absorbing rubber 32 and the carcass 16 may not be substantially constant, and the distance between the second vibration absorbing rubber 34 and the carcass may not be substantially constant. .

また、第1の振動吸収ゴム32の100%モジュラスは、トレッドゴム24の100%モジュラスの30〜70%の範囲を満たすことが好ましく、第2の振動吸収ゴム32の100%モジュラスは、トレッドゴム24の100%モジュラスの30〜70%の範囲を満たすことが好ましい。   The 100% modulus of the first vibration absorbing rubber 32 preferably satisfies the range of 30 to 70% of the 100% modulus of the tread rubber 24, and the 100% modulus of the second vibration absorbing rubber 32 is the tread rubber. It is preferable to satisfy the range of 30 to 70% of 24 100% modulus.

第1の振動吸収ゴム32の最大厚さT1は、ラグ溝28の赤道面CL上での溝深さD1の10〜40%であることが好ましく、第2の振動吸収ゴム34の最大厚さT2は、トレッドハンプ部での溝深さD2の5〜20%であることが好ましい。ここで、振動吸収ゴムの厚さは、カーカス16の表面から垂直方向に測定した距離を指し、ラグ溝28の溝深さは、ラグ26の踏面27(トレッド22の踏面)から垂直方向に測定した距離を指している。なお、本実施形態におけるトレッドハンプ部はラグ26の踏面外端部44である。   The maximum thickness T1 of the first vibration absorbing rubber 32 is preferably 10 to 40% of the groove depth D1 of the lug groove 28 on the equator plane CL. The maximum thickness of the second vibration absorbing rubber 34 is T2 is preferably 5 to 20% of the groove depth D2 at the tread hump portion. Here, the thickness of the vibration absorbing rubber refers to the distance measured in the vertical direction from the surface of the carcass 16, and the groove depth of the lug groove 28 is measured in the vertical direction from the tread surface 27 (tread surface of the tread 22) of the lug 26. Pointing to the distance. In the present embodiment, the tread hump portion is the tread outer end portion 44 of the lug 26.

また、第1の振動吸収ゴム32の幅W1は、中央区域40の30〜100%を満たすことが好ましく、第2の振動吸収ゴム34の幅W2は、側部区域42の30〜100%であることが好ましい。ここで、振動吸収ゴムの幅は、振動吸収ゴムのタイヤ幅方向の一方側の端部とタイヤ幅方向の他方側の端部とをタイヤ幅方向に沿って測定した距離を指している。   The width W1 of the first vibration absorbing rubber 32 preferably satisfies 30 to 100% of the central area 40, and the width W2 of the second vibration absorbing rubber 34 is 30 to 100% of the side area 42. Preferably there is. Here, the width of the vibration-absorbing rubber refers to the distance measured along the tire width direction between one end of the vibration-absorbing rubber in the tire width direction and the other end in the tire width direction.

なお、図2に示すように本実施形態では、タイヤ幅方向断面において、第1の振動吸収ゴム32及び第2の振動吸収ゴム34のタイヤ幅方向の端部側が先細る台形状としているが、本発明はこの構成に限定される必要は無く、図3に示されるように、タイヤ幅方向断面において、第1の振動吸収ゴム32及び第2の振動吸収ゴム34のタイヤ幅方向端部が略垂直(カーカス16の法線に垂直)に切り立った略矩形状としてもよい。   As shown in FIG. 2, in the present embodiment, in the tire width direction cross section, the end portions in the tire width direction of the first vibration absorbing rubber 32 and the second vibration absorbing rubber 34 have a trapezoidal shape. The present invention is not necessarily limited to this configuration, and as shown in FIG. 3, the tire width direction end portions of the first vibration absorbing rubber 32 and the second vibration absorbing rubber 34 are substantially in the tire width direction cross section. A substantially rectangular shape that stands vertically (perpendicular to the normal of the carcass 16) may be used.

次に、本実施形態のタイヤ10の製造方法について説明する。まず、未加硫のカーカス(図示省略)、未加硫のビードコア(図示省略)、及び未加硫のタイヤ構成部材を製造する。次に、トレッド22の中央区域40に第1の振動吸収ゴム32が配置され、側部区域42に第2の振動吸収ゴム34が配置されるように、未加硫トレッドゴム24A、第1の未加硫振動吸収ゴム32A及び第2の未加硫振動吸収ゴム34Aを一体的に押し出し、断面が台形状の帯状の第1の未加硫トレッド部材23Aを成形する。成形された第1の未加硫トレッド部材23Aは、断面視(長手方向と直交方向の断面を見て)で、底面に第1の未加硫振動吸収ゴム32A及び第2の未加硫振動吸収ゴム34Aが埋設されている(図4(A)参照)。次に、未加硫トレッドゴム24Aを押し出して断面が台形状の帯状の第2の未加硫トレッド部材23B、及び断面が略三角形状の帯状の未加硫サイドトレッド25Aを成形する。なお、未加硫サイドトレッド25Aは加硫後に図2に示されるタイヤサイド部を構成するサイドトレッド25となる。   Next, the manufacturing method of the tire 10 of this embodiment is demonstrated. First, an unvulcanized carcass (not shown), an unvulcanized bead core (not shown), and an unvulcanized tire component are manufactured. Next, the unvulcanized tread rubber 24 </ b> A, the first vibration absorbing rubber 32 </ b> A, the first vibration absorbing rubber 32 is disposed in the central area 40 of the tread 22, and the second vibration absorbing rubber 34 is disposed in the side area 42. The unvulcanized vibration absorbing rubber 32A and the second unvulcanized vibration absorbing rubber 34A are integrally extruded to form a first unvulcanized tread member 23A having a trapezoidal cross section. The molded first unvulcanized tread member 23A has a first unvulcanized vibration absorbing rubber 32A and a second unvulcanized vibration on the bottom surface in a cross-sectional view (see a cross section perpendicular to the longitudinal direction). Absorbing rubber 34A is embedded (see FIG. 4A). Next, the unvulcanized tread rubber 24A is extruded to form a second unvulcanized tread member 23B having a trapezoidal cross section and a strip-shaped unvulcanized side tread 25A having a substantially triangular cross section. The unvulcanized side tread 25A becomes the side tread 25 constituting the tire side part shown in FIG. 2 after vulcanization.

次に、未加硫のカーカスを円筒状にして未加硫カーカスバンドとし、未加硫カーカスバンドの両端部に未加硫のビードコアを配置して、両端部分を軸方向内側へ巻き返し、両端部分近傍に未加硫のタイヤ構成部材(例えば、ビードフィラーなど)を配置する。次に、図4(A)に示されるように、未加硫カーカスバンド(図示省略)の上に底面が密着するように第2の未加硫トレッド部材23Bを積層する。次に、第2の未加硫トレッド部材23Bの上面に底面が密着するように第1の未加硫トレッド部材23Aを積層する。これにより、第1の未加硫トレッド部材23Aと第2の未加硫トレッド部材23Bとの間に第1の未加硫振動吸収ゴム32A及び第2の未加硫振動吸収ゴム34Aが配置された未加硫トレッド22Aが成形される。   Next, the unvulcanized carcass is made into a cylindrical shape to form an unvulcanized carcass band, unvulcanized bead cores are arranged at both ends of the unvulcanized carcass band, and both end portions are wound inward in the axial direction. An unvulcanized tire constituent member (for example, a bead filler) is disposed in the vicinity. Next, as shown in FIG. 4A, a second unvulcanized tread member 23B is laminated on an unvulcanized carcass band (not shown) so that the bottom surface is in close contact therewith. Next, the first unvulcanized tread member 23A is laminated so that the bottom surface is in close contact with the upper surface of the second unvulcanized tread member 23B. Thus, the first unvulcanized vibration absorbing rubber 32A and the second unvulcanized vibration absorbing rubber 34A are disposed between the first unvulcanized tread member 23A and the second unvulcanized tread member 23B. The unvulcanized tread 22A is formed.

次に、この未加硫トレッド22Aの両端部に未加硫サイドトレッド25Aの一端部が重なるように未加硫サイドトレッド25Aを未加硫カーカスバンドに積層する。これにより、筒状の未加硫タイヤケースが形成される。そして、未加硫タイヤケースの両端部を近づけながら中央部分を径方向外側へ膨張させて、未加硫タイヤケースを略トロイダル状にする。その後、未加硫タイヤケースを加硫することで、タイヤ10が製造される。なお、加硫成型時に加硫モールドによってラグ溝28が形成される際、タイヤ周方向に隣接するラグ26間に位置する振動吸収ゴムは、ラグ26の内部に配置される振動吸収ゴムと比べて薄く引き延ばされた形状となる。   Next, the unvulcanized side tread 25A is laminated on the unvulcanized carcass band so that one end of the unvulcanized side tread 25A overlaps with both ends of the unvulcanized tread 22A. Thereby, a cylindrical unvulcanized tire case is formed. Then, the central portion is expanded radially outward while bringing both end portions of the unvulcanized tire case closer to each other, thereby making the unvulcanized tire case substantially toroidal. Thereafter, the tire 10 is manufactured by vulcanizing the unvulcanized tire case. When the lug groove 28 is formed by the vulcanization mold at the time of vulcanization molding, the vibration absorbing rubber positioned between the lugs 26 adjacent in the tire circumferential direction is compared with the vibration absorbing rubber disposed inside the lug 26. It becomes a thin and elongated shape.

ここで、未加硫トレッドゴム24A、第1の未加硫振動吸収ゴム32A及び第2の未加硫振動吸収ゴム34Aを一体的に押し出して第1の未加硫トレッド部材23Aが成形されることから、例えば、未加硫トレッドゴム24A、第1の未加硫振動吸収ゴム32A及び第2の未加硫振動吸収ゴム34Aを夫々別体として帯状に成形してから積層して第1の未加硫トレッド部材23Aに対応する部材を成形するよりも、第1の未加硫トレッド部材23Aへのエア入りが抑制される。結果、加硫後のタイヤ10へのエア入りが抑制される。   Here, the unvulcanized tread rubber 24A, the first unvulcanized vibration absorbing rubber 32A, and the second unvulcanized vibration absorbing rubber 34A are integrally extruded to form the first unvulcanized tread member 23A. Therefore, for example, the unvulcanized tread rubber 24A, the first unvulcanized vibration absorbing rubber 32A, and the second unvulcanized vibration absorbing rubber 34A are formed into separate strips, and then laminated. Rather than forming a member corresponding to the unvulcanized tread member 23A, entry of air into the first unvulcanized tread member 23A is suppressed. As a result, entry of air into the tire 10 after vulcanization is suppressed.

(作用)次に、本実施形態のタイヤ10の作用について説明する。タイヤ10によれば、中央区域40に対応するラグ26の内部に第1の振動吸収ゴム32が配置され、側部区域42に対応するラグ26の内部に第2の振動吸収ゴム34が配置されるため、荷重時におけるトレッド22の中央区域40及び側部区域42のタイヤ径方向への変位が増大し、トレッド22の中央区域40及び側部区域42の接地圧分布が均一になる。これにより、タイヤ10の転動による振動(具体的には、RFV)が減少し、振動乗り心地性能が改良される。結果、タイヤ10は、トラクション性能を低下させることなく、振動乗り心地性能、特に良路走行時における振動乗り心地性能を改良することができる。   (Operation) Next, the operation of the tire 10 of this embodiment will be described. According to the tire 10, the first vibration absorbing rubber 32 is arranged inside the lug 26 corresponding to the central area 40, and the second vibration absorbing rubber 34 is arranged inside the lug 26 corresponding to the side area 42. Therefore, the displacement in the tire radial direction of the central area 40 and the side area 42 of the tread 22 during load increases, and the contact pressure distribution in the central area 40 and the side area 42 of the tread 22 becomes uniform. As a result, vibration (specifically, RFV) due to rolling of the tire 10 is reduced, and vibration ride comfort performance is improved. As a result, the tire 10 can improve the vibration ride comfort performance, particularly the vibration ride comfort performance when traveling on a good road, without reducing the traction performance.

また、タイヤ10はラグ26の内部に第1の振動吸収ゴム32及び第2の振動吸収ゴム34が配置されるため、トレッドとカーカスとの間に振動吸収ゴムが配置されたタイヤよりも、トレッド22(ラグ26)を効果的にタイヤ径方向へ変位させることができる。このため、タイヤ10は、トレッドとカーカスとの間に振動吸収ゴムが配置されたタイヤと同等の振動乗り心地性能を得るのに振動吸収ゴム(第1の振動吸収ゴム32及び第2の振動吸収ゴム34)の厚みを薄くすることができる。つまり、タイヤ10は、トレッドとカーカスとの間に振動吸収ゴムが配置されたタイヤよりも振動吸収ゴムの必要量を減らすことができる。   Further, since the first vibration absorbing rubber 32 and the second vibration absorbing rubber 34 are disposed inside the lug 26, the tire 10 has a tread that is more than a tire in which the vibration absorbing rubber is disposed between the tread and the carcass. 22 (lug 26) can be effectively displaced in the tire radial direction. For this reason, the tire 10 has the vibration absorbing rubber (the first vibration absorbing rubber 32 and the second vibration absorbing rubber) in order to obtain vibration riding comfort performance equivalent to that of the tire in which the vibration absorbing rubber is disposed between the tread and the carcass. The thickness of the rubber 34) can be reduced. That is, the tire 10 can reduce the required amount of vibration absorbing rubber compared to a tire in which the vibration absorbing rubber is disposed between the tread and the carcass.

また、トレッド22の中央区域40の範囲がトレッド幅TWの40%未満であれば、フラット部分が減少しトラクション性に寄与するラグ投影面積の減少に繋がりトラクション性が低下する。トレッド22の中央区域40の範囲がトレッド幅TWの60%超えであれば、フラット部分が増加するためラグ投影面積が増加しトラクション性は向上するが、側部区域42における路面からの落ち高H1が減少するためLFVの悪化に繋がり振動乗り心地性能が悪化する。従って、トレッド22の中央区域40はトレッド幅TWの40〜60%の範囲を満たすことが好ましい。   Moreover, if the range of the central area 40 of the tread 22 is less than 40% of the tread width TW, the flat portion is reduced, leading to a reduction in the lug projection area contributing to the traction, and the traction is lowered. If the range of the central area 40 of the tread 22 exceeds 60% of the tread width TW, the flat portion increases, the lug projection area increases, and the traction is improved, but the drop height H1 from the road surface in the side area 42 increases. Therefore, the LFV is deteriorated and the vibration ride comfort performance is deteriorated. Therefore, the central area 40 of the tread 22 preferably satisfies a range of 40 to 60% of the tread width TW.

第1の振動吸収ゴム32及び第2の振動吸収ゴム34の100%モジュラスがトレッドゴム24の100%モジュラスの70%を越えると、トレッド22の中央区域40及び側部区域42のタイヤ径方向への変位が小さくなり過ぎて、中央区域40及び側部区域42の接地圧を落としつつ接地圧分布を均一にする効果が十分に得られない。また、第1の振動吸収ゴム32及び第2の振動吸収ゴム34の100%モジュラスがトレッドゴム24の100%モジュラスの30%未満だと、トレッド22の中央区域40及び側部区域42のタイヤ径方向への変位が大きくなり過ぎて、中央区域40及び側部区域42の接地圧が落ちすぎ、接地圧分布を均一にする効果が得られない。従って、第1の振動吸収ゴム32及び第2の振動吸収ゴム34の100%モジュラスは、トレッドゴム24の100%モジュラスの30〜70%を満たすことが好ましい。   When the 100% modulus of the first vibration absorbing rubber 32 and the second vibration absorbing rubber 34 exceeds 70% of the 100% modulus of the tread rubber 24, the tire radial direction of the central area 40 and the side area 42 of the tread 22 is increased. Therefore, the effect of making the ground pressure distribution uniform cannot be sufficiently obtained while lowering the ground pressure in the central section 40 and the side section 42. Further, if the 100% modulus of the first vibration absorbing rubber 32 and the second vibration absorbing rubber 34 is less than 30% of the 100% modulus of the tread rubber 24, the tire diameter of the central area 40 and the side area 42 of the tread 22 will be described. Since the displacement in the direction becomes too large, the ground pressure in the central section 40 and the side section 42 falls too much, and the effect of making the ground pressure distribution uniform cannot be obtained. Therefore, the 100% modulus of the first vibration absorbing rubber 32 and the second vibration absorbing rubber 34 preferably satisfies 30 to 70% of the 100% modulus of the tread rubber 24.

第1の振動吸収ゴム32の最大厚さT1が赤道面CL上での溝深さD1の40%を超えると、中央区域40での第1の振動吸収ゴム32のタイヤ径方向変位が大きくなり過ぎて、接地圧が落ち過ぎ接地圧分布を均一にする効果が十分に得られない。結果として振動乗り心地性能を向上できなくなる。また、接地圧が落ちすぎることで偏摩耗性能への影響がでてくる。一方、最大厚さT1が溝深さD1の10%未満になると第1の振動吸収ゴム32のタイヤ径方向変位が小さくなり過ぎて、接地圧を落とす効果が十分に得られず接地圧分布を均一にできない。   When the maximum thickness T1 of the first vibration absorbing rubber 32 exceeds 40% of the groove depth D1 on the equator plane CL, the tire radial displacement of the first vibration absorbing rubber 32 in the central area 40 increases. Therefore, the contact pressure is too low, and the effect of making the contact pressure distribution uniform cannot be obtained sufficiently. As a result, the vibration ride comfort performance cannot be improved. Moreover, the influence on uneven wear performance comes out because ground pressure falls too much. On the other hand, when the maximum thickness T1 is less than 10% of the groove depth D1, the displacement in the tire radial direction of the first vibration absorbing rubber 32 becomes too small, and the effect of reducing the contact pressure cannot be obtained sufficiently, resulting in a contact pressure distribution. Cannot be uniform.

また、第2の振動吸収ゴム34の最大厚さT2がトレッドハンプ部での溝深さD2の20%を超えると、第2の振動吸収ゴム34のタイヤ径方向変位が大きくなり過ぎて、接地圧が落ちすぎ接地圧分布を均一にする効果が十分に得られない。結果として振動乗り心地性能を向上できなくなる。また、接地圧が落ちすぎることで偏摩耗性能への影響がでてくる。一方、最大厚さT2が溝深さD2の5%未満になると第2の振動吸収ゴム34のタイヤ径方向変位が小さくなり過ぎて、接地圧を落とす効果が十分に得られず接地圧分布を均一にできない。   If the maximum thickness T2 of the second vibration absorbing rubber 34 exceeds 20% of the groove depth D2 at the tread hump portion, the tire radial displacement of the second vibration absorbing rubber 34 becomes too large, and the ground contact The pressure drops too much and the effect of making the ground pressure distribution uniform cannot be obtained sufficiently. As a result, the vibration ride comfort performance cannot be improved. Moreover, the influence on uneven wear performance comes out because ground pressure falls too much. On the other hand, if the maximum thickness T2 is less than 5% of the groove depth D2, the displacement in the tire radial direction of the second vibration absorbing rubber 34 becomes too small, and the effect of reducing the contact pressure cannot be obtained sufficiently, resulting in a contact pressure distribution. Cannot be uniform.

従って、第1の振動吸収ゴム32の最大厚さT1は、赤道面CL上での溝深さD1の10〜40%を満たし、第2の振動吸収ゴム34の最大厚さT2は、トレッドハンプ部での溝深さD2の5〜20%を満たすことが好ましい。   Therefore, the maximum thickness T1 of the first vibration absorbing rubber 32 satisfies 10 to 40% of the groove depth D1 on the equator plane CL, and the maximum thickness T2 of the second vibration absorbing rubber 34 is tread hump. It is preferable to satisfy 5 to 20% of the groove depth D2 at the portion.

また、第1の振動吸収ゴム32の幅W1が中央区域40の30%未満の場合には、第1の振動吸収ゴム32によるタイヤ径方向の変位が小さくなり過ぎ、中央区域40の接地圧を十分に低下できず、また、第2の振動吸収ゴム34の幅W2が側部区域42の30%未満の場合には、第2の振動吸収ゴム34によるタイヤ径方向の変位が小さくなり過ぎ、側部区域42の接地圧を十分に低下ができない。従って、第1の振動吸収ゴム32の幅W1は中央区域40の30〜100%の範囲を満たすことが好ましく、第2の振動吸収ゴム34の幅W2は側部区域42の30〜100%の範囲を満たすことが好ましい。
[その他の実施形態]
When the width W1 of the first vibration absorbing rubber 32 is less than 30% of the central area 40, the displacement in the tire radial direction by the first vibration absorbing rubber 32 becomes too small, and the ground pressure in the central area 40 is reduced. If the width W2 of the second vibration absorbing rubber 34 is less than 30% of the side area 42, the displacement in the tire radial direction by the second vibration absorbing rubber 34 becomes too small. The ground pressure in the side section 42 cannot be sufficiently reduced. Therefore, the width W1 of the first vibration absorbing rubber 32 preferably satisfies the range of 30 to 100% of the central area 40, and the width W2 of the second vibration absorbing rubber 34 is 30 to 100% of the side area 42. It is preferable to satisfy the range.
[Other embodiments]

第1実施形態では、タイヤ10の内部構造をバイアス構造としているが、本発明はこの構成に限定される必要は無く、内部構造をラジアル構造としてもよく、この場合には、カーカス16のタイヤ径方向外側にタイヤ径方向の膨張を抑制するためのたが効果を発生させるベルト等を1乃至複数枚配置すれば良いものとする。   In the first embodiment, the internal structure of the tire 10 is a bias structure, but the present invention is not limited to this structure, and the internal structure may be a radial structure. In this case, the tire diameter of the carcass 16 One or a plurality of belts or the like that generate an effect for suppressing expansion in the tire radial direction may be disposed on the outer side in the direction.

第1実施形態では、第1の振動吸収ゴム32及び第2の振動吸収ゴム34が夫々別体とされていたが、本発明はこの構成に限定される必要は無く、第1の振動吸収ゴム32及び第2の振動吸収ゴム34が一体的に形成された(連続した)1層の振動吸収ゴム層とする構成であってもよい。この場合には、トレッド22の中央区域40から側部区域42の範囲で第1の振動吸収ゴム32及び第2の振動吸収ゴム34が連続しているため、全体的に振動吸収効果を高めることができる。   In the first embodiment, the first vibration absorbing rubber 32 and the second vibration absorbing rubber 34 are separately provided. However, the present invention is not necessarily limited to this configuration, and the first vibration absorbing rubber. Alternatively, the vibration absorbing rubber layer may be a single (continuous) vibration absorbing rubber layer in which the 32 and the second vibration absorbing rubber 34 are integrally formed. In this case, since the first vibration absorbing rubber 32 and the second vibration absorbing rubber 34 are continuous in the range from the central area 40 to the side area 42 of the tread 22, the vibration absorbing effect is enhanced as a whole. Can do.

上述の実施形態では、第1の振動吸収ゴム32と第2の振動吸収ゴム34とが同一のゴム材からなる構成としているが、本発明はこの構成に限定されず、第1の振動吸収ゴム32と第2の振動吸収ゴム34とが異なるゴム材からなる構成としてもよい。この場合には、タイヤの接地圧分布や、仕様に応じて中央区域40に配置する第1の振動吸収ゴムのゴム材や、側部区域42に配置する第2の振動吸収ゴムのゴム材を、100%モジュラスを基準にして決定することで、乗り心地性能を改良することができる。特に、タイヤの接地圧分布の観点からは、第2の振動吸収ゴム34のモジュラスを第1の振動吸収ゴム32のモジュラスよりも小さくすることが好ましい。このようにすることで、接地圧分布を均一にする効果が得やすくなる。また、第2の振動吸収ゴム34の最大厚さT2を第1の振動吸収ゴム32の最大厚さT1よりも厚くしてもタイヤの接地圧分布を均一にする効果が得やすくなる。このため、第2の振動吸収ゴム34の最大厚さT2を第1の振動吸収ゴム32の最大厚さT1よりも厚くすることが好ましい。さらに、第2の振動吸収ゴム34の最大厚さT2及びモジュラスと、第1の振動吸収ゴム32の最大厚さT1及びモジュラスとの関係を適正化することでタイヤの接地圧分布を均一にする効果がさらに得やすくなる。   In the above embodiment, the first vibration absorbing rubber 32 and the second vibration absorbing rubber 34 are made of the same rubber material. However, the present invention is not limited to this structure, and the first vibration absorbing rubber. 32 and the second vibration absorbing rubber 34 may be made of different rubber materials. In this case, the rubber material of the first vibration absorbing rubber disposed in the central area 40 or the rubber material of the second vibration absorbing rubber disposed in the side area 42 according to the tire contact pressure distribution and the specifications is used. Riding comfort performance can be improved by making the determination based on 100% modulus. In particular, from the viewpoint of tire contact pressure distribution, the modulus of the second vibration absorbing rubber 34 is preferably smaller than the modulus of the first vibration absorbing rubber 32. By doing in this way, it becomes easy to obtain the effect of making the ground pressure distribution uniform. Further, even if the maximum thickness T2 of the second vibration absorbing rubber 34 is made larger than the maximum thickness T1 of the first vibration absorbing rubber 32, the effect of making the tire contact pressure distribution uniform can be easily obtained. For this reason, it is preferable to make the maximum thickness T2 of the second vibration absorbing rubber 34 thicker than the maximum thickness T1 of the first vibration absorbing rubber 32. Further, the contact pressure distribution of the tire is made uniform by optimizing the relationship between the maximum thickness T2 and modulus of the second vibration absorbing rubber 34 and the maximum thickness T1 and modulus of the first vibration absorbing rubber 32. It becomes easier to obtain the effect.

第1実施形態では、図4(A)に示されるように、第1の未加硫トレッド部材23Aの底面に第1の未加硫振動吸収ゴム32A及び第2の未加硫振動吸収ゴム34Aが埋設されているが、本発明はこの構成に限定する必要はなく、図4(B)に示されるように、第2の未加硫トレッド部材23Bの上面に第1の未加硫振動吸収ゴム32A及び第2の未加硫振動吸収ゴム34Aが埋設されるように未加硫トレッドゴム24A、第1の未加硫振動吸収ゴム32A及び第2の未加硫振動吸収ゴム34Aを一体的に押し出して第2の未加硫トレッド部材23Bを成形し、その上面に未加硫トレッドゴム24Aを押し出して成形された第1の未加硫トレッド部材23Aの底面を積層して、未加硫トレッド22Aを成形してもよい。さらに、図4(C)に示されるように、未加硫トレッドゴム24Aを押し出して帯状の第1の未加硫トレッド部材23Aを成形し、未加硫トレッドゴム24Aを押し出して帯状の第2の未加硫トレッド部材23Bを成形し、第1の未加硫振動吸収ゴム32Aを押し出して帯状に成形し、第2の未加硫振動吸収ゴム34Aを押し出して帯状に成形して、これら別々の未加硫ゴム部材を積層することで、未加硫トレッド22Aを成形してもよい。この場合には、既設の設備を用いて各種未加硫ゴム部材を成形できる。   In the first embodiment, as shown in FIG. 4A, the first unvulcanized vibration absorbing rubber 32A and the second unvulcanized vibration absorbing rubber 34A are formed on the bottom surface of the first unvulcanized tread member 23A. However, the present invention need not be limited to this configuration. As shown in FIG. 4B, the first unvulcanized vibration absorption is provided on the upper surface of the second unvulcanized tread member 23B. The unvulcanized tread rubber 24A, the first unvulcanized vibration absorbing rubber 32A, and the second unvulcanized vibration absorbing rubber 34A are integrated so that the rubber 32A and the second unvulcanized vibration absorbing rubber 34A are embedded. The second unvulcanized tread member 23B is formed by extrusion, and the bottom surface of the first unvulcanized tread member 23A formed by extruding the unvulcanized tread rubber 24A is laminated on the upper surface of the unvulcanized tread member 23B. The tread 22A may be formed. Further, as shown in FIG. 4 (C), the unvulcanized tread rubber 24A is extruded to form a first unvulcanized tread member 23A having a band shape, and the unvulcanized tread rubber 24A is extruded to form a second band-shaped second rubber. The unvulcanized tread member 23B is molded, the first unvulcanized vibration absorbing rubber 32A is extruded and formed into a band shape, the second unvulcanized vibration absorbing rubber 34A is extruded and formed into a band shape, and these are separated. The unvulcanized tread 22A may be formed by laminating the unvulcanized rubber members. In this case, various unvulcanized rubber members can be molded using existing equipment.

上述の実施形態では、本発明のラグ付きタイヤの構成を空気入りタイヤに適用したが、この構成に限定される必要はなく、本発明のラグ付きタイヤの構成をソリッドタイヤに適用してもよい。なお、ソリットタイヤとしては、例えば、円盤状の部材(車輪)の外周にトレッドゴムを配置してトレッドを形成するゴム付き車輪などが挙げられる。このゴム付き車輪のトレッドに本発明のラグ付きタイヤの構成を適用すれば、本発明の作用効果が得られる。   In the above-described embodiment, the configuration of the tire with a lug of the present invention is applied to a pneumatic tire. However, the configuration is not limited to this configuration, and the configuration of the tire with a lug of the present invention may be applied to a solid tire. . In addition, as a solit tire, the wheel with rubber | gum etc. which arrange | position a tread rubber on the outer periphery of a disk-shaped member (wheel), and form a tread are mentioned, for example. If the structure of the tire with a lug of the present invention is applied to the tread of the rubber wheel, the effects of the present invention can be obtained.

以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。   The embodiments of the present invention have been described above with reference to the embodiments. However, these embodiments are merely examples, and various modifications can be made without departing from the scope of the invention. It goes without saying that the scope of rights of the present invention is not limited to these embodiments.

[試験例]
本発明の性能改善効果を確かめるために、従来例のタイヤを1種、比較例のタイヤを1種、及び本発明の適用された実施例のタイヤを1種用意し、計測器による振動測定、及び振動乗り心地性能を評価した。試験の目的は振動乗り心地性能が改良されたかという点を評価することである。
[Test example]
In order to confirm the performance improvement effect of the present invention, one type of tire of a conventional example, one type of tire of a comparative example, and one type of tire of an example to which the present invention is applied are prepared, vibration measurement by a measuring instrument, And vibration ride performance was evaluated. The purpose of the test is to evaluate whether the vibration ride performance has been improved.

次に供試タイヤについて説明する。供試タイヤのサイズは何れもAGS 13.6−26 4PR T13Hのタイヤであり、夫々の供試タイヤをJATMA YEAR BOOK(2008年度版、日本自動車タイヤ協会規格)に規定されている標準リムに組付けて試験に使用した。なお、実施例は図2に示される第1実施形態のタイヤであり、従来例は振動吸収ゴムを配置しないタイヤ(すなわち、実施例から振動吸収ゴムを除いたタイヤ)であり、比較例はトレッドとカーカスとの間に振動吸収ゴムを配置したタイヤ(すなわち、実施例と振動吸収ゴムの配置を異ならせたタイヤ)である。表1に各供試タイヤの諸元を示す。   Next, the test tire will be described. All of the test tire sizes are AGS 13.6-26 4PR T13H tires, and each test tire is assembled on a standard rim specified in JATMA YEAR BOOK (2008 edition, Japan Automobile Tire Association Standard). Used for testing. In addition, an Example is a tire of 1st Embodiment shown by FIG. 2, a conventional example is a tire which does not arrange | position vibration absorption rubber (namely, tire except vibration absorption rubber from an Example), and a comparative example is a tread. And a carcass in which a vibration-absorbing rubber is disposed (that is, a tire in which the vibration-absorbing rubber is disposed differently from the embodiment). Table 1 shows the specifications of each test tire.

Figure 2009269432
Figure 2009269432

比較評価に係る試験では、計測器を用いて振動(振幅レベル)を測定した。さらに、これらの供試タイヤを農業用車両に装着し1名乗車して、乗員によるフィーリング評価を行った。なお、比較評価に係る試験条件以下に示す通りである。
<振動乗り心地性能実車試験>
走行路種別:コンクリート舗装路
走行速度:16km/h(直線走行)
農業車両種別:農業用トラクター(41馬力)
なお、振動測定の評価値は、従来例の振動レベル(振幅)を100とした指数表示として表2中に示す。また、評価値は少ないほど良好な結果を得ているものとする。
In a test related to comparative evaluation, vibration (amplitude level) was measured using a measuring instrument. Furthermore, these test tires were mounted on agricultural vehicles and one person was on board, and the passengers evaluated the feeling. The test conditions for comparative evaluation are as follows.
<Vibration ride performance actual vehicle test>
Traveling road type: Concrete paved road Traveling speed: 16km / h (straight running)
Agricultural vehicle type: agricultural tractor (41 hp)
In addition, the evaluation value of vibration measurement is shown in Table 2 as an index display in which the vibration level (amplitude) of the conventional example is 100. Moreover, it is assumed that the smaller the evaluation value, the better the result.

Figure 2009269432
Figure 2009269432

表2に示すように、計測器を用いた振動レベル(振幅)の測定では、比較例及び実施例の振動レベルが従来例に比べて大幅に低下している。さらに、ラグの内部に振動吸収ゴムを配置した実施例では、トレッドとカーカスとの間に振動吸収ゴムを配置した比較例よりも良好な結果が得られている。さらに、乗員によるフィーリング評価でも比較例及び実施例は、振動レベル(振幅)が従来例と比べて問題にならない程度まで低下したことが確認された。また、乗員によるフィーリング評価においても比較例よりも実施例の方が良好な結果が得られている。このことから、トレッドとカーカスとの間に振動吸収ゴムを配置するよりもラグの内部に振動吸収ゴムを配置する方が振動乗り心地性に対して良好な結果が得られることが分かる。   As shown in Table 2, in the measurement of the vibration level (amplitude) using the measuring instrument, the vibration levels of the comparative example and the example are significantly lower than those of the conventional example. Further, in the example in which the vibration absorbing rubber is arranged inside the lug, a better result is obtained than in the comparative example in which the vibration absorbing rubber is arranged between the tread and the carcass. Furthermore, it was confirmed that the vibration level (amplitude) of the comparative example and the example was lowered to a level not causing a problem as compared with the conventional example in the feeling evaluation by the occupant. In addition, in the feeling evaluation by the occupant, the result of the example is better than that of the comparative example. From this, it can be seen that better results with respect to vibration riding comfort can be obtained when the vibration absorbing rubber is disposed inside the lug than when the vibration absorbing rubber is disposed between the tread and the carcass.

第1実施形態のタイヤのトレッドパターンを示す平面図である。It is a top view which shows the tread pattern of the tire of 1st Embodiment. 図1の2−2線断面図である。FIG. 2 is a sectional view taken along line 2-2 of FIG. 第1実施形態のタイヤに用いられる振動吸収ゴムの変形例を示す断面図である。It is sectional drawing which shows the modification of the vibration absorption rubber used for the tire of 1st Embodiment. (A)第1実施形態のタイヤのトレッド部分を製造する際の一の製造方法を説明するための説明図である。 (B)第1実施形態のタイヤのトレッド部分を製造する際の二の製造方法を説明するための説明図である。 (C)第1実施形態のタイヤのトレッド部分を製造する際の他の製造方法を説明するための説明図である。(A) It is explanatory drawing for demonstrating one manufacturing method at the time of manufacturing the tread part of the tire of 1st Embodiment. (B) It is explanatory drawing for demonstrating the two manufacturing methods at the time of manufacturing the tread part of the tire of 1st Embodiment. (C) It is explanatory drawing for demonstrating the other manufacturing method at the time of manufacturing the tread part of the tire of 1st Embodiment. 第1実施形態のタイヤのトレッドの端部の形状の変形例を示す断面図である。It is sectional drawing which shows the modification of the shape of the edge part of the tread of the tire of 1st Embodiment.

符号の説明Explanation of symbols

10 タイヤ(ラグ付きタイヤ)
16 カーカス
22 トレッド
24 トレッドゴム
24A 未加硫トレッドゴム
26 ラグ
27 踏面(トレッドの踏面)
28 ラグ溝
32 第1の振動吸収ゴム(振動吸収ゴム)
32A 第1の未加硫振動吸収ゴム(未加硫の振動吸収ゴム)
34 第2の振動吸収ゴム(振動吸収ゴム)
34A 第2の未加硫振動吸収ゴム(未加硫の振動吸収ゴム)
40 中央区域
42 側部区域
CL 赤道面(タイヤ赤道面)
T1 第1の振動吸収ゴムの最大厚さ
T2 第2の振動吸収ゴムの最大厚さ
D1 ラグ溝の溝深さ(トレッドセンター部)
D2 ラグ溝の溝深さ(トレッドハンプ部)
R1 第1の曲率半径(曲率半径)
R2 第2の曲率半径(曲率半径)
TW トレッド幅
10 tires (tires with lugs)
16 carcass 22 tread 24 tread rubber 24A unvulcanized tread rubber 26 lug 27 tread (tread tread)
28 Lug groove 32 First vibration absorbing rubber (vibration absorbing rubber)
32A First unvulcanized vibration absorbing rubber (unvulcanized vibration absorbing rubber)
34 Second vibration absorbing rubber (vibration absorbing rubber)
34A Second unvulcanized vibration absorbing rubber (unvulcanized vibration absorbing rubber)
40 Central area 42 Side area CL Equatorial plane (tire equatorial plane)
T1 Maximum thickness of the first vibration absorbing rubber T2 Maximum thickness of the second vibration absorbing rubber D1 Groove depth of the lug groove (tread center portion)
D2 Lug groove depth (tread hump)
R1 first radius of curvature (curvature radius)
R2 Second radius of curvature (curvature radius)
TW tread width

Claims (6)

タイヤ幅方向断面において、路面と接触する踏面の曲率半径がタイヤ赤道面を跨ぐ中央区域よりも前記中央区域から連続する側部区域で小さいトレッドと、
前記トレッドに形成され、前記トレッドのタイヤ幅方向の中央部から側部に向けて延びる複数のラグと、
前記中央区域に対応する前記ラグの内部及び前記側部区域に対応する前記ラグの内部に設けられ、前記トレッドを形成するトレッドゴムよりもモジュラスが低い振動吸収ゴムと、
を備えるラグ付きタイヤ。
In the cross section in the tire width direction, a tread whose radius of curvature of the tread surface contacting the road surface is smaller in the side area continuous from the central area than the central area straddling the tire equator plane,
A plurality of lugs formed on the tread and extending from a central portion of the tread in a tire width direction toward a side portion;
A vibration absorbing rubber provided in the lug corresponding to the central area and in the lug corresponding to the side area, and having a lower modulus than the tread rubber forming the tread;
A tire with lugs.
前記トレッドの中央区域は、トレッド幅の40〜60%の範囲を満たす請求項1に記載のラグ付きタイヤ。   The lug-equipped tire according to claim 1, wherein a central area of the tread satisfies a range of 40 to 60% of a tread width. 前記振動吸収ゴムの100%モジュラスは、前記トレッドゴムの100%モジュラスの30〜70%の範囲を満たす請求項1又は請求項2に記載のラグ付きタイヤ。   The tire with a lug according to claim 1 or 2, wherein a 100% modulus of the vibration absorbing rubber satisfies a range of 30 to 70% of a 100% modulus of the tread rubber. 前記側部区域に対応する前記ラグの内部の振動吸収ゴムの最大厚さは、トレッドハンプ部におけるタイヤ周方向に隣接する前記ラグ間のラグ溝の溝深さの5〜20%の範囲を満たし、前記中央区域に対応する前記ラグの内部の振動吸収ゴムの最大厚さは、前記ラグ溝のタイヤ赤道面上の溝深さの10〜40%の範囲を満たす請求項1〜請求項3の何れか1項に記載のラグ付きタイヤ。   The maximum thickness of the vibration absorbing rubber inside the lug corresponding to the side section satisfies the range of 5 to 20% of the groove depth of the lug groove between the lugs adjacent in the tire circumferential direction in the tread hump portion. The maximum thickness of the vibration-absorbing rubber inside the lug corresponding to the central region satisfies a range of 10 to 40% of the groove depth on the tire equatorial plane of the lug groove. The tire with a lug according to any one of the items. 前記中央区域に対応する前記ラグの内部の振動吸収ゴムと前記側部区域に対応する前記ラグの内部の振動吸収ゴムとが連続している請求項1〜請求項4の何れか1項に記載のラグ付きタイヤ。   5. The vibration absorbing rubber inside the lug corresponding to the central area and the vibration absorbing rubber inside the lug corresponding to the side area are continuous. 6. Lug tires. 請求項1〜請求項5の何れか1項に記載のラグ付きタイヤの製造方法において、
前記トレッドの中央区域及び前記トレッドの側部区域に前記振動吸収ゴムが配置されるように未加硫のトレッドゴムと未加硫の振動吸収ゴムとを一体的に押し出し、帯状の第1の未加硫トレッド部材を成形する工程と、
前記未加硫のトレッドゴムを押し出して帯状の第2の未加硫トレッド部材を成形する工程と、
前記第1の未加硫トレッド部材と前記第2の未加硫トレッド部材との間に前記未加硫の振動吸収ゴムが配置されるように前記第1の未加硫トレッド部材と前記第2の未加硫トレッド部材とを積層する工程と、
を備えるラグ付きタイヤの製造方法。
In the manufacturing method of the tire with a lug of any one of Claims 1-5,
The unvulcanized tread rubber and the unvulcanized vibration absorbing rubber are integrally extruded so that the vibration absorbing rubber is disposed in the central area of the tread and the side area of the tread, and the first unshaped rubber band is extruded. Forming a vulcanized tread member;
Extruding the unvulcanized tread rubber to form a strip-shaped second unvulcanized tread member;
The first unvulcanized tread member and the second so that the unvulcanized vibration absorbing rubber is disposed between the first unvulcanized tread member and the second unvulcanized tread member. Laminating an unvulcanized tread member of
The manufacturing method of the tire with a lug provided with.
JP2008120132A 2008-05-02 2008-05-02 Tire with lug, and manufacturing method of the same Pending JP2009269432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120132A JP2009269432A (en) 2008-05-02 2008-05-02 Tire with lug, and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120132A JP2009269432A (en) 2008-05-02 2008-05-02 Tire with lug, and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2009269432A true JP2009269432A (en) 2009-11-19

Family

ID=41436387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120132A Pending JP2009269432A (en) 2008-05-02 2008-05-02 Tire with lug, and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2009269432A (en)

Similar Documents

Publication Publication Date Title
KR101509318B1 (en) Pneumatic tire
JP5790166B2 (en) Pneumatic tire
AU2014219716B2 (en) Pneumatic tire
JP5948995B2 (en) Pneumatic tire
JP6516726B2 (en) Pneumatic tire
JP6537496B2 (en) Pneumatic tire
JP6527750B2 (en) Pneumatic tire
JP6032242B2 (en) Rehabilitation tire
JP2016074256A (en) Pneumatic tire
JP5758911B2 (en) Pneumatic radial tire for passenger cars
JP5471511B2 (en) Pneumatic tire
JP5845710B2 (en) Pneumatic tire
WO2015097945A1 (en) Heavy duty pneumatic tire
US20190337336A1 (en) Pneumatic Tire
EP3017966B1 (en) Heavy-duty pneumatic tire
US11155124B2 (en) Pneumatic tire
JP2010285113A (en) Pneumatic tire and method for manufacturing the same
JP2013189137A (en) Pneumatic tire
JP2014108653A (en) Pneumatic tire
US10882361B2 (en) Tire with variable width grooves
US11104186B2 (en) Pneumatic tire
JP2016037083A (en) Pneumatic tire
JP2008114756A (en) Tire for agricultural machine
US10864779B2 (en) Pneumatic tire
JP2018083595A (en) tire