JP2009267904A - Elastic wave element and resonator using the same, filter, and electronic equipment - Google Patents

Elastic wave element and resonator using the same, filter, and electronic equipment Download PDF

Info

Publication number
JP2009267904A
JP2009267904A JP2008116806A JP2008116806A JP2009267904A JP 2009267904 A JP2009267904 A JP 2009267904A JP 2008116806 A JP2008116806 A JP 2008116806A JP 2008116806 A JP2008116806 A JP 2008116806A JP 2009267904 A JP2009267904 A JP 2009267904A
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
wave
dielectric layer
velocity
elastic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008116806A
Other languages
Japanese (ja)
Other versions
JP5125728B2 (en
Inventor
Rei Goto
令 後藤
Hidekazu Nakanishi
秀和 中西
Hiroyuki Nakamura
弘幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008116806A priority Critical patent/JP5125728B2/en
Publication of JP2009267904A publication Critical patent/JP2009267904A/en
Application granted granted Critical
Publication of JP5125728B2 publication Critical patent/JP5125728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress loss due to bulk radiation when an elastic wave element is a boundary wave element. <P>SOLUTION: The elastic wave element 6 comprises a piezoelectric substrate 7, an interdigital electrode 8 provided on the piezoelectric substrate 7, a first dielectric layer 9 provided on the piezoelectric substrate 7 to cover the interdigital electrode 8, and a second dielectric layer 10 provided on the first dielectric layer 9. The speed Vs of a lateral wave of a bulk wave propagated in the second dielectric layer 10 is faster the speed V of an elastic wave excited by the interdigital electrode 8, the speed V of the elastic wave excited by the interdigital electrode 8 is slower than the speed Vb of the slowest lateral wave of a bulk wave propagated in the piezoelectric substrate 7, and the cut angle of a rotary Y plate of the piezoelectric substrate 7 is not less than 15° and not larger than 25°. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、弾性波素子と、これを用いた共振器、フィルタ、及び電子機器に関するものである。   The present invention relates to an acoustic wave element and a resonator, filter, and electronic device using the same.

従来の弾性波素子を図13を用いて説明する。図13は、従来の弾性波素子の断面模式図である。   A conventional acoustic wave device will be described with reference to FIG. FIG. 13 is a schematic cross-sectional view of a conventional acoustic wave device.

図13において、従来の弾性波素子1は、圧電基板2と、この圧電基板2の上に設けられた櫛歯電極3と、圧電基板2の上に櫛歯電極3を覆うように設けられた第1誘電体層4と、この第1誘電体層4の上に設けられた第2誘電体層5を備える。この第2誘電体層5を伝搬するバルク波のうち横波の速度Vsは櫛歯電極3において励振される弾性波の速度Vより速くなるように、第2誘電体層5の材料は決定されていた。   In FIG. 13, the conventional acoustic wave element 1 is provided so as to cover the comb-tooth electrode 3 on the piezoelectric substrate 2, the comb-tooth electrode 3 provided on the piezoelectric substrate 2, and the piezoelectric substrate 2. A first dielectric layer 4 and a second dielectric layer 5 provided on the first dielectric layer 4 are provided. The material of the second dielectric layer 5 is determined so that the velocity Vs of the transverse wave among the bulk waves propagating through the second dielectric layer 5 is faster than the velocity V of the elastic wave excited in the comb electrode 3. It was.

これにより、櫛歯電極3付近に励振される弾性波を閉じ込めることができ、その結果、境界波素子としての弾性波素子1を実現していた。   Thereby, the elastic wave excited near the comb electrode 3 can be confined, and as a result, the elastic wave element 1 as a boundary wave element has been realized.

なお、この出願に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2007−267366号公報
As prior art document information relating to this application, for example, Patent Document 1 is known.
JP 2007-267366 A

このような従来の弾性波素子1において、第2誘電体層5を伝搬するバルク波のうち横波の速度Vsは櫛歯電極3において励振される横波主体の弾性波の速度Vより速くなるように、第2誘電体層5の材料は決定されていたので、この第2の誘電体層5の影響を受け、櫛歯電極3において励振される横波主体の弾性波の速度Vが速くなっていた。その結果、櫛歯電極3において励振される横波主体の弾性波の速度Vが、圧電基板2を伝搬するバルク波のうち最も遅い横波の速度Vbよりも速くなり、櫛歯電極3において励振される弾性波がバルク波として圧電基板2内に漏洩することで、弾性波素子1を共振子として用いたときの挿入損失の劣化を招いていた。即ち、弾性波素子1が第2誘電体層2を有する境界波素子である場合に、このバルク放射による損失が大きな問題となっていたのである。   In such a conventional acoustic wave device 1, the velocity Vs of the transverse wave among the bulk waves propagating through the second dielectric layer 5 is made faster than the velocity V of the elastic wave mainly composed of the transverse wave excited in the comb electrode 3. Since the material of the second dielectric layer 5 has been determined, the velocity V of the elastic wave mainly composed of the transverse wave excited by the comb-tooth electrode 3 is increased under the influence of the second dielectric layer 5. . As a result, the velocity V of the elastic wave mainly composed of the transverse wave excited at the comb-tooth electrode 3 becomes faster than the velocity Vb of the slowest transverse wave among the bulk waves propagating through the piezoelectric substrate 2 and is excited at the comb-tooth electrode 3. The acoustic wave leaks into the piezoelectric substrate 2 as a bulk wave, which causes deterioration of insertion loss when the acoustic wave element 1 is used as a resonator. That is, when the acoustic wave element 1 is a boundary wave element having the second dielectric layer 2, the loss due to the bulk radiation has been a serious problem.

そこで本発明は、弾性波素子が境界波素子である場合に、バルク放射による損失を抑制することを目的とする。   Therefore, an object of the present invention is to suppress loss due to bulk radiation when the acoustic wave element is a boundary wave element.

そして、この目的を達成するために本発明の弾性波素子は、圧電基板と、この圧電基板の上に設けられた櫛歯電極と、圧電基板の上にこの櫛歯電極を覆うように設けられた第1誘電体層と、この第1誘電体層の上に設けられた第2誘電体層を備え、この第2誘電体層を伝搬するバルク波のうち横波の速度Vsは櫛歯電極において励振される横波主体の弾性波の速度Vより速く、かつ、櫛歯電極において励振される横波主体の弾性波の速度Vは、圧電基板を伝搬するバルク波のうち最も遅い横波の速度Vbより遅く、かつ、圧電基板における回転Y板のカット角が15度以上25度以下であることを特徴とする。   In order to achieve this object, an acoustic wave device according to the present invention is provided so as to cover a piezoelectric substrate, a comb electrode provided on the piezoelectric substrate, and the comb electrode on the piezoelectric substrate. The first dielectric layer and the second dielectric layer provided on the first dielectric layer, and the velocity Vs of the transverse wave among the bulk waves propagating through the second dielectric layer is The velocity V of the elastic wave mainly of the transverse wave excited is higher than the velocity V of the elastic wave mainly of the transverse wave excited by the comb electrode, and is slower than the velocity Vb of the slowest transverse wave among the bulk waves propagating through the piezoelectric substrate. The cut angle of the rotating Y plate in the piezoelectric substrate is 15 degrees or more and 25 degrees or less.

この構成により、櫛歯電極において励振される横波主体の弾性波の速度Vが、圧電基板を伝搬するバルク波のうち最も遅い横波の速度Vbよりも遅くなり、櫛歯電極において励振される弾性波がバルク波として圧電基板内に漏洩することを抑制することができる。その結果、弾性波素子を共振子として用いたときの挿入損失の劣化を防止することができる。   With this configuration, the velocity V of the elastic wave mainly composed of the transverse wave excited in the comb-tooth electrode becomes slower than the velocity Vb of the slowest transverse wave among the bulk waves propagating through the piezoelectric substrate, and the elastic wave excited in the comb-tooth electrode. Can be prevented from leaking into the piezoelectric substrate as a bulk wave. As a result, it is possible to prevent deterioration of insertion loss when the acoustic wave element is used as a resonator.

また、圧電基板における回転Y板のカット角を25度以下にすることにより、櫛歯電極において励振される横波主体の弾性波の結合係数を大きくすることができる。   Further, by setting the cut angle of the rotating Y plate in the piezoelectric substrate to 25 degrees or less, the coupling coefficient of the elastic wave mainly composed of the transverse wave excited in the comb electrode can be increased.

さらに、圧電基板における回転Y板のカット角を15度以上にすることにより、櫛歯電極において励振される伝搬方向と圧電基板の厚み方向の変位成分を主体とし、不要波として現れるSV(shear vertical)波の結合係数を小さくすることができ、スプリアス応答の少ない弾性波素子を実現することができる。   Furthermore, by setting the cut angle of the rotating Y plate in the piezoelectric substrate to 15 degrees or more, SV (shear vertical) that appears mainly as a component of displacement in the propagation direction excited in the comb electrode and the thickness direction of the piezoelectric substrate and appears as an unnecessary wave. ) The wave coupling coefficient can be reduced, and an acoustic wave device with less spurious response can be realized.

すなわち、上記構成において、圧電基板における回転Y板のカット角を15度以上25度以下にすることにより、櫛歯電極において励振される横波主体の弾性波の結合係数の確保とスプリアス応答の抑制とを両立することができるのである。   That is, in the above configuration, by setting the cut angle of the rotating Y plate in the piezoelectric substrate to 15 degrees or more and 25 degrees or less, it is possible to secure the coupling coefficient of the elastic wave mainly composed of the transverse wave excited in the comb-tooth electrode and to suppress the spurious response. It is possible to achieve both.

(実施の形態1)
以下、本発明の実施の形態1における弾性波素子について図面を参照しながら説明する。図1は、実施の形態1における弾性波素子の断面模式図である。
(Embodiment 1)
Hereinafter, the acoustic wave device according to the first embodiment of the present invention will be described with reference to the drawings. 1 is a schematic cross-sectional view of an acoustic wave device according to Embodiment 1. FIG.

図1において、弾性波素子6は、圧電基板7と、この圧電基板7の上に設けられた櫛歯電極8と、圧電基板7の上にこの櫛歯電極8を覆うように設けられた第1誘電体層9と、この第1誘電体層9の上に設けられた第2誘電体層10を備える。また、この弾性波素子6は、この第2誘電体層10を伝搬するバルク波のうち横波の速度Vsは櫛歯電極8において励振される横波主体の弾性波の速度Vより速く、かつ、櫛歯電極8において励振される横波主体の弾性波の速度Vは、圧電基板7を伝搬するバルク波のうち最も遅い横波の速度Vbより遅く、圧電基板7における回転Y板のカット角が15度以上25度以下であることを特徴としている。   In FIG. 1, an acoustic wave element 6 includes a piezoelectric substrate 7, a comb electrode 8 provided on the piezoelectric substrate 7, and a first electrode provided on the piezoelectric substrate 7 so as to cover the comb electrode 8. A first dielectric layer 9 and a second dielectric layer 10 provided on the first dielectric layer 9 are provided. The elastic wave element 6 includes a bulk wave propagating through the second dielectric layer 10, and the transverse wave velocity Vs is higher than the transverse wave-based elastic wave velocity V excited in the comb-tooth electrode 8. The velocity V of the elastic wave mainly composed of the transverse wave excited in the tooth electrode 8 is slower than the velocity Vb of the slowest transverse wave among the bulk waves propagating through the piezoelectric substrate 7, and the cut angle of the rotating Y plate in the piezoelectric substrate 7 is 15 degrees or more. It is characterized by being 25 degrees or less.

圧電基板7は、例えば、ニオブ酸リチウム、タンタル酸リチウム、又はニオブ酸カリウムからなる。例えば、圧電基板7がニオブ酸リチウムの場合、圧電基板7を伝搬するバルク波のうち最も遅い横波の速度Vbは、4024m/秒である。   The piezoelectric substrate 7 is made of, for example, lithium niobate, lithium tantalate, or potassium niobate. For example, when the piezoelectric substrate 7 is lithium niobate, the slowest velocity Vb of the bulk wave propagating through the piezoelectric substrate 7 is 4024 m / sec.

櫛歯電極8は、例えば、アルミニウム、銅、銀、若しくは金からなる単体金属、又はこれらを含む合金である。   The comb-teeth electrode 8 is, for example, a single metal made of aluminum, copper, silver, or gold, or an alloy containing these.

第1誘電体層9は、例えば、酸化ケイ素、5酸化タンタル、又は2酸化テルルである。ここで、第1誘電体層9として酸化ケイ素を用いることが望ましい。これは、酸化ケイ素の温度特性係数が圧電基板7の温度特性係数と逆の符号を持つため、温度特性補償効果を得ることができるからである。また、酸化ケイ素を伝搬する横波の速度は、圧電基板7を伝搬するバルク波のうち最も遅い横波の速度Vbよりも遅いため、櫛歯電極8付近に励振される横波主体の弾性波の速度を効果的に下げることにより圧電基板7内へのバルク放射を抑制する効果も期待できる。   The first dielectric layer 9 is, for example, silicon oxide, tantalum pentoxide, or tellurium dioxide. Here, it is desirable to use silicon oxide as the first dielectric layer 9. This is because the temperature characteristic coefficient of silicon oxide has a sign opposite to the temperature characteristic coefficient of the piezoelectric substrate 7, and thus a temperature characteristic compensation effect can be obtained. Further, since the velocity of the transverse wave propagating through the silicon oxide is slower than the velocity Vb of the slowest transverse wave among the bulk waves propagating through the piezoelectric substrate 7, the velocity of the elastic wave mainly composed of the transverse wave excited in the vicinity of the comb electrode 8 is set. The effect of suppressing bulk radiation into the piezoelectric substrate 7 can be expected by lowering effectively.

第2誘電体層10は、例えば、窒化ケイ素、又は窒化アルミである。例えば、この第2誘電体層10が窒化ケイ素の場合、第2誘電体層10を伝搬するバルク波のうち横波の速度Vsは、略6100m/秒である。これは櫛歯電極8により励振される横波主体の弾性波の速度Vよりも十分速く、更に、櫛歯電極8において励振される横波主体の弾性波の波長をλとすると、第2誘電体層10の厚みを1λ以上と十分に大きくすることで、第2誘電体層10の上面に変位を持たない境界波素子を実現しているのである。   The second dielectric layer 10 is, for example, silicon nitride or aluminum nitride. For example, when the second dielectric layer 10 is silicon nitride, the velocity Vs of the transverse wave among the bulk waves propagating through the second dielectric layer 10 is approximately 6100 m / second. This is sufficiently faster than the velocity V of the elastic wave mainly composed of the transverse wave excited by the comb-teeth electrode 8, and if the wavelength of the elastic wave mainly composed of the transverse wave excited by the comb-teeth electrode 8 is λ, the second dielectric layer The boundary wave element having no displacement on the upper surface of the second dielectric layer 10 is realized by sufficiently increasing the thickness of 10 to 1λ or more.

このような弾性波素子6において、第2誘電体層10を伝搬するバルク波のうち横波の速度Vsは櫛歯電極8において励振される横波主体の弾性波の速度Vより十分速くなるように、第2誘電体層10の材料は決定されていたので、この第2の誘電体層10の影響を受け、櫛歯電極8において励振される横波主体の弾性波の速度Vが速くなっていた。そこで、従来の弾性波素子1のような挿入損失の劣化を抑制するために、実施の形態1の弾性波素子6は、櫛歯電極8において励振される横波主体の弾性波の速度Vが圧電基板7を伝搬するバルク波のうち最も遅い横波の速度Vbより遅くなるという特徴を有している。   In such an acoustic wave device 6, the velocity Vs of the transverse wave among the bulk waves propagating through the second dielectric layer 10 is sufficiently higher than the velocity V of the elastic wave mainly composed of the transverse wave excited by the comb electrode 8. Since the material of the second dielectric layer 10 has been determined, the velocity V of the elastic wave mainly composed of the transverse wave excited by the comb-tooth electrode 8 is increased under the influence of the second dielectric layer 10. Therefore, in order to suppress the deterioration of the insertion loss as in the conventional elastic wave element 1, the elastic wave element 6 according to the first embodiment has a velocity V of the elastic wave mainly composed of the transverse wave excited by the comb-tooth electrode 8 as a piezoelectric element. The bulk wave propagating through the substrate 7 is characterized by being slower than the slowest transverse wave velocity Vb.

これにより、櫛歯電極8において励振される横波主体の弾性波の速度Vが、圧電基板7を伝搬するバルク波のうち最も遅い横波の速度Vbよりも遅くなり、櫛歯電極8において励振される横波主体の弾性波がバルク波として圧電基板7内に漏洩することを抑制することができる。その結果、弾性波素子6を共振子として用いたときの挿入損失の劣化を防止することができる。   Thereby, the velocity V of the elastic wave mainly composed of the transverse wave excited at the comb-tooth electrode 8 becomes slower than the velocity Vb of the slowest transverse wave among the bulk waves propagating through the piezoelectric substrate 7 and is excited at the comb-tooth electrode 8. It is possible to suppress leakage of elastic waves mainly composed of transverse waves into the piezoelectric substrate 7 as bulk waves. As a result, it is possible to prevent deterioration of insertion loss when the acoustic wave element 6 is used as a resonator.

櫛歯電極8において励振される横波主体の弾性波の速度Vが圧電基板7を伝搬するバルク波のうち最も遅い横波の速度Vbより遅くなる条件について、図2を用いて説明する。ここで、圧電基板7は、ニオブ酸リチウムであり、第1誘電体9は酸化ケイ素であり、第2誘電体10は、窒化ケイ素である。また、圧電基板7の回転Y板のカット角をθ、櫛歯電極8の密度の銅密度に対する比をa、櫛歯電極8において励振される横波主体の弾性波の波長をλ、櫛歯電極8の膜厚をh、第1誘電体層9の膜厚をHとする。図2の縦軸は、櫛歯電極8において励振される横波主体の弾性波の波長λによって規格化された第1誘電体層9の規格化膜厚H/λを示す。また、図2の横軸は、圧電基板7の回転Y板のカット角θである。   A condition in which the velocity V of the elastic wave mainly excited by the comb-teeth electrode 8 is slower than the velocity Vb of the slowest transverse wave among the bulk waves propagating through the piezoelectric substrate 7 will be described with reference to FIG. Here, the piezoelectric substrate 7 is lithium niobate, the first dielectric 9 is silicon oxide, and the second dielectric 10 is silicon nitride. Further, the cut angle of the rotating Y plate of the piezoelectric substrate 7 is θ, the ratio of the density of the comb electrode 8 to the copper density is a, the wavelength of the elastic wave mainly composed of the transverse wave excited in the comb electrode 8 is λ, and the comb electrode The film thickness of 8 is h, and the film thickness of the first dielectric layer 9 is H. The vertical axis in FIG. 2 represents the normalized film thickness H / λ of the first dielectric layer 9 normalized by the wavelength λ of the transverse wave-dominated elastic wave excited in the comb electrode 8. Also, the horizontal axis of FIG. 2 is the cut angle θ of the rotating Y plate of the piezoelectric substrate 7.

シミュレーションによって櫛歯電極8により励振される横波主体の弾性波の速度Vと、圧電基板7内を伝搬するバルク波のうち最も遅い横波の速度Vbとが同一である第1誘電体層9の規格化膜厚H/λと圧電基板7における回転Y板のカット角θの関係を求めた。図2に示す5本の直線は、例えば、各々電極膜厚hが0.09λ/a, 0.10λ/a, 0.11λ/a, 0.12λ/a, 0.13λ/aである場合の第1誘電体層9の規格化膜厚H/λと圧電基板7における回転Y板のカット角θの関係を一次方程式で線形近似したものである。すなわち、上記条件を満たす領域は、図2中に示す各々の直線の上側の領域となる。   The standard of the first dielectric layer 9 in which the velocity V of the elastic wave mainly composed of the transverse wave excited by the comb-teeth electrode 8 by simulation and the velocity Vb of the slowest transverse wave among the bulk waves propagating in the piezoelectric substrate 7 are the same. The relationship between the formed film thickness H / λ and the cut angle θ of the rotating Y plate in the piezoelectric substrate 7 was determined. For example, the five straight lines shown in FIG. 2 indicate the first dielectric when the electrode film thickness h is 0.09λ / a, 0.10λ / a, 0.11λ / a, 0.12λ / a, and 0.13λ / a, respectively. The relationship between the normalized film thickness H / λ of the layer 9 and the cut angle θ of the rotating Y plate in the piezoelectric substrate 7 is linearly approximated by a linear equation. That is, the region satisfying the above condition is a region above each straight line shown in FIG.

図2の5つの例示のように、櫛歯電極8において励振される横波主体の弾性波の速度Vが圧電基板7を伝搬するバルク波のうち最も遅い横波の速度Vbより遅くなる条件は、
0.085λ/a<h<0.095λ/aの場合、H/λ>-0.0018θ+0.1909
0.095λ/a<h<0.105λ/aの場合、H/λ>-0.0014θ+0.1376
0.0105λ/a<h<0.115λ/aの場合、H/λ>-0.0013θ+0.1017
0.115λ/a<h<0.125λ/aの場合、H/λ>-0.0011θ+0.0754
0.125λ/a<h<0.135λ/aの場合、H/λ>-0.0009θ+0.0536
である。
As shown in the five examples of FIG. 2, the condition that the velocity V of the elastic wave mainly composed of the transverse wave excited in the comb electrode 8 is slower than the velocity Vb of the slowest transverse wave among the bulk waves propagating through the piezoelectric substrate 7 is as follows.
When 0.085λ / a <h <0.095λ / a, H / λ> -0.0018θ + 0.1909
When 0.095λ / a <h <0.105λ / a, H / λ> -0.0014θ + 0.1376
When 0.0105λ / a <h <0.115λ / a, H / λ> -0.0013θ + 0.1017
When 0.115λ / a <h <0.125λ / a, H / λ> -0.0011θ + 0.0754
When 0.125λ / a <h <0.135λ / a, H / λ> -0.0009θ + 0.0536
It is.

これらの条件を満たす圧電基板7の回転Y板のカット角θ、櫛歯電極8の膜厚h、第1誘電体層9の膜厚Hを採用することにより、櫛歯電極8において励振される横波主体の弾性波の速度Vが、圧電基板7を伝搬するバルク波のうち最も遅い横波の速度Vbよりも遅くなり、櫛歯電極8において励振される横波主体の弾性波がバルク波として圧電基板7内に漏洩することを抑制することができるのである。   By adopting the cut angle θ of the rotating Y plate of the piezoelectric substrate 7 satisfying these conditions, the film thickness h of the comb electrode 8, and the film thickness H of the first dielectric layer 9, the comb electrode 8 is excited. The velocity V of the elastic wave mainly composed of the transverse wave becomes slower than the velocity Vb of the slowest transverse wave among the bulk waves propagating through the piezoelectric substrate 7, and the elastic wave mainly composed of the transverse wave excited by the comb-teeth electrode 8 becomes the bulk wave. 7 can be prevented from leaking.

また、図3、図4、図5、図6、図7に、各々電極膜厚hが0.09λ/a, 0.10λ/a, 0.11λ/a, 0.12λ/a, 0.13λ/aである場合の櫛歯電極8において励振される横波主体の弾性波の結合係数の第1誘電体層9の規格化膜厚H/λと回転Y板のカット角θに対する依存性を示す。これを見ると回転Y板のカット角を25度以下とすることで結合係数は略15%以上となることがわかる。このように、圧電基板7における回転Y板のカット角を25度以下にすることにより、櫛歯電極8において励振される横波主体の弾性波の結合係数を大きくすることができる。例えば、弾性波素子6をW−CDMA等の広い帯域を有するシステムに適用する場合、櫛歯電極8において励振される横波主体の弾性波の結合係数は略15%以上が望ましい。そこで、例えば、圧電基板7がニオブ酸リチウムであり、第1誘電体9が酸化ケイ素であり、規格化した第1誘電体9の膜厚が0.09λ〜0.11/aの場合、回転Y板のカット角を25度以下とすることで櫛歯電極8において励振される横波主体の弾性波の結合係数を略15%以上とすることができるのである。   Further, in FIGS. 3, 4, 5, 6, and 7, the electrode film thicknesses h are 0.09λ / a, 0.10λ / a, 0.11λ / a, 0.12λ / a, and 0.13λ / a, respectively. The dependence of the coupling coefficient of the elastic wave mainly composed of transverse waves excited on the comb-tooth electrode 8 on the normalized film thickness H / λ of the first dielectric layer 9 and the cut angle θ of the rotating Y plate is shown. From this, it can be seen that the coupling coefficient becomes approximately 15% or more by setting the cut angle of the rotating Y plate to 25 degrees or less. As described above, by setting the cut angle of the rotating Y plate in the piezoelectric substrate 7 to 25 degrees or less, the coupling coefficient of the elastic wave mainly composed of the transverse wave excited in the comb electrode 8 can be increased. For example, when the elastic wave element 6 is applied to a system having a wide band such as W-CDMA, the coupling coefficient of the elastic wave mainly composed of the transverse wave excited in the comb electrode 8 is desirably about 15% or more. Therefore, for example, when the piezoelectric substrate 7 is lithium niobate, the first dielectric 9 is silicon oxide, and the normalized film thickness of the first dielectric 9 is 0.09λ to 0.11 / a, the rotation is performed. By setting the cut angle of the Y plate to 25 degrees or less, the coupling coefficient of the elastic wave mainly composed of the transverse wave excited in the comb electrode 8 can be made approximately 15% or more.

また図8、図9、図10、図11、図12に各々電極膜厚hが0.09λ/a, 0.10λ/a, 0.11λ/a, 0.12λ/a, 0.13λ/aである場合の櫛歯電極8において励振される伝搬方向と圧電基板7の厚み方向の変位成分を主体とし、不要波として現れるSV波の結合係数の第1誘電体層9の規格化膜厚H/λと回転Y板のカット角θに対する依存性を示す。これを見ると回転Y板のカット角が高くなるほどSV波の結合係数は減少しており、スプリアスは抑制することができることがわかる。このように、圧電基板7における回転Y板のカット角を15度以上にすることにより、櫛歯電極8において励振される伝搬方向と圧電基板7の厚み方向の変位成分を主体とし、不要波として現れるSV波の結合係数を小さくすることができ、スプリアス応答の少ない弾性波素子を実現することができるのである。   8, 9, 10, 11, and 12, the electrode thicknesses h are 0.09λ / a, 0.10λ / a, 0.11λ / a, 0.12λ / a, and 0.13λ / a, respectively. The normalized film thickness H / λ of the first dielectric layer 9 of the coupling coefficient of the SV wave, which appears mainly as a component of displacement in the propagation direction excited in the comb electrode 8 and the thickness direction of the piezoelectric substrate 7, is rotated. The dependence on the cut angle θ of the Y plate is shown. As can be seen from the graph, the SV wave coupling coefficient decreases as the cut angle of the rotating Y plate increases, and spurious can be suppressed. In this way, by setting the cut angle of the rotating Y plate in the piezoelectric substrate 7 to 15 degrees or more, the propagation component excited in the comb electrode 8 and the displacement component in the thickness direction of the piezoelectric substrate 7 are mainly used as unnecessary waves. The coupling coefficient of the appearing SV wave can be reduced, and an elastic wave device with less spurious response can be realized.

すなわち、上記構成において、圧電基板7における回転Y板のカット角を15度以上25度以下にすることにより、櫛歯電極8において励振される横波主体の弾性波の結合係数の確保とスプリアス応答の抑制とを両立することができるのである。   That is, in the above configuration, by setting the cut angle of the rotating Y plate in the piezoelectric substrate 7 to 15 degrees or more and 25 degrees or less, it is possible to ensure the coupling coefficient of the elastic wave mainly composed of the transverse wave excited in the comb electrode 8 and to reduce the spurious response. It is possible to achieve both suppression.

また、このバルク放射による損失を抑制する弾性波素子6を共振器(図示せず)に適用しても構わないし、ラダー型フィルタもしくはDMSフィルタ等のフィルタ(図示せず)に適応しても構わない。さらに、弾性波素子6を、このフィルタと、フィルタに接続された半導体集積回路素子(図示せず)と、半導体集積回路素子(図示せず)に接続された再生装置とを備えた電子機器に適用しても良い。これにより、共振器、フィルタ、及び電子機器における信号損失を抑制することができるのである。   The elastic wave element 6 that suppresses the loss due to the bulk radiation may be applied to a resonator (not shown) or may be applied to a filter (not shown) such as a ladder type filter or a DMS filter. Absent. Further, the acoustic wave element 6 is applied to an electronic apparatus including the filter, a semiconductor integrated circuit element (not shown) connected to the filter, and a reproducing device connected to the semiconductor integrated circuit element (not shown). It may be applied. Thereby, the signal loss in a resonator, a filter, and an electronic device can be suppressed.

本発明にかかる弾性波素子は、弾性波素子が境界波素子である場合に、バルク放射による損失を抑制するという効果を有し、携帯電話等の電子機器において有用である。   The elastic wave device according to the present invention has an effect of suppressing loss due to bulk radiation when the elastic wave device is a boundary wave device, and is useful in electronic devices such as mobile phones.

本発明の実施の形態1における弾性波素子を示す断面模式図Sectional schematic diagram showing an acoustic wave device according to Embodiment 1 of the present invention. 同弾性波素子の特性を示す図Diagram showing the characteristics of the acoustic wave device 同規格化膜厚とカット角の関係を示す図Diagram showing the relationship between the normalized film thickness and the cut angle 同規格化膜厚とカット角の関係を示す図Diagram showing the relationship between the normalized film thickness and the cut angle 同規格化膜厚とカット角の関係を示す図Diagram showing the relationship between the normalized film thickness and the cut angle 同規格化膜厚とカット角の関係を示す図Diagram showing the relationship between the normalized film thickness and the cut angle 同規格化膜厚とカット角の関係を示す図Diagram showing the relationship between the normalized film thickness and the cut angle 同規格化膜厚とカット角の関係を示す図Diagram showing the relationship between the normalized film thickness and the cut angle 同規格化膜厚とカット角の関係を示す図Diagram showing the relationship between the normalized film thickness and the cut angle 同規格化膜厚とカット角の関係を示す図Diagram showing the relationship between the normalized film thickness and the cut angle 同規格化膜厚とカット角の関係を示す図Diagram showing the relationship between the normalized film thickness and the cut angle 同規格化膜厚とカット角の関係を示す図Diagram showing the relationship between the normalized film thickness and the cut angle 従来の弾性波素子を示す断面模式図Cross-sectional schematic diagram showing a conventional acoustic wave device

符号の説明Explanation of symbols

6 弾性波素子
7 圧電基板
8 櫛歯電極
9 第1誘電体層
10 第2誘電体層
6 acoustic wave element 7 piezoelectric substrate 8 comb-tooth electrode 9 first dielectric layer 10 second dielectric layer

Claims (5)

圧電基板と、
前記圧電基板の上に設けられた櫛歯電極と、
前記圧電基板の上に前記櫛歯電極を覆うように設けられた第1誘電体層と、
前記第1誘電体層の上に設けられた第2誘電体層を備え、
前記第2誘電体層を伝搬するバルク波のうち横波の速度Vsは前記櫛歯電極において励振される横波主体の弾性波の速度Vより速く、かつ、
前記櫛歯電極において励振される弾性波の速度Vは、前記圧電基板を伝搬するバルク波のうち最も遅い横波の速度Vbより遅く、かつ
前記圧電基板における回転Y板のカット角が15度以上25度以下である弾性波素子。
A piezoelectric substrate;
A comb electrode provided on the piezoelectric substrate;
A first dielectric layer provided on the piezoelectric substrate so as to cover the comb electrodes;
A second dielectric layer provided on the first dielectric layer;
The velocity Vs of the transverse wave among the bulk waves propagating through the second dielectric layer is faster than the velocity V of the elastic wave mainly composed of the transverse wave excited by the comb electrode, and
The velocity V of the elastic wave excited in the comb electrode is slower than the velocity Vb of the slowest transverse wave among the bulk waves propagating through the piezoelectric substrate, and the cut angle of the rotating Y plate in the piezoelectric substrate is 15 degrees or more and 25. An elastic wave device that is less than or equal to degrees
前記圧電基板は、ニオブ酸リチウムであり、前記第1誘電体は酸化ケイ素である場合、
前記圧電基板の回転Y板のカット角をθ、前記櫛歯電極の密度の銅密度に対する比をa、前記櫛歯電極において励振される横波主体の弾性波の波長をλ、前記櫛歯電極の膜厚をh、前記第1誘電体層の膜厚をHとすると、
0.085λ/a<h<0.095λ/aの場合、H/λ>-0.0018θ+0.1909
0.095λ/a<h<0.105λ/aの場合、H/λ>-0.0014θ+0.1376
0.0105λ/a<h<0.115λ/aの場合、H/λ>-0.0013θ+0.1017
0.115λ/a<h<0.125λ/aの場合、H/λ>-0.0011θ+0.0754
0.125λ/a<h<0.135λ/aの場合、H/λ>-0.0009θ+0.0536
を満たす請求項1に記載の弾性波素子。
When the piezoelectric substrate is lithium niobate and the first dielectric is silicon oxide,
The cut angle of the rotating Y plate of the piezoelectric substrate is θ, the ratio of the density of the comb electrode to the copper density is a, the wavelength of the elastic wave mainly composed of the transverse wave excited in the comb electrode, λ, When the film thickness is h and the film thickness of the first dielectric layer is H,
When 0.085λ / a <h <0.095λ / a, H / λ> -0.0018θ + 0.1909
When 0.095λ / a <h <0.105λ / a, H / λ> -0.0014θ + 0.1376
When 0.0105λ / a <h <0.115λ / a, H / λ> -0.0013θ + 0.1017
When 0.115λ / a <h <0.125λ / a, H / λ> -0.0011θ + 0.0754
When 0.125λ / a <h <0.135λ / a, H / λ> -0.0009θ + 0.0536
The acoustic wave device according to claim 1, wherein:
請求項1の弾性波素子を用いた共振器。 A resonator using the acoustic wave device according to claim 1. 請求項1の弾性波素子を用いたフィルタ。 A filter using the acoustic wave device according to claim 1. 請求項4に記載のフィルタと、
前記フィルタに接続された半導体集積回路素子と、
前記半導体集積回路素子に接続された再生装置とを備えた電子機器。
A filter according to claim 4;
A semiconductor integrated circuit element connected to the filter;
An electronic apparatus comprising: a reproduction device connected to the semiconductor integrated circuit element.
JP2008116806A 2008-04-28 2008-04-28 Elastic wave device, resonator using the same, filter, and electronic device Active JP5125728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116806A JP5125728B2 (en) 2008-04-28 2008-04-28 Elastic wave device, resonator using the same, filter, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116806A JP5125728B2 (en) 2008-04-28 2008-04-28 Elastic wave device, resonator using the same, filter, and electronic device

Publications (2)

Publication Number Publication Date
JP2009267904A true JP2009267904A (en) 2009-11-12
JP5125728B2 JP5125728B2 (en) 2013-01-23

Family

ID=41393164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116806A Active JP5125728B2 (en) 2008-04-28 2008-04-28 Elastic wave device, resonator using the same, filter, and electronic device

Country Status (1)

Country Link
JP (1) JP5125728B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130006A (en) * 2009-12-15 2011-06-30 Taiyo Yuden Co Ltd Acoustic wave element, communication module and communication device
JP2011135245A (en) * 2009-12-24 2011-07-07 Panasonic Corp Elastic wave device, manufacturing method thereof, and electronic device using the same
CN102763327A (en) * 2010-02-17 2012-10-31 株式会社村田制作所 Acoustic wave device
JPWO2011074464A1 (en) * 2009-12-15 2013-04-25 株式会社村田製作所 Boundary acoustic wave device
JP2013538500A (en) * 2010-08-12 2013-10-10 エプコス アクチエンゲゼルシャフト Element operating with elastic wave with reduced frequency temperature dependence, and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070946A1 (en) * 2003-02-10 2004-08-19 Murata Manufacturing Co., Ltd. Elastic boundary wave device
WO2006114930A1 (en) * 2005-04-25 2006-11-02 Murata Manufacturing Co., Ltd. Boundary acoustic wave device
JP2007267366A (en) * 2006-02-28 2007-10-11 Fujitsu Media Device Kk Elastic boundary wave element, resonator and filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070946A1 (en) * 2003-02-10 2004-08-19 Murata Manufacturing Co., Ltd. Elastic boundary wave device
WO2006114930A1 (en) * 2005-04-25 2006-11-02 Murata Manufacturing Co., Ltd. Boundary acoustic wave device
JP2007267366A (en) * 2006-02-28 2007-10-11 Fujitsu Media Device Kk Elastic boundary wave element, resonator and filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130006A (en) * 2009-12-15 2011-06-30 Taiyo Yuden Co Ltd Acoustic wave element, communication module and communication device
JPWO2011074464A1 (en) * 2009-12-15 2013-04-25 株式会社村田製作所 Boundary acoustic wave device
JP5299521B2 (en) * 2009-12-15 2013-09-25 株式会社村田製作所 Boundary acoustic wave device
JP2011135245A (en) * 2009-12-24 2011-07-07 Panasonic Corp Elastic wave device, manufacturing method thereof, and electronic device using the same
CN102763327A (en) * 2010-02-17 2012-10-31 株式会社村田制作所 Acoustic wave device
JP2013538500A (en) * 2010-08-12 2013-10-10 エプコス アクチエンゲゼルシャフト Element operating with elastic wave with reduced frequency temperature dependence, and method for manufacturing the same
US9160303B2 (en) 2010-08-12 2015-10-13 Epcos Ag Component working with acoustic waves having reduced temperature coefficient of frequencies and method for producing same

Also Published As

Publication number Publication date
JP5125728B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5392258B2 (en) Sheet wave element and electronic device using the same
US9496846B2 (en) Acoustic wave device and electronic apparatus including same
JP4356613B2 (en) Boundary acoustic wave device
JPWO2018097016A1 (en) Elastic wave device
JP2006279609A (en) Elastic boundary wave element, resonator, and ladder filter
JP5125729B2 (en) Elastic wave device, filter and electronic device using the same
JPWO2005086345A1 (en) Boundary acoustic wave device
JP5125728B2 (en) Elastic wave device, resonator using the same, filter, and electronic device
JP3358688B2 (en) Surface acoustic wave device
KR20040048317A (en) Surface acoustic wave device and filter using the same
JPWO2009139108A1 (en) Boundary acoustic wave device
JP5891198B2 (en) Antenna duplexer and electronic device using the same
WO2018235875A1 (en) Elastic wave device, front end circuit, and communications device
JP4182157B2 (en) Surface wave device
JP2010088109A (en) Acoustic wave element, and electronic equipment using the same
JPWO2013081026A1 (en) Surface acoustic wave device
JP6798621B2 (en) Elastic wave device
JP4127170B2 (en) Surface wave device
JP4967393B2 (en) Surface acoustic wave device
JP6198536B2 (en) Elastic wave device and electronic device using the same
CN109417371B (en) Elastic wave device
US7999437B2 (en) Acoustic boundary wave device and electronic apparatus using the same
JP2006166466A (en) Surface wave device
JP2004040636A (en) Surface wave device
JP5316197B2 (en) Elastic wave element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5125728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250