JP2009265557A - Imaging optical system and electronic imaging apparatus having the same - Google Patents

Imaging optical system and electronic imaging apparatus having the same Download PDF

Info

Publication number
JP2009265557A
JP2009265557A JP2008118245A JP2008118245A JP2009265557A JP 2009265557 A JP2009265557 A JP 2009265557A JP 2008118245 A JP2008118245 A JP 2008118245A JP 2008118245 A JP2008118245 A JP 2008118245A JP 2009265557 A JP2009265557 A JP 2009265557A
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
positive
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008118245A
Other languages
Japanese (ja)
Other versions
JP5432472B2 (en
Inventor
Shinichi Mihara
伸一 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Imaging Corp
Original Assignee
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Imaging Corp filed Critical Olympus Imaging Corp
Priority to JP2008118245A priority Critical patent/JP5432472B2/en
Priority to PCT/JP2009/055754 priority patent/WO2009133736A1/en
Priority to CN2009801155312A priority patent/CN102016685B/en
Publication of JP2009265557A publication Critical patent/JP2009265557A/en
Priority to US12/925,841 priority patent/US8018659B2/en
Application granted granted Critical
Publication of JP5432472B2 publication Critical patent/JP5432472B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging optical system which is made thin in depth and short in an entire length though it has a high optical specification or performance such as a high zoom ratio, a wide viewing angle, a bright F value and satisfactorily corrected chromatic aberration. <P>SOLUTION: The imaging optical system has a first lens group G1 arranged most closely to an object side and having positive refractive power. The first lens group G1 has a catoptric element, and a lens component C1p arranged on the image side of the catoptric element and having positive refractive power. The lens component C1p is obtained by joining a negative lens LA and a positive lens LB, and the joined surface is aspherical. The imaging optical system satisfies a following expression (1). (1) 0.4<E/f12<2.0, where E is an air-conversion distance along an optical axis between a surface top Ct1 and a surface top Ct2, the surface top Ct1 is the surface top of a surface having the strongest negative refractive power of a refractive surface closer to the object side than the reflection surface of the catoptric element, the surface top Ct2 is the surface top of the joined surface of the lens component C1p, and f12 is the composite focal distance of all the lenses closer to the image side than the catoptric element out of the lenses constituting the first lens group G1. However, the composite focal distance is obtained when including an emitting surface, when the catoptric element has the emitting surface, and the emitting surface has refractive power. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、撮像モジュール等に使用される結像光学系(ズーム光学系)及び該結像光学系を有する電子撮像装置に関するものである。   The present invention relates to an imaging optical system (zoom optical system) used for an imaging module and the like, and an electronic imaging apparatus having the imaging optical system.

デジタルカメラは高画素数化(高画質化)や小型薄型化において実用レベルを達成し、機能的にも市場的にも銀塩35mmフィルムカメラにとって代わってしまった。そこで、次なる進化の方向の1つとして、そのままの小ささ薄さで高変倍比、広角化とともにさらなる高画素数化が強く求められている。   Digital cameras have achieved practical levels in terms of increasing the number of pixels (higher image quality) and reducing the size and thickness, and have been replaced by silver salt 35 mm film cameras, both functionally and commercially. Therefore, as one of the next evolution directions, there is a strong demand for further increase in the number of pixels as well as a high zoom ratio and a wide angle with the small size and thinness.

これまで光学系の薄型化に強いとして用いられてきた結像光学系として、例えば、物体側から最初のレンズ群に光路を折り曲げるための反射光学素子を用いたものがある。このような結像光学系を用いればカメラ筐体の奥行きを極めて薄くすることが可能である(特許文献1、特許文献2)。   As an imaging optical system that has been used so far as being strong in reducing the thickness of an optical system, for example, there is an optical system that uses a reflective optical element for bending an optical path from the object side to the first lens group. If such an imaging optical system is used, the depth of the camera housing can be extremely reduced (Patent Document 1 and Patent Document 2).

特許文献1や特許文献2の光学系では、最初のレンズ群の反射光学素子において、ある程度の画角を持った光束の進路を確実に折り曲げるようにしている。この場合、その画角に必要な広さの反射面を確保するために、第1レンズ群G1の光軸に沿った空気換算厚が必然的に厚くなってしまう。特に広角化すると、この部分の空気換算厚の増大が顕著になる。一方、前記空気換算厚が厚いほど反射面の広さが必要になる。   In the optical systems of Patent Document 1 and Patent Document 2, the path of a light beam having a certain angle of view is reliably bent in the reflective optical element of the first lens group. In this case, the air equivalent thickness along the optical axis of the first lens group G1 is inevitably increased in order to secure a reflecting surface having a width required for the angle of view. In particular, when the angle is increased, an increase in the air equivalent thickness of this portion becomes remarkable. On the other hand, the thicker the air equivalent thickness, the wider the reflection surface is required.

そこで、これらの光学系では、反射面の直前に負の屈折力、直後に正の屈折力を配して反射面の広さを小さくし、空気換算厚もある程度薄くしている。   Therefore, in these optical systems, a negative refracting power is provided immediately before the reflecting surface, and a positive refracting power is provided immediately after the reflecting surface to reduce the width of the reflecting surface, and the air equivalent thickness is also reduced to some extent.

特開2003−302576号公報JP 2003-302576 A 特開2004−264343号公報JP 2004-264343 A

しかしながら、この様な構成をとることにより、第1レンズ群G1は縮小アフォーカルコンバーターを必然的に保有することになる。そして、これにより以降の光学系の合成焦点距離を長くしてしまう。この結果、全体の光学系は、全長の長い結像光学系となる。特に、このことは、高倍率化すると顕著になる。
このような状態で、全長や厚みなどコンパクト化するためには、反射面前後の正の屈折力、負の屈折力ともにパワーを強くせざるを得ない。その結果、二次スペクトルや色の球面収差を著しく発生させてしまう。
However, by adopting such a configuration, the first lens group G1 necessarily has a reduction afocal converter. This lengthens the combined focal length of the subsequent optical system. As a result, the entire optical system becomes an imaging optical system having a long overall length. In particular, this becomes remarkable when the magnification is increased.
In order to reduce the overall length and thickness in such a state, it is necessary to increase both the positive and negative refractive powers before and after the reflecting surface. As a result, the secondary spectrum and the spherical aberration of the color are remarkably generated.

本発明では、色収差が良好に補正され、奥行きが薄く全長も短い結像光学系、該結像光学系を搭載した電子撮像装置を提供することを目的とする。   An object of the present invention is to provide an imaging optical system in which chromatic aberration is corrected well, the depth is small, and the entire length is short, and an electronic imaging apparatus equipped with the imaging optical system.

上記目的を達成するために、本発明の結像光学系は、最も物体側に配置され正の屈折力を有する第1レンズ群G1を備えた結像光学系であって、該第1レンズ群G1は反射光学素子と、該反射光学素子の像側に配置され正の屈折力を有するレンズ成分C1pを有し、該レンズ成分C1pは負レンズLAと正レンズLBとが接合され、その接合面が非球面であり、以下の条件式(1)を満足することを特徴とする。
0.4<E/f12<2.0 …(1)
ここで、
Eは面頂Ct1と面頂Ct2との間の光軸に沿った空気換算距離、
面頂Ct1は前記反射光学素子の反射面よりも物体側にある屈折面のうちで最も負の屈折力の強い面の面頂、
面頂Ct2は前記レンズ成分C1pの接合面の面頂、
f12は前記第1レンズ群G1を構成するレンズのうち、前記反射光学素子よりも像側にあるすべてのレンズによる合成焦点距離である。ただし、前記反射光学素子が射出面を有し該射出面が屈折力を有する場合は、該射出面を含んだときの合成焦点距離である。
In order to achieve the above object, an imaging optical system of the present invention is an imaging optical system including a first lens group G1 disposed on the most object side and having a positive refractive power, and the first lens group G1 includes a reflective optical element and a lens component C1p that is disposed on the image side of the reflective optical element and has a positive refractive power. The lens component C1p is formed by bonding a negative lens LA and a positive lens LB to each other. Is an aspherical surface and satisfies the following conditional expression (1).
0.4 <E / f12 <2.0 (1)
here,
E is the air equivalent distance along the optical axis between the top Ct1 and the top Ct2,
The surface top Ct1 is the surface top of the surface having the strongest negative refractive power among the refractive surfaces on the object side of the reflective surface of the reflective optical element,
Surface top Ct2 is the surface top of the cemented surface of the lens component C1p,
f12 is the combined focal length of all the lenses constituting the first lens group G1 that are closer to the image side than the reflective optical element. However, when the reflective optical element has an exit surface and the exit surface has a refractive power, it is a combined focal length when the exit surface is included.

また、本発明の電子撮像装置は、上述の結像光学系と、電子撮像素子と、前記結像光学系を通じて結像した像を前記電子撮像素子で撮像することによって得られた画像データを加工して前記像の形状を変化させた画像データとして出力する画像処理手段とを有し、前記結像光学系がズームレンズであり、該ズームレンズが、無限遠物点合焦時に以下の条件式(26)を満足することを特徴とする。
0.7<y07/(fw・tanω07w)<0.96 …(26)
ここで、
07は前記電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離(最大像高)をy10としたときy07=0.7y10として表され、
ω07wは広角端における前記撮像面上の中心からy07の位置に結ぶ像点に対応する物点方向の光軸に対する角度である。
The electronic imaging device of the present invention processes image data obtained by capturing an image formed through the imaging optical system, the electronic imaging element, and the imaging optical system with the electronic imaging element. Image processing means for outputting the image data with the shape of the image changed, and the imaging optical system is a zoom lens, and the zoom lens has the following conditional expression when focusing on an object point at infinity: (26) is satisfied.
0.7 <y 07 / (fw · tan ω 07w ) <0.96 (26)
here,
y 07 is expressed as y 07 = 0.7y 10 when the effective image pickup plane of the electronic imaging device the distance to the farthest point from the center in (imageable plane) (maximum image height) was y 10,
ω 07w is an angle with respect to the optical axis in the object point direction corresponding to the image point connecting from the center on the imaging surface to the position y 07 at the wide-angle end.

本発明では、色収差が良好に補正され、奥行きが薄く全長も短い結像光学系、該結像光学系を搭載した電子撮像装置を提供することが可能となる。   According to the present invention, it is possible to provide an imaging optical system in which chromatic aberration is corrected well, the depth is small, and the entire length is short, and an electronic imaging apparatus equipped with the imaging optical system.

実施例の説明に先立ち、本実施形態の結像光学系の作用効果について説明する。なお、以下の説明において、正(あるいは正の屈折力の)レンズ、負(あるいは負の屈折力の)レンズとは、それぞれ近軸焦点距離が正の値、負の値のレンズをさす。   Prior to the description of the examples, the effects of the imaging optical system of the present embodiment will be described. In the following description, a positive (or positive refractive power) lens and a negative (or negative refractive power) lens refer to a lens whose paraxial focal length is a positive value and a negative value, respectively.

本実施形態の結像光学系は、最も物体側に配置され、正の屈折力を有する第1レンズ群G1を有する結像光学系であって、第1レンズ群G1は反射光学素子と、反射光学素子の像側に配置され、正の屈折力を有するレンズ成分C1pを有し、レンズ成分C1pは負レンズLAと正レンズLBとが接合され、その接合面が非球面であり、以下の条件式(1)を満足することを特徴とする。
0.40<E/f12<2.0…(1)
ここで、
Eは面頂Ct1と面頂Ct2との間の光軸に沿った空気換算距離、
面頂Ct1は反射光学素子の反射面よりも物体側にある屈折面のうちで最も負の屈折力の強い面の面頂、
面頂Ct2はレンズ成分C1pの接合面の面頂、
f12は第1レンズ群G1を構成するレンズのうち、反射光学素子よりも像側にあるすべてのレンズによる合成焦点距離である。ただし、反射光学素子が射出面を有し該射出面が屈折力を有する場合は、該射出面を含んだときの合成焦点距離である。
The imaging optical system of the present embodiment is an imaging optical system that includes a first lens group G1 that is disposed closest to the object side and has a positive refractive power. The first lens group G1 includes a reflective optical element, a reflective optical element, and a reflective optical element. The lens component C1p is disposed on the image side of the optical element and has a positive refractive power. The lens component C1p is formed by cementing a negative lens LA and a positive lens LB, and its cemented surface is an aspheric surface. The expression (1) is satisfied.
0.40 <E / f12 <2.0 (1)
here,
E is the air equivalent distance along the optical axis between the top Ct1 and the top Ct2,
The surface top Ct1 is the surface top of the surface having the most negative refractive power among the refractive surfaces on the object side of the reflective surface of the reflective optical element,
Surface top Ct2 is the surface top of the cemented surface of lens component C1p
f12 is a combined focal length of all the lenses constituting the first lens group G1 on the image side with respect to the reflective optical element. However, when the reflecting optical element has an exit surface and the exit surface has a refractive power, it is the combined focal length when the exit surface is included.

条件式(1)の上限を上回ると、結像光学系の薄型化や全長短縮に支障をきたしやすくなる。条件式(1)の下限を下回ると、結像に寄与する光線(光束)にケラレが多く発生するので、画面周辺部に十分な光量が得られない。   If the upper limit of conditional expression (1) is exceeded, the imaging optical system is liable to be reduced in thickness and length. If the lower limit of conditional expression (1) is not reached, a large amount of vignetting will occur in the light rays (flux) contributing to image formation, so that a sufficient amount of light cannot be obtained at the periphery of the screen.

また、上記条件式(1)に代えて、(1’) を満足するのがより望ましい。
0.45<E/f12<1.7 …(1’)
さらに、上記条件式(1)に代えて、(1”) を満足すると最も良い。
0.50<E/f12<1.5 …(1”)
It is more desirable to satisfy (1 ′) instead of the conditional expression (1).
0.45 <E / f12 <1.7 (1 ')
Furthermore, it is best to satisfy (1 ″) instead of the conditional expression (1).
0.50 <E / f12 <1.5 (1 ")

また、本実施形態の結像光学系では、負レンズLAの材質はエネルギー硬化型樹脂であることが好ましい。そして、正レンズLB上に負レンズLAを直接成形する方式でレンズ成分C1pを形成することが好ましい。   In the imaging optical system of the present embodiment, the material of the negative lens LA is preferably an energy curable resin. The lens component C1p is preferably formed by directly molding the negative lens LA on the positive lens LB.

上述のように、レンズ成分C1pでは接合面が非球面になっている。このようなレンズ成分C1pは、非球面である正レンズLBの表面に樹脂を密着させ、その後にこの樹脂を硬化させることで実現できる。この場合、この樹脂が負レンズLAに相当する。なお、樹脂としては、例えばエネルギー硬化型透明樹脂などを用いれば良い。また、使用する樹脂は、特に高分散な光学特性を有する樹脂が良い。このように、樹脂を密着後に硬化させる方法は、レンズ要素を薄くするのに極めて有効である。   As described above, the cemented surface is aspherical in the lens component C1p. Such a lens component C1p can be realized by bringing a resin into close contact with the surface of the positive lens LB, which is an aspherical surface, and then curing the resin. In this case, this resin corresponds to the negative lens LA. For example, an energy curable transparent resin may be used as the resin. The resin used is particularly preferably a resin having highly dispersed optical characteristics. As described above, the method of curing the resin after adhesion is extremely effective for thinning the lens element.

なお、エネルギー硬化型透明樹脂の例としては紫外線硬化型樹脂がある。また、正レンズLBの表面には、あらかじめ表面処理(たとえばコーティング、塗布など)を行なっていてもかまわない。表面処理に用いる物質は、正レンズLBを形成する光学材料とは別の物質である。   An example of the energy curable transparent resin is an ultraviolet curable resin. Further, the surface of the positive lens LB may be subjected to surface treatment (for example, coating, coating, etc.) in advance. The substance used for the surface treatment is a substance different from the optical material forming the positive lens LB.

また、正レンズLBはガラスのような無機材料でもよい。ただし、負レンズLAが樹脂であることから、環境変化に対する光学性能の安定性を考慮すると、負レンズLAと同様に、正レンズLBは樹脂を基本とした材料であるほうがより好ましい。   The positive lens LB may be an inorganic material such as glass. However, since the negative lens LA is a resin, considering the stability of the optical performance against environmental changes, the positive lens LB is more preferably a resin-based material like the negative lens LA.

またレンズ成分C1pの他の構成としては、正レンズLBの表面に樹脂以外の光学材料を密着の後、硬化させてもよい。この場合、この光学材料が負レンズLAに相当する。なお、密着の際、光学材料は転移点以上の温度を有する状態になっている。また、光学材料は、特にガラスなど耐光性、耐薬品性等の耐性の面で有利な材料が良い。また、負レンズLA用材料の特性としては、正レンズLB用材料よりも融点、転移点が低いことが必要である。このように、光学材料を密着後に硬化させる方法は、レンズ要素を薄くするのに極めて有効である。   As another configuration of the lens component C1p, an optical material other than a resin may be adhered to the surface of the positive lens LB and then cured. In this case, this optical material corresponds to the negative lens LA. Note that the optical material is in a state of having a temperature equal to or higher than the transition point at the time of adhesion. The optical material is preferably a material that is advantageous in terms of resistance such as light resistance and chemical resistance, such as glass. Further, as the characteristics of the negative lens LA material, the melting point and the transition point are required to be lower than those of the positive lens LB material. As described above, the method of curing the optical material after adhesion is extremely effective for thinning the lens element.

なお、この方法においても、正レンズLBには、あらかじめ表面処理(たとえばコーティング、塗布など)を行なっていてもかまわない。表面処理に用いる物質は、正レンズLBを形成する光学材料とは別の物質である。   Even in this method, the positive lens LB may be subjected to surface treatment (for example, coating, application, etc.) in advance. The substance used for the surface treatment is a substance different from the optical material forming the positive lens LB.

また、本実施形態の結像光学系では、反射光学素子に、ミラーあるいはプリズムを用いることができる。ただし、ミラーよりもプリズムの方が光学系の小型化に有利である。よって、反射光学素子としては、プリズムを用いるのが好ましい。また、プリズムは、その媒質の屈折率が高いほど良い。特に、プリズムは、その屈折率が1.8以上であることが好ましい。   In the imaging optical system of this embodiment, a mirror or a prism can be used as the reflective optical element. However, the prism is more advantageous for downsizing the optical system than the mirror. Therefore, it is preferable to use a prism as the reflective optical element. In addition, the higher the refractive index of the medium, the better the prism. In particular, the prism preferably has a refractive index of 1.8 or more.

また、本実施形態の結像光学系では、下記条件式(2)を満足するのが好ましい。
1.60<nd(LB)<2.4 …(2)
ここで、nd(LB) は正レンズLBのd線に対する屈折率である。
In the imaging optical system of the present embodiment, it is preferable that the following conditional expression (2) is satisfied.
1.60 <nd (LB) <2.4 (2)
Here, nd (LB) is the refractive index of the positive lens LB with respect to the d line.

条件式(2)の下限を下回ると、光学系の小型化に支障をきたしやすくなる。また、条件式(2)の上限を上回ると、屈折面における反射防止が困難となる。   If the lower limit of conditional expression (2) is not reached, the optical system is likely to be downsized. If the upper limit of conditional expression (2) is exceeded, it will be difficult to prevent reflection on the refractive surface.

なお、上記条件式(2)に代えて、(2’)を満足するのがより望ましい。
1.65<nd(LB)<2.3 …(2’)
さらに、上記条件式(2)に代えて、(2”)を満足すると最も良い。
1.69<nd(LB)<2.2 …(2”)
It is more desirable to satisfy (2 ′) instead of the conditional expression (2).
1.65 <nd (LB) <2.3 (2 ′)
Furthermore, it is best to satisfy (2 ″) instead of the conditional expression (2).
1.69 <nd (LB) <2.2 (2 ")

また、本実施形態の結像光学系では、下記条件式(3)を満足するのが好ましい。
3<νd(LA)<35 …(3)
ここで、νd(LA) は負レンズLAのd線に対するアッベ数である。
In the imaging optical system of the present embodiment, it is preferable that the following conditional expression (3) is satisfied.
3 <νd (LA) <35 (3)
Here, νd (LA) is the Abbe number with respect to the d-line of the negative lens LA.

条件式(3)の下限を下回ると、面精度誤差や偏心による色収差変動量が無視できなくなる。また、製造が困難になりやすい。また、条件式(3)の上限を上回ると、C線とF線との色消しが困難となる。   If the lower limit of conditional expression (3) is not reached, the variation in chromatic aberration due to surface accuracy error and decentration cannot be ignored. In addition, manufacturing tends to be difficult. Moreover, when the upper limit of conditional expression (3) is exceeded, it becomes difficult to erase the C line and the F line.

また、上記条件式(3)に代えて、(3’)を満足するのがより望ましい。
6<νd(LA)<30 …(3’)
さらに、上記条件式(3)に代えて、(3”)を満足すると最も良い。
10<νd(LA)<25 …(3”)
It is more desirable to satisfy (3 ′) instead of the conditional expression (3).
6 <νd (LA) <30 (3 ′)
Furthermore, it is best to satisfy (3 ″) instead of the conditional expression (3).
10 <νd (LA) <25 (3 ″)

本実施形態の結像光学系は、最も物体側のレンズ群、すなわち第1レンズ群G1が正の屈折力を有する。このように構成された結像光学系の全長を短縮する場合、第1レンズ群G1の屈折力、特にレンズ成分C1pの屈折力を強める必要がある。レンズ成分C1pの屈折力を強めるには、正レンズLBの屈折力を強めれば良い。そこで、正レンズLBに、条件式(2)、(2’)、(2”)のいずれかを満足するような高屈折率の光学材料を使用するのが好ましい。   In the imaging optical system of the present embodiment, the lens group closest to the object side, that is, the first lens group G1, has a positive refractive power. In order to shorten the overall length of the imaging optical system configured in this way, it is necessary to increase the refractive power of the first lens group G1, particularly the refractive power of the lens component C1p. In order to increase the refractive power of the lens component C1p, the refractive power of the positive lens LB may be increased. Therefore, it is preferable to use an optical material having a high refractive index that satisfies any of the conditional expressions (2), (2 '), and (2 ") for the positive lens LB.

ただし、正レンズLBの屈折力を強めると、正レンズLBによる短波長域の軸上色収差、短波長域の球面収差が補正不足になりやすい。そこで、レンズ成分C1pにおいて、条件式(3)、(3’)、(3”)のいずれかを満足する高分散の負レンズLAを用いる。この負レンズLAを正レンズLBに対して接合してレンズ成分C1pを形成し、このレンズ成分C1pによって短波長域の軸上色収差を補正している。   However, when the refractive power of the positive lens LB is increased, the axial chromatic aberration in the short wavelength region and the spherical aberration in the short wavelength region due to the positive lens LB tend to be insufficiently corrected. Therefore, in the lens component C1p, a high-dispersion negative lens LA that satisfies any of the conditional expressions (3), (3 ′), and (3 ″) is used. The negative lens LA is cemented to the positive lens LB. Thus, the lens component C1p is formed, and the axial chromatic aberration in the short wavelength region is corrected by the lens component C1p.

また、本実施形態の結像光学系は、光軸方向をz、光軸に垂直な方向をhとする座標軸とし、Rを球面成分の光軸上における曲率半径、kを円錐定数、A、A、A、A10・・・を非球面係数として、非球面の形状を下記の式(4)で表すと共に、
偏倚量を下記の式(5)で表した場合、
以下の条件式(6a)または(6b)を満足することが望ましい。
C≦0のとき
ΔzC (h)<(ΔzA(h)+Δz(h))/2〈但し、h=2.5a〉 …(6a)
C≧0のとき
ΔzC (h)>(ΔzA(h)+Δz(h))/2〈但し、h=2.5a〉 …(6b)
ここで、
A は負レンズLAの空気接触面の形状であって、式(4)に従う形状、
B は正レンズLBの空気接触面の形状であって、式(4)に従う形状、
Cは接合面の形状であって、式(4)に従う形状、
ΔzAは負レンズLAの空気接触面における偏倚量であって、式(5)に従う量、
ΔzBは正レンズLBの空気接触面における偏倚量であって、式(5)に従う量、
ΔzC は接合面における偏倚量であって、式(5)に従う量、
Cは接合面の近軸曲率半径、
aは以下の(7)式に従う量、
a=(y10)2・log10γ/fw …(7)
また、式(7)において、
10 は最大像高、
fwは結像光学系の広角端における全系の焦点距離、
γは結像光学系におけるズーム比(望遠端での全系焦点距離/広角端での全系焦点距離)、
また、各面の面頂を原点とするため、常にz(0)=0である。
In the imaging optical system of the present embodiment, the coordinate axis is z where the optical axis direction is z and h is the direction perpendicular to the optical axis, R is the radius of curvature of the spherical component on the optical axis, k is the conic constant, and A 4 , A 6 , A 8 , A 10 ... As aspherical coefficients, and the shape of the aspherical surface is expressed by the following equation (4).
When the deviation amount is expressed by the following equation (5),
It is desirable that the following conditional expression (6a) or (6b) is satisfied.
When R C ≦ 0 Δz C (h) <(Δz A (h) + Δz B (h)) / 2 <where h = 2.5a> (6a)
When R C ≧ 0 Δz C (h)> (Δz A (h) + Δz B (h)) / 2 <where h = 2.5a> (6b)
here,
z A is the shape of the air contact surface of the negative lens LA, the shape according to equation (4),
z B is the shape of the air contact surface of the positive lens LB, and the shape according to equation (4),
z C is the shape of the joint surface, the shape according to equation (4),
Δz A is a deviation amount on the air contact surface of the negative lens LA, and is an amount according to the equation (5),
Δz B is a deviation amount on the air contact surface of the positive lens LB, and is an amount according to the equation (5),
Δz C is the amount of deviation in the joint surface, and is an amount according to equation (5),
R C is the paraxial radius of curvature of the joint surface,
a is an amount according to the following equation (7),
a = (y 10 ) 2 · log 10 γ / fw (7)
In the formula (7),
y 10 is the maximum image height,
fw is the focal length of the entire system at the wide angle end of the imaging optical system,
γ is the zoom ratio in the imaging optical system (total focal length at the telephoto end / total focal length at the wide angle end),
Since the top of each surface is the origin, z (0) = 0 is always set.

条件式(6a)又は(6b)を満足しない場合は、短波長域の球面収差の補正が十分に行えない。   When the conditional expression (6a) or (6b) is not satisfied, the spherical aberration in the short wavelength region cannot be sufficiently corrected.

さて、軸上色収差と倍率色収差に関しては、C線とF線の色消しを行なうだけでは不十分である。すなわち、g線、h線に対しても色収差の発生を抑えなくてはならない。g線、h線に対して色収差が十分補正できない場合は、画像の鮮鋭性やコントラストを損ねることになる。あるいは、照度差の大きな部位(エッジ部)がある画像では、この部位の近傍に色にじみを発生しやすい。   Now, with regard to axial chromatic aberration and lateral chromatic aberration, it is not sufficient to simply achromatic the C line and the F line. That is, the occurrence of chromatic aberration must be suppressed for the g-line and h-line. If the chromatic aberration cannot be sufficiently corrected for the g-line and h-line, the sharpness and contrast of the image are impaired. Alternatively, in an image having a portion (edge portion) with a large difference in illuminance, color blur is likely to occur in the vicinity of this portion.

そこで、本実施形態の結像光学系では、横軸をνd、及び縦軸をθgFとする直交座標系において、
θgF=α×νd+β(但し、α=−0.00163)
で表される直線を設定したときに、以下の条件式(8)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、前述の条件式(3)で定まる領域との両方の領域に、レンズ成分C1pを構成する少なくとも一つの負レンズLAのθgF及びνdが含まれるようにすると良い。
0.5000<β<0.7250 …(8)
ここで、θgFは部分分散比(ng−nF)/(nF−nC)、νdはアッベ数(nd−1)/(nF−nC)、nd、nC、nF、ngは各々d線、C線、F線、g線の屈折率をそれぞれ表す。
Therefore, in the imaging optical system of the present embodiment, in an orthogonal coordinate system in which the horizontal axis is νd and the vertical axis is θgF,
θgF = α × νd + β (where α = −0.00163)
When the straight line represented by is set, the region defined by the straight line when the range is the lower limit of the range of the following conditional expression (8) and the straight line when the upper limit is set, and the conditional expression (3) described above It is preferable that θgF and νd of at least one negative lens LA constituting the lens component C1p are included in both the fixed region and the region.
0.5000 <β <0.7250 (8)
Here, θgF is a partial dispersion ratio (ng−nF) / (nF−nC), νd is an Abbe number (nd−1) / (nF−nC), nd, nC, nF, and ng are d line and C line, respectively. , F-line, and g-line refractive indexes.

条件式(8)の上限値を上回ると、二次スペクトルによる軸上色収差、つまりF線とC線で色消しをしたときのg線の軸上色収差補正が十分でなくなる。そのため、特に望遠側の撮像で得た画像において、画面全体に亘り鮮鋭さを確保しづらい。条件式(8)の下限値を下回ると、二次スペクトルによる倍率色収差、つまりF線とC線で色消しをしたときのg線の倍率色収差補正が十分でなくなる。そのため、撮像で得た画像において、画像周辺部の鮮鋭さを確保しづらい。   If the upper limit of conditional expression (8) is exceeded, axial chromatic aberration due to the secondary spectrum, that is, correction of axial chromatic aberration of the g-line when achromaticity is applied to the F-line and C-line, will not be sufficient. Therefore, it is difficult to ensure sharpness over the entire screen, particularly in an image obtained by imaging on the telephoto side. If the lower limit value of conditional expression (8) is not reached, lateral chromatic aberration due to the secondary spectrum, that is, lateral chromatic aberration correction for the g-line when the F-line and C-line are achromatic will be insufficient. Therefore, it is difficult to ensure the sharpness of the peripheral portion of the image in the image obtained by imaging.

なお、条件式(8)に代えて、次の条件式(8’)を満足すると、より好ましい。
0.5900<β<0.6600 …(8’)
さらに、条件式(8)に代えて、次の条件式(8”)を満足すると、より一層好ましい。
0.6100<β<0.6600 …(8”)
It is more preferable that the following conditional expression (8 ′) is satisfied instead of conditional expression (8).
0.5900 <β <0.6600 (8 ′)
Furthermore, it is more preferable that the following conditional expression (8 ″) is satisfied instead of conditional expression (8).
0.6100 <β <0.6600 (8 ″)

また、本実施形態の結像光学系では、上記の直交座標とは別の、横軸をνd、及び縦軸をθhgとする直交座標系において、
θhg=αhg×νd+βhg(但し、αhg=−0.00225)
で表される直線を設定したときに、以下の条件式(9)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、前述の条件式(3)で定まる領域との両方の領域に、レンズ成分C1pを構成する少なくとも一つの負レンズLAのθhg及びνdが含まれるようにすると良い。
0.4000<βhg<0.7000 …(9)
ここで、θhgは部分分散比(nh−ng)/(nF−nC)、nhはh線の屈折率をそれぞれ表す。
Further, in the imaging optical system of the present embodiment, in an orthogonal coordinate system having a horizontal axis νd and a vertical axis θhg, which is different from the orthogonal coordinate,
θhg = αhg × νd + βhg (where αhg = −0.00225)
When the straight line represented by is set, the region defined by the straight line when the range is the lower limit of the range of the following conditional expression (9) and the straight line when the upper limit is set, and the conditional expression (3) described above It is preferable that θhg and νd of at least one negative lens LA constituting the lens component C1p are included in both the fixed region and the region.
0.4000 <βhg <0.7000 (9)
Here, .theta.hg represents the partial dispersion ratio (nh-ng) / (nF-nC), and nh represents the refractive index of the h-line.

条件式(9)の上限値を上回ると、二次スペクトルによる軸上色収差、つまりF線とC線で色消しをしたときのh線の軸上色収差補正が十分でなくなる。そのため、特に望遠側の撮像で得た画像において、画面全体に亘り紫の色フレア、色にじみが発生しやすい。条件式(9)の下限値を下回ると、二次スペクトルによる倍率色収差、つまりF線とC線で色消しをしたときのh線の倍率色収差補正が十分でなくなる。そのため、撮像した画像において、画像周辺部に紫の色フレア、色にじみが発生しやすい。   If the upper limit value of conditional expression (9) is exceeded, axial chromatic aberration due to the secondary spectrum, that is, correction of axial chromatic aberration of the h-line when achromatization is performed with the F-line and C-line will not be sufficient. Therefore, particularly in an image obtained by imaging on the telephoto side, purple color flare and color blur tend to occur over the entire screen. If the lower limit value of conditional expression (9) is not reached, the lateral chromatic aberration due to the secondary spectrum, that is, the lateral chromatic aberration correction for the h-line when the F-line and C-line are achromatic will be insufficient. Therefore, in the captured image, purple color flare and color blur are likely to occur in the periphery of the image.

なお、条件式(9)に代えて、次の条件式(9’)を満足すると、より好ましい。
0.4500<βhg<0.6400 …(9’)
さらに、条件式(9)に代えて、次の条件式(9”)を満足すると、より一層好ましい。
0.5200<βhg<0.5850 …(9”)
It is more preferable that the following conditional expression (9 ′) is satisfied instead of conditional expression (9).
0.4500 <βhg <0.6400 (9 ′)
Furthermore, it is more preferable that the following conditional expression (9 ″) is satisfied instead of conditional expression (9).
0.5200 <βhg <0.5850 (9 ″)

また、本実施形態の結像光学系では、横軸をνd、及び縦軸をθgFとする上記の直交座標系において、
θgF=α×νd+β’(但し、α=−0.00163)
で表される直線を設定したときに、以下の条件式(10)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、以下の条件式(11)で定まる領域との両方の領域に、所定のレンズのθgF及びνdが含まれるようにするとよい。
0.6100<β’<0.9000 …(10)
27<νd<65 …(11)
ここで、所定のレンズとは、レンズ成分C1pを構成する少なくとも一つの正レンズLB、又はレンズ群G1の別の正レンズ要素であり、θgFは部分分散比(ng−nF)/(nF−nC)、νdはアッベ数(nd−1)/(nF−nC)、nd、nC、nF、ngは各々d線、C線、F線、g線の屈折率をそれぞれ表す。
In the imaging optical system of the present embodiment, in the orthogonal coordinate system in which the horizontal axis is νd and the vertical axis is θgF,
θgF = α × νd + β ′ (where α = −0.00163)
When the straight line represented by is set, the area defined by the straight line when it is the lower limit value and the straight line when it is the upper limit value of the range of the following conditional expression (10), and the following conditional expression (11) It is preferable that θgF and νd of a predetermined lens are included in both of the fixed region and the fixed region.
0.6100 <β ′ <0.9000 (10)
27 <νd <65 (11)
Here, the predetermined lens is at least one positive lens LB constituting the lens component C1p, or another positive lens element of the lens group G1, and θgF is a partial dispersion ratio (ng−nF) / (nF−nC). ), .Nu.d is the Abbe number (nd-1) / (nF-nC), and nd, nC, nF, and ng are the refractive indexes of the d-line, C-line, F-line, and g-line, respectively.

条件式(10)の上限値を上回ると、二次スペクトルによる倍率色収差、つまりF線とC線で色消しをしたときのg線の倍率色収差補正が十分でなくなる。そのため、撮像で得た画像において、画像周辺部の鮮鋭さを確保しづらい。条件式(10)の下限値を下回ると、二次スペクトルによる軸上色収差、つまりF線とC線で色消しをしたときのg線の軸上色収差補正が十分でなくなる。そのため、特に望遠側での撮像で得た画像において、画面全体に亘り鮮鋭さを確保しづらい。   If the upper limit value of conditional expression (10) is exceeded, lateral chromatic aberration due to the secondary spectrum, that is, g-line lateral chromatic aberration correction when the F-line and C-line are achromatic will be insufficient. Therefore, it is difficult to ensure the sharpness of the peripheral portion of the image in the image obtained by imaging. If the lower limit value of conditional expression (10) is not reached, axial chromatic aberration due to the secondary spectrum, that is, g-axis axial chromatic aberration correction when achromatic with the F-line and C-line will be insufficient. Therefore, it is difficult to ensure sharpness over the entire screen, particularly in an image obtained by imaging on the telephoto side.

また、条件式(11)の上限値を上回ると、F線とC線との色消しが出来たとしても、ザイデルの5収差に対する補正効果が少なくなる。条件式(11)の下限値を下回ると、F線とC線との色消し自体が困難となる。   If the upper limit of conditional expression (11) is exceeded, the correction effect for Seidel's five aberrations will be reduced even if the F-line and C-line can be achromatic. If the lower limit of conditional expression (11) is not reached, it will be difficult to erase the F line and the C line.

なお、条件式(10)に代えて、次の条件式(10’)を満足すると、より好ましい。
0.6200<β<0.8500 …(10’)
さらに、条件式(10)に代えて、次の条件式(10”)を満足すると、より一層好ましい。
0.6250<β<0.8000 …(10”)
It is more preferable that the following conditional expression (10 ′) is satisfied instead of conditional expression (10).
0.6200 <β <0.8500 (10 ′)
Furthermore, it is more preferable that the following conditional expression (10 ″) is satisfied instead of conditional expression (10).
0.6250 <β <0.8000 (10 ″)

なお、条件式(11)に代えて、次の条件式(11’)を満足すると、より好ましい。
30<νd<60…(11’)
さらに、条件式(11)に代えて、次の条件式(11”)を満足すると、より一層好ましい。
35<νd<55…(11”)
It is more preferable that the following conditional expression (11 ′) is satisfied instead of conditional expression (11).
30 <νd <60 (11 ′)
Furthermore, it is more preferable that the following conditional expression (11 ″) is satisfied instead of conditional expression (11).
35 <νd <55 (11 ″)

また、本実施形態の結像光学系では、横軸をνd、及び縦軸をθhgとする上記の直交座標系において、
θhg=αhg×νd+βhg’(但し、αhg=−0.00225)
で表される直線を設定したときに、以下の条件式(12)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、以下の条件式(11)で定まる領域との両方の領域に、所定のレンズのθhg及びνdが含まれるようにすると良い。
0.5000<βhg’<0.9000 …(12)
27<νd<65 …(11)
ここで、所定のレンズとは、レンズ成分C1pを構成する少なくとも一つの正レンズLB、又はレンズ群G1の別の正レンズ要素であり、θhgは部分分散比(nh−ng)/(nF−nC)、nhはh線の屈折率をそれぞれ表す。
In the imaging optical system of the present embodiment, in the orthogonal coordinate system in which the horizontal axis is νd and the vertical axis is θhg,
θhg = αhg × νd + βhg ′ (where αhg = −0.00225)
When the straight line represented by is set, the area defined by the straight line when the range is the lower limit of the range of the following conditional expression (12) and the straight line when the upper limit is set, and the following conditional expression (11) It is preferable that θhg and νd of a predetermined lens are included in both of the fixed region and the fixed region.
0.5000 <βhg ′ <0.9000 (12)
27 <νd <65 (11)
Here, the predetermined lens is at least one positive lens LB constituting the lens component C1p, or another positive lens element of the lens group G1, and θhg is a partial dispersion ratio (nh−ng) / (nF−nC). Nh represents the refractive index of the h-line.

条件式(12)の上限値を上回ると、二次スペクトルによる倍率色収差、つまりF線とC線で色消しをしたときのh線の倍率色収差補正が十分でなくなる。そのため、撮像で得た画像において、画像周辺部に紫の色フレア、色にじみが発生しやすい。条件式(12)の下限値を下回ると、二次スペクトルによる軸上色収差、つまりF線とC線で色消しをしたときのh線の軸上色収差補正が十分でなくなる。そのため、特に望遠側での撮像で得た画像において、画面全体に亘り紫の色フレア、色にじみが発生しやすい。   If the upper limit value of conditional expression (12) is exceeded, lateral chromatic aberration due to the secondary spectrum, that is, lateral chromatic aberration correction for the h-line when achromaticity is applied to the F-line and C-line will not be sufficient. Therefore, in an image obtained by imaging, purple color flare and color blur are likely to occur in the periphery of the image. If the lower limit value of conditional expression (12) is not reached, axial chromatic aberration due to the secondary spectrum, that is, correction of axial chromatic aberration of the h-line when achromatization is performed with the F-line and C-line will not be sufficient. Therefore, particularly in an image obtained by imaging on the telephoto side, purple color flare and color blur tend to occur over the entire screen.

なお、条件式(12)に代えて、次の条件式(12’)を満足すると、より好ましい。
0.5500<βhg<0.8700 …(12’)
さらに、条件式(12)に代えて、次の条件式(12”)を満足すると、より一層好ましい。
0.5600<βhg<0.8500 …(12”)
It is more preferable that the following conditional expression (12 ′) is satisfied instead of conditional expression (12).
0.5500 <βhg <0.8700 (12 ′)
Furthermore, it is more preferable that the following conditional expression (12 ″) is satisfied instead of conditional expression (12).
0.5600 <βhg <0.8500 (12 ″)

また、本実施形態の結像光学系は、以下の条件式(13)を満足するのが好ましい。
−0.06≦θgF(LA)−θgF(LB)≦0.18 …(13)
ここで、θgF(LA)は負レンズLAの部分分散比(ng−nF)/(nF−nC)、θgF(LB)は正レンズLBの部分分散比(ng−nF)/(nF−nC)である。
Moreover, it is preferable that the imaging optical system of this embodiment satisfies the following conditional expression (13).
−0.06 ≦ θgF (LA) −θgF (LB) ≦ 0.18 (13)
Here, θgF (LA) is the partial dispersion ratio (ng−nF) / (nF−nC) of the negative lens LA, and θgF (LB) is the partial dispersion ratio (ng−nF) / (nF−nC) of the positive lens LB. It is.

この場合、負レンズ(負レンズLA)と正レンズ(正レンズLB)の組み合わせとなるので、色収差の補正が良好に行える。特に、この組み合わせで上記条件を満足すると、二次スペクトル(色収差)に対する補正効果が大きくなる。その結果、撮像で得た画像において鮮鋭性が増す。   In this case, since a negative lens (negative lens LA) and a positive lens (positive lens LB) are combined, chromatic aberration can be corrected satisfactorily. In particular, when the above condition is satisfied with this combination, the correction effect on the secondary spectrum (chromatic aberration) increases. As a result, sharpness increases in an image obtained by imaging.

また、上記条件式(13)に代えて、(13’)を満足するのがより望ましい。
−0.03≦θgF(LA)−θgF(LB)≦0.14 …(13’)
さらに、上記条件式(13)に代えて、(13”)を満足すると最も良い。
0.00≦θgF(LA)−θgF(LB)≦0.10 …(13”)
It is more desirable to satisfy (13 ′) instead of the conditional expression (13).
−0.03 ≦ θgF (LA) −θgF (LB) ≦ 0.14 (13 ′)
Furthermore, it is best to satisfy (13 ″) instead of the conditional expression (13).
0.00 ≦ θgF (LA) −θgF (LB) ≦ 0.10 (13 ″)

また、本実施形態の結像光学系は、以下の条件式(14)を満足するのが好ましい。
−0.10≦θhg(LA)−θhg(LB)≦0.24 …(14)
ここで、θhg(LA)は負レンズLAの部分分散比(nh−ng)/(nF−nC)、θhg(LB)は正レンズLBの部分分散比(nh−ng)/(nF−nC)である。
Moreover, it is preferable that the imaging optical system of this embodiment satisfies the following conditional expression (14).
−0.10 ≦ θhg (LA) −θhg (LB) ≦ 0.24 (14)
Where θhg (LA) is the partial dispersion ratio (nh-ng) / (nF-nC) of the negative lens LA, and θhg (LB) is the partial dispersion ratio (nh-ng) / (nF-nC) of the positive lens LB. It is.

この場合、負レンズ(負レンズLA)と正レンズ(正レンズLB)の組み合わせとなるので、色収差の補正が良好に行える。特に、この組み合わせで上記条件を満足すると、撮像で得た画像において、色フレア、色にじみを軽減できる。   In this case, since it is a combination of a negative lens (negative lens LA) and a positive lens (positive lens LB), chromatic aberration can be corrected satisfactorily. In particular, when the above conditions are satisfied with this combination, color flare and color blur can be reduced in an image obtained by imaging.

また、上記条件式(14)に代えて、(14’) を満足するのがより望ましい。
−0.05≦θhg(LA)−θhg(LB)≦0.19 …(14’)
さらに、上記条件式(14)に代えて、(14”) を満足すると最も良い。
0.00≦θhg(LA)−θhg(LB)≦0.14 …(14”)
It is more desirable to satisfy (14 ′) instead of the conditional expression (14).
−0.05 ≦ θhg (LA) −θhg (LB) ≦ 0.19 (14 ′)
Further, it is best to satisfy (14 ″) instead of the conditional expression (14).
0.00 ≦ θhg (LA) −θhg (LB) ≦ 0.14 (14 ″)

また、本実施形態の結像光学系は、以下の条件式(15)を満足するのが好ましい。
νd(LA)−νd(LB)≦−5 …(15)
ここで、νd(LA)負レンズLAのアッベ数(nd−1)/(nF−nC)、νd(LB)は正レンズLBのアッベ数(nd−1)/(nF−nC)である。
Moreover, it is preferable that the imaging optical system of this embodiment satisfies the following conditional expression (15).
νd (LA) −νd (LB) ≦ −5 (15)
Here, νd (LA) is the Abbe number (nd−1) / (nF−nC) of the negative lens LA, and νd (LB) is the Abbe number (nd−1) / (nF−nC) of the positive lens LB.

この場合、負レンズ(負レンズLA)と正レンズ(正レンズLB)の組み合わせとなるので、色収差の補正が良好に行える。特に、この組み合わせで上記条件を満足すると、軸上色収差、倍率色収差のうちのC線とF線の色消しがしやすい。   In this case, since it is a combination of a negative lens (negative lens LA) and a positive lens (positive lens LB), chromatic aberration can be corrected satisfactorily. In particular, when the above condition is satisfied with this combination, the C-line and F-line among the longitudinal chromatic aberration and the lateral chromatic aberration are easily erased.

また、上記条件式(15)に代えて、(15’) を満足するのがより望ましい。
νd(LA)−νd(LB)≦−10 …(15’)
さらに、上記条件式(15)に代えて、(15”) を満足すると最も良い。
νd(LA)−νd(LB)≦−15 …(15”)
It is more desirable to satisfy (15 ′) instead of the conditional expression (15).
νd (LA) −νd (LB) ≦ −10 (15 ′)
Further, it is best to satisfy (15 ″) instead of the conditional expression (15).
νd (LA) −νd (LB) ≦ −15 (15 ″)

なお、レンズ成分C1pが3枚以上のレンズで構成されている場合は、負レンズのうちθgFの値が最も小さい負レンズをLAとし、正レンズのうちθgFの値が最も大きい正レンズをLBとする。   When the lens component C1p is composed of three or more lenses, the negative lens having the smallest θgF value among negative lenses is denoted by LA, and the positive lens having the largest θgF value among positive lenses is denoted by LB. To do.

ここで、硝材とは、ガラス、樹脂等のレンズ材料のことをいう。また、接合レンズ(レンズ成分C1pを含む)には、これらの硝材から適宜選択されたレンズが用いられる。   Here, the glass material means a lens material such as glass or resin. For the cemented lens (including the lens component C1p), a lens appropriately selected from these glass materials is used.

次に、本実施形態の結像光学系について述べる。
本実施形態の結像光学系は5群構成または6群構成である。また、最も物体側のレンズ群G1が正の屈折力を有する5群構成または6群構成の結像光学系における屈折力配置は、以下の3つである。
正・負・(正)・正・負・正
正・負・(正)・正・正・正
正・負・(正)・正・正・負
なお、(正)のレンズ群がある場合が6群構成であり、ない場合が5群構成である。開口絞りは物体側から2番目のレンズ群の像側より、物体側から4番目のレンズ群の物体側までのいずれかの空間に配置される。また、開口絞りは、レンズ群とは独立である場合もあれば、そうでない場合もある。
Next, the imaging optical system of this embodiment will be described.
The imaging optical system of the present embodiment has a 5-group configuration or a 6-group configuration. Further, there are the following three refractive power arrangements in the imaging optical system having the 5-group configuration or the 6-group configuration in which the most object side lens group G1 has a positive refractive power.
Positive, negative, (positive), positive, negative, positive positive, negative, (positive), positive, positive, positive positive, negative, (positive), positive, positive, negative When there is a (positive) lens group Is a 6-group configuration, and when there is no 5-group configuration. The aperture stop is disposed in any space from the image side of the second lens group from the object side to the object side of the fourth lens group. The aperture stop may or may not be independent of the lens group.

本実施形態の結像光学系は、正・負・正・正の屈折力配置、あるいは正・負・正・負の屈折力配置を基本構成としているといえる。例えば、5群構成の結像光学系は、正・負・正・正、あるいは正・負・正・負の4群構成の結像光学系を変形した光学系とみなすことができる。すなわち、正・負・正・正の4群構成の結像光学系の像側に正又は負のレンズ群を、あるいは正・負・正・負の4群構成の結像光学系の像側に正のレンズ群を配置したとみなすこともできる。さらに、6群構成の場合は、5群構成における物体側から最初の負のレンズ群と2番目の正のレンズ群の間に正のレンズ群を配置したとみなすことが出来る。   It can be said that the imaging optical system of the present embodiment has a basic configuration of positive / negative / positive / positive refractive power arrangement or positive / negative / positive / negative refractive power arrangement. For example, a five-group imaging optical system can be regarded as a modified optical system of a positive, negative, positive, positive, or positive, negative, positive, negative four-group imaging optical system. That is, a positive or negative lens group on the image side of a positive, negative, positive, positive four-group imaging optical system, or an image side of a positive, negative, positive, negative four-group imaging optical system It can also be considered that a positive lens group is arranged in the. Further, in the case of the 6-group configuration, it can be considered that a positive lens group is arranged between the first negative lens group and the second positive lens group from the object side in the 5-group configuration.

正・負・正・正の屈折力配置が基本構成の場合、最も物体側に正の屈折力を有する第1レンズ群G1が配置されている。また、この構成では、第1レンズ群G1には、レンズ成分C1pが配置されている。さらに、条件式(1)または(1’)または(1”)を満たす。   When the positive, negative, positive, and positive refractive power arrangement is the basic configuration, the first lens group G1 having the positive refractive power closest to the object side is arranged. In this configuration, the lens component C1p is disposed in the first lens group G1. Furthermore, the conditional expression (1) or (1 ′) or (1 ″) is satisfied.

また、このレンズ成分C1pには、負レンズLAが用いられている。この負レンズLAは、条件式(8)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、条件式(3)で定まる領域との両方の領域に、そのθgF及びνdが含まれるレンズである。なお、負レンズLAは、条件式(3’)と条件式(8’)もしくは条件式(3”)と条件式(8”)で定まる領域に、そのθgF及びνdが含まれるレンズであっても良い。   A negative lens LA is used for the lens component C1p. The negative lens LA has both a region defined by a straight line when the lower limit value of the range of the conditional expression (8) and a straight line when the upper limit value are satisfied, and a region determined by the conditional expression (3). The lens includes θgF and νd. The negative lens LA is a lens in which θgF and νd are included in a region defined by the conditional expression (3 ′) and the conditional expression (8 ′) or the conditional expression (3 ″) and the conditional expression (8 ″). Also good.

また、レンズ成分C1pには、負レンズLAに正レンズLBが接合されている。と正レンズLBは条件式(2)または(2’)または(2”)を満たすレンズである。   Further, a positive lens LB is cemented to the negative lens LA in the lens component C1p. The positive lens LB is a lens that satisfies the conditional expression (2) or (2 ') or (2 ").

また、レンズ成分C1pは正の屈折力を有しているほうが良い。また、レンズ成分C1pの各面(空気接触面、接合面)は条件式(6a)又は(6b)を満足することが好ましい。   The lens component C1p should have a positive refractive power. Moreover, it is preferable that each surface (air contact surface, cemented surface) of the lens component C1p satisfies the conditional expression (6a) or (6b).

また、レンズ成分C1pの物体側には、結像光学系の光路に沿って、反射光学素子が配置されている。この反射光学素子は、物体側から順に、入射面、反射面、射出面を有するプリズムであるのが好ましい。なお、プリズムの入射面のすぐ物体側に、負の屈折力を有する面が存在すると良い。あるいは、プリズムの入射面自身が負の屈折力を有していても良い。その場合は、プリズムの入射面の物体側に負の屈折力を有する面はなくても良い。また、プリズムの入射面か射出面の少なくとも一方は平面であることが望ましい。   Further, on the object side of the lens component C1p, a reflective optical element is disposed along the optical path of the imaging optical system. The reflective optical element is preferably a prism having an incident surface, a reflective surface, and an exit surface in order from the object side. It should be noted that a surface having negative refractive power is preferably present immediately on the object side of the incident surface of the prism. Alternatively, the incident surface of the prism itself may have a negative refractive power. In that case, there may be no surface having negative refractive power on the object side of the incident surface of the prism. Further, it is desirable that at least one of the incident surface and the exit surface of the prism is a flat surface.

また、本実施形態の結像光学系は、負の屈折力を有すると共に変倍時可動の第2レンズ群G2を備え、以下の条件式(16)を満足するのが好ましい。なお、この第2レンズ群G2は、物体側から2番目のレンズ群である。
−1.2<β2w<−0.3 …(16)
但し、β2w は第2レンズ群G2の広角端における結像倍率であって、広角端における結像光学系全系の結像倍率の絶対値が0.01以下となるいずれかの物点に合焦したときの結像倍率である。
In addition, it is preferable that the imaging optical system of the present embodiment includes the second lens group G2 that has negative refractive power and is movable during zooming, and satisfies the following conditional expression (16). The second lens group G2 is the second lens group from the object side.
−1.2 <β 2w <−0.3 (16)
However, β 2w is the imaging magnification at the wide-angle end of the second lens group G2, and is at any object point where the absolute value of the imaging magnification of the entire imaging optical system at the wide-angle end is 0.01 or less. This is the imaging magnification when focused.

条件式(16)の下限を下回ると、第2レンズ群G2以外のレンズ群に変倍を分担させも、変倍効率を上げることが困難になる。その結果、光学系を小型化することが困難となる。条件式(16)の上限を上回ると、第2レンズ群G2自身の移動による変倍効率が悪化する。この場合も、光学系を小型化することが困難となる。なお、変倍効率は、レンズ群の移動量と変倍量の比で表される。例えば、レンズ群の移動量が少なくて変倍が大きい場合、変倍効率が高いということになる。   If the lower limit of conditional expression (16) is not reached, it will be difficult to increase the zooming efficiency even if the lens group other than the second lens group G2 shares the zooming. As a result, it is difficult to reduce the size of the optical system. If the upper limit of conditional expression (16) is exceeded, the zooming efficiency due to the movement of the second lens group G2 itself deteriorates. Also in this case, it is difficult to reduce the size of the optical system. The zooming efficiency is represented by the ratio between the moving amount of the lens unit and the zooming amount. For example, when the moving amount of the lens group is small and the zooming is large, the zooming efficiency is high.

また、上記条件式(16)に代えて、(16’) を満足するのがより望ましい。
−1.1<β2w<−0.4 …(16’)
さらに、上記条件式(16)に代えて、(16”) を満足すると最も良い。
−1.0<β2w<−0.5 …(16”)
It is more desirable to satisfy (16 ′) instead of the conditional expression (16).
−1.1 <β 2w <−0.4 (16 ′)
Further, it is best to satisfy (16 ″) instead of the conditional expression (16).
−1.0 <β 2w <−0.5 (16 ″)

また、本実施形態の結像光学系は、第2レンズ群G2に続き、正の屈折力を有する第3レンズ群G3と正の屈折力を有する第4レンズ群G4を有し、以下の条件式(17)を満たすのが好ましい。
−1.8<β34w<−0.3 …(17)
ここで、β34w は第3レンズ群G3と第4レンズ群G4の広角端における合成系の結像倍率であって、広角端における結像光学系全系の結像倍率の絶対値が0.01以下となるいずれかの物点に合焦したときの結像倍率である。
Further, the imaging optical system of the present embodiment has a third lens group G3 having a positive refractive power and a fourth lens group G4 having a positive refractive power following the second lens group G2, and the following conditions It is preferable to satisfy Expression (17).
−1.8 <β 34w <−0.3 (17)
Here, β 34w is the imaging magnification of the composite system at the wide-angle end of the third lens group G3 and the fourth lens group G4, and the absolute value of the imaging magnification of the entire imaging optical system at the wide-angle end is 0. This is the imaging magnification when focusing on any object point of 01 or less.

5群構成の結像光学系において、第3レンズ群G3は物体側から3番目のレンズ群である。また、第3レンズ群G3は、正のレンズ群としては物体側から2番目のレンズ群となる。一方、第4レンズ群G4は物体側から4番目のレンズ群である。また、第4レンズ群G4は、正のレンズ群としては物体側から3番目となる。   In the imaging optical system having a five-group configuration, the third lens group G3 is the third lens group from the object side. The third lens group G3 is the second lens group from the object side as a positive lens group. On the other hand, the fourth lens group G4 is the fourth lens group from the object side. The fourth lens group G4 is the third positive lens group from the object side.

条件式(17)の下限を下回ると、変倍作用をレンズ群G2に分担させたとしても、変倍の効率を上げることが困難になる。その結果、光学系を小型化することが困難となる。条件式(17)の上限を上回ると、第3レンズ群G3、第4レンズ群G4自身の移動による変倍効率が悪化する。この場合も、光学系を小型化することが困難となる。   If the lower limit of conditional expression (17) is not reached, it is difficult to increase the zooming efficiency even if the zooming function is shared by the lens group G2. As a result, it is difficult to reduce the size of the optical system. If the upper limit of conditional expression (17) is exceeded, the zooming efficiency due to the movement of the third lens group G3 and the fourth lens group G4 itself deteriorates. Also in this case, it is difficult to reduce the size of the optical system.

また、上記条件式(17)に代えて、(17’) を満足するのがより望ましい。
−1.8<β34w<−0.4 …(17’)
さらに、上記条件式(17)に代えて、(17”) を満足すると最も良い。
−1.8<β34w<−0.5 …(17 ”)
It is more desirable to satisfy (17 ′) instead of the conditional expression (17).
−1.8 <β 34w <−0.4 (17 ′)
Further, it is best to satisfy (17 ″) instead of the conditional expression (17).
−1.8 <β 34w <−0.5 (17 ″)

なお、第2レンズ群G2と第3レンズ群G3との間に、正の屈折力を有する別のレンズ群G31を配置しても良い。このようにすることで、6群構成の結像光学系とすることができる。そして、このような構成において、本実施形態の結像光学系は、以下の条件式(17−1)を満足するのが好ましい。
−1.8<β34w’<−0.3 …(17−1)
ここで、β34w ’は別のレンズ群G31、第3レンズ群G3及び第4レンズ群G4の広角端における合成系の結像倍率であって、広角端における結像光学系全系の結像倍率の絶対値が0.01以下となるいずれかの物点に合焦したときの結像倍率である。
Note that another lens group G31 having a positive refractive power may be disposed between the second lens group G2 and the third lens group G3. By doing in this way, it can be set as the imaging optical system of 6 groups composition. In such a configuration, it is preferable that the imaging optical system of the present embodiment satisfies the following conditional expression (17-1).
−1.8 <β 34w ′ <−0.3 (17-1)
Here, β 34w ′ is the imaging magnification of the combined system at the wide-angle end of another lens group G31, the third lens group G3, and the fourth lens group G4, and the imaging of the entire imaging optical system at the wide-angle end This is the imaging magnification when focusing on any object point where the absolute value of the magnification is 0.01 or less.

また、上記条件式(17−1)に代えて、(17’−1) を満足するのがより望ましい。
−1.8<β34w’<−0.4 …(17’ −1)
さらに、上記条件式(17)に代えて、(17” −2) を満足すると最も良い。
−1.8<β34w’<−0.5 …(17 ” −2)
It is more desirable to satisfy (17′-1) instead of the conditional expression (17-1).
−1.8 <β 34w ′ <−0.4 ( 17′− 1)
Furthermore, it is best to satisfy (17 ″ −2) instead of the conditional expression (17).
-1.8 <β 34w '<-0.5 (17 "-2)

また、本実施形態の結像光学系は、最も像側に第5レンズ群G5を有している。この第5レンズ群G5は、変倍時に像面からの距離が略一定のレンズ成分のみからなる。また、変倍時、第5レンズ群G5とこの第5レンズ群G5に隣接するレンズ群との相対的間隔が変化する。そして、このような構成において、本実施形態の結像光学系は、以下の条件式(18)を満足するのが好ましい。
0.95<β5W<2.5 …(18)
但し、β5Wは第5レンズ群G5の結像倍率であって、広角端における全系の結像倍率の絶対値が0.01以下となるいずれかの物点に合焦したときの結像倍率である。
Further, the imaging optical system of the present embodiment has the fifth lens group G5 on the most image side. The fifth lens group G5 is composed of only lens components having a substantially constant distance from the image plane at the time of zooming. At the time of zooming, the relative distance between the fifth lens group G5 and the lens group adjacent to the fifth lens group G5 changes. In such a configuration, it is preferable that the imaging optical system of the present embodiment satisfies the following conditional expression (18).
0.95 <β 5W <2.5 (18)
However, β 5W is the image forming magnification of the fifth lens group G5, and the image is formed when focusing on any object point where the absolute value of the image forming magnification of the entire system at the wide angle end is 0.01 or less. Magnification.

第5レンズ群G5が負の屈折力を有する(レンズ群自身の倍率が大きい)と、光学系を小型化しやすい。一方、第5レンズ群G5が正の屈折力を有する(レンズ群自身の倍率を小さくする)と、収差補正がしやすい。よって、第5レンズ群G5の屈折力は正または負のいずれであっても良い。   If the fifth lens group G5 has negative refractive power (the magnification of the lens group itself is large), it is easy to reduce the size of the optical system. On the other hand, if the fifth lens group G5 has a positive refractive power (the magnification of the lens group itself is reduced), aberration correction is easy. Therefore, the refractive power of the fifth lens group G5 may be positive or negative.

条件式(18)の下限を下回ると、高倍率化、広角化、大口径比化と全長短縮との両立が困難である。また、条件式(18)の上限を上回ると、ペッツバール和が負の大きな値になるので、像面の湾曲が著しく発生する。   Below the lower limit of conditional expression (18), it is difficult to achieve both high magnification, wide angle, large aperture ratio, and shortening of the overall length. If the upper limit of conditional expression (18) is exceeded, the Petzval sum becomes a large negative value, so that the curvature of the image plane remarkably occurs.

また、上記条件式(18)に代えて、(18’) を満足するのがより望ましい。
1.00<β5w<2.2 …(18’)
さらに、上記条件式(18)に代えて、(18”) を満足すると最も良い。
1.05<β5w<2.0 …(18 ”)
It is more desirable to satisfy (18 ′) instead of the conditional expression (18).
1.00 <β 5w <2.2 (18 ′)
Further, it is best to satisfy (18 ″) instead of the conditional expression (18).
1.05 <β 5w <2.0 (18 ″)

なお、本実施形態の結像光学系では、第5レンズ群G5が、凸レンズと凹レンズを各1枚ずつ有するようにしても良い。そして、このような構成において、本実施形態の結像光学系は、以下の条件式(19)を満足するとよい。
0.35<N5n−N5p<0.95 …(19)
但し、N5p、N5nは、それぞれ第5レンズ群G5の凸レンズ、凹レンズを形成する媒質のd線に対する屈折率である。
In the imaging optical system of the present embodiment, the fifth lens group G5 may have one convex lens and one concave lens. In such a configuration, the imaging optical system of the present embodiment should satisfy the following conditional expression (19).
0.35 <N 5n −N 5p <0.95 (19)
Here, N 5p and N 5n are refractive indexes with respect to the d-line of the medium forming the convex lens and the concave lens of the fifth lens group G5, respectively.

条件式(19)の下限を下回ると、ペッツバール和が負の大きな値になりやすい。この結果、像面湾曲もしくは非点収差の補正が不十分となる。条件式(19)の上限を上回ると、内コマ収差が発生しやすい。   If the lower limit of conditional expression (19) is not reached, the Petzval sum tends to be a large negative value. As a result, correction of field curvature or astigmatism is insufficient. If the upper limit of conditional expression (19) is exceeded, internal coma tends to occur.

また、上記条件式(19)に代えて、(19’) を満足するのがより望ましい。
0.40<N5n−N5p<0.85 …(19’)
さらに、上記条件式(19)に代えて、(19”) を満足すると最も良い。
0.45<N5n−N5p<0.75 …(19”)
It is more desirable to satisfy (19 ′) instead of the conditional expression (19).
0.40 <N 5n −N 5p <0.85 (19 ′)
Furthermore, it is best to satisfy (19 ″) instead of the conditional expression (19).
0.45 <N 5n −N 5p <0.75 (19 ″)

また、本実施形態の結像光学系は、以下の条件式(20)を満足するのが好ましい。
0<ν5n−ν5p<80 …(20)
但し、νRp、νRnは、それぞれ第5レンズ群G5の凸レンズ、凹レンズを形成する媒質のd線に対するアッベ数である。
Moreover, it is preferable that the imaging optical system of this embodiment satisfies the following conditional expression (20).
0 <ν 5n −ν 5p <80 (20)
Here, ν Rp and ν Rn are Abbe numbers for the d-line of the medium forming the convex lens and the concave lens of the fifth lens group G5, respectively.

特に、第1レンズ群G1に光路を折り曲げるための反射光学素子を挿入した場合、倍率色収差が発生しやすい。条件式(20)は、倍率色収差を補正するための条件である。条件式(20)の上限を上回るかあるいは下限を下回ると、倍率色収差の補正が困難となる。   In particular, when a reflective optical element for bending the optical path is inserted into the first lens group G1, lateral chromatic aberration is likely to occur. Conditional expression (20) is a condition for correcting lateral chromatic aberration. If the upper limit of conditional expression (20) is exceeded or below the lower limit, it will be difficult to correct lateral chromatic aberration.

また、上記条件式(20)に代えて、(20’) を満足するのがより望ましい。
5<ν5n−ν5p<70 …(20’)
さらに、上記条件式(20)に代えて、(20”) を満足すると最も良い。
10<ν5n−ν5p<60 …(20 ”)
It is more desirable to satisfy (20 ′) instead of the conditional expression (20).
5 <ν 5n −ν 5p <70 (20 ′)
Further, it is best to satisfy (20 ″) instead of the conditional expression (20).
10 <ν 5n −ν 5p <60 (20 ″)

また、本実施形態の結像光学系では、第5レンズ群G5の凸レンズと凹レンズは互いに接合されている。そして、このような構成において、本実施形態の結像光学系は、以下の条件式(21)、(22)を満足するのが好ましい。
1/RG5F>1/RG5R …(21)
0<(RG5F−RG5R)/(RG5F+RG5R)<5.00 …(22)
但し、RG5F、RG5Rは、それぞれ第5レンズ群G5の最も物体側の面の近軸曲率半径、最も像側の面の近軸曲率半径である。
In the imaging optical system of the present embodiment, the convex lens and the concave lens of the fifth lens group G5 are cemented with each other. In such a configuration, it is preferable that the imaging optical system of the present embodiment satisfies the following conditional expressions (21) and (22).
1 / R G5F > 1 / R G5R (21)
0 <(R G5F −R G5R ) / (R G5F + R G5R ) <5.00 (22)
Here, R G5F and R G5R are the paraxial radius of curvature of the most object side surface and the paraxial radius of curvature of the most image side surface of the fifth lens group G5, respectively.

条件式(21)を満たさない場合、コマ収差や非点収差が発生しやすい。また、条件式(22)はいわゆるシェープファクターの逆数を表している。条件式(22)の上限を上回ると、変倍時の移動に使えないデッドスペースが多くなるので全長の大型化をまねきやすくなる。また、条件式(22)の下限を下回ると、コマ収差や樽型歪曲収差が発生しやすい。   If the conditional expression (21) is not satisfied, coma and astigmatism are likely to occur. Conditional expression (22) represents the reciprocal of a so-called shape factor. If the upper limit of conditional expression (22) is exceeded, the dead space that cannot be used for movement at the time of zooming increases, which makes it easy to increase the overall length. If the lower limit of conditional expression (22) is not reached, coma and barrel distortion are likely to occur.

また、上記条件式(21)、(22)に代えて、(21’)、(22’)を満足するのがより望ましい。
1/RG5F>1/RG5R …(21’)
0<(RG5F−RG5R)/(RG5F+RG5R)<1.50 …(22’)
さらに、上記条件式(21)、(22)に代えて、(21”)、(22”)を満足すると最も良い。
1/RG5F>1/RG5R …(21”)
0<(RG5F−RG5R)/(RG5F+RG5R)<1.00 …(22”)
It is more desirable to satisfy (21 ′) and (22 ′) instead of the conditional expressions (21) and (22).
1 / R G5F > 1 / R G5R (21 ')
0 <(R G5F −R G5R ) / (R G5F + R G5R ) <1.50 (22 ′)
Furthermore, it is best to satisfy (21 ″) and (22 ″) instead of the conditional expressions (21) and (22).
1 / R G5F > 1 / R G5R (21 ")
0 <(R G5F −R G5R ) / (R G5F + R G5R ) <1.00 (22 ”)

さて、実施例の結像光学系には、5群構成の結像光学系と6群構成の結像光学系がある。5群構成の結像光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、開口絞り、正の屈折力を有する第3レンズ群G3、正の屈折力を有する第4レンズ群G4、正又は負の屈折力を有する第5レンズ群G5という5つのレンズ群からなる。   The imaging optical system of the embodiment includes a five-group imaging optical system and a six-group imaging optical system. The imaging optical system having a five-group configuration includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop, and a third lens having a positive refractive power. The lens group G3 includes five lens groups, a fourth lens group G4 having a positive refractive power and a fifth lens group G5 having a positive or negative refractive power.

また、6群構成の結像光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1、負の屈折力を有する第2レンズ群G2、正の屈折力を有する第3レンズ群G31、正の屈折力を有する第4レンズ群G3、正の屈折力を有する第5レンズ群G4、正又は負の屈折力を有する第6レンズ群G5という6つのレンズ群からなる。なお、第3レンズ群G31は開口絞りと一体に構成することができる。   Further, the imaging optical system having a six-group configuration includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. It consists of six lens groups: a group G31, a fourth lens group G3 having a positive refractive power, a fifth lens group G4 having a positive refractive power, and a sixth lens group G5 having a positive or negative refractive power. Note that the third lens group G31 can be configured integrally with an aperture stop.

第1レンズ群G1は、構成要素として、2つ乃至4つのレンズ成分と反射光学素子を有する。これらの構成要素は、物体側から、多くとも1つのレンズ成分、反射光学素子、1つもしくは2つの正のレンズ成分の順に配置されるのが好ましい。1つもしくは2つの正のレンズ成分には、レンズ成分C1pが含まれる。特に、物体側から、像側の面が凹面である負レンズ成分と、反射光学素子と、1つ又は2つの正レンズ成分の順の配置にすると良い。なお、反射光学素子はプリズムであるのが好ましい。   The first lens group G1 includes two to four lens components and a reflective optical element as components. These components are preferably arranged in order of at most one lens component, reflective optical element, or one or two positive lens components from the object side. One or two positive lens components include a lens component C1p. Particularly, from the object side, the negative lens component having a concave surface on the image side, the reflective optical element, and one or two positive lens components may be arranged in this order. The reflective optical element is preferably a prism.

第1レンズ群G1の構成を細部まで規定すると、以下のようになる。
(A)物体側から、像側の面が凹面である負レンズ成分と、反射光学素子と、1つ又は2つの正レンズ成分の順。ここで、反射光学素子は、入射面、反射面、射出面がいずれも平面のプリズムである。
(B)物体側から、反射光学素子と、1つ又は2つの正レンズ成分の順。ここで、反射光学素子は、入射面が凹面でかつ反射面と射出面を有するプリズムである。反射面と射出面はいずれも平面である。
(C)物体側から、像側の面が凹面である負レンズ成分と、反射光学素子と、2つの正レンズ成分の順。ここで、反射光学素子は、入射面が凹面でかつ反射面と射出面を有するプリズムである。反射面と射出面はいずれも平面である。
(D)物体側から、像側の面が凹面である負レンズ成分と、反射光学素子と、正レンズ成分のみの順。ここで、反射光学素子は、入射面と反射面を有し射出面が凸面のプリズムである。入射面と反射面はいずれも平面である。
The details of the configuration of the first lens group G1 are as follows.
(A) From the object side, a negative lens component having a concave surface on the image side, a reflective optical element, and one or two positive lens components. Here, the reflecting optical element is a prism having a flat incident surface, reflecting surface, and exit surface.
(B) From the object side, the order of the reflective optical element and one or two positive lens components. Here, the reflective optical element is a prism having a concave incident surface and a reflective surface and an exit surface. Both the reflection surface and the exit surface are flat.
(C) From the object side, the negative lens component having a concave surface on the image side, the reflective optical element, and the two positive lens components. Here, the reflective optical element is a prism having a concave incident surface and a reflective surface and an exit surface. Both the reflection surface and the exit surface are flat.
(D) From the object side, the negative lens component having a concave surface on the image side, the reflective optical element, and the positive lens component alone. Here, the reflective optical element is a prism having an incident surface and a reflective surface and a convex exit surface. Both the incident surface and the reflecting surface are flat.

このように、第1レンズ群G1は、構成要素の配置を上記のいずれかの配置にすると良い。なお、プリズムは光路を屈曲するための反射光学素子である。また、プリズム(反射光学素子)はその媒質の屈折率を1.8以上とすれば、条件式(1)を満足しやすくなり好ましい。   As described above, in the first lens group G1, the arrangement of the constituent elements may be any one of the above arrangements. The prism is a reflective optical element for bending the optical path. Further, it is preferable that the refractive index of the medium of the prism (reflection optical element) is 1.8 or more because the conditional expression (1) is easily satisfied.

なお、正レンズ成分のうちの1つはレンズ成分C1pである。このレンズ成分C1pには、負レンズLAが用いられている。この負レンズLAは、条件式(8)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、条件式(3)で定まる領域との両方の領域に、そのθgF及びνdが含まれるレンズである。なお、負レンズLAは、条件式(3’)と条件式(8’)もしくは条件式(3”)と条件式(8”)で定まる領域に、そのθgF及びνdが含まれるレンズであっても良い。   One of the positive lens components is the lens component C1p. A negative lens LA is used for the lens component C1p. The negative lens LA has both a region defined by a straight line when the lower limit value of the range of the conditional expression (8) and a straight line when the upper limit value are satisfied, and a region determined by the conditional expression (3). The lens includes θgF and νd. The negative lens LA is a lens in which θgF and νd are included in a region defined by the conditional expression (3 ′) and the conditional expression (8 ′) or the conditional expression (3 ″) and the conditional expression (8 ″). Also good.

また、レンズ成分C1pにおいて、負レンズLAの接合相手は正レンズLBである。この正レンズLBは、条件式(10)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、条件式(11)で定まる領域との両方の領域に、そのθgF及びνdが含まれるレンズである。なお、正レンズLBは、条件式(10’)と条件式(11’)もしくは条件式(10”)と条件式(11”)で定まる領域に、そのθgF及びνdが含まれるレンズであっても良い。   In the lens component C1p, the negative lens LA is joined to the positive lens LB. The positive lens LB has both a region defined by a straight line when the lower limit value of the range of the conditional expression (10) and a straight line when the upper limit value are satisfied, and a region determined by the conditional expression (11). The lens includes θgF and νd. The positive lens LB is a lens in which θgF and νd are included in a region defined by the conditional expression (10 ′) and the conditional expression (11 ′) or the conditional expression (10 ″) and the conditional expression (11 ″). Also good.

第2レンズ群G2は2つ以上のレンズ成分を有する。そして、いずれか1つのレンズ成分は、正レンズと負レンズからなる接合レンズ成分である。第2レンズ群G2は、この接合レンズ成分の他に、1つ以上の負レンズ成分を備えていても良い。そして、物体側から、負レンズ成分、接合レンズ成分、その他のレンズ成分の順に配置されているのが望ましい。   The second lens group G2 has two or more lens components. Any one of the lens components is a cemented lens component including a positive lens and a negative lens. The second lens group G2 may include one or more negative lens components in addition to the cemented lens component. It is desirable that the negative lens component, the cemented lens component, and other lens components are arranged in this order from the object side.

結像光学系が5群構成の場合、第3レンズ群G3は接合レンズを有する。第3レンズ群G3は、接合レンズ成分の他に、正のレンズ成分を備えていても良い。なお、第3レンズ群G3は、最も像側のレンズを負レンズにするのが好ましい。また、この負レンズは像側の面のほうが強い曲率である。結像光学系が6群構成の場合、第3レンズ群G3は第4レンズ群G3となる。   When the imaging optical system has a five-group configuration, the third lens group G3 has a cemented lens. The third lens group G3 may include a positive lens component in addition to the cemented lens component. In the third lens group G3, it is preferable that the most image side lens is a negative lens. Further, this negative lens has a stronger curvature on the image side surface. When the imaging optical system has a six-group configuration, the third lens group G3 becomes the fourth lens group G3.

第4レンズ群G4は、1つのレンズ成分を有する。この第4レンズ群G4は、第3レンズ群G3に続くレンズ群である。第4レンズ群G4の屈折力は、正であっても負であっても構わない。また、このレンズ成分は単レンズでも構わない。なお、第4レンズ群G4は、負の屈折力を有するほうが小型化しやすく、正の屈折力にする方が収差補正はしやすい。結像光学系が6群構成の場合、第4レンズ群G4は第5レンズ群G4となる。   The fourth lens group G4 has one lens component. The fourth lens group G4 is a lens group following the third lens group G3. The refractive power of the fourth lens group G4 may be positive or negative. The lens component may be a single lens. The fourth lens group G4 has a negative refractive power and is more easily miniaturized, and a positive refractive power is easier to correct aberrations. When the imaging optical system has a six-group configuration, the fourth lens group G4 becomes the fifth lens group G4.

第5レンズ群G5は1つのレンズ成分を有する。このレンズ成分は、単レンズでもかまわない。また、第5レンズ群G4は、屈折力が正であっても負であっても構わない。なお、第5レンズ群G5は、負の屈折力を有するほうが小型化しやすく、正の屈折力にする方が収差補正はしやすい。結像光学系が6群構成の場合、第5レンズ群G4は第6レンズ群G5となる。   The fifth lens group G5 has one lens component. This lens component may be a single lens. The fifth lens group G4 may have a positive or negative refractive power. Note that the fifth lens group G5 has a negative refractive power and is more easily miniaturized, and a positive refractive power makes it easier to correct aberrations. When the imaging optical system has a six-group configuration, the fifth lens group G4 becomes the sixth lens group G5.

結像光学系が6群構成の場合は、第2レンズ群G2と第3レンズ群G3との間に、正の屈折力の別のレンズ群G31が配置されている。別のレンズ群G31は単レンズにて構成されており、開口絞りと一体にて構成しても良い。結像光学系が6群構成の場合、別のレンズ群G31は第3レンズ群G31となる。   When the imaging optical system has a six-group configuration, another lens group G31 having a positive refractive power is disposed between the second lens group G2 and the third lens group G3. Another lens group G31 is composed of a single lens, and may be composed integrally with an aperture stop. When the imaging optical system has a six-group configuration, another lens group G31 is the third lens group G31.

また、結像光学系で発生した歪曲収差を電子撮像装置の画像処理機能にて補正すれば、さらに他の収差を良好に補正できると同時に、さらに広角化することも可能である。   Further, if the distortion generated in the imaging optical system is corrected by the image processing function of the electronic imaging apparatus, other aberrations can be corrected satisfactorily, and at the same time, a wider angle can be obtained.

また、レンズ成分C1pに負レンズLAを用いる場合、負レンズLAは正レンズLBと接合することになる。このとき、負レンズLAの光軸中心厚は、正レンズLBに比べて薄くするのが好ましい。   When the negative lens LA is used for the lens component C1p, the negative lens LA is cemented with the positive lens LB. At this time, the center thickness of the optical axis of the negative lens LA is preferably thinner than that of the positive lens LB.

そして、本実施形態の結像光学系では、負レンズLAの光軸中心厚t1が、次の条件式(23)を満足するとよい。
0.01<t1<0.6 …(23)
In the imaging optical system of the present embodiment, it is preferable that the optical axis center thickness t1 of the negative lens LA satisfies the following conditional expression (23).
0.01 <t1 <0.6 (23)

なお、条件式(23)に代えて、次の条件式(23’)を満足すると、より好ましい。
0.01<t1<0.4 …(23’)
さらに、条件式(23)に代えて、次の条件式(23”)を満足すると、より一層好ましい。
0.01<t1<0.2 …(23”)
It is more preferable that the following conditional expression (23 ′) is satisfied instead of conditional expression (23).
0.01 <t1 <0.4 (23 ′)
Furthermore, it is more preferable that the following conditional expression (23 ″) is satisfied instead of conditional expression (23).
0.01 <t1 <0.2 (23 ")

ところで、ここで無限遠物体を歪曲収差がない光学系で結像したとする。この場合、結像した像に歪曲がないので、
f=y/tanω …(24)
が成立する。
By the way, suppose that an object at infinity is imaged by an optical system without distortion. In this case, since the image formed has no distortion,
f = y / tan ω (24)
Is established.

ここで、yは像点の光軸からの高さ、fは結像系の焦点距離、ωは撮像面上の中心からyの位置に結ぶ像点に対応する物点方向の光軸に対する角度である。   Here, y is the height of the image point from the optical axis, f is the focal length of the imaging system, and ω is the angle with respect to the optical axis in the object direction corresponding to the image point connected from the center on the imaging surface to the y position. It is.

一方、光学系に樽型の歪曲収差がある場合は、
f>y/tanω …(25)
となる。つまり、fとyとを一定の値とするならば、ωは大きな値となる。
On the other hand, if the optical system has barrel distortion,
f> y / tan ω (25)
It becomes. That is, if f and y are constant values, ω is a large value.

そこで、電子撮像装置には、特に広角端近傍の焦点距離において、意図的に大きな樽型の歪曲収差を有した光学系を用いるのが良い。この場合、歪曲収差を補正しなくて済む分だけ、光学系の広画角化が達成できる。   Therefore, it is preferable to use an optical system that intentionally has a large barrel distortion, particularly at a focal length near the wide-angle end, for the electronic imaging device. In this case, it is possible to achieve a wider angle of view of the optical system as much as it is not necessary to correct distortion.

ただし、物体の像は、樽型の歪曲収差を有した状態で電子撮像素子上に結像する。そこで、電子撮像装置では、電子撮像素子で得られた画像データを、画像処理で加工するようにしている。この加工では、樽型の歪曲収差を補正するように、画像データ(画像の形状)を変化させる。   However, the image of the object is formed on the electronic image pickup device in a state having barrel-shaped distortion. Therefore, in the electronic imaging device, image data obtained by the electronic imaging element is processed by image processing. In this processing, the image data (image shape) is changed so as to correct the barrel distortion.

このようにすれば、最終的に得られた画像データは、物体とほぼ相似の形状を持つ画像データとなる。よって、この画像データに基づいて、物体の画像をCRTやプリンターに出力すればよい。   In this way, the finally obtained image data is image data having a shape substantially similar to the object. Therefore, an object image may be output to a CRT or printer based on the image data.

そこで、本実施形態の電子撮像装置では、電子撮像素子と、結像光学系を通じて結像した像を電子撮像素子で撮像することによって得られた画像データを加工して像の形状を変化させた画像データとして出力する画像処理手段とを有し、結像光学系がズームレンズであり、ズームレンズが、ほぼ無限遠物点合焦時に次の条件式(26)を満足することが好ましい。
0.70<y07/(fw・tanω07w)<0.96 …(26)
ここで、y07は最大像高をy10としたときy07=0.7y10として表され、ω07wは広角端における撮像面上の中心からy07の位置に結ぶ像点に対応する物点方向の光軸に対する角度である。なお、本実施形態が電子撮像装置の場合、最大像高は、電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離となる。よって、y10も電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離になる。
Therefore, in the electronic imaging apparatus of the present embodiment, the image shape obtained by processing the electronic imaging device and the image formed by imaging the image formed through the imaging optical system is processed to change the shape of the image. Preferably, the image forming optical system is a zoom lens, and the zoom lens satisfies the following conditional expression (26) when focusing on an object point at almost infinity.
0.70 <y 07 / (fw · tan ω 07w ) <0.96 (26)
Here, y 07 is expressed as y 07 = 0.7y 10 when the maximum image height is y 10, and ω 07w is an object corresponding to the image point connecting from the center on the imaging surface at the wide angle end to the position of y 07 . This is the angle with respect to the optical axis in the point direction. Note that when the present embodiment is an electronic imaging device, the maximum image height is the distance from the center to the farthest point in the effective imaging plane of the electronic imaging device (within the imageable plane). Accordingly, y 10 becomes the distance to the point farthest from the center in the effective image pickup plane of the electronic imaging device (imaging possible in-plane).

上記条件式(26)はズーム広角端における樽型歪曲の度合いを規定したものである。条件式(26)を満足すれば、光学系を肥大化させずに、広い画角の情報を取り込むことが可能となる。なお、樽型に歪んだ像は撮像素子にて光電変換されて、樽型に歪んだ画像データとなる。   Conditional expression (26) defines the degree of barrel distortion at the zoom wide-angle end. If conditional expression (26) is satisfied, it becomes possible to capture information with a wide angle of view without enlarging the optical system. Note that an image distorted in a barrel shape is photoelectrically converted by an image sensor to become image data distorted in a barrel shape.

樽型に歪んだ画像データは、電子撮像装置の信号処理系である画像処理手段にて、電気的に、像の形状変化に相当する加工が施される。このようにすれば、最終的に画像処理手段から出力された画像データを表示装置にて再生したとしても、歪曲が補正されて被写体形状にほぼ相似した画像が得られる。   The image data distorted into a barrel shape is electrically processed by an image processing means, which is a signal processing system of an electronic imaging device, corresponding to a change in the shape of the image. In this way, even if the image data finally output from the image processing means is reproduced on the display device, the distortion is corrected and an image substantially similar to the subject shape is obtained.

ここで、条件式(26)の上限値を上回る場合であって、特に、1に近い値をとると、歪曲収差が光学的に良く補正された画像が得られる。そのため、画像処理手段で行う補正が小さくてすむ。しかしながら、光学系の小型化を維持しながら、光学系を広画角することが困難となる。   Here, when the value exceeds the upper limit value of conditional expression (26), and particularly when the value is close to 1, an image in which distortion is optically corrected is obtained. Therefore, the correction performed by the image processing means can be small. However, it becomes difficult to widen the angle of view of the optical system while maintaining the miniaturization of the optical system.

一方、条件式(26)の下限値を下回ると、光学系の歪曲収差による画像歪みを画像処理手段で補正した場合に、画角周辺部の放射方向への引き伸ばし率が高くなりすぎる。その結果、撮像で得た画像において、画像周辺部の鮮鋭度の劣化が目立つようになってしまう。   On the other hand, below the lower limit value of conditional expression (26), when image distortion due to distortion of the optical system is corrected by the image processing means, the stretching ratio in the radial direction around the angle of view becomes too high. As a result, in the image obtained by imaging, the sharpness degradation at the periphery of the image becomes conspicuous.

このように、条件式(26)を満足することにより、光学系の小型化と広角化(歪曲込みの垂直方向の画角を38°以上にする)とが可能となる。   Thus, by satisfying conditional expression (26), it is possible to reduce the size and widen the angle of the optical system (make the vertical angle of view of distortion more than 38 °).

なお、条件式(26)に代えて、次の条件式(26’)を満足すると、より好ましい。
0.75<y07/(fw・tanω07w)<0.955 …(26’)
さらに、条件式(26)に代えて、次の条件式(29”)を満足すると、より一層好ましい。
0.80<y07/(fw・tanω07w)<0.95 …(26”)
It is more preferable that the following conditional expression (26 ′) is satisfied instead of conditional expression (26).
0.75 <y 07 / (fw · tan ω 07w ) <0.955 (26 ′)
Furthermore, it is more preferable that the following conditional expression (29 ″) is satisfied instead of conditional expression (26).
0.80 <y 07 / (fw · tan ω 07w ) <0.95 (26 ”)

また、本実施形態の結像光学系では、負レンズLAは以下の条件式(27)を満足するとよい。
1.58<nd<1.95 …(27)
ここで、ndは負レンズLAの媒質の屈折率である。
In the imaging optical system of the present embodiment, it is preferable that the negative lens LA satisfies the following conditional expression (27).
1.58 <nd <1.95 (27)
Here, nd is the refractive index of the medium of the negative lens LA.

条件式(27)を満足すると、球面収差の補正や非点収差の補正が良好に行える。   When the conditional expression (27) is satisfied, the spherical aberration and the astigmatism can be corrected satisfactorily.

なお、次の条件式(27')を満足すると、より好ましい。
1.60<nd<1.90 …(27')
さらに、次の条件式(27”)を満足すると、より一層好ましい。
1.62<nd<1.85 …(27”)
It is more preferable that the following conditional expression (27 ′) is satisfied.
1.60 <nd <1.90 (27 ')
Further, it is more preferable that the following conditional expression (27 ″) is satisfied.
1.62 <nd <1.85 (27 ")

本発明の結像光学系は、以上述べた条件式や構成上の特徴を、個々に、満足あるいは備えることにより、結像光学系の小型化・薄型化をともに達成することが可能となると共に、良好な収差補正が実現できる。また、本発明の結像光学系は、上記条件式や構成上の特徴を、組み合わせて備える(満足する)こともできる。この場合、結像光学系のいっそうの小型化・薄型化、あるいは、より良好な収差補正を達成できる。   The imaging optical system of the present invention can achieve both downsizing and thinning of the imaging optical system by satisfying or having the conditional expressions and structural features described above individually. Good aberration correction can be realized. In addition, the imaging optical system of the present invention can be provided with (satisfied with) the above conditional expressions and structural features in combination. In this case, the image-forming optical system can be further reduced in size and thickness, or better aberration correction can be achieved.

また、本発明の結像光学系を有する電子撮像装置は、このような結像光学系を備えることにより、撮像された画像において、画像の鮮鋭化、色にじみの防止が図れる。   In addition, the electronic imaging apparatus having the imaging optical system of the present invention is provided with such an imaging optical system, so that it is possible to sharpen the image and prevent color blur in the captured image.

以下に、本発明に係る結像光学系(以下、適宜「ズームレンズ」という。)、電子撮像装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of an imaging optical system (hereinafter referred to as “zoom lens” as appropriate) and an electronic imaging apparatus according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

次に、本発明の実施例1にかかるズームレンズについて説明する。図1は本発明の実施例1にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 1 of the present invention will be described. FIGS. 1A and 1B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to the first embodiment of the present invention when focusing on an object point at infinity. FIG. 1A is a wide-angle end, and FIG. (C) is a sectional view at the telephoto end.

図2は実施例1にかかるズームレンズの無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。また、FIYは像高を示している。なお、収差図における記号は、後述の実施例においても共通である。   FIG. 2 is a diagram illustrating spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) when the zoom lens according to Example 1 is focused on an object point at infinity. a) shows the wide-angle end, (b) shows the intermediate focal length state, and (c) shows the state at the telephoto end. FIY represents the image height. The symbols in the aberration diagrams are the same in the examples described later.

実施例1のズームレンズは、図1に示すように、物体側から順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5を配置している。なお、以下全ての実施例において、レンズ断面図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面を示している。   As shown in FIG. 1, the zoom lens of Example 1 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive A third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a negative refractive power. In all the following examples, in the lens cross-sectional views, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側の面と像側の面が共に平面のプリズムL2と、両凸正レンズL3と像側に凸面を向けた負メニスカスレンズL4の接合レンズ(レンズ成分C1p)で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L1 having a convex surface directed toward the object side, a prism L2 having both an object-side surface and an image-side surface planar, and a biconvex positive lens L3 and a convex surface directed toward the image side. It is composed of a cemented lens (lens component C1p) of the negative meniscus lens L4, and has a positive refractive power as a whole.

また、本実施例では、f12は、レンズL3とレンズL4の合成焦点距離になる。また、面頂Ct1はレンズL1の像側面の面頂、面頂Ct2は接合レンズ(レンズL3とレンズL4)の接合面の面頂になる。   In this embodiment, f12 is the combined focal length of the lens L3 and the lens L4. Further, the surface top Ct1 is the surface top of the image side surface of the lens L1, and the surface top Ct2 is the surface top of the cemented surface of the cemented lens (lens L3 and lens L4).

第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL5と、両凹負レンズL6と両凸正レンズL7の接合レンズで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a negative meniscus lens L5 having a convex surface directed toward the object side, and a cemented lens of a biconcave negative lens L6 and a biconvex positive lens L7, and has a negative refracting power as a whole. Yes.

第3レンズ群G3は、物体側の両凸正レンズL8と、両凸正レンズL9と両凹負レンズL10の接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a biconvex positive lens L8 on the object side, and a cemented lens of a biconvex positive lens L9 and a biconcave negative lens L10, and has a positive refracting power as a whole.

第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL11で正の屈折力を有している。   The fourth lens group G4 is a positive meniscus lens L11 having a convex surface directed toward the object side, and has a positive refractive power.

第5レンズ群G5は、両凹負レンズL12と両凸正レンズL13の接合レンズで構成されており、全体で負の屈折力を有している。   The fifth lens group G5 includes a cemented lens which is a biconcave negative lens L12 and a biconvex positive lens L13, and has a negative refracting power as a whole.

広角端から望遠端にかけての変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は中間位置までほぼ固定、中間位置からは像側に移動し、第5レンズ群G5は固定である。また、明るさ絞りSの位置は固定である。また、光量の調整は、明るさ絞りSの開口サイズを変化させて調整する。   During zooming from the wide angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 moves to the image side, the third lens group G3 moves to the object side, and the fourth lens group G4. Is substantially fixed to the intermediate position, moved from the intermediate position to the image side, and the fifth lens group G5 is fixed. The position of the aperture stop S is fixed. The light amount is adjusted by changing the aperture size of the aperture stop S.

非球面は、第1レンズ群G1の両凸正レンズL3の両面と、像側に凸面を向けた負メニスカスレンズL4の像側の面と、第2レンズ群G2の物体側に凸面を向けた負メニスカスレンズL5の像側の面と、第3レンズ群G3の物体側の両凸正レンズL8の両面と、第4レンズ群G4の物体側に凸面を向けた正メニスカスレンズL11の物体側の面と、第5レンズ群G5の両凹負レンズL12の物体側の面の合計8面に設けられている。   The aspherical surfaces have the convex surfaces facing both surfaces of the biconvex positive lens L3 of the first lens group G1, the image side surface of the negative meniscus lens L4 with the convex surface facing the image side, and the object side of the second lens group G2. The image side surface of the negative meniscus lens L5, both surfaces of the biconvex positive lens L8 on the object side of the third lens group G3, and the object side of the positive meniscus lens L11 with the convex surface facing the object side of the fourth lens group G4. A total of eight surfaces including the surface and the object side surface of the biconcave negative lens L12 of the fifth lens group G5 are provided.

次に、本発明の実施例2にかかるズームレンズについて説明する。図3は本発明の実施例2にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 2 of the present invention will be described. FIGS. 3A and 3B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to the second embodiment of the present invention when focusing on an object point at infinity, where FIG. 3A is a wide-angle end, and FIG. (C) is a sectional view at the telephoto end.

図4は実施例2にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   4A and 4B are diagrams showing spherical aberration, astigmatism, distortion aberration, and chromatic aberration of magnification when the zoom lens according to Example 2 is focused on an object point at infinity, where FIG. 4A is a wide angle end, and FIG. 4B is an intermediate focus. The distance state, (c) shows the state at the telephoto end.

実施例2のズームレンズは、図3に示すように、物体側から順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、正の屈折力の第5レンズ群G5を配置している。   As shown in FIG. 3, the zoom lens of Example 2 includes, in order from the object side, a first lens unit G1 having a positive refractive power, a second lens unit G2 having a negative refractive power, an aperture stop S, and a positive lens unit. A third lens group G3 having a refractive power of 4, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側の面と像側の面が共に平面のプリズムL2と、両凸正レンズL3と像側に凸面を向けた負メニスカスレンズL4の接合レンズ(レンズ成分C1p)と、両凸正レンズL5で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L1 having a convex surface directed toward the object side, a prism L2 having both an object-side surface and an image-side surface planar, and a biconvex positive lens L3 and a convex surface directed toward the image side. It is composed of a cemented lens (lens component C1p) of the negative meniscus lens L4 and a biconvex positive lens L5, and has a positive refractive power as a whole.

また、本実施例では、f12は、レンズL3とレンズL4の合成焦点距離になる。また、面頂Ct1はレンズL1の像側面の面頂、面頂Ct2は接合レンズ(レンズL3とレンズL4)の接合面の面頂になる。   In this embodiment, f12 is the combined focal length of the lens L3 and the lens L4. Further, the surface top Ct1 is the surface top of the image side surface of the lens L1, and the surface top Ct2 is the surface top of the cemented surface of the cemented lens (lens L3 and lens L4).

第2レンズ群G2は両凹負レンズL6と、両凹負レンズL7と物体側に凸面を向けた正メニスカスレンズL8の接合レンズで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a cemented lens of a biconcave negative lens L6, a biconcave negative lens L7, and a positive meniscus lens L8 having a convex surface directed toward the object side, and has a negative refracting power as a whole. .

第3レンズ群G3は、両凸正レンズL9と、両凸正レンズL10と両凹負レンズL11の接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a biconvex positive lens L9, and a cemented lens of a biconvex positive lens L10 and a biconcave negative lens L11, and has a positive refractive power as a whole.

第4レンズ群G4は、両凸正レンズL12で正の屈折力を有している。   The fourth lens group G4 is a biconvex positive lens L12 and has positive refractive power.

第5レンズ群G5は、両凹負レンズL13と両凸正レンズL14の接合レンズで構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a cemented lens which is a biconcave negative lens L13 and a biconvex positive lens L14, and has a positive refracting power as a whole.

広角端から望遠端にかけての変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は中間位置までほぼ固定、間位置からは像側に移動し、第5レンズ群G5は固定である。また、明るさ絞りSの位置は固定である。また、光量の調整は、開口サイズを変化させて調整する。   During zooming from the wide angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 moves to the image side, the third lens group G3 moves to the object side, and the fourth lens group G4. Is substantially fixed to an intermediate position, moved from the intermediate position to the image side, and the fifth lens group G5 is fixed. The position of the aperture stop S is fixed. The light amount is adjusted by changing the opening size.

非球面は、第1レンズ群G1の両凸正レンズL3の両面と、像側に凸面を向けた負メニスカスレンズL4の像側の面、第2レンズ群G2の物体側の両凹負レンズL6の像側の面と、第3レンズ群G3の物体側の両凸正レンズL9の両面と、第4レンズ群G4の両凸正レンズL12の物体側の面の合計7面に設けられている。   The aspherical surface includes both surfaces of the biconvex positive lens L3 of the first lens group G1, the image side surface of the negative meniscus lens L4 with the convex surface facing the image side, and the biconcave negative lens L6 on the object side of the second lens group G2. Are provided on a total of seven surfaces: the image-side surface, the both surfaces of the object-side biconvex positive lens L9 of the third lens group G3, and the object-side surface of the biconvex positive lens L12 of the fourth lens group G4. .

次に、本発明の実施例3にかかるズームレンズについて説明する。図5は本発明の実施例3にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 3 of the present invention will be described. FIGS. 5A and 5B are cross-sectional views along the optical axis showing an optical configuration when focusing on an object point at infinity of a zoom lens according to Example 3 of the present invention, where FIG. 5A is a wide angle end, and FIG. 5B is an intermediate focal length state. (C) is a sectional view at the telephoto end.

図6は実施例3にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   6A and 6B are diagrams illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 3 is focused on an object point at infinity, in which FIG. 6A is a wide-angle end, and FIG. 6B is an intermediate focus. The distance state, (c) shows the state at the telephoto end.

実施例3のズームレンズは、図5に示すように、物体側から順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と正の屈折力の第5レンズ群G5を配置している。   As shown in FIG. 5, the zoom lens according to the third exemplary embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive lens. A third lens group G3 having a refractive power of 4, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側の面が平面で像面が凸のプリズムL2と、物体側に凸面を向けた負メニスカスレンズL3と両凸正レンズL4の接合レンズ(レンズ成分C1p)で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a prism L2 having a flat object side surface and a convex image surface, a negative meniscus lens L3 having a convex surface facing the object side, and a biconvex lens. It is composed of a cemented lens (lens component C1p) of the positive lens L4, and has a positive refractive power as a whole.

また、本実施例では、本実施例では、f12は、レンズL2(レンズL2の像側面)、レンズL3及びレンズL4の合成焦点距離になる。また、面頂Ct1はレンズL1の像側面の面頂、面頂Ct2は接合レンズ(レンズL3とレンズL4)の接合面の面頂になる。   In this embodiment, f12 is the combined focal length of the lens L2 (the image side surface of the lens L2), the lens L3, and the lens L4. Further, the surface top Ct1 is the surface top of the image side surface of the lens L1, and the surface top Ct2 is the surface top of the cemented surface of the cemented lens (lens L3 and lens L4).

第2レンズ群G2は物体側に凸面を向けた負メニスカスレンズL5と、両凹負レンズL6と物体側に凸面を向けた正メニスカスレンズL7の接合レンズで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a negative meniscus lens L5 having a convex surface facing the object side, a cemented lens of a biconcave negative lens L6 and a positive meniscus lens L7 having a convex surface facing the object side, and is negatively refracted as a whole. Have power.

第3レンズ群G3は、両凸正レンズL8と、両凸正レンズL9と両凹負レンズL10の接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a biconvex positive lens L8, and a cemented lens of a biconvex positive lens L9 and a biconcave negative lens L10, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL11で正の屈折力を有している。   The fourth lens group G4 is a positive meniscus lens L11 having a convex surface directed toward the object side, and has a positive refractive power.

第5レンズ群G5は、両凹負レンズL12と両凸正レンズL13の接合レンズで構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a cemented lens which is a biconcave negative lens L12 and a biconvex positive lens L13, and has a positive refracting power as a whole.

広角端から望遠端にかけての変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は中間位置まで若干物体側に移動し、中間位置からは像側に移動し、第5レンズ群G5は固定である。また、明るさ絞りSの位置は固定である。また、光量の調整は、明るさ絞りSの開口サイズを変化させて調整する。   During zooming from the wide angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 moves to the image side, the third lens group G3 moves to the object side, and the fourth lens group G4. Moves slightly toward the object side to the intermediate position, moves from the intermediate position to the image side, and the fifth lens group G5 is fixed. The position of the aperture stop S is fixed. The light amount is adjusted by changing the aperture size of the aperture stop S.

非球面は、第1レンズ群G1の物体側に凸面を向けた負メニスカスレンズL3の両面と両凸正レンズL4の像側の面、第2レンズ群G2の物体側に凸面を向けた負メニスカスレンズL5の像側の面と、第3レンズ群G3の両凸正レンズL8の両面と、第4レンズ群G4の物体側に凸面を向けた正メニスカスレンズL11の物体側の面と、第5レンズ群G5の両凸正レンズL13の像側の面の合計8面に設けられている。   The aspherical surfaces are a negative meniscus having a convex surface facing the object side of the first lens group G1 and a negative meniscus lens L3 having a convex surface facing the object side, an image side surface of the biconvex positive lens L4, and an object side of the second lens group G2. The image-side surface of the lens L5, both surfaces of the biconvex positive lens L8 of the third lens group G3, the object-side surface of the positive meniscus lens L11 with the convex surface facing the object side of the fourth lens group G4, and a fifth A total of eight surfaces on the image side of the biconvex positive lens L13 of the lens group G5 are provided.

次に、本発明の実施例4にかかるズームレンズについて説明する。図7は本発明の実施例4にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 4 of the present invention will be described. FIGS. 7A and 7B are cross-sectional views along the optical axis showing the optical configuration when focusing on an object point at infinity of a zoom lens according to Example 4 of the present invention, where FIG. 7A is a wide angle end, and FIG. 7B is an intermediate focal length state. (C) is a sectional view at the telephoto end.

図8は実施例4にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   8A and 8B are diagrams showing spherical aberration, astigmatism, distortion aberration, and chromatic aberration of magnification when the zoom lens according to Example 4 is focused on an object point at infinity, in which FIG. 8A is a wide-angle end, and FIG. The distance state, (c) shows the state at the telephoto end.

実施例4のズームレンズは、図5に示すように、物体側から順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、正の屈折力の第5レンズ群G5を配置している。   As shown in FIG. 5, the zoom lens of Example 4 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive A third lens group G3 having a refractive power of 4, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側の面が凹面で像面が平面のプリズムL2と、両凸正レンズL3と、両凸正レンズL4と両凹負レンズL5の接合レンズ(レンズ成分C1p)で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L1 having a convex surface directed toward the object side, a prism L2 having a concave surface on the object side and a flat image surface, a biconvex positive lens L3, a biconvex positive lens L4, and both It is composed of a cemented lens (lens component C1p) of the concave negative lens L5, and has a positive refractive power as a whole.

また、本実施例では、f12は、レンズL3、レンズL4及びレンズL5の合成焦点距離になる。また、面頂Ct1はレンズL1の像側面の面頂、面頂Ct2は接合レンズ(レンズL4とレンズL5)の接合面の面頂になる。   In this embodiment, f12 is the combined focal length of the lens L3, the lens L4, and the lens L5. Further, the surface top Ct1 is the surface top of the image side surface of the lens L1, and the surface top Ct2 is the surface top of the cemented surface of the cemented lens (lens L4 and lens L5).

第2レンズ群G2は、両凹負レンズL6と、両凹負レンズL7と物体側に凸面を向けた正メニスカスレンズL8の接合レンズで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a cemented lens of a biconcave negative lens L6, a biconcave negative lens L7, and a positive meniscus lens L8 having a convex surface directed toward the object side, and has a negative refracting power as a whole. Yes.

第3レンズ群G3は、両凸正レンズL9と、両凸正レンズL10と両凹負レンズL11の接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a biconvex positive lens L9, and a cemented lens of a biconvex positive lens L10 and a biconcave negative lens L11, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL12で正の屈折力を有している。   The fourth lens group G4 is a positive meniscus lens L12 having a convex surface directed toward the object side, and has a positive refractive power.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL13と両凸正レンズL14の接合レンズで構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a cemented lens which is formed by a negative meniscus lens L13 having a convex surface directed toward the object side and a biconvex positive lens L14, and has a positive refracting power as a whole.

広角端から望遠端にかけての変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は中間位置まで若干物体側に移動し、中間位置からは像側に移動し、第5レンズ群G5は固定である。また、明るさ絞りSの位置は固定である。また、光量の調整は、開口サイズを変化させて調整する。   During zooming from the wide angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 moves to the image side, the third lens group G3 moves to the object side, and the fourth lens group G4. Moves slightly toward the object side to the intermediate position, moves from the intermediate position to the image side, and the fifth lens group G5 is fixed. The position of the aperture stop S is fixed. The light amount is adjusted by changing the opening size.

非球面は、第1レンズ群G1の物体側に凸面を向けた負メニスカスレンズL1の像側の面と両凸正レンズL4の両面と両凹負レンズL5の像側の面と、第2レンズ群G2の物体側の両凹負レンズL6の像側の面と、第3レンズ群G3の物体側の両凸正レンズL9の両面と、第4レンズ群G4の物体側に凸面を向けた正メニスカスレンズL12の物体側の面と、第5レンズ群G5の両凸正レンズL14の像側の面の合計9面に設けられている。   The aspherical surface includes an image side surface of the negative meniscus lens L1, a double convex positive lens L4, an image side surface of the biconcave negative lens L5, and a second lens. An image side surface of the object side biconcave negative lens L6 of the group G2, a double surface of the object side biconvex positive lens L9 of the third lens group G3, and a positive surface with the convex surface facing the object side of the fourth lens group G4 A total of nine surfaces including the object side surface of the meniscus lens L12 and the image side surface of the biconvex positive lens L14 of the fifth lens group G5 are provided.

次に、本発明の実施例5にかかるズームレンズについて説明する。図9は本発明の実施例5にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 5 of the present invention will be described. 9A and 9B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to Example 5 of the present invention when focusing on an object point at infinity, where FIG. 9A is a wide-angle end, and FIG. 9B is an intermediate focal length state. (C) is a sectional view at the telephoto end.

図10は実施例5にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   10A and 10B are diagrams showing spherical aberration, astigmatism, distortion aberration, and chromatic aberration of magnification when the zoom lens according to Example 5 is focused on an object point at infinity, where FIG. 10A is a wide-angle end, and FIG. 10B is an intermediate focus. The distance state, (c) shows the state at the telephoto end.

実施例5のズームレンズは、図5に示すように、物体側から順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、正の屈折力の第5レンズ群G5を配置している。   As shown in FIG. 5, the zoom lens of Example 5 includes, in order from the object side, a first lens unit G1 having a positive refractive power, a second lens unit G2 having a negative refractive power, an aperture stop S, and a positive lens unit. A third lens group G3 having a refractive power of 4, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側の面が凹面で像面が平面のプリズムL1と、両凸正レンズL2と両凹負レンズL3の接合レンズ(レンズ成分C1p)と、物体側に凸面を向けた正メニスカスレンズL4で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a prism L1 having a concave object side surface and a flat image surface, a cemented lens (lens component C1p) of a biconvex positive lens L2 and a biconcave negative lens L3, and a convex surface facing the object side. The positive meniscus lens L4 has a positive refractive power as a whole.

また、本実施例では、f12は、レンズL2、レンズL3及びレンズL4の合成焦点距離になる。また、面頂Ct1はプリズムL1の物体側面の面頂、面頂Ct2は接合レンズ(レンズL2とレンズL3)の接合面の面頂になる。   In this embodiment, f12 is the combined focal length of the lens L2, the lens L3, and the lens L4. Further, the surface apex Ct1 is the surface apex of the object side surface of the prism L1, and the surface apex Ct2 is the apex of the cemented surface of the cemented lens (lens L2 and lens L3).

第2レンズ群G2は両凹負レンズL5と、両凹負レンズL6と物体側に凸面を向けた正メニスカスレンズL7の接合レンズで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a cemented lens of a biconcave negative lens L5, a biconcave negative lens L6, and a positive meniscus lens L7 having a convex surface directed toward the object side, and has a negative refracting power as a whole. .

第3レンズ群G3は、両凸正レンズL8と、両凸正レンズL9と両凹負レンズL10の接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a biconvex positive lens L8, and a cemented lens of a biconvex positive lens L9 and a biconcave negative lens L10, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL11で正の屈折力を有している。   The fourth lens group G4 is a positive meniscus lens L11 having a convex surface directed toward the object side, and has a positive refractive power.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL12と両凸正レンズL13の接合レンズで構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a cemented lens which is formed by a negative meniscus lens L12 having a convex surface directed toward the object side and a biconvex positive lens L13, and has a positive refracting power as a whole.

広角端から望遠端にかけての変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は物体側に移動し、第4レンズ群G4は像側に移動し、第5レンズ群G5は固定である。また、明るさ絞りSの位置は固定である。また、光量の調整は、明るさ絞りSの開口サイズを変化させて調整する。   During zooming from the wide angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 moves to the image side, the third lens group G3 moves to the object side, and the fourth lens group G4. Moves to the image side, and the fifth lens group G5 is fixed. The position of the aperture stop S is fixed. The light amount is adjusted by changing the aperture size of the aperture stop S.

非球面は、第1レンズ群G1の物体側の面が凹面で像面が平面のプリズムL1の物体側の面と両凸正レンズL2の両面と、第3レンズ群G3の物体側の両凸正レンズL8の両面と、第4レンズ群G4の物体側に凸面を向けた正メニスカスレンズL11の物体側の面の合計6面に設けられている。   The aspherical surfaces are a convex surface on the object side of the prism L1 having a concave surface on the object side of the first lens group G1 and a flat image surface, both surfaces of the biconvex positive lens L2, and a biconvex surface on the object side of the third lens group G3. It is provided on a total of six surfaces including both surfaces of the positive lens L8 and the object side surface of the positive meniscus lens L11 having a convex surface facing the object side of the fourth lens group G4.

次に、本発明の実施例6にかかるズームレンズについて説明する。図11は本発明の実施例6にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 6 of the present invention will be described. 11A and 11B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to Example 6 of the present invention when focusing on an object point at infinity. FIG. 11A is a wide angle end, and FIG. 11B is an intermediate focal length state. (C) is a sectional view at the telephoto end.

図12は実施例6にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   12A and 12B are diagrams showing spherical aberration, astigmatism, distortion aberration, and chromatic aberration of magnification when the zoom lens according to Example 6 is focused on an object point at infinity, where FIG. 12A is a wide angle end, and FIG. 12B is an intermediate focus. The distance state, (c) shows the state at the telephoto end.

実施例6のズームレンズは、図11に示すように、物体側から順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、正の屈折力の第5レンズ群G5と、負の屈折力の第6レンズ群G6を配置している。   As shown in FIG. 11, the zoom lens of Example 6 includes, in order from the object side, a first lens unit G1 having a positive refractive power, a second lens unit G2 having a negative refractive power, an aperture stop S, and a positive lens unit. A third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a positive refractive power, and a sixth lens group G6 having a negative refractive power. .

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側の面と像側の面が共に平面のプリズムL2と、物体側に凸面を向けた負メニスカスレンズL3と両凸正レンズL4の接合レンズ(レンズ成分C1p)と、両凸正レンズL5で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a prism L2 having both the object side surface and the image side surface being flat, and a negative meniscus lens L3 having a convex surface facing the object side. It consists of a cemented lens (lens component C1p) of the convex positive lens L4 and a biconvex positive lens L5, and has a positive refractive power as a whole.

また、本実施例では、f12は、レンズL3、レンズL4及びレンズL5の合成焦点距離になる。また、面頂Ct1はレンズL1の像側面の面頂、面頂Ct2は接合レンズ(レンズL3とレンズL4)の接合面の面頂になる。   In this embodiment, f12 is the combined focal length of the lens L3, the lens L4, and the lens L5. Further, the surface top Ct1 is the surface top of the image side surface of the lens L1, and the surface top Ct2 is the surface top of the cemented surface of the cemented lens (lens L3 and lens L4).

第2レンズ群G2は両凹負レンズL6と、両凹負レンズL7と物体側に凸面を向けた正メニスカスレンズL8の接合レンズで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a cemented lens of a biconcave negative lens L6, a biconcave negative lens L7, and a positive meniscus lens L8 having a convex surface directed toward the object side, and has a negative refracting power as a whole. .

第3レンズ群G3は、両凸正レンズL9で構成されており、正の屈折力を有している。   The third lens group G3 includes a biconvex positive lens L9, and has positive refractive power.

第4レンズ群G4は、両凸正レンズL10と、両凸正レンズL11と両凹負レンズL12の接合レンズで構成されており、正の屈折力を有している。   The fourth lens group G4 includes a biconvex positive lens L10, and a cemented lens of a biconvex positive lens L11 and a biconcave negative lens L12, and has a positive refractive power.

第5レンズ群G5は、両凸正レンズL13で構成されており、正の屈折力を有している。
第6レンズ群G6は、像側に凸面を向けた負メニスカスレンズL14と像側に凸面を向けた正メニスカスレンズL15の接合レンズで構成されており、負の屈折力を有している。
The fifth lens group G5 includes a biconvex positive lens L13, and has positive refractive power.
The sixth lens group G6 includes a cemented lens including a negative meniscus lens L14 having a convex surface directed toward the image side and a positive meniscus lens L15 having a convex surface directed toward the image side, and has a negative refractive power.

広角端から望遠端にかけての変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は物体側に移動した後、像側に移動し、第6レンズ群G6は固定である。また、明るさ絞りSの位置は固定である。また、光量の調整は、開口サイズを変化させて調整する。   At the time of zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the third lens group G3 is fixed, and the fourth lens group G4 is an object. The fifth lens group G5 moves to the object side, then moves to the image side, and the sixth lens group G6 is fixed. The position of the aperture stop S is fixed. The light amount is adjusted by changing the opening size.

非球面は、第1レンズ群G1の物体側に凸面を向けた負メニスカスレンズL3の物体側の面と両凸正レンズL4の両面と、第2レンズ群G2の像側の両凹負レンズL7の両面と物体側に凸面を向けた正メニスカスレンズL8の像側の面と、第4レンズ群G4の物体側の両凸正レンズL10の両面と、第5レンズ群G5の両凸正レンズL13の物体側の面の合計9面に設けられている。   The aspherical surface includes an object side surface of a negative meniscus lens L3 having a convex surface facing the object side of the first lens group G1, both surfaces of a biconvex positive lens L4, and a biconcave negative lens L7 on the image side of the second lens group G2. , The image side surface of the positive meniscus lens L8 with the convex surface facing the object side, both surfaces of the object side biconvex positive lens L10 of the fourth lens group G4, and the biconvex positive lens L13 of the fifth lens group G5. Are provided on a total of nine surfaces on the object side.

次に、本発明の実施例7にかかるズームレンズについて説明する。図13は本発明の実施例7にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 7 of the present invention will be described. FIGS. 13A and 13B are cross-sectional views along the optical axis showing the optical configuration when focusing on an object point at infinity of a zoom lens according to Example 7 of the present invention. FIG. 13A is a wide-angle end, and FIG. 13B is an intermediate focal length state. (C) is a sectional view at the telephoto end.

図14は実施例7にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   14A and 14B are diagrams showing spherical aberration, astigmatism, distortion aberration, and chromatic aberration of magnification when the zoom lens according to Example 7 is focused on an object point at infinity, where FIG. 14A is a wide angle end, and FIG. 14B is an intermediate focus. The distance state, (c) shows the state at the telephoto end.

実施例7のズームレンズは、図14に示すように、物体側から順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5を配置している。   As shown in FIG. 14, the zoom lens according to the seventh embodiment includes, in order from the object side, a first lens unit G1 having a positive refractive power, a second lens unit G2 having a negative refractive power, an aperture stop S, and a positive lens unit. A third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a negative refractive power.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側の面と像側の面が共に平面のプリズムL2と、両凸正レンズL3と像側に凸面を向けた負メニスカスレンズL4の接合レンズ(レンズ成分C1p)で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L1 having a convex surface directed toward the object side, a prism L2 having both an object-side surface and an image-side surface planar, and a biconvex positive lens L3 and a convex surface directed toward the image side. It is composed of a cemented lens (lens component C1p) of the negative meniscus lens L4, and has a positive refractive power as a whole.

また、本実施例では、f12は、レンズL3とレンズL4の合成焦点距離になる。また、面頂Ct1はレンズL1の像側面の面頂、面頂Ct2は接合レンズ(レンズL3とレンズL4)の接合面の面頂になる。   In this embodiment, f12 is the combined focal length of the lens L3 and the lens L4. Further, the surface top Ct1 is the surface top of the image side surface of the lens L1, and the surface top Ct2 is the surface top of the cemented surface of the cemented lens (lens L3 and lens L4).

第2レンズ群G2は両凹負レンズL5と、両凹負レンズL6と両凸正レンズL7の接合レンズで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a biconcave negative lens L5, and a cemented lens of a biconcave negative lens L6 and a biconvex positive lens L7, and has a negative refracting power as a whole.

第3レンズ群G3は、両凸正レンズL8で構成されており、正の屈折力を有している。   The third lens group G3 includes a biconvex positive lens L8, and has positive refractive power.

第4レンズ群G4は、両凸正レンズL9と像側に凸面を向けた負メニスカスレンズL10の接合レンズで構成されており、正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex positive lens L9 and a negative meniscus lens L10 having a convex surface directed toward the image side, and has a positive refractive power.

第5レンズ群G5は、両凹負レンズL11と、物体側に凸面を向けた正メニスカスレンズL12で構成されており、負の屈折力を有している。   The fifth lens group G5 includes a biconcave negative lens L11 and a positive meniscus lens L12 having a convex surface directed toward the object side, and has negative refracting power.

広角端から望遠端にかけての変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は固定である。また、明るさ絞りSの位置は固定である。また、光量の調整は、明るさ絞りSの開口サイズを変化させて調整する。   At the time of zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the third lens group G3 is fixed, and the fourth lens group G4 is an object. The fifth lens group G5 is fixed. The position of the aperture stop S is fixed. The light amount is adjusted by changing the aperture size of the aperture stop S.

非球面は、第1レンズ群G1の両凸正レンズL3の両面と、第3レンズ群G3の凸正レンズL8の物体側の面と、第4レンズ群G4の両凸正レンズL9の物体側の面と、第5レンズ群G5の凹負レンズL11の物体側の面と物体側に凸面を向けた正メニスカスレンズL12の物体側の面の合計6面に設けられている。   The aspheric surfaces are both surfaces of the biconvex positive lens L3 of the first lens group G1, the object side surface of the convex positive lens L8 of the third lens group G3, and the object side of the biconvex positive lens L9 of the fourth lens group G4. And a surface on the object side of the negative negative lens L11 of the fifth lens group G5 and a surface on the object side of the positive meniscus lens L12 having a convex surface facing the object side.

次に、本発明の実施例8にかかるズームレンズについて説明する。図15は本発明の実施例8にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 8 of the present invention will be described. 15A and 15B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to Example 8 of the present invention when focusing on an object point at infinity, where FIG. 15A is a wide angle end, and FIG. (C) is a sectional view at the telephoto end.

図16は実施例8にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   FIG. 16 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 8 is focused on an object point at infinity, where (a) is a wide angle end and (b) is an intermediate focus. The distance state, (c) shows the state at the telephoto end.

実施例8のズームレンズは、図16に示すように、物体側から順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、正の屈折力の第5レンズ群G5を配置している。   As shown in FIG. 16, the zoom lens according to the eighth embodiment includes, in order from the object side, a first lens unit G1 having a positive refractive power, a second lens unit G2 having a negative refractive power, an aperture stop S, and a positive lens unit. A third lens group G3 having a refractive power of 4, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側の面と像側の面が共に平面のプリズムL2と、物体側に凸面を向けた負メニスカスレンズL3と両凸正レンズL4の接合レンズ(レンズ成分C1p)で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a prism L2 having both the object side surface and the image side surface being flat, and a negative meniscus lens L3 having a convex surface facing the object side. It is composed of a cemented lens (lens component C1p) of a convex positive lens L4, and has a positive refractive power as a whole.

また、本実施例では、f12は、レンズL3とレンズL4の合成焦点距離になる。また、面頂Ct1はレンズL1の像側面の面頂、面頂Ct2は接合レンズ(レンズL3とレンズL4)の接合面の面頂になる。   In this embodiment, f12 is the combined focal length of the lens L3 and the lens L4. Further, the surface top Ct1 is the surface top of the image side surface of the lens L1, and the surface top Ct2 is the surface top of the cemented surface of the cemented lens (lens L3 and lens L4).

第2レンズ群G2は両凹負レンズL5と、両凹負レンズL6と、両凹負レンズL7と物体側に凸面を向けた正メニスカスレンズL8の接合レンズで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a cemented lens of a biconcave negative lens L5, a biconcave negative lens L6, a biconcave negative lens L7, and a positive meniscus lens L8 having a convex surface facing the object side. Has refractive power.

第3レンズ群G3は、両凸正レンズL9で構成されており、正の屈折力を有している。   The third lens group G3 includes a biconvex positive lens L9, and has positive refractive power.

第4レンズ群G4は、両凸正レンズL10と像側に凸面を向けた負メニスカスレンズL11の接合レンズで構成されており、正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex positive lens L10 and a negative meniscus lens L11 having a convex surface directed toward the image side, and has a positive refractive power.

第5レンズ群G5は、両凹負レンズL12と、両凸正レンズL13で構成されており、正の屈折力を有している。   The fifth lens group G5 includes a biconcave negative lens L12 and a biconvex positive lens L13, and has positive refracting power.

広角端から望遠端にかけての変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は固定である。また、明るさ絞りSの位置は固定である。また、光量の調整は、明るさ絞りSの開口サイズを変化させて調整する。   At the time of zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the third lens group G3 is fixed, and the fourth lens group G4 is an object. The fifth lens group G5 is fixed. The position of the aperture stop S is fixed. The light amount is adjusted by changing the aperture size of the aperture stop S.

非球面は、第1レンズ群G1の物体側に凸面を向けた負メニスカスレンズL3の物体側の面と両凸正レンズL4の両面と、第3レンズ群G3の凸正レンズL9の物体側の面と、第4レンズ群G4の両凸正レンズL10の物体側の面と、第5レンズ群G5の両凸正レンズL13の物体側の面の合計6面に設けられている。   The aspherical surfaces are the object side surface of the negative meniscus lens L3 with the convex surface facing the object side of the first lens group G1, both surfaces of the biconvex positive lens L4, and the object side of the convex positive lens L9 of the third lens group G3. A total of six surfaces are provided, that is, the object side surface of the biconvex positive lens L10 of the fourth lens group G4 and the object side surface of the biconvex positive lens L13 of the fifth lens group G5.

次に、本発明の実施例9にかかるズームレンズについて説明する。図17は本発明の実施例9にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 9 of the present invention will be described. FIGS. 17A and 17B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to Example 9 of the present invention when focusing on an object point at infinity, where FIG. 17A is a wide-angle end, and FIG. (C) is a sectional view at the telephoto end.

図18は実施例9にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   18A and 18B are diagrams illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 9 is focused on an object point at infinity, in which FIG. 18A is a wide angle end, and FIG. 18B is an intermediate focus. The distance state, (c) shows the state at the telephoto end.

実施例9のズームレンズは、図17に示すように、物体側から順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、開口絞りSと、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と、負の屈折力の第5レンズ群G5を配置している。   As shown in FIG. 17, the zoom lens according to the ninth embodiment includes, in order from the object side, a first lens unit G1 having a positive refractive power, a second lens unit G2 having a negative refractive power, an aperture stop S, and a positive lens unit. A third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a negative refractive power.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、物体側の面と像側の面が共に平面のプリズムL2と、物体側に凸面を向けた負メニスカスレンズL3と両凸正レンズL4の接合レンズ(レンズ成分C1p)で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a prism L2 having both the object side surface and the image side surface being flat, and a negative meniscus lens L3 having a convex surface facing the object side. It is composed of a cemented lens (lens component C1p) of a convex positive lens L4, and has a positive refractive power as a whole.

また、本実施例では、f12は、レンズL3とレンズL4の合成焦点距離になる。また、面頂Ct1はレンズL1の像側面の面頂、面頂Ct2は接合レンズ(レンズL3とレンズL4)の接合面の面頂になる。   In this embodiment, f12 is the combined focal length of the lens L3 and the lens L4. Further, the surface top Ct1 is the surface top of the image side surface of the lens L1, and the surface top Ct2 is the surface top of the cemented surface of the cemented lens (lens L3 and lens L4).

第2レンズ群G2は両凹負レンズL5と、両凹負レンズL6と物体側に凸面を向けた正メニスカスレンズL7の接合レンズと、両凹負レンズL8で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a biconcave negative lens L5, a cemented lens of a biconcave negative lens L6, a positive meniscus lens L7 having a convex surface directed toward the object side, and a biconcave negative lens L8. Has refractive power.

第3レンズ群G3は、両凸正レンズL9で構成されており、正の屈折力を有している。   The third lens group G3 includes a biconvex positive lens L9, and has positive refractive power.

第4レンズ群G4は、両凸正レンズL10と像側に凸面を向けた負メニスカスレンズL11の接合レンズで構成されており、正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex positive lens L10 and a negative meniscus lens L11 having a convex surface directed toward the image side, and has a positive refractive power.

第5レンズ群G5は、両凹負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13で構成されており、負の屈折力を有している。   The fifth lens group G5 includes a biconcave negative lens L12 and a positive meniscus lens L13 having a convex surface directed toward the object side, and has negative refracting power.

広角端から望遠端にかけての変倍時、第1レンズ群G1は固定であり、第2レンズ群G2は像側に移動し、第3レンズ群G3は固定であり、第4レンズ群G4は物体側に移動し、第5レンズ群G5は固定である。また、明るさ絞りSの位置は固定である。また、光量の調整は、明るさ絞りSの開口サイズを変化させて調整する。   At the time of zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the third lens group G3 is fixed, and the fourth lens group G4 is an object. The fifth lens group G5 is fixed. The position of the aperture stop S is fixed. The light amount is adjusted by changing the aperture size of the aperture stop S.

非球面は、第1レンズ群G1の物体側に凸面を向けた負メニスカスレンズL3の物体側の面と両凸正レンズL4の両面と、第3レンズ群G3の凸正レンズL9の物体側の面と、第4レンズ群G4の両凸正レンズL10の物体側の面と、第5レンズ群G5の両凸正レンズL13の物体側の面の合計6面に設けられている。   The aspherical surfaces are the object side surface of the negative meniscus lens L3 with the convex surface facing the object side of the first lens group G1, both surfaces of the biconvex positive lens L4, and the object side of the convex positive lens L9 of the third lens group G3. A total of six surfaces are provided, that is, the object side surface of the biconvex positive lens L10 of the fourth lens group G4 and the object side surface of the biconvex positive lens L13 of the fifth lens group G5.

以下に、上記各実施例の数値データを示す。記号は上記の外、fは全系焦点距離、BFはバックフォーカス、fは各レンズ群の焦点距離、IHは像高、FNOはFナンバー、ωは半画角、WEは広角端、STは中間焦点距離状態、TEは望遠端、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数である。後述するレンズ全長は、レンズ最前面からレンズ最終面までの距離にバックフォーカスを加えたものである。BF(バックフォーカス)は、レンズ最終面から近軸像面までの距離を空気換算して表したものである。 Below, the numerical data of each said Example are shown. Symbol is outside the above, f is the focal length of the entire system, BF is the back focus, f is the focal length of each lens group, IH is the image height, FNO is the F number, ω is the half field angle, WE is the wide angle end, ST Is the intermediate focal length state, TE is the telephoto end, r is the radius of curvature of each lens surface, d is the distance between the lens surfaces, nd is the refractive index of the d-line of each lens, and νd is the Abbe number of each lens. The total lens length described later is obtained by adding back focus to the distance from the lens front surface to the lens final surface. BF (back focus) represents the distance from the last lens surface to the paraxial image plane in terms of air.

なお、非球面形状は、zを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。   The aspherical shape is expressed by the following formula, where z is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.

z=h2 /R[1+{1−(K+1)h2 /R21/2
+A4 h4 +A6 h6 +A8 h8 +A10h10+A12h12
ただし、rは近軸曲率半径、Kは円錐係数、A4 、A6 、A8 、A10、A12はそれぞれ4次、6次、8次、10次、12次の非球面係数である。また、非球面係数において、「e−n」(nは整数)は、「10−n」を示している。
z = h 2 / R [1+ {1− (K + 1) h 2 / R 2 } 1/2 ]
+ A 4 h 4 + A 6 h 6 + A 8 h 8 + A 10 h 10 + A 12 h 12
Where r is the paraxial radius of curvature, K is the conic coefficient, and A 4 , A 6 , A 8 , A 10 , and A 12 are the fourth, sixth, eighth, tenth, and twelfth aspheric coefficients, respectively. . In the aspheric coefficient, “e−n” (n is an integer) indicates “10 −n ”.

数値実施例1
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 35.6078 1.0000 2.14352 17.77
2 13.3707 2.8000
3 ∞ 10.8000 1.80610 40.92
4 ∞ 0.2000
5* 18.8067 2.8000 1.88300 40.76
6* -17.6140 0.1000 1.63494 23.22
7* -36.1413 可変
8 85.6702 0.5000 1.83481 42.71
9* 10.5788 1.5000
10 -13.5398 0.5000 1.80610 40.92
11 14.0475 1.4000 1.94595 17.98
12 -98.7614 可変
13(STO) ∞ 可変
14* 8.0967 2.5000 1.83481 42.71
15* -33.6397 0.1500
16 9.2703 1.6000 1.69680 55.53
17 -180.4104 0.5000 2.00069 25.46
18 5.4518 可変
19* 9.3913 1.6000 1.52540 56.25
20 36.3345 可変
21* -15.8203 0.6000 2.14352 17.77
22 26.9859 2.2000 1.48749 70.23
23 -7.5455 0.6000
24 ∞ 0.8000 1.51633 64.14
25 ∞ 0.7999
像面 ∞
Numerical example 1
Unit mm

Surface data surface number rd nd νd
Object ∞ ∞
1 35.6078 1.0000 2.14352 17.77
2 13.3707 2.8000
3 ∞ 10.8000 1.80610 40.92
4 ∞ 0.2000
5 * 18.8067 2.8000 1.88300 40.76
6 * -17.6140 0.1000 1.63494 23.22
7 * -36.1413 Variable
8 85.6702 0.5000 1.83481 42.71
9 * 10.5788 1.5000
10 -13.5398 0.5000 1.80610 40.92
11 14.0475 1.4000 1.94595 17.98
12 -98.7614 Variable
13 (STO) ∞ Variable
14 * 8.0967 2.5000 1.83481 42.71
15 * -33.6397 0.1500
16 9.2703 1.6000 1.69680 55.53
17 -180.4104 0.5000 2.00069 25.46
18 5.4518 Variable
19 * 9.3913 1.6000 1.52540 56.25
20 36.3345 Variable
21 * -15.8203 0.6000 2.14352 17.77
22 26.9859 2.2000 1.48749 70.23
23 -7.5455 0.6000
24 ∞ 0.8000 1.51633 64.14
25 ∞ 0.7999
Image plane ∞

非球面データ
第5面
K=0.0656,
A2=0.0000E+00,A4=-2.0793E-05,A6=-2.2718E-07,A8=-1.4970E-08,A10=0.0000E+00
第6面
K=0.0281,
A2=0.0000E+00,A4=-1.6543E-05,A6=-1.9504E-06,A8=4.1524E-08,A10=0.0000E+00
第7面
K=-0.0404,
A2=0.0000E+00,A4=3.7765E-05,A6=2.1488E-07,A8=-3.4001E-08,A10=0.0000E+00
第9面
K=-0.9588,
A2=0.0000E+00,A4=1.4918E-04,A6=3.3691E-06,A8=2.7367E-07,A10=0.0000E+00
第14面
K=-0.6078,
A2=0.0000E+00,A4=-7.2844E-05,A6=4.9099E-06,A8=5.9322E-08,A10=0.0000E+00
第15面
K=-0.1929,
A2=0.0000E+00,A4=7.6881E-05,A6=7.5157E-06,A8=-1.3516E-08,A10=0.0000E+00
第19面
K=0.0285,
A2=0.0000E+00,A4=-2.5544E-04,A6=1.4559E-05,A8=-6.7788E-07,A10=0.0000E+00
第21面
K=0.2758,
A2=0.0000E+00,A4=1.6010E-04,A6=-2.5583E-05,A8=9.6944E-07,A10=0.0000E+00
Aspheric data 5th surface
K = 0.0656,
A2 = 0.0000E + 00, A4 = -2.0793E-05, A6 = -2.2718E-07, A8 = -1.4970E-08, A10 = 0.0000E + 00
6th page
K = 0.0281,
A2 = 0.0000E + 00, A4 = -1.6543E-05, A6 = -1.9504E-06, A8 = 4.1524E-08, A10 = 0.0000E + 00
7th page
K = -0.0404,
A2 = 0.0000E + 00, A4 = 3.7765E-05, A6 = 2.1488E-07, A8 = -3.4001E-08, A10 = 0.0000E + 00
9th page
K = -0.9588,
A2 = 0.0000E + 00, A4 = 1.4918E-04, A6 = 3.3691E-06, A8 = 2.7367E-07, A10 = 0.0000E + 00
14th page
K = -0.6078,
A2 = 0.0000E + 00, A4 = -7.2844E-05, A6 = 4.9099E-06, A8 = 5.9322E-08, A10 = 0.0000E + 00
15th page
K = -0.1929,
A2 = 0.0000E + 00, A4 = 7.6881E-05, A6 = 7.5157E-06, A8 = -1.3516E-08, A10 = 0.0000E + 00
19th page
K = 0.0285,
A2 = 0.0000E + 00, A4 = -2.5544E-04, A6 = 1.4559E-05, A8 = -6.7788E-07, A10 = 0.0000E + 00
21st page
K = 0.2758,
A2 = 0.0000E + 00, A4 = 1.6010E-04, A6 = -2.5583E-05, A8 = 9.6944E-07, A10 = 0.0000E + 00

各種データ
ズーム比 4.95
広角 中間 望遠
焦点距離 6.05071 13.53489 29.95978
Fナンバー 3.0985 4.1877 5.9000
画角 36.8° 16.0° 7.2°
像高 3.84 3.84 3.84
レンズ全長 61.0001 61.0005 61.0000
BF 0.79995 0.79995 0.79995

d7 0.59941 5.39336 9.12734
d12 9.92807 5.13508 1.40013
d13 9.23970 5.05720 1.19996
d18 3.05832 7.23901 14.82278
d20 5.22463 5.22595 1.49990
Various data zoom ratio 4.95
Wide angle Medium telephoto focal length 6.05071 13.53489 29.95978
F number 3.0985 4.1877 5.9000
Angle of view 36.8 ° 16.0 ° 7.2 °
Image height 3.84 3.84 3.84
Total lens length 61.0001 61.0005 61.0000
BF 0.79995 0.79995 0.79995

d7 0.59941 5.39336 9.12734
d12 9.92807 5.13508 1.40013
d13 9.23970 5.05720 1.19996
d18 3.05832 7.23901 14.82278
d20 5.22463 5.22595 1.49990

ズームレンズ群データ
群 始面 焦点距離
1 1 16.31490
2 8 -8.97530
3 14 13.65900
4 19 23.62172
5 21 -45.67590
Zoom lens group data group Start surface Focal length
1 1 16.31490
2 8 -8.97530
3 14 13.65900
4 19 23.62172
5 21 -45.67590

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L4 1.634937 1.627308 1.654649 1.671136 1.685842(LA)
L7 1.945950 1.931230 1.983830 2.018254 2.051060
L1,L12 2.143520 2.125601 2.189954 2.232324 2.273184
L14 1.516330 1.513855 1.521905 1.526213 1.529768
L13 1.487490 1.485344 1.492285 1.495963 1.498983
L2,L6 1.806098 1.800248 1.819945 1.831173 1.840781
L5,L8 1.834807 1.828975 1.848520 1.859547 1.868911
L3 1.882997 1.876560 1.898221 1.910495 1.920919(LB)
L9 1.696797 1.692974 1.705522 1.712339 1.718005
L10 2.000690 1.989410 2.028720 2.052834 2.074600
L11 1.525400 1.522460 1.531800 1.537220 1.543548
[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L4 1.634937 1.627308 1.654649 1.671136 1.685842 (LA)
L7 1.945950 1.931230 1.983830 2.018254 2.051060
L1, L12 2.143520 2.125601 2.189954 2.232324 2.273184
L14 1.516330 1.513855 1.521905 1.526213 1.529768
L13 1.487490 1.485344 1.492285 1.495963 1.498983
L2, L6 1.806098 1.800248 1.819945 1.831173 1.840781
L5, L8 1.834807 1.828975 1.848520 1.859547 1.868911
L3 1.882997 1.876560 1.898221 1.910495 1.920919 (LB)
L9 1.696797 1.692974 1.705522 1.712339 1.718005
L10 2.000690 1.989410 2.028720 2.052834 2.074600
L11 1.525400 1.522460 1.531800 1.537220 1.543548

数値実施例2
単位 mm

面番号 r d nd νd
物面 ∞ ∞
1 157.7080 1.0000 2.00330 28.27
2 13.4226 1.7000
3 ∞ 9.8000 2.14352 17.7
4 ∞ 0.2000
5* 35.3820 2.5000 1.74320 49.34
6* -13.8568 0.1000 1.63494 23.22
7* -24.8919 0.1500
8 18.7117 1.8000 1.81600 46.62
9 -989.9236 可変
10 -35.1124 0.5000 1.83481 42.71
11* 11.2710 1.1000
12 -16.1577 0.5000 1.80610 40.92
13 9.1476 1.3000 1.94595 17.98
14 137.0310 可変
15(STO) ∞ 可変
16* 6.0346 2.5000 1.83481 42.71
17* -20.8366 0.1500
18 13.2227 1.6000 1.69680 55.53
19 -21.0493 0.5000 2.00069 25.46
20 4.2655 可変
21* 10.9804 1.6000 1.52540 56.25
22 -232.4414 可変
23 -362.5642 0.6000 2.04300 39.00
24 14.2643 3.0000 1.51742 52.43
25 -10.6048 0.6000
26 ∞ 0.8000 1.51633 64.14
27 ∞ 0.7993
像面 ∞
Numerical example 2
Unit mm

Surface number rd nd νd
Object ∞ ∞
1 157.7080 1.0000 2.00330 28.27
2 13.4226 1.7000
3 ∞ 9.8000 2.14352 17.7
4 ∞ 0.2000
5 * 35.3820 2.5000 1.74320 49.34
6 * -13.8568 0.1000 1.63494 23.22
7 * -24.8919 0.1500
8 18.7117 1.8000 1.81600 46.62
9 -989.9236 Variable
10 -35.1124 0.5000 1.83481 42.71
11 * 11.2710 1.1000
12 -16.1577 0.5000 1.80610 40.92
13 9.1476 1.3000 1.94595 17.98
14 137.0310 Variable
15 (STO) ∞ Variable
16 * 6.0346 2.5000 1.83481 42.71
17 * -20.8366 0.1500
18 13.2227 1.6000 1.69680 55.53
19 -21.0493 0.5000 2.00069 25.46
20 4.2655 Variable
21 * 10.9804 1.6000 1.52540 56.25
22 -232.4414 Variable
23 -362.5642 0.6000 2.04300 39.00
24 14.2643 3.0000 1.51742 52.43
25 -10.6048 0.6000
26 ∞ 0.8000 1.51633 64.14
27 ∞ 0.7993
Image plane ∞

非球面データ
第5面
K=-0.3278,
A2=0.0000E+00,A4=2.9173E-06,A6=-2.0925E-06,A8=4.2530E-08,A10=0.0000E+00
第6面
K=0.0479,
A2=0.0000E+00,A4=4.8113E-05,A6=-1.1149E-05,A8=3.7818E-07,A10-=0.0000E+00
第7面
K=-0.0187,
A2=0.0000E+00,A4=-7.3529E-06,A6=-6.6541E-07,A8=-1.3661E-08,A10=0.0000E+00
第11面
K=-0.8871,
A2=0.0000E+00,A4=5.3951E-05,A6=5.7536E-06,A8=6.4825E-09,A10=0.0000E+00
第16面
K=-0.5942,
A2=0.0000E+00,A4=-6.8115E-05,A6=1.0907E-07,A8=7.4120E-08,A10=0.0000E+00
第17面
K=-0.7628,
A2=0.0000E+00,A4=4.5611E-04,A6=-1.0355E-05,A8=3.5572E-07,A10=0.0000E+00
第21面
K=-0.7169,
A2=0.0000E+00,A4=2.7279E-05,A6=-5.1868E-06,A8=1.8491E-08,A10=0.0000E+00
Aspheric data 5th surface
K = -0.3278,
A2 = 0.0000E + 00, A4 = 2.9173E-06, A6 = -2.0925E-06, A8 = 4.2530E-08, A10 = 0.0000E + 00
6th page
K = 0.0479,
A2 = 0.0000E + 00, A4 = 4.8113E-05, A6 = -1.1149E-05, A8 = 3.7818E-07, A10- = 0.0000E + 00
7th page
K = -0.0187,
A2 = 0.0000E + 00, A4 = -7.3529E-06, A6 = -6.6541E-07, A8 = -1.3661E-08, A10 = 0.0000E + 00
11th page
K = -0.8871,
A2 = 0.0000E + 00, A4 = 5.3951E-05, A6 = 5.7536E-06, A8 = 6.4825E-09, A10 = 0.0000E + 00
16th page
K = -0.5942,
A2 = 0.0000E + 00, A4 = -6.8115E-05, A6 = 1.0907E-07, A8 = 7.4120E-08, A10 = 0.0000E + 00
17th page
K = -0.7628,
A2 = 0.0000E + 00, A4 = 4.5611E-04, A6 = -1.0355E-05, A8 = 3.5572E-07, A10 = 0.0000E + 00
21st page
K = -0.7169,
A2 = 0.0000E + 00, A4 = 2.7279E-05, A6 = -5.1868E-06, A8 = 1.8491E-08, A10 = 0.0000E + 00

各種データ
ズーム比 4.94
広角 中間 望遠
焦点距離 6.06124 13.53624 29.95741
Fナンバー 3.6364 3.9517 5.9000
画角 36.7° 15.5° 7.2°
像高 3.84 3.84 3.84
レンズ全長 58.0640 58.0714 58.0645
BF 0.79928 0.79928 0.79928

d9 0.59769 5.73203 8.08721
d14 8.88866 3.77014 1.39890
d15 6.82073 5.76455 1.19484
d20 3.98911 4.58771 13.08294
d22 4.96853 5.41533 1.50088
Various data zoom ratio 4.94
Wide angle Medium telephoto focal length 6.06124 13.53624 29.95741
F number 3.6364 3.9517 5.9000
Angle of view 36.7 ° 15.5 ° 7.2 °
Image height 3.84 3.84 3.84
Total lens length 58.0640 58.0714 58.0645
BF 0.79928 0.79928 0.79928

d9 0.59769 5.73203 8.08721
d14 8.88866 3.77014 1.39890
d15 6.82073 5.76455 1.19484
d20 3.98911 4.58771 13.08294
d22 4.96853 5.41533 1.50088

ズームレンズ群データ
群 始面 焦点距離
1 1 12.81116
2 10 -6.90346
3 16 12.76421
4 21 20.00160
5 23 77.44170
Zoom lens group data group Start surface Focal length
1 1 12.81116
2 10 -6.90346
3 16 12.76421
4 21 20.00160
5 23 77.44170

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L4 1.634937 1.627308 1.654649 1.672358 1.688773(LA)
L13 2.042998 2.035064 2.061804 2.076930 2.089693
L8 1.945950 1.931230 1.983830 2.018254 2.051063
L2 2.143520 2.125601 2.189954 2.232324 2.273190
L15 1.516330 1.513855 1.521905 1.526213 1.529768
L7 1.806098 1.800248 1.819945 1.831173 1.840781
L6,L9 1.834807 1.828975 1.848520 1.859547 1.868911
L5 1.816000 1.810749 1.828252 1.837996 1.846185
L1 2.003300 1.993011 2.028497 2.049714 2.068441
L10 1.696797 1.692974 1.705522 1.712339 1.718005
L3 1.743198 1.738653 1.753716 1.762046 1.769040(LB)
L14 1.517417 1.514444 1.524313 1.529804 1.534439
L11 2.000690 1.989410 2.028720 2.052834 2.074603
L12 1.525400 1.522460 1.531800 1.537220 1.543549
[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L4 1.634937 1.627308 1.654649 1.672358 1.688773 (LA)
L13 2.042998 2.035064 2.061804 2.076930 2.089693
L8 1.945950 1.931230 1.983830 2.018254 2.051063
L2 2.143520 2.125601 2.189954 2.232324 2.273190
L15 1.516330 1.513855 1.521905 1.526213 1.529768
L7 1.806098 1.800248 1.819945 1.831173 1.840781
L6, L9 1.834807 1.828975 1.848520 1.859547 1.868911
L5 1.816000 1.810749 1.828252 1.837996 1.846185
L1 2.003300 1.993011 2.028497 2.049714 2.068441
L10 1.696797 1.692974 1.705522 1.712339 1.718005
L3 1.743198 1.738653 1.753716 1.762046 1.769040 (LB)
L14 1.517417 1.514444 1.524313 1.529804 1.534439
L11 2.000690 1.989410 2.028720 2.052834 2.074603
L12 1.525400 1.522460 1.531800 1.537220 1.543549

数値実施例3
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 42.7993 1.0000 2.14352 17.77
2 14.3967 3.0000
3 ∞ 11.5000 1.80610 40.92
4 -33.4852 0.2000
5* 41.1895 0.1000 1.63494 23.22
6* 14.8052 2.8000 2.04300 39.00
7* -77.3252 可変
8 28.7788 0.5000 1.83481 42.71
9* 11.1439 1.5000
10 -13.1774 0.5000 1.80610 40.92
11 7.5542 1.7000 1.94595 17.98
12 29.7930 可変
13(STO) ∞ 可変
14* 7.0815 2.5000 1.83481 42.71
15* -26.0758 0.1500
16 9.8333 1.6000 1.69680 55.53
17 -52.8726 0.5000 2.00069 25.46
18 4.7458 可変
19* 8.0689 1.6000 1.52540 56.25
20 19.5088 可変
21 -21.4768 0.6000 2.14352 17.77
22 29.6499 2.5000 1.48749 70.23
23* -6.3895 0.6000
24 ∞ 0.8000 1.51633 64.14
25 ∞ 0.7998
像面 ∞
Numerical Example 3
Unit mm

Surface data surface number rd nd νd
Object ∞ ∞
1 42.7993 1.0000 2.14352 17.77
2 14.3967 3.0000
3 ∞ 11.5000 1.80610 40.92
4 -33.4852 0.2000
5 * 41.1895 0.1000 1.63494 23.22
6 * 14.8052 2.8000 2.04300 39.00
7 * -77.3252 Variable
8 28.7788 0.5000 1.83481 42.71
9 * 11.1439 1.5000
10 -13.1774 0.5000 1.80610 40.92
11 7.5542 1.7000 1.94595 17.98
12 29.7930 Variable
13 (STO) ∞ Variable
14 * 7.0815 2.5000 1.83481 42.71
15 * -26.0758 0.1500
16 9.8333 1.6000 1.69680 55.53
17 -52.8726 0.5000 2.00069 25.46
18 4.7458 Variable
19 * 8.0689 1.6000 1.52540 56.25
20 19.5088 Variable
21 -21.4768 0.6000 2.14352 17.77
22 29.6499 2.5000 1.48749 70.23
23 * -6.3895 0.6000
24 ∞ 0.8000 1.51633 64.14
25 ∞ 0.7998
Image plane ∞

非球面データ
第5面
K=-0.1513,
A2=0.0000E+00,A4=-3.7050E-05,A6=1.0839E-07,A8=1.1477E-08,A10=0.0000E+00
第6面
K=0.0263,
A2=0.0000E+00,A4=8.6520E-05,A6=4.5524E-07,A8=-1.3742E-08,A10=0.0000E+00
第7面
K=-0.0789,
A2=0.0000E+00,A4=1.3315E-05,A6=1.7773E-07,A8=1.4417E-09,A10=0.0000E+00
第9面
K=-0.9593,
A2=0.0000E+00,A4=1.3958E-04,A6=3.2451E-06,A8=2.3083E-07,A10=0.0000E+00
第14面
K=-0.6063,
A2=0.0000E+00,A4=-1.1098E-04,A6=3.2759E-06,A8=-2.4822E-07,A10=0.0000E+00
第15面
K=-0.2754,
A2=0.0000E+00,A4-=1.4957E-04,A6=1.3647E-06,A8=-2.3821E-07,A10=0.0000E+00
第19面
K=0.1053,
A2=0.0000E+00,A4=-3.5906E-04,A6=7.5775E-06,A8=-7.2931E-07,A10=0.0000E+00
第23面
K=-0.0104,
A2=0.0000E+00,A4=8.9487E-04,A6=-2.2954E-05,A8=4.3482E-08, A10=0.0000E+00
Aspheric data 5th surface
K = -0.1513,
A2 = 0.0000E + 00, A4 = -3.7050E-05, A6 = 1.0839E-07, A8 = 1.1477E-08, A10 = 0.0000E + 00
6th page
K = 0.0263,
A2 = 0.0000E + 00, A4 = 8.6520E-05, A6 = 4.5524E-07, A8 = -1.3742E-08, A10 = 0.0000E + 00
7th page
K = -0.0789,
A2 = 0.0000E + 00, A4 = 1.3315E-05, A6 = 1.7773E-07, A8 = 1.4417E-09, A10 = 0.0000E + 00
9th page
K = -0.9593,
A2 = 0.0000E + 00, A4 = 1.3958E-04, A6 = 3.2451E-06, A8 = 2.3083E-07, A10 = 0.0000E + 00
14th page
K = -0.6063,
A2 = 0.0000E + 00, A4 = -1.1098E-04, A6 = 3.2759E-06, A8 = -2.4822E-07, A10 = 0.0000E + 00
15th page
K = -0.2754,
A2 = 0.0000E + 00, A4- = 1.4957E-04, A6 = 1.3647E-06, A8 = -2.3821E-07, A10 = 0.0000E + 00
19th page
K = 0.1053,
A2 = 0.0000E + 00, A4 = -3.5906E-04, A6 = 7.5775E-06, A8 = -7.2931E-07, A10 = 0.0000E + 00
23rd page
K = -0.0104,
A2 = 0.0000E + 00, A4 = 8.9487E-04, A6 = -2.2954E-05, A8 = 4.3482E-08, A10 = 0.0000E + 00

各種データ
ズーム比 5.00
広角 中間 望遠
焦点距離 6.20326 13.89999 30.99937
Fナンバー 3.2355 3.8924 5.9000
画角 36.1° 15.4° 7.0°
像高 3.84 3.84 3.84
レンズ全長 60.6722 60.6724 60.6722
BF 0.79981 0.79981 0.79981

d7 0.59924 5.69519 8.45116
d12 9.25207 4.15538 1.40014
d13 8.59216 6.20722 1.19945
d18 2.57430 4.59337 13.17083
d20 5.20465 5.56496 2.00091
Various data zoom ratio 5.00
Wide angle Medium telephoto focal length 6.20326 13.89999 30.99937
F number 3.2355 3.8924 5.9000
Angle of view 36.1 ° 15.4 ° 7.0 °
Image height 3.84 3.84 3.84
Total lens length 60.6722 60.6724 60.6722
BF 0.79981 0.79981 0.79981

d7 0.59924 5.69519 8.45116
d12 9.25207 4.15538 1.40014
d13 8.59216 6.20722 1.19945
d18 2.57430 4.59337 13.17083
d20 5.20465 5.56496 2.00091

ズームレンズ群データ
群 始面 焦点距離
1 1 15.12158
2 8 -7.86841
3 14 12.90647
4 19 24.98639
5 21 87.42192
Zoom lens group data group Start surface Focal length
1 1 15.12158
2 8 -7.86841
3 14 12.90647
4 19 24.98639
5 21 87.42192

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L4 2.042998 2.035064 2.061804 2.076930 2.089691(LB)
L3 1.634937 1.627308 1.654649 1.670616 1.684505(LA)
L7 1.945950 1.931230 1.983830 2.018254 2.051060
L1,L12 2.143520 2.125601 2.189954 2.232324 2.273184
L14 1.516330 1.513855 1.521905 1.526213 1.529768
L13 1.487490 1.485344 1.492285 1.495963 1.498983
L2,L6 1.806098 1.800248 1.819945 1.831173 1.840781
L5,L8 1.834807 1.828975 1.848520 1.859547 1.868911
L9 1.696797 1.692974 1.705522 1.712339 1.718005
L10 2.000690 1.989410 2.028720 2.052834 2.074600
L11 1.525400 1.522460 1.531800 1.537220 1.543548
[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L4 2.042998 2.035064 2.061804 2.076930 2.089691 (LB)
L3 1.634937 1.627308 1.654649 1.670616 1.684505 (LA)
L7 1.945950 1.931230 1.983830 2.018254 2.051060
L1, L12 2.143520 2.125601 2.189954 2.232324 2.273184
L14 1.516330 1.513855 1.521905 1.526213 1.529768
L13 1.487490 1.485344 1.492285 1.495963 1.498983
L2, L6 1.806098 1.800248 1.819945 1.831173 1.840781
L5, L8 1.834807 1.828975 1.848520 1.859547 1.868911
L9 1.696797 1.692974 1.705522 1.712339 1.718005
L10 2.000690 1.989410 2.028720 2.052834 2.074600
L11 1.525400 1.522460 1.531800 1.537220 1.543548

数値実施例4
単位 mm

面番号 r d nd νd
物面 ∞ ∞
1 48.8438 1.0000 2.14352 17.77
2* 11.8544 2.8000
3 -29.7268 9.8000 2.14352 17.77
4 ∞ 0.2000
5 17.3005 2.7000 1.75520 27.51
6 -47.1388 0.1500
7* 13.0396 3.0000 1.80610 40.92
8* -36.7988 0.1000 1.67000 19.30
9* 91.5078 可変
10 -78.7741 0.5000 1.83481 42.71
11* 10.2672 1.1000
12 -14.0949 0.5000 1.72916 54.68
13 8.2918 1.3000 1.94595 17.98
14 27.2540 可変
15(STO) ∞ 可変
16* 7.6801 3.9828 1.83481 42.71
17* -64.2740 0.1500
18 8.2756 2.1000 1.69680 55.53
19 -14.4365 0.5000 2.00069 25.46
20 5.9078 可変
21* 8.7416 1.5000 1.52540 56.25
22 24.6527 可変
23 81.0820 0.6000 2.14352 17.77
24 10.8703 3.1000 1.48749 70.23
25* -8.3023 0.6000
26 ∞ 0.8000 1.51633 64.14
27 ∞ 0.4999
像面 ∞
Numerical Example 4
Unit mm

Surface number rd nd νd
Object ∞ ∞
1 48.8438 1.0000 2.14352 17.77
2 * 11.8544 2.8000
3 -29.7268 9.8000 2.14352 17.77
4 ∞ 0.2000
5 17.3005 2.7000 1.75520 27.51
6 -47.1388 0.1500
7 * 13.0396 3.0000 1.80610 40.92
8 * -36.7988 0.1000 1.67000 19.30
9 * 91.5078 variable
10 -78.7741 0.5000 1.83481 42.71
11 * 10.2672 1.1000
12 -14.0949 0.5000 1.72916 54.68
13 8.2918 1.3000 1.94595 17.98
14 27.2540 Variable
15 (STO) ∞ Variable
16 * 7.6801 3.9828 1.83481 42.71
17 * -64.2740 0.1500
18 8.2756 2.1000 1.69680 55.53
19 -14.4365 0.5000 2.00069 25.46
20 5.9078 Variable
21 * 8.7416 1.5000 1.52540 56.25
22 24.6527 Variable
23 81.0820 0.6000 2.14352 17.77
24 10.8703 3.1000 1.48749 70.23
25 * -8.3023 0.6000
26 ∞ 0.8000 1.51633 64.14
27 ∞ 0.4999
Image plane ∞

非球面データ
第2面
K=0.0498,
A2=0.0000E+00,A4=-1.3925E-04,A6=2.8042E-07,A8=-1.1379E-08,A10=0.0000E+00
第7面
K=0.0272,
A2=0.0000E+00,A4=-5.4638E-05,A6=1.9698E-06,A8=-1.6771E-08,A10=0.0000E+00
第8面
K=0.0936,
A2=0.0000E+00,A4=-1.1220E-04,A6=1.6578E-06,A8=8.9828E-08,A10=0.0000E+00
第9面
K=0.5504,
A2=0.0000E+00,A4=1.1911E-04,A6=4.6910E-06,A8=-9.1582E-08,A10=0.0000E+00
第11面
K=-0.8331,
A2=0.0000E+00,A4=2.2507E-04,A6=-7.1701E-07,A8=1.4359E-06,A10=0.0000E+00
第16面
K=-0.5705,
A2=0.0000E+00,A4=2.6285E-04,A6=1.6592E-05,A8=-1.1215E-07,A10=0.0000E+00
第17面
K=-0.7197,
A2=0.0000E+00,A4=6.4343E-04,A6=2.1920E-05,A8=8.2869E-07,A10=0.0000E+00
第21面
K=-0.7247,
A2=0.0000E+00,A4=-3.4170E-04,A6=1.6958E-05,A8=-1.9597E-06,A10=0.0000E+00
第25面
K=0.0433,
A2=0.0000E+00,A4=-9.4693E-04,A6=9.5646E-05,A8=-4.1316E-06,A10=0.0000E+00
Aspheric data 2nd surface
K = 0.0498,
A2 = 0.0000E + 00, A4 = -1.3925E-04, A6 = 2.8042E-07, A8 = -1.1379E-08, A10 = 0.0000E + 00
7th page
K = 0.0272,
A2 = 0.0000E + 00, A4 = -5.4638E-05, A6 = 1.9698E-06, A8 = -1.6771E-08, A10 = 0.0000E + 00
8th page
K = 0.0936,
A2 = 0.0000E + 00, A4 = -1.1220E-04, A6 = 1.6578E-06, A8 = 8.9828E-08, A10 = 0.0000E + 00
9th page
K = 0.5504,
A2 = 0.0000E + 00, A4 = 1.1911E-04, A6 = 4.6910E-06, A8 = -9.1582E-08, A10 = 0.0000E + 00
11th page
K = -0.8331,
A2 = 0.0000E + 00, A4 = 2.2507E-04, A6 = -7.1701E-07, A8 = 1.4359E-06, A10 = 0.0000E + 00
16th page
K = -0.5705,
A2 = 0.0000E + 00, A4 = 2.6285E-04, A6 = 1.6592E-05, A8 = -1.1215E-07, A10 = 0.0000E + 00
17th page
K = -0.7197,
A2 = 0.0000E + 00, A4 = 6.4343E-04, A6 = 2.1920E-05, A8 = 8.2869E-07, A10 = 0.0000E + 00
21st page
K = -0.7247,
A2 = 0.0000E + 00, A4 = -3.4170E-04, A6 = 1.6958E-05, A8 = -1.9597E-06, A10 = 0.0000E + 00
25th page
K = 0.0433,
A2 = 0.0000E + 00, A4 = -9.4693E-04, A6 = 9.5646E-05, A8 = -4.1316E-06, A10 = 0.0000E + 00

各種データ
ズーム比 4.99
広角 中間 望遠
焦点距離 5.00516 11.17413 24.99304
Fナンバー 3.6331 3.9510 5.9000
画角 43.4° 19.0° 8.6°
像高 3.84 3.84 3.84
レンズ全長 59.9108 59.9147 59.9110
BF 0.49986 0.49986 0.49986

d9 0.79553 5.59358 7.88345
d14 8.47749 3.69199 1.38960
d15 6.09817 5.31356 1.19254
d20 3.18290 2.98040 10.95933
d22 4.37407 5.31520 1.50350
Various data zoom ratio 4.99
Wide angle Medium telephoto focal length 5.00516 11.17413 24.99304
F number 3.6331 3.9510 5.9000
Angle of view 43.4 ° 19.0 ° 8.6 °
Image height 3.84 3.84 3.84
Total lens length 59.9108 59.9147 59.9110
BF 0.49986 0.49986 0.49986

d9 0.79553 5.59358 7.88345
d14 8.47749 3.69199 1.38960
d15 6.09817 5.31356 1.19254
d20 3.18290 2.98040 10.95933
d22 4.37407 5.31520 1.50350

ズームレンズ群データ
群 始面 焦点距離
1 1 10.60778
2 10 -6.17835
3 16 11.19498
4 21 24.96809
5 23 55.22906
Zoom lens group data group Start surface Focal length
1 1 10.60778
2 10 -6.17835
3 16 11.19498
4 21 24.96809
5 23 55.22906

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L5 1.669997 1.660518 1.695229 1.714216 1.732297(LA)
L8 1.945950 1.931230 1.983830 2.018254 2.051063
L1,L2,L13 2.143520 2.125601 2.189954 2.232324 2.273190
L15 1.516330 1.513855 1.521905 1.526213 1.529768
L14 1.487490 1.485344 1.492285 1.495963 1.498983
L4 1.806098 1.800248 1.819945 1.831173 1.840781(LB)
L6,L9 1.834807 1.828975 1.848520 1.859547 1.868911
L10 1.696797 1.692974 1.705522 1.712339 1.718005
L7 1.729157 1.725101 1.738436 1.745696 1.751731
L3 1.755199 1.747295 1.774745 1.791495 1.806556
L11 2.000690 1.989410 2.028720 2.052834 2.074603
L12 1.525400 1.522460 1.531800 1.537220 1.543549
[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L5 1.669997 1.660518 1.695229 1.714216 1.732297 (LA)
L8 1.945950 1.931230 1.983830 2.018254 2.051063
L1, L2, L13 2.143520 2.125601 2.189954 2.232324 2.273190
L15 1.516330 1.513855 1.521905 1.526213 1.529768
L14 1.487490 1.485344 1.492285 1.495963 1.498983
L4 1.806098 1.800248 1.819945 1.831173 1.840781 (LB)
L6, L9 1.834807 1.828975 1.848520 1.859547 1.868911
L10 1.696797 1.692974 1.705522 1.712339 1.718005
L7 1.729157 1.725101 1.738436 1.745696 1.751731
L3 1.755199 1.747295 1.774745 1.791495 1.806556
L11 2.000690 1.989410 2.028720 2.052834 2.074603
L12 1.525400 1.522460 1.531800 1.537220 1.543549

数値実施例5
単位 mm

面番号 r d nd νd
物面 ∞ ∞
1* -17.1748 10.3000 2.14352 17.77
2 ∞ 0.200
3* 16.7286 2.3000 1.80610 40.92
4* -53.6680 0.1000 1.63494 23.22
5 3204.9577 0.1500
6 14.7128 1.6000 1.90366 31.32
7 82.2131 可変
8 -1.984E+04 0.5000 1.83481 42.71
9 11.0784 1.6000
10 -9.1210 0.5000 1.72916 54.68
11 13.2632 1.2000 1.94595 17.98
12 281.7281 可変
13(STO) ∞ 可変
14* 5.7953 2.5000 1.83481 42.71
15* -18.0769 0.1500
16 11.1053 1.7000 1.69680 55.53
17 -16.6710 0.5000 2.00069 25.46
18 3.7744 可変
19* 9.8539 1.6000 1.52540 56.25
20 37.3912 可変
21 16.0798 0.6000 2.00330 28.27
22 5.6360 3.0000 1.51633 64.14
23 -10.5926 0.6000
24 ∞ 0.8000 1.51633 64.14
25 ∞ 0.5016
像面 ∞
Numerical Example 5
Unit mm

Surface number rd nd νd
Object ∞ ∞
1 * -17.1748 10.3000 2.14352 17.77
2 ∞ 0.200
3 * 16.7286 2.3000 1.80610 40.92
4 * -53.6680 0.1000 1.63494 23.22
5 3204.9577 0.1500
6 14.7128 1.6000 1.90366 31.32
7 82.2131 Variable
8 -1.984E + 04 0.5000 1.83481 42.71
9 11.0784 1.6000
10 -9.1210 0.5000 1.72916 54.68
11 13.2632 1.2000 1.94595 17.98
12 281.7281 Variable
13 (STO) ∞ Variable
14 * 5.7953 2.5000 1.83481 42.71
15 * -18.0769 0.1500
16 11.1053 1.7000 1.69680 55.53
17 -16.6710 0.5000 2.00069 25.46
18 3.7744 Variable
19 * 9.8539 1.6000 1.52540 56.25
20 37.3912 Variable
21 16.0798 0.6000 2.00330 28.27
22 5.6360 3.0000 1.51633 64.14
23 -10.5926 0.6000
24 ∞ 0.8000 1.51633 64.14
25 ∞ 0.5016
Image plane ∞

非球面データ
第1面
K=-0.0366,
A2=0.0000E+00,A4=2.3100E-04,A6=-2.3544E-06,A8=2.5544E-08,A10=-1.1763E-10
第3面
K=-0.0300,
A2=0.0000E+00,A4=-2.7534E-04,A6=3.1374E-06,A8=-8.4181E-09,A10=0.0000E+00
第4面
K=0.0011,
A2=0.0000E+00,A4=-4.5516E-04,A6=9.8020E-06,A8=-8.5631E-09,A10=0.0000E+00
第14面
K=-0.5838,
A2=0.0000E+00,A4=-1.2310E-04,A6=-1.3763E-06,A8=2.1745E-07,A10=0.0000E+00
第15面
K=-0.7838,
A2=0.0000E+00,A4=5.7429E-04,A6=-1.3882E-05,A8=4.2336E-07,A10=0.0000E+00
第19面
K=-1.0645,
A2=0.0000E+00,A4=5.9099E-04,A6=-1.7414E-05,A8=3.6786E-07,A10=0.0000E+00
Aspheric data 1st surface
K = -0.0366,
A2 = 0.0000E + 00, A4 = 2.3100E-04, A6 = -2.3544E-06, A8 = 2.5544E-08, A10 = -1.1763E-10
Third side
K = -0.0300,
A2 = 0.0000E + 00, A4 = -2.7534E-04, A6 = 3.1374E-06, A8 = -8.4181E-09, A10 = 0.0000E + 00
4th page
K = 0.0011,
A2 = 0.0000E + 00, A4 = -4.5516E-04, A6 = 9.8020E-06, A8 = -8.5631E-09, A10 = 0.0000E + 00
14th page
K = -0.5838,
A2 = 0.0000E + 00, A4 = -1.2310E-04, A6 = -1.3763E-06, A8 = 2.1745E-07, A10 = 0.0000E + 00
15th page
K = -0.7838,
A2 = 0.0000E + 00, A4 = 5.7429E-04, A6 = -1.3882E-05, A8 = 4.2336E-07, A10 = 0.0000E + 00
19th page
K = -1.0645,
A2 = 0.0000E + 00, A4 = 5.9099E-04, A6 = -1.7414E-05, A8 = 3.6786E-07, A10 = 0.0000E + 00

各種データ
ズーム比 4.93
広角 中間 望遠
焦点距離 6.07178 13.52809 29.95461
Fナンバー 3.3875 4.0537 5.9000
画角 37.7° 15.5° 7.4°
像高 3.84 3.84 3.84
レンズ全長 52.9041 52.9251 52.9047
BF 0.50159 0.50159 0.50159

d7 0.69477 5.06088 7.57328
d12 8.26624 3.90348 1.38895
d13 7.25378 5.35083 1.19238
d18 2.21643 3.17585 10.84933
d20 4.07132 5.06226 1.49915
Various data zoom ratio 4.93
Wide angle Medium telephoto focal length 6.07178 13.52809 29.95461
F number 3.3875 4.0537 5.9000
Angle of view 37.7 ° 15.5 ° 7.4 °
Image height 3.84 3.84 3.84
Total lens length 52.9041 52.9251 52.9047
BF 0.50159 0.50159 0.50159

d7 0.69477 5.06088 7.57328
d12 8.26624 3.90348 1.38895
d13 7.25378 5.35083 1.19238
d18 2.21643 3.17585 10.84933
d20 4.07132 5.06226 1.49915

ズームレンズ群データ
群 始面 焦点距離
1 1 14.32686
2 8 -6.66166
3 14 11.14998
4 19 24.96668
5 21 36.23308
Zoom lens group data group Start surface Focal length
1 1 14.32686
2 8 -6.66166
3 14 11.14998
4 19 24.96668
5 21 36.23308

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L3 1.634937 1.627308 1.654649 1.670616 1.684505(LA)
L7 1.945950 1.931230 1.983830 2.018254 2.051063
L1 2.143520 2.125601 2.189954 2.232324 2.273190
L13,L14 1.516330 1.513855 1.521905 1.526213 1.529768
L2 1.806098 1.800248 1.819945 1.831173 1.840781(LB)
L5,L8 1.834807 1.828975 1.848520 1.859547 1.868911
L12 2.003300 1.993011 2.028497 2.049714 2.068441
L9 1.696797 1.692974 1.705522 1.712339 1.718005
L6 1.729157 1.725101 1.738436 1.745696 1.751731
L4 1.903660 1.895260 1.924120 1.941280 1.956428
L10 2.000690 1.989410 2.028720 2.052834 2.074603
L11 1.525400 1.522460 1.531800 1.537220 1.543549
[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L3 1.634937 1.627308 1.654649 1.670616 1.684505 (LA)
L7 1.945950 1.931230 1.983830 2.018254 2.051063
L1 2.143520 2.125601 2.189954 2.232324 2.273190
L13, L14 1.516330 1.513855 1.521905 1.526213 1.529768
L2 1.806098 1.800248 1.819945 1.831173 1.840781 (LB)
L5, L8 1.834807 1.828975 1.848520 1.859547 1.868911
L12 2.003300 1.993011 2.028497 2.049714 2.068441
L9 1.696797 1.692974 1.705522 1.712339 1.718005
L6 1.729157 1.725101 1.738436 1.745696 1.751731
L4 1.903660 1.895260 1.924120 1.941280 1.956428
L10 2.000690 1.989410 2.028720 2.052834 2.074603
L11 1.525400 1.522460 1.531800 1.537220 1.543549

数値実施例6
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 26.8861 1.0000 2.14352 17.77
2 10.4019 2.0000
3 ∞ 9.8000 2.14352 17.77
4 ∞ 0.2000
5* 43.1266 0.1000 1.63494 23.22
6* 23.3838 2.4000 1.80610 40.92
7* -29.3975 0.1500
8 19.1461 1.8000 1.80610 40.92
9 -118.3339 可変
10 -33.0995 0.5000 1.81600 46.62
11 11.0007 0.9000
12* -14.1728 0.6000 1.69350 53.21
13* 8.6979 0.5000 1.73000 16.50
14* 41.5907 可変
15(STO) ∞ 0.7000
16 23.2704 1.0000 1.58913 61.14
17 -39.5668 可変
18* 9.3228 2.5000 1.83481 42.71
19* -35.2849 0.1500
20 16.5137 1.6000 1.69680 55.53
21 -18.9795 0.5000 2.00069 25.46
22 7.8715 可変
23* 11.9382 1.6000 1.52540 56.25
24 -81.9589 可変
25 -7.8192 0.6000 2.14352 17.77
26 -15.1015 2.0000 1.51633 64.14
27 -7.1048 0.6000
28 ∞ 0.8000 1.51633 64.14
29 ∞ 0.8002
像面 ∞
Numerical Example 6
Unit mm

Surface data surface number rd nd νd
Object ∞ ∞
1 26.8861 1.0000 2.14352 17.77
2 10.4019 2.0000
3 ∞ 9.8000 2.14352 17.77
4 ∞ 0.2000
5 * 43.1266 0.1000 1.63494 23.22
6 * 23.3838 2.4000 1.80610 40.92
7 * -29.3975 0.1500
8 19.1461 1.8000 1.80610 40.92
9 -118.3339 Variable
10 -33.0995 0.5000 1.81600 46.62
11 11.0007 0.9000
12 * -14.1728 0.6000 1.69350 53.21
13 * 8.6979 0.5000 1.73000 16.50
14 * 41.5907 Variable
15 (STO) ∞ 0.7000
16 23.2704 1.0000 1.58913 61.14
17 -39.5668 Variable
18 * 9.3228 2.5000 1.83481 42.71
19 * -35.2849 0.1500
20 16.5137 1.6000 1.69680 55.53
21 -18.9795 0.5000 2.00069 25.46
22 7.8715 Variable
23 * 11.9382 1.6000 1.52540 56.25
24 -81.9589 Variable
25 -7.8192 0.6000 2.14352 17.77
26 -15.1015 2.0000 1.51633 64.14
27 -7.1048 0.6000
28 ∞ 0.8000 1.51633 64.14
29 ∞ 0.8002
Image plane ∞

非球面データ
第5面
K=-0.3198,
A2=0.0000E+00,A4=7.0812E-05,A6=-3.7266E-06,A8=5.5289E-08,A10=0.0000E+00
第6面
K=0.0895,
A2=0.0000E+00,A4=-1.2037E-04,A6=9.9952E-06,A8=-2.5704E-07,A10=0.0000E+00
第7面
K=-0.0600,A2=0.0000E+00,A4=9.3083E-06,A6=-8.5596E-07,A8=-1.1449E-08,A10=0.0000E+00
第12面
K=-0.3180,
A2=0.0000E+00,A4=1.0698E-03,A6=-1.4595E-04,A8=7.0190E-06,A10=0.0000E+00
第13面
K=-1.0000,
A2=0.0000E+00,A4=2.0000E-04,A6=0.0000E+00,A8=0.0000E+00,A10=0.0000E+00
第14面
K=2.4959,
A2=0.0000E+00,A4=7.8292E-04,A6=-1.1366E-04,A8=6.5409E-06,A10=0.0000E+00
第18面
K=-0.5894,
A2=0.0000E+00,A4=7.7905E-05,A6=1.1782E-05,A8=-2.0278E-07,A10=0.0000E+00
第19面
K=-0.7348,
A2=0.0000E+00,A4=2.8188E-04,A6=9.8333E-06,A8=-1.0652E-07,A10=0.0000E+00
第23面
K=-0.6984,
A2=0.0000E+00,A4=-1.3174E-05,A6=9.8051E-06,A8=-2.7387E-07,A10=0.0000E+00
Aspheric data 5th surface
K = -0.3198,
A2 = 0.0000E + 00, A4 = 7.0812E-05, A6 = -3.7266E-06, A8 = 5.5289E-08, A10 = 0.0000E + 00
6th page
K = 0.0895,
A2 = 0.0000E + 00, A4 = -1.2037E-04, A6 = 9.9952E-06, A8 = -2.5704E-07, A10 = 0.0000E + 00
7th page
K = -0.0600, A2 = 0.0000E + 00, A4 = 9.3083E-06, A6 = -8.5596E-07, A8 = -1.1449E-08, A10 = 0.0000E + 00
12th page
K = -0.3180,
A2 = 0.0000E + 00, A4 = 1.0698E-03, A6 = -1.4595E-04, A8 = 7.0190E-06, A10 = 0.0000E + 00
Side 13
K = -1.0000,
A2 = 0.0000E + 00, A4 = 2.0000E-04, A6 = 0.0000E + 00, A8 = 0.0000E + 00, A10 = 0.0000E + 00
14th page
K = 2.4959,
A2 = 0.0000E + 00, A4 = 7.8292E-04, A6 = -1.1366E-04, A8 = 6.5409E-06, A10 = 0.0000E + 00
18th page
K = -0.5894,
A2 = 0.0000E + 00, A4 = 7.7905E-05, A6 = 1.1782E-05, A8 = -2.0278E-07, A10 = 0.0000E + 00
19th page
K = -0.7348,
A2 = 0.0000E + 00, A4 = 2.8188E-04, A6 = 9.8333E-06, A8 = -1.0652E-07, A10 = 0.0000E + 00
23rd page
K = -0.6984,
A2 = 0.0000E + 00, A4 = -1.3174E-05, A6 = 9.8051E-06, A8 = -2.7387E-07, A10 = 0.0000E + 00

各種データ
ズーム比 4.95
広角 中間 望遠
焦点距離 6.05277 13.53390 29.95828
Fナンバー 4.0425 4.5176 6.0291
画角 38.4° 16.0° 7.2°
像高 3.84 3.84 3.84
レンズ全長 58.2782 58.2843 58.2778
BF 0.80017 0.80017 0.80017

d9 0.59649 5.36101 8.15085
d14 8.84912 4.09680 1.29474
d17 7.14286 4.64410 0.69974
d22 3.54736 4.87106 13.83328
d24 5.34215 6.51258 1.49937
Various data zoom ratio 4.95
Wide angle Medium telephoto focal length 6.05277 13.53390 29.95828
F number 4.0425 4.5176 6.0291
Angle of view 38.4 ° 16.0 ° 7.2 °
Image height 3.84 3.84 3.84
Total lens length 58.2782 58.2843 58.2778
BF 0.80017 0.80017 0.80017

d9 0.59649 5.36101 8.15085
d14 8.84912 4.09680 1.29474
d17 7.14286 4.64410 0.69974
d22 3.54736 4.87106 13.83328
d24 5.34215 6.51258 1.49937

ズームレンズ群データ
群 始面 焦点距離
1 1 12.85253
2 10 -5.91408
3 15 25.01936
4 18 21.07605
5 23 19.95023
6 25 -57.17262
Zoom lens group data group Start surface Focal length
1 1 12.85253
2 10 -5.91408
3 15 25.01936
4 18 21.07605
5 23 19.95023
6 25 -57.17262

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L3 1.634937 1.627308 1.654649 1.672358 1.688773(LA)
L8 1.729996 1.718099 1.762336 1.793147 1.822977
L1,L2,L14 2.143520 2.125601 2.189954 2.232324 2.273190
L9 1.589130 1.586188 1.595824 1.601033 1.605348
L15,L16 1.516330 1.513855 1.521905 1.526213 1.529768
L4,L5 1.806098 1.800248 1.819945 1.831173 1.840781(LB)
L10 1.834807 1.828975 1.848520 1.859547 1.868911
L6 1.816000 1.810749 1.828252 1.837996 1.846185
L7 1.693501 1.689548 1.702582 1.709715 1.715662
L11 1.696797 1.692974 1.705522 1.712339 1.718005
L12 2.000690 1.989410 2.028720 2.052834 2.074603
L13 1.525400 1.522460 1.531800 1.537220 1.543549
[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L3 1.634937 1.627308 1.654649 1.672358 1.688773 (LA)
L8 1.729996 1.718099 1.762336 1.793147 1.822977
L1, L2, L14 2.143520 2.125601 2.189954 2.232324 2.273190
L9 1.589130 1.586188 1.595824 1.601033 1.605348
L15, L16 1.516330 1.513855 1.521905 1.526213 1.529768
L4, L5 1.806098 1.800248 1.819945 1.831173 1.840781 (LB)
L10 1.834807 1.828975 1.848520 1.859547 1.868911
L6 1.816000 1.810749 1.828252 1.837996 1.846185
L7 1.693501 1.689548 1.702582 1.709715 1.715662
L11 1.696797 1.692974 1.705522 1.712339 1.718005
L12 2.000690 1.989410 2.028720 2.052834 2.074603
L13 1.525400 1.522460 1.531800 1.537220 1.543549

数値実施例7
単位 mm

面番号 r d nd νd
物面 ∞ ∞
1 26.3279 1.0000 2.14352 17.77
2 14.5172 1.8000
3 ∞ 9.5000 2.14352 17.77
4 ∞ 0.2000
5* 11.2902 3.1000 1.74320 49.34
6* -40.1582 0.1000 1.63494 23.22
7 -55.9920 可変
8 -53.2497 0.5000 1.83481 42.71
9 6.4066 1.0000
10 -8.9690 0.5000 1.80610 40.92
11 5.7354 1.4000 1.80810 22.76
12 -89.8331 可変
13(STO) ∞ 0.8000
14* 9.6873 1.5000 1.51633 64.14
15 -40.2680 可変
16* 22.9449 1.8000 1.74320 49.34
17 -8.4669 0.5000 1.80810 22.76
18 -12.3980 可変
19* -11.2318 0.6000 2.14352 17.77
20 89.5111 5.7315
21* 5.3980 2.2000 1.48749 70.23
22 8.2670 可変
23 ∞ 0.8000 1.51633 64.14
24 ∞ 0.7994
像面 ∞
Numerical Example 7
Unit mm

Surface number rd nd νd
Object ∞ ∞
1 26.3279 1.0000 2.14352 17.77
2 14.5172 1.8000
3 ∞ 9.5000 2.14352 17.77
4 ∞ 0.2000
5 * 11.2902 3.1000 1.74320 49.34
6 * -40.1582 0.1000 1.63494 23.22
7 -55.9920 Variable
8 -53.2497 0.5000 1.83481 42.71
9 6.4066 1.0000
10 -8.9690 0.5000 1.80610 40.92
11 5.7354 1.4000 1.80810 22.76
12 -89.8331 Variable
13 (STO) ∞ 0.8000
14 * 9.6873 1.5000 1.51633 64.14
15 -40.2680 Variable
16 * 22.9449 1.8000 1.74320 49.34
17 -8.4669 0.5000 1.80810 22.76
18 -12.3980 Variable
19 * -11.2318 0.6000 2.14352 17.77
20 89.5111 5.7315
21 * 5.3980 2.2000 1.48749 70.23
22 8.2670 Variable
23 ∞ 0.8000 1.51633 64.14
24 ∞ 0.7994
Image plane ∞

非球面データ
第5面
K=0.0562,
A2=0.0000E+00,A4=-1.0635E-04,A6=-3.3073E-07,A8=-3.5038E-09,A10=0.0000E+00
第6面
K=0.6015,
A2=0.0000E+00,A4=-3.1085E-04,A6=3.6175E-06,A8=-1.5913E-08,A10=0.0000E+00
第14面
K=0.0653,
A2=0.0000E+00,A4=-2.9532E-04,A6=-3.6675E-06,A8=2.7757E-07,A10=0.0000E+00
第16面
K=-0.0724,
A2=0.0000E+00,A4=-3.3421E-04,A6=5.5697E-06,A8=-4.4877E-07,A10=0.0000E+00
第19面
K=0.0658,
A2=0.0000E+00,A4=5.3557E-04,A6=-1.9173E-05,A8=1.3380E-06,A10=0.0000E+00
第21面
K=-0.0668,
A2=0.0000E+00,A4=-7.2957E-04,A6=-1.1862E-05,A8=-1.0182E-06,A10=0.0000E+00
Aspheric data 5th surface
K = 0.0562,
A2 = 0.0000E + 00, A4 = -1.0635E-04, A6 = -3.3073E-07, A8 = -3.5038E-09, A10 = 0.0000E + 00
6th page
K = 0.6015,
A2 = 0.0000E + 00, A4 = -3.1085E-04, A6 = 3.6175E-06, A8 = -1.5913E-08, A10 = 0.0000E + 00
14th page
K = 0.0653,
A2 = 0.0000E + 00, A4 = -2.9532E-04, A6 = -3.6675E-06, A8 = 2.7757E-07, A10 = 0.0000E + 00
16th page
K = -0.0724,
A2 = 0.0000E + 00, A4 = -3.3421E-04, A6 = 5.5697E-06, A8 = -4.4877E-07, A10 = 0.0000E + 00
19th page
K = 0.0658,
A2 = 0.0000E + 00, A4 = 5.3557E-04, A6 = -1.9173E-05, A8 = 1.3380E-06, A10 = 0.0000E + 00
21st page
K = -0.0668,
A2 = 0.0000E + 00, A4 = -7.2957E-04, A6 = -1.1862E-05, A8 = -1.0182E-06, A10 = 0.0000E + 00

各種データ
ズーム比 4.95
広角 中間 望遠
焦点距離 6.04854 13.53462 29.95479
Fナンバー 3.9500 4.2520 4.6745
画角 36.8° 16.1° 7.2°
像高 3.84 3.84 3.84
レンズ全長 56.0119 55.9997 56.0110
BF 0.79942 0.79942 0.79942

d7 0.60676 5.42276 8.83870
d12 9.63307 4.79110 1.40123
d15 5.10636 3.03570 1.28066
d18 4.37904 6.46010 8.20476
d22 2.45578 2.45578 2.45578
Various data zoom ratio 4.95
Wide angle Medium telephoto focal length 6.04854 13.53462 29.95479
F number 3.9500 4.2520 4.6745
Angle of view 36.8 ° 16.1 ° 7.2 °
Image height 3.84 3.84 3.84
Total lens length 56.0119 55.9997 56.0110
BF 0.79942 0.79942 0.79942

d7 0.60676 5.42276 8.83870
d12 9.63307 4.79110 1.40123
d15 5.10636 3.03570 1.28066
d18 4.37904 6.46010 8.20476
d22 2.45578 2.45578 2.45578

ズームレンズ群データ
群 始面 焦点距離
1 1 16.48040
2 8 -4.22240
3 13 15.27984
4 16 11.42447
5 19 -17.00590
Zoom lens group data group Start surface Focal length
1 1 16.48040
2 8 -4.22240
3 13 15.27984
4 16 11.42447
5 19 -17.00590

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L4 1.634937 1.627308 1.654649 1.670903 1.685230(LA)
L1,L2,L11 2.143520 2.125601 2.189954 2.232324 2.273184
L8,L13 1.516330 1.513855 1.521905 1.526213 1.529768
L12 1.487490 1.485344 1.492285 1.495963 1.498983
L6 1.806098 1.800248 1.819945 1.831173 1.840781
L5 1.834807 1.828975 1.848520 1.859547 1.868911
L3,L9 1.743198 1.738653 1.753716 1.762046 1.769040(LB)
L7,L10 1.808095 1.798009 1.833513 1.855902 1.876580
[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L4 1.634937 1.627308 1.654649 1.670903 1.685230 (LA)
L1, L2, L11 2.143520 2.125601 2.189954 2.232324 2.273184
L8, L13 1.516330 1.513855 1.521905 1.526213 1.529768
L12 1.487490 1.485344 1.492285 1.495963 1.498983
L6 1.806098 1.800248 1.819945 1.831173 1.840781
L5 1.834807 1.828975 1.848520 1.859547 1.868911
L3, L9 1.743198 1.738653 1.753716 1.762046 1.769040 (LB)
L7, L10 1.808095 1.798009 1.833513 1.855902 1.876580

数値実施例8
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 31.5550 1.0000 2.00069 25.46
2 14.3812 1.9000
3 ∞ 9.5000 2.14352 17.77
4 ∞ 0.2000
5* 13.3840 0.1000 1.63494 23.22
6* 9.5949 2.8000 1.74320 49.34
7* -33.9738 可変
8 -110.3976 0.5000 1.80400 46.57
9 13.9738 0.4000
10 -42.2586 0.5000 1.78800 47.37
11 21.6286 0.4000
12 -14.6928 0.5000 1.77250 49.60
13 4.6945 1.0000 1.80810 22.76
14 16.5493 可変
15(STO) ∞ 0.8000
16* 11.7378 1.5000 1.51633 64.14
17 -40.2680 可変
18* 14.7240 2.2000 1.74320 49.34
19 -6.4219 0.5000 1.80810 22.76
20 -12.4275 可変
21 -86.9726 0.6000 2.09500 29.40
22 8.1530 6.9787
23* 7.8706 3.0000 1.52540 56.25
24 -31.6596 可変
25 ∞ 0.8000 1.51633 64.14
26 ∞ 0.7994
像面 ∞
Numerical Example 8
Unit mm

Surface data surface number rd nd νd
Object ∞ ∞
1 31.5550 1.0000 2.00069 25.46
2 14.3812 1.9000
3 ∞ 9.5000 2.14352 17.77
4 ∞ 0.2000
5 * 13.3840 0.1000 1.63494 23.22
6 * 9.5949 2.8000 1.74320 49.34
7 * -33.9738 variable
8 -110.3976 0.5000 1.80400 46.57
9 13.9738 0.4000
10 -42.2586 0.5000 1.78800 47.37
11 21.6286 0.4000
12 -14.6928 0.5000 1.77250 49.60
13 4.6945 1.0000 1.80810 22.76
14 16.5493 Variable
15 (STO) ∞ 0.8000
16 * 11.7378 1.5000 1.51633 64.14
17 -40.2680 Variable
18 * 14.7240 2.2000 1.74320 49.34
19 -6.4219 0.5000 1.80810 22.76
20 -12.4275 Variable
21 -86.9726 0.6000 2.09500 29.40
22 8.1530 6.9787
23 * 7.8706 3.0000 1.52540 56.25
24 -31.6596 Variable
25 ∞ 0.8000 1.51633 64.14
26 ∞ 0.7994
Image plane ∞

非球面データ
第5面
K=0.0342,
A2=0.0000E+00,A4=-5.1096E-05,A6=3.9696E-08,A8=-1.1548E-08,A10=0.0000E+00
第6面
K=0.2138,
A2=0.0000E+00,A4=-8.0734E-05,A6=-1.9246E-06,A8=0.0000E+00,A10=0.0000E+00
第7面
K=0.0411,
A2=0.0000E+00,A4=2.5206E-05,A6=-3.6405E-07,A8=0.0000E+00,A10=0.0000E+00
第16面
K=0.1251,
A2=0.0000E+00,A4=-2.2276E-04,A6=-4.1935E-06,A8=1.3656E-07,A10=0.0000E+00
第18面
K=-0.0925,
A2=0.0000E+00,A4=-3.2272E-04,A6=4.4236E-06,A8=-2.4013E-07,A10=0.0000E+00
第23面
K=-0.1594,
A2=0.0000E+00,A4=8.6051E-06,A6=-5.3997E-06,A8=2.9886E-08,A10=0.0000E+00
Aspheric data 5th surface
K = 0.0342,
A2 = 0.0000E + 00, A4 = -5.1096E-05, A6 = 3.9696E-08, A8 = -1.1548E-08, A10 = 0.0000E + 00
6th page
K = 0.2138,
A2 = 0.0000E + 00, A4 = -8.0734E-05, A6 = -1.9246E-06, A8 = 0.0000E + 00, A10 = 0.0000E + 00
7th page
K = 0.0411,
A2 = 0.0000E + 00, A4 = 2.5206E-05, A6 = -3.6405E-07, A8 = 0.0000E + 00, A10 = 0.0000E + 00
16th page
K = 0.1251,
A2 = 0.0000E + 00, A4 = -2.2276E-04, A6 = -4.1935E-06, A8 = 1.3656E-07, A10 = 0.0000E + 00
18th page
K = -0.0925,
A2 = 0.0000E + 00, A4 = -3.2272E-04, A6 = 4.4236E-06, A8 = -2.4013E-07, A10 = 0.0000E + 00
23rd page
K = -0.1594,
A2 = 0.0000E + 00, A4 = 8.6051E-06, A6 = -5.3997E-06, A8 = 2.9886E-08, A10 = 0.0000E + 00

各種データ
ズーム比 4.95
広角 中間 望遠
焦点距離 6.04738 13.53474 29.95923
Fナンバー 3.9288 4.2410 4.8167
画角 36.8° 16.0° 7.2°
像高 3.84 3.84 3.84
レンズ全長 58.0060 58.0110 58.0044
BF 0.79940 0.79940 0.79940

d7 0.60051 5.39340 8.67990
d14 9.46571 4.67549 1.38634
d17 5.22371 3.31714 1.36251
d20 4.17404 6.08801 8.03548
d24 2.56393 2.56393 2.56393
Various data zoom ratio 4.95
Wide angle Medium telephoto focal length 6.04738 13.53474 29.95923
F number 3.9288 4.2410 4.8167
Angle of view 36.8 ° 16.0 ° 7.2 °
Image height 3.84 3.84 3.84
Total lens length 58.0060 58.0110 58.0044
BF 0.79940 0.79940 0.79940

d7 0.60051 5.39340 8.67990
d14 9.46571 4.67549 1.38634
d17 5.22371 3.31714 1.36251
d20 4.17404 6.08801 8.03548
d24 2.56393 2.56393 2.56393

ズームレンズ群データ
群 始面 焦点距離
1 1 16.49250
2 8 -4.30301
3 15 17.77685
4 18 9.88546
5 21 44.68218
Zoom lens group data group Start surface Focal length
1 1 16.49250
2 8 -4.30301
3 15 17.77685
4 18 9.88546
5 21 44.68218

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L13 1.525399 1.522577 1.531916 1.537043 1.541302
L12 2.094997 2.084179 2.121419 2.143451 2.162626
L3 1.634937 1.627308 1.654649 1.670838 1.685096(LA)
L2 2.143520 2.125601 2.189954 2.232324 2.273184
L9,L14 1.516330 1.513855 1.521905 1.526213 1.529768
L6 1.788001 1.782998 1.799634 1.808881 1.816664
L5 1.804000 1.798815 1.816080 1.825698 1.833800
L7 1.772499 1.767798 1.783374 1.791971 1.799174
L4,L10 1.743198 1.738653 1.753716 1.762046 1.769040(LB)
L8,L11 1.808095 1.798009 1.833513 1.855902 1.876580
L1 2.000690 1.989410 2.028720 2.052834 2.074600
[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L13 1.525399 1.522577 1.531916 1.537043 1.541302
L12 2.094997 2.084179 2.121419 2.143451 2.162626
L3 1.634937 1.627308 1.654649 1.670838 1.685096 (LA)
L2 2.143520 2.125601 2.189954 2.232324 2.273184
L9, L14 1.516330 1.513855 1.521905 1.526213 1.529768
L6 1.788001 1.782998 1.799634 1.808881 1.816664
L5 1.804000 1.798815 1.816080 1.825698 1.833800
L7 1.772499 1.767798 1.783374 1.791971 1.799174
L4, L10 1.743198 1.738653 1.753716 1.762046 1.769040 (LB)
L8, L11 1.808095 1.798009 1.833513 1.855902 1.876580
L1 2.000690 1.989410 2.028720 2.052834 2.074600

数値実施例9
単位 mm

面データ
面番号 r d nd νd
物面 ∞ ∞
1 27.6145 1.0000 2.00069 25.46
2 13.0239 2.1000
3 ∞ 9.5000 2.14352 17.77
4 ∞ 0.2000
5* 13.1656 0.1000 1.63494 23.22
6* 9.5250 2.8000 1.74320 49.34
7* -32.7902 可変
8 -32.8022 0.5000 1.80400 46.57
9 11.6063 0.6000
10 -31.9837 0.5000 1.77250 49.60
11 4.9153 1.0000 1.80810 22.76
12 18.1580 0.4000
13 -25.1963 0.5000 1.78800 47.37
14 36.1464 可変
15(STO) ∞ 0.8000
16* 12.5130 1.5000 1.51633 64.14
17 -43.0156 可変
18* 15.0982 2.2000 1.74320 49.34
19 -6.5686 0.5000 1.80810 22.76
20 -12.4845 可変
21 -60.8709 0.6000 2.09500 29.40
22 10.3767 7.3472
23* 7.4713 2.3000 1.52540 56.25
24 40.1581 可変
25 ∞ 0.8000 1.51633 64.14
26 ∞ 0.8001
像面 ∞
Numerical Example 9
Unit mm

Surface data surface number rd nd νd
Object ∞ ∞
1 27.6145 1.0000 2.00069 25.46
2 13.0239 2.1000
3 ∞ 9.5000 2.14352 17.77
4 ∞ 0.2000
5 * 13.1656 0.1000 1.63494 23.22
6 * 9.5250 2.8000 1.74320 49.34
7 * -32.7902 variable
8 -32.8022 0.5000 1.80400 46.57
9 11.6063 0.6000
10 -31.9837 0.5000 1.77250 49.60
11 4.9153 1.0000 1.80810 22.76
12 18.1580 0.4000
13 -25.1963 0.5000 1.78800 47.37
14 36.1464 Variable
15 (STO) ∞ 0.8000
16 * 12.5130 1.5000 1.51633 64.14
17 -43.0156 Variable
18 * 15.0982 2.2000 1.74320 49.34
19 -6.5686 0.5000 1.80810 22.76
20 -12.4845 Variable
21 -60.8709 0.6000 2.09500 29.40
22 10.3767 7.3472
23 * 7.4713 2.3000 1.52540 56.25
24 40.1581 Variable
25 ∞ 0.8000 1.51633 64.14
26 ∞ 0.8001
Image plane ∞

非球面データ
第5面
K=0.0291,
A2=0.0000E+00,A4=-4.4047E-05,A6=1.3091E-07,A8=-1.1089E-08,A10=0.0000E+00
第6面
K=0.1497,
A2=0.0000E+00,A4=-1.2063E-04,A6=-2.7557E-06,A8=0.0000E+00,A10=0.0000E+00
第7面
K=0.0325,
A2=0.0000E+00,A4=2.2798E-05,A6=-3.3627E-07,A8=0.0000E+00,A10=0.0000E+00
第16面
K=0.1348,
A2=0.0000E+00,A4=-1.8990E-04,A6=-6.2525E-06,A8=3.0401E-07,A10=0.0000E+00
第18面
K=-0.1035,
A2=0.0000E+00,A4=-3.0165E-04,A6=4.9551E-06,A8=-2.7005E-07,A10=0.0000E+00
第23面
K=-0.1697,
A2=0.0000E+00,A4=1.7420E-05,A6=-6.7687E-06,A8=7.0760E-08,A10=0.0000E+00
Aspheric data 5th surface
K = 0.0291,
A2 = 0.0000E + 00, A4 = -4.4047E-05, A6 = 1.3091E-07, A8 = -1.1089E-08, A10 = 0.0000E + 00
6th page
K = 0.1497,
A2 = 0.0000E + 00, A4 = -1.2063E-04, A6 = -2.7557E-06, A8 = 0.0000E + 00, A10 = 0.0000E + 00
7th page
K = 0.0325,
A2 = 0.0000E + 00, A4 = 2.2798E-05, A6 = -3.3627E-07, A8 = 0.0000E + 00, A10 = 0.0000E + 00
16th page
K = 0.1348,
A2 = 0.0000E + 00, A4 = -1.8990E-04, A6 = -6.2525E-06, A8 = 3.0401E-07, A10 = 0.0000E + 00
18th page
K = -0.1035,
A2 = 0.0000E + 00, A4 = -3.0165E-04, A6 = 4.9551E-06, A8 = -2.7005E-07, A10 = 0.0000E + 00
23rd page
K = -0.1697,
A2 = 0.0000E + 00, A4 = 1.7420E-05, A6 = -6.7687E-06, A8 = 7.0760E-08, A10 = 0.0000E + 00

各種データ
ズーム比 4.96
広角 中間 望遠
焦点距離 6.04558 13.53353 29.95661
Fナンバー 3.9288 4.2737 4.8656
画角 36.8° 16.0° 7.2°
像高 3.84 3.84 3.84
レンズ全長 58.0136 58.0246 58.0135
BF 0.80009 0.80009 0.80009

d7 0.60348 5.37422 8.66850
d14 9.44247 4.67824 1.37750
d17 5.11648 3.19734 1.25573
d20 4.13795 6.06764 7.99887
d24 2.66593 2.66593 2.66593
Various data zoom ratio 4.96
Wide angle Medium telephoto focal length 6.04558 13.53353 29.95661
F number 3.9288 4.2737 4.8656
Angle of view 36.8 ° 16.0 ° 7.2 °
Image height 3.84 3.84 3.84
Total lens length 58.0136 58.0246 58.0135
BF 0.80009 0.80009 0.80009

d7 0.60348 5.37422 8.66850
d14 9.44247 4.67824 1.37750
d17 5.11648 3.19734 1.25573
d20 4.13795 6.06764 7.99887
d24 2.66593 2.66593 2.66593

ズームレンズ群データ
群 始面 焦点距離
1 1 16.14071
2 8 -4.35163
3 15 18.94768
4 18 10.00503
5 21 -70.71964
Zoom lens group data group Start surface Focal length
1 1 16.14071
2 8 -4.35163
3 15 18.94768
4 18 10.00503
5 21 -70.71964

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L13 1.525399 1.522577 1.531916 1.537043 1.541302
L12 2.094997 2.084179 2.121419 2.143451 2.162626
L3 1.634937 1.627308 1.654649 1.670838 1.685096(LA)
L2 2.143520 2.125601 2.189954 2.232324 2.273184
L9,L14 1.516330 1.513855 1.521905 1.526213 1.529768
L8 1.788001 1.782998 1.799634 1.808881 1.816664
L5 1.804000 1.798815 1.816080 1.825698 1.833800
L6 1.772499 1.767798 1.783374 1.791971 1.799174
L4,L10 1.743198 1.738653 1.753716 1.762046 1.769040(LB)
L7,L11 1.808095 1.798009 1.833513 1.855902 1.876580
L1 2.000690 1.989410 2.028720 2.052834 2.074600
[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L13 1.525399 1.522577 1.531916 1.537043 1.541302
L12 2.094997 2.084179 2.121419 2.143451 2.162626
L3 1.634937 1.627308 1.654649 1.670838 1.685096 (LA)
L2 2.143520 2.125601 2.189954 2.232324 2.273184
L9, L14 1.516330 1.513855 1.521905 1.526213 1.529768
L8 1.788001 1.782998 1.799634 1.808881 1.816664
L5 1.804000 1.798815 1.816080 1.825698 1.833800
L6 1.772499 1.767798 1.783374 1.791971 1.799174
L4, L10 1.743198 1.738653 1.753716 1.762046 1.769040 (LB)
L7, L11 1.808095 1.798009 1.833513 1.855902 1.876580
L1 2.000690 1.989410 2.028720 2.052834 2.074600

次に、各実施例におけるパラメータの値、条件式の値を掲げる。なお、***は条件を満足しないことを示している。
実施例1 実施例2 実施例3 実施例4 実施例5
fw(広角端) 6.051 6.061 6.203 5.005 6.072
ft(望遠端) 29.960 29.957 30.999 24.993 29.955
γ 4.951 4.943 4.997 4.994 4.933
10 3.84 3.84 3.84 3.84 3.84
E 10.466 7.906 9.628 10.921 6.278
f12 13.101 10.432 12.669 8.840 10.123
E/f12 0.799 0.758 0.760 1.235 0.620
nd(LB) 1.88300 1.74320 2.04300 1.80610 1.80610
νd(LA) 23.22 23.22 23.22 19.30 23.22
C −17.614 −13.857 14.805 −36.799 −53.668
ΔzA(h) 0.00988 −0.00742 −0.00952 0.12547 0
ΔzB(h) −0.00910 −0.00692 0.00500 −0.00871 −0.07001
zA(h)+ΔzB(h)}/2 0.00039 −0.00717 −0.00226 0.05838 −0.03501
ΔzC(h) −0.01246 −0.01047 0.02716 −0.00397 −0.08914
h 4.232 4.221 4.152 5.144 4.208
a 1.693 1.688 1.661 2.058 1.683
θgF(LA) 0.6030 0.6477 0.5840 0.5840 0.5840
β(LA) 0.6408 0.6855 0.6218 0.6155 0.6155
θhg(LA) 0.5379 0.6003 0.5080 0.5080 0.5080
βhg(LA) 0.5901 0.6525 0.5602 0.5514 0.5514
νd(LB) 40.76 49.34 39.00 40.92 40.92
θgF(LB) 0.5669 0.5528 0.5657 0.5703 0.5703
β(LB) 0.6333 0.6332 0.6293 0.6370 0.6370
θhg(LB) 0.4811 0.4638 0.4772 0.4881 0.4881
βhg(LB) 0.5728 0.5748 0.5650 0.5802 0.5802
θgF(LA)−θgF(LB) 0.0361 0.0949 0.0183 0.0137 0.0137
θhg(LA)−θhg(LB) 0.0568 0.1365 0.0308 0.0199 0.0199
νd(LA)−νd(LB) −17.54 −26.12 −15.78 −21.62 −17.70
β2w −0.691 −0.685 −0.692 −0.640 −0.680
β34w −0.445 −0.655 −0.529 −0.694 −0.636
β5w 1.206 1.055 1.120 1.062 0.981
5n−N5p 0.65603 0.52558 0.65603 0.65603 0.48697
ν5p−ν5n 52.46 13.43 52.46 52.46 35.87
RG5F −15.820 −362.564 −21.477 81.082 16.080
RG5R −7.546 −10.605 −6.390 −8.302 −10.593
(RG5F+RG5R)/(RG5F-RG5R) 0.3541 0.9434 0.5414 1.229 4.854
t1 0.1 0.1 0.1 0.1 0.1
07 2.688 2.688 2.688 2.688 2.688
tanω07w 0.4814 0.4803 0.4632 0.5851 0.4960
07/(fw・tanω07w) 0.9228 0.9234 0.9355 0.9181 0.8925
nd(LA) 1.63494 1.63494 1.63494 1.67000 1.63494
Next, parameter values and conditional expression values in each embodiment will be listed. *** indicates that the condition is not satisfied.
Example 1 Example 2 Example 3 Example 4 Example 5
fw (wide-angle end) 6.051 6.061 6.203 5.005 6.072
ft (telephoto end) 29.960 29.957 30.999 24.993 29.955
γ 4.951 4.943 4.997 4.994 4.933
y 10 3.84 3.84 3.84 3.84 3.84
E 10.466 7.906 9.628 10.921 6.278
f12 13.101 10.432 12.669 8.840 10.123
E / f12 0.799 0.758 0.760 1.235 0.620
nd (LB) 1.88300 1.74320 2.04300 1.80610 1.80610
νd (LA) 23.22 23.22 23.22 19.30 23.22
R C −17.614 −13.857 14.805 −36.799 −53.668
Δ zA (h) 0.00988 −0.00742 −0.00952 0.12547 0
Δ zB (h) -0.00910 -0.00692 0.00500 -0.00871 -0.07001
{Δ zA (h) + Δ zB (h)} / 2 0.00039 -0.00717 -0.00226 0.05838 -0.03501
Δ zC (h) −0.01246 −0.01047 0.02716 −0.00397 −0.08914
h 4.232 4.221 4.152 5.144 4.208
a 1.693 1.688 1.661 2.058 1.683
θgF (LA) 0.6030 0.6477 0.5840 0.5840 0.5840
β (LA) 0.6408 0.6855 0.6218 0.6155 0.6155
θhg (LA) 0.5379 0.6003 0.5080 0.5080 0.5080
βhg (LA) 0.5901 0.6525 0.5602 0.5514 0.5514
νd (LB) 40.76 49.34 39.00 40.92 40.92
θgF (LB) 0.5669 0.5528 0.5657 0.5703 0.5703
β (LB) 0.6333 0.6332 0.6293 0.6370 0.6370
θhg (LB) 0.4811 0.4638 0.4772 0.4881 0.4881
βhg (LB) 0.5728 0.5748 0.5650 0.5802 0.5802
θgF (LA) −θgF (LB) 0.0361 0.0949 0.0183 0.0137 0.0137
θhg (LA) −θhg (LB) 0.0568 0.1365 0.0308 0.0199 0.0199
νd (LA) −νd (LB) −17.54 −26.12 −15.78 −21.62 −17.70
β 2w −0.691 −0.685 −0.692 −0.640 −0.680
β 34w −0.445 −0.655 −0.529 −0.694 −0.636
β 5w 1.206 1.055 1.120 1.062 0.981
N 5n -N 5p 0.65603 0.52558 0.65603 0.65603 0.48697
ν 5p −ν 5n 52.46 13.43 52.46 52.46 35.87
R G5F −15.820 −362.564 −21.477 81.082 16.080
R G5R −7.546 −10.605 −6.390 −8.302 −10.593
(R G5F + R G5R ) / (R G5F -R G5R ) 0.3541 0.9434 0.5414 1.229 4.854
t1 0.1 0.1 0.1 0.1 0.1
y 07 2.688 2.688 2.688 2.688 2.688
tanω 07w 0.4814 0.4803 0.4632 0.5851 0.4960
y 07 / (fw ・tanω 07w ) 0.9228 0.9234 0.9355 0.9181 0.8925
nd (LA) 1.63494 1.63494 1.63494 1.67000 1.63494

実施例6 実施例7 実施例8 実施例9
fw(広角端) 6.053 6.049 6.047 6.046
ft(望遠端) 29.958 29.955 29.959 29.957
γ 4.949 4.952 4.954 4.955
10 3.84 3.84 3.84 3.84
E 6.835 8.210 6.593 6.793
f12 10.515 12.792 12.749 12.502
E/f12 0.650 0.642 0.517 0.543
nd(LB) 1.80610 1.74320 1.74320 1.74320
νd(LA) 23.22 23.22 23.22 23.22
C 23.384 −40.158 9.595 9.525
ΔzA(h) 0.00683 0 −0.01681 −0.01403
ΔzB(h) −0.00300 −0.03462 0.00598 0.00537
zA(h)+ΔzB(h)}/2 0.00192 −0.01731 −0.00542 −0.00433
ΔzC(h) −0.00734 −0.08108 −0.02479 −0.04604
h 4.230 4.234 4.238 4.238
a 1.692 1.694 1.695 1.695
θgF(LA) 0.6477 0.5945 0.5921 0.5921
β(LA) 0.6855 0.6323 0.6299 0.6299
θhg(LA) 0.6003 0.5240 0.5215 0.5215
βhg(LA) 0.6525 0.5762 0.5737 0.5737
νd(LB) 40.92 49.34 49.34 49.34
θgF(LB) 0.5703 0.5528 0.5528 0.5528
β(LB) 0.6370 0.6332 0.6332 0.6332
θhg(LB) 0.4881 0.4638 0.4638 0.4638
βhg(LB) 0.5802 0.5748 0.5748 0.5748
θgF(LA)−θgF(LB) 0.0774 0.0417 0.0393 0.0393
θhg(LA)−θhg(LB) 0.1122 0.0602 0.0577 0.0577
νd(LA)−νd(LB) −17.70 −26.12 −26.12 −26.12
β2w −0.544 −0.325 −0.323 −0.330
β34w −0.715 −0.608 −0.576 −0.581
β5w 1.211 1.854 1.968 1.957
5n−N5p 0.62720 0.65603 0.56960 0.56960
ν5p−ν5n 46.37 52.46 26.85 26.85
RG5F −7.819 *** *** ***
RG5R −7.105 *** *** ***
(RG5F+RG5R)/(RG5F-RG5R) 0.04784 *** *** ***
t1 0.1 0.1 0.1 0.1
07 2.688 2.688 2.688 2.688
tanω07w 0.4702 0.4882 0.4861 0.4851
07/(fw・tanω07w) 0.9444 0.9102 0.9145 0.9165
nd(LA) 1.63494 1.63494 1.63494 1.63494
Example 6 Example 7 Example 8 Example 9
fw (wide-angle end) 6.053 6.049 6.047 6.046
ft (telephoto end) 29.958 29.955 29.959 29.957
γ 4.949 4.952 4.954 4.955
y 10 3.84 3.84 3.84 3.84
E 6.835 8.210 6.593 6.793
f12 10.515 12.792 12.749 12.502
E / f12 0.650 0.642 0.517 0.543
nd (LB) 1.80610 1.74320 1.74320 1.74320
νd (LA) 23.22 23.22 23.22 23.22
R C 23.384 −40.158 9.595 9.525
Δ zA (h) 0.00683 0 −0.01681 −0.01403
Δ zB (h) -0.00300 -0.03462 0.00598 0.00537
{Δ zA (h) + Δ zB (h)} / 2 0.00192 -0.01731 -0.00542 -0.00433
Δ zC (h) −0.00734 −0.08108 −0.02479 −0.04604
h 4.230 4.234 4.238 4.238
a 1.692 1.694 1.695 1.695
θgF (LA) 0.6477 0.5945 0.5921 0.5921
β (LA) 0.6855 0.6323 0.6299 0.6299
θhg (LA) 0.6003 0.5240 0.5215 0.5215
βhg (LA) 0.6525 0.5762 0.5737 0.5737
νd (LB) 40.92 49.34 49.34 49.34
θgF (LB) 0.5703 0.5528 0.5528 0.5528
β (LB) 0.6370 0.6332 0.6332 0.6332
θhg (LB) 0.4881 0.4638 0.4638 0.4638
βhg (LB) 0.5802 0.5748 0.5748 0.5748
θgF (LA) −θgF (LB) 0.0774 0.0417 0.0393 0.0393
θhg (LA) −θhg (LB) 0.1122 0.0602 0.0577 0.0577
νd (LA) −νd (LB) −17.70 −26.12 −26.12 −26.12
β 2w −0.544 −0.325 −0.323 −0.330
β 34w −0.715 −0.608 −0.576 −0.581
β 5w 1.211 1.854 1.968 1.957
N 5n -N 5p 0.62720 0.65603 0.56960 0.56960
ν 5p −ν 5n 46.37 52.46 26.85 26.85
R G5F -7.819 *** *** *** ***
R G5R −7.105 *** *** *** ***
(R G5F + R G5R ) / (R G5F -R G5R ) 0.04784 * * * * * * * * *
t1 0.1 0.1 0.1 0.1
y 07 2.688 2.688 2.688 2.688
tanω 07w 0.4702 0.4882 0.4861 0.4851
y 07 / (fw ・tanω 07w ) 0.9444 0.9102 0.9145 0.9165
nd (LA) 1.63494 1.63494 1.63494 1.63494

(実施例10)
さて、以上のような本発明の結像光学系は、物体の像をCCDやCMOSなどの電子撮像素子で撮影する撮影装置、とりわけデジタルカメラやビデオカメラ、情報処理装置の例であるパソコン、電話、携帯端末、特に持ち運びに便利な携帯電話等に用いることができる。以下に、その実施形態を例示する。
(Example 10)
The imaging optical system of the present invention as described above is a photographing apparatus for photographing an image of an object with an electronic image sensor such as a CCD or CMOS, in particular, a digital camera, a video camera, a personal computer or an example of an information processing apparatus, a telephone. It can be used for portable terminals, especially mobile phones that are convenient to carry. The embodiment is illustrated below.

図19〜図21に本発明による結像光学系をデジタルカメラの撮影光学系41に組み込んだ構成の概念図を示す。図19はデジタルカメラ40の外観を示す前方斜視図、図20は同後方斜視図、図21はデジタルカメラ40の光学構成を示す断面図である。   FIGS. 19 to 21 are conceptual diagrams of structures in which the imaging optical system according to the present invention is incorporated in the photographing optical system 41 of a digital camera. 19 is a front perspective view showing the appearance of the digital camera 40, FIG. 20 is a rear perspective view thereof, and FIG. 21 is a cross-sectional view showing an optical configuration of the digital camera 40.

デジタルカメラ40は、この例の場合、撮影用光路42を有する撮影光学系41、ファインダー用光路44を有するファインダー光学系43、シャッター45、フラッシュ46、液晶表示モニター47等を含む。そして、撮影者が、カメラ40の上部に配置されたシャッター45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズ48を通して撮影が行われる。   In this example, the digital camera 40 includes a photographing optical system 41 having a photographing optical path 42, a finder optical system 43 having a finder optical path 44, a shutter 45, a flash 46, a liquid crystal display monitor 47, and the like. Then, when the photographer presses the shutter 45 disposed on the upper part of the camera 40, photographing is performed through the photographing optical system 41, for example, the zoom lens 48 of the first embodiment in conjunction therewith.

撮影光学系41によって形成された物体像は、CCD49の撮像面上に形成される。このCCD49で受光された物体像は、画像処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この画像処理手段51にはメモリ等が配置され、撮影された電子画像を記録することもできる。なお、このメモリは画像処理手段51と別体に設けてもよいし、フレキシブルディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。   The object image formed by the photographing optical system 41 is formed on the image pickup surface of the CCD 49. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the image processing means 51. Further, the image processing means 51 is provided with a memory or the like, and can record a captured electronic image. This memory may be provided separately from the image processing means 51, or may be configured to perform recording and writing electronically using a flexible disk, memory card, MO, or the like.

さらに、ファインダー用光路44上には、ファインダー用対物光学系53が配置されている。このファインダー用対物光学系53は、カバーレンズ54、第1プリズム10、開口絞り2、第2プリズム20、フォーカス用レンズ66からなる。このファインダー用対物光学系53によって、結像面67上に物体像が形成される。この物体像は、像正立部材であるポロプリズム55の視野枠57上に形成される。このポロプリズム55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。   Further, a finder objective optical system 53 is disposed on the finder optical path 44. The finder objective optical system 53 includes a cover lens 54, a first prism 10, an aperture stop 2, a second prism 20, and a focusing lens 66. An object image is formed on the imaging surface 67 by the finder objective optical system 53. This object image is formed on the field frame 57 of the Porro prism 55 which is an image erecting member. Behind the Porro prism 55, an eyepiece optical system 59 for guiding an erect image to the observer eyeball E is disposed.

このように構成されたデジタルカメラ40によれば、撮影光学系41の構成枚数を少なくした小型化・薄型化のズームレンズを有する電子撮像装置が実現できる。なお、本発明は、上述した沈胴式のデジタルカメラに限られず、屈曲光学系を採用する折り曲げ式のデジタルカメラにも適用できる。   According to the digital camera 40 configured as described above, an electronic imaging device having a compact and thin zoom lens in which the number of components of the photographing optical system 41 is reduced can be realized. The present invention is not limited to the above-described retractable digital camera, but can also be applied to a folding digital camera that employs a bending optical system.

次に、本発明の結像光学系が対物光学系として内蔵された情報処理装置の一例であるパソコンを図22〜図24に示す。図22はパソコン300のカバーを開いた状態の前方斜視図、図23はパソコン300の撮影光学系303の断面図、図24は図14の側面図である。図22〜図24に示されるように、パソコン300は、キーボード301と、情報処理手段や記録手段と、モニター302と、撮影光学系303とを有している。   Next, a personal computer which is an example of an information processing apparatus in which the imaging optical system of the present invention is incorporated as an objective optical system is shown in FIGS. 22 is a front perspective view of the personal computer 300 with the cover open, FIG. 23 is a sectional view of the photographing optical system 303 of the personal computer 300, and FIG. 24 is a side view of FIG. As shown in FIGS. 22 to 24, the personal computer 300 includes a keyboard 301, information processing means and recording means, a monitor 302, and a photographing optical system 303.

ここで、キーボード301は、外部から操作者が情報を入力するためのものである。情報処理手段や記録手段は、図示を省略している。モニター302は、情報を操作者に表示するためのものである。撮影光学系303は、操作者自身や周辺の像を撮影するためのものである。モニター302は、液晶表示素子やCRTディスプレイ等であってよい。液晶表示素子としては、図示しないバックライトにより背面から照明する透過型液晶表示素子や、前面からの光を反射して表示する反射型液晶表示素子がある。また、図中、撮影光学系303は、モニター302の右上に内蔵されているが、その場所に限らず、モニター302の周囲や、キーボード301の周囲のどこであってもよい。   Here, the keyboard 301 is for an operator to input information from the outside. The information processing means and recording means are not shown. The monitor 302 is for displaying information to the operator. The photographing optical system 303 is for photographing an image of the operator himself or a surrounding area. The monitor 302 may be a liquid crystal display element, a CRT display, or the like. As the liquid crystal display element, there are a transmissive liquid crystal display element that is illuminated from the back by a backlight (not shown), and a reflective liquid crystal display element that reflects and displays light from the front. In the drawing, the photographic optical system 303 is built in the upper right of the monitor 302, but is not limited to that location, and may be anywhere around the monitor 302 or the keyboard 301.

この撮影光学系303は、撮影光路304上に、例えば実施例1のズームレンズからなる対物光学系100と、像を受光する電子撮像素子チップ162とを有している。これらはパソコン300に内蔵されている。   The photographing optical system 303 includes, on the photographing optical path 304, the objective optical system 100 including, for example, the zoom lens according to the first embodiment, and the electronic imaging element chip 162 that receives an image. These are built in the personal computer 300.

鏡枠の先端には、対物光学系100を保護するためのカバーガラス102が配置されている。
電子撮像素子チップ162で受光された物体像は、端子166を介して、パソコン300の処理手段に入力される。そして、最終的に、物体像は電子画像としてモニター302に表示される。図22には、その一例として、操作者が撮影した画像305が示されている。また、この画像305は、処理手段を介し、遠隔地から通信相手のパソコンに表示されることも可能である。遠隔地への画像伝達は、インターネットや電話を利用する。
A cover glass 102 for protecting the objective optical system 100 is disposed at the tip of the mirror frame.
The object image received by the electronic image sensor chip 162 is input to the processing means of the personal computer 300 via the terminal 166. Finally, the object image is displayed on the monitor 302 as an electronic image. FIG. 22 shows an image 305 taken by the operator as an example. The image 305 can also be displayed on a communication partner's personal computer from a remote location via the processing means. The Internet and telephone are used for image transmission to remote places.

次に、本発明の結像光学系が撮影光学系として内蔵された情報処理装置の一例である電話、特に持ち運びに便利な携帯電話を図25に示す。図25(a)は携帯電話400の正面図、図25(b)は側面図、図25(c)は撮影光学系405の断面図である。図25(a)〜(c)に示されるように、携帯電話400は、マイク部401と、スピーカ部402と、入力ダイアル403と、モニター404と、撮影光学系405と、アンテナ406と、処理手段とを有している。   Next, FIG. 25 shows a telephone which is an example of an information processing apparatus in which the imaging optical system of the present invention is incorporated as a photographing optical system, particularly a portable telephone which is convenient to carry. 25A is a front view of the mobile phone 400, FIG. 25B is a side view, and FIG. 25C is a cross-sectional view of the photographing optical system 405. As shown in FIGS. 25A to 25C, the mobile phone 400 includes a microphone unit 401, a speaker unit 402, an input dial 403, a monitor 404, a photographing optical system 405, an antenna 406, and processing. Means.

ここで、マイク部401は、操作者の声を情報として入力するためのものである。スピーカ部402は、通話相手の声を出力するためのものである。入力ダイアル403は、操作者が情報を入力するためのものである。モニター404は、操作者自身や通話相手等の撮影像や、電話番号等の情報を表示するためのものである。アンテナ406は、通信電波の送信と受信を行うためのものである。処理手段(不図示)は、画像情報や通信情報、入力信号等の処理を行うためのものである。   Here, the microphone unit 401 is for inputting an operator's voice as information. The speaker unit 402 is for outputting the voice of the other party. An input dial 403 is used by an operator to input information. The monitor 404 is for displaying information such as a photographed image of the operator himself or the other party, a telephone number, and the like. The antenna 406 is for transmitting and receiving communication radio waves. The processing means (not shown) is for processing image information, communication information, input signals, and the like.

ここで、モニター404は液晶表示素子である。また、図中、各構成の配置位置、特にこれらに限られない。この撮影光学系405は、撮影光路407上に配された対物光学系100と、物体像を受光する電子撮像素子チップ162とを有している。対物光学系100としては、例えば実施例1のズームレンズが用いられる。これらは、携帯電話400に内蔵されている。   Here, the monitor 404 is a liquid crystal display element. Further, in the drawing, the arrangement positions of the respective components, in particular, are not limited thereto. The photographing optical system 405 includes an objective optical system 100 disposed on a photographing optical path 407 and an electronic image sensor chip 162 that receives an object image. As the objective optical system 100, for example, the zoom lens of Example 1 is used. These are built in the mobile phone 400.

鏡枠の先端には、対物光学系100を保護するためのカバーガラス102が配置されている。
電子撮影素子チップ162で受光された物体像は、端子166を介して、図示していない画像処理手段に入力される。そして、最終的に物体像は、電子画像としてモニター404に、又は、通信相手のモニターに、又は、両方に表示される。また、処理手段には信号処理機能が含まれている。通信相手に画像を送信する場合、この機能により、電子撮像素子チップ162で受光された物体像の情報を、送信可能な信号へと変換する。
A cover glass 102 for protecting the objective optical system 100 is disposed at the tip of the mirror frame.
The object image received by the electronic imaging element chip 162 is input to an image processing unit (not shown) via the terminal 166. Finally, the object image is displayed as an electronic image on the monitor 404, the monitor of the communication partner, or both. The processing means includes a signal processing function. When transmitting an image to a communication partner, this function converts information on the object image received by the electronic image sensor chip 162 into a signal that can be transmitted.

なお、本発明は、その趣旨を逸脱しない範囲で様々な変形例をとることができる。   The present invention can take various modifications without departing from the spirit of the present invention.

本発明の実施例1にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 1 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例1にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 3 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 1 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例2にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 2 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例2にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 6 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 2 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is a middle, and (c). Indicates the state at the telephoto end. 本発明の実施例3にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 3 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例3にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 3 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例4にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 4 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例4にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 4 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例5にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 5 of the present invention is a cross-sectional view along the optical axis showing the optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例5にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 5 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例6にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 6 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例6にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 8 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 6 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例7にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 7 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例7にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 9 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 7 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例8にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 8 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例8にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 8 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例9にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 9 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例9にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 9 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明によるズーム光学系を組み込んだデジタルカメラ40の外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera 40 incorporating the zoom optical system by this invention. デジタルカメラ40の後方斜視図である。2 is a rear perspective view of the digital camera 40. FIG. デジタルカメラ40の光学構成を示す断面図である。2 is a cross-sectional view showing an optical configuration of a digital camera 40. FIG. 本発明のズーム光学系が対物光学系として内蔵された情報処理装置の一例であるパソコン300のカバーを開いた状態の前方斜視図である。1 is a front perspective view of a state in which a cover of a personal computer 300 which is an example of an information processing apparatus in which a zoom optical system of the present invention is built as an objective optical system is opened. パソコン300の撮影光学系303の断面図である。2 is a cross-sectional view of a photographing optical system 303 of a personal computer 300. FIG. パソコン300の側面図である。2 is a side view of a personal computer 300. FIG. 本発明のズーム光学系が撮影光学系として内蔵された情報処理装置の一例である携帯電話を示す図であり、(a)は携帯電話400の正面図、(b)は側面図、(c)は撮影光学系405の断面図である。1A and 1B are views showing a mobile phone as an example of an information processing apparatus in which the zoom optical system of the present invention is built in as a photographing optical system, where FIG. 1A is a front view of the mobile phone 400, FIG. FIG. 6 is a cross-sectional view of the photographing optical system 405.

符号の説明Explanation of symbols

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
L1〜L13 各レンズ
LPF ローパスフィルタ
CG カバーガラス
I 撮像面
E 観察者の眼球
40 デジタルカメラ
41 撮影光学系
42 撮影用光路
43 ファインダー光学系
44 ファインダー用光路
45 シャッター
46 フラッシュ
47 液晶表示モニター
48 ズームレンズ
49 CCD
50 撮像面
51 処理手段
53 ファインダー用対物光学系
55 ポロプリズム
57 視野枠
59 接眼光学系
66 フォーカス用レンズ
67 結像面
100 対物光学系
102 カバーガラス
162 電子撮像素子チップ
166 端子
300 パソコン
301 キーボード
302 モニター
303 撮影光学系
304 撮影光路
305 画像
400 携帯電話
401 マイク部
402 スピーカ部
403 入力ダイアル
404 モニター
405 撮影光学系
406 アンテナ
407 撮影光路
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group L1-L13 Each lens LPF Low pass filter CG Cover glass I Imaging surface E Observer's eye 40 Digital camera 41 Shooting optics System 42 Optical path for photographing 43 Viewfinder optical system 44 Optical path for viewfinder 45 Shutter 46 Flash 47 LCD monitor 48 Zoom lens 49 CCD
DESCRIPTION OF SYMBOLS 50 Image pick-up surface 51 Processing means 53 Finder objective optical system 55 Porro prism 57 Field frame 59 Eyepiece optical system 66 Focusing lens 67 Imaging surface 100 Objective optical system 102 Cover glass 162 Electronic image pick-up element chip | tip 166 Terminal 300 Personal computer 301 Keyboard 302 Monitor 303 Imaging Optical System 304 Imaging Optical Path 305 Image 400 Mobile Phone 401 Microphone Unit 402 Speaker Unit 403 Input Dial 404 Monitor 405 Imaging Optical System 406 Antenna 407 Imaging Optical Path

Claims (11)

最も物体側に配置され正の屈折力を有する第1レンズ群G1を備える結像光学系であって、
該第1レンズ群G1は反射光学素子と、該反射光学素子の像側に配置され正の屈折力を有するレンズ成分C1pを有し、
該レンズ成分C1pは負レンズLAと正レンズLBとが接合され、その接合面が非球面であり、
以下の条件式(1)を満足することを特徴とする結像光学系。
0.4<E/f12<2.0 …(1)
ここで、
Eは面頂Ct1と面頂Ct2との間の光軸に沿った空気換算距離、
面頂Ct1は前記反射光学素子の反射面よりも物体側にある屈折面のうちで最も負の屈折力の強い面の面頂、
面頂Ct2は前記レンズ成分C1pの接合面の面頂、
f12は前記第1レンズ群G1を構成するレンズのうち、前記反射光学素子よりも像側にあるすべてのレンズによる合成焦点距離である。ただし、前記反射光学素子が射出面を有し該射出面が屈折力を有する場合は、該射出面を含んだときの合成焦点距離である。
An imaging optical system including a first lens group G1 disposed on the most object side and having a positive refractive power,
The first lens group G1 includes a reflective optical element and a lens component C1p disposed on the image side of the reflective optical element and having a positive refractive power,
In the lens component C1p, a negative lens LA and a positive lens LB are cemented, and the cemented surface is an aspheric surface.
An imaging optical system characterized by satisfying the following conditional expression (1):
0.4 <E / f12 <2.0 (1)
here,
E is the air equivalent distance along the optical axis between the top Ct1 and the top Ct2,
The surface top Ct1 is the surface top of the surface having the strongest negative refractive power among the refractive surfaces on the object side of the reflective surface of the reflective optical element,
Surface top Ct2 is the surface top of the cemented surface of the lens component C1p,
f12 is the combined focal length of all the lenses constituting the first lens group G1 that are closer to the image side than the reflective optical element. However, when the reflective optical element has an exit surface and the exit surface has a refractive power, it is a combined focal length when the exit surface is included.
前記負レンズLAの材質はエネルギー硬化型樹脂であり、前記正レンズLB上にて直接成形する方式で前記レンズ成分C1pを形成することを特徴とする請求項1に記載の結像光学系。   2. The imaging optical system according to claim 1, wherein the material of the negative lens LA is an energy curable resin, and the lens component C1p is formed by a direct molding method on the positive lens LB. 前記反射光学素子はプリズムであり、媒質の屈折率が1.8以上である請求項1〜2のいずれか一項に記載の結像光学系。   The imaging optical system according to claim 1, wherein the reflective optical element is a prism, and a refractive index of the medium is 1.8 or more. 下記条件式(2)を満足することを特徴とする請求項1〜3のいずれか一項に記載の結像光学系。
1.60<nd(LB)<2.4 …(2)
ここで、nd(LB)は前記正レンズLBのd線に対する屈折率である。
The imaging optical system according to claim 1, wherein the following conditional expression (2) is satisfied.
1.60 <nd (LB) <2.4 (2)
Here, nd (LB) is a refractive index with respect to the d line of the positive lens LB.
条件式(3)を満足することを特徴とする請求項1〜4のいずれか一項に記載の結像光学系。
3<νd(LA)<35 …(3)
ここで、νd(LA)は前記負レンズLAのd線に対するアッベ数である。
The imaging optical system according to claim 1, wherein the conditional expression (3) is satisfied.
3 <νd (LA) <35 (3)
Here, νd (LA) is the Abbe number of the negative lens LA with respect to the d-line.
光軸方向をz、光軸に垂直な方向をhとする座標軸とし、Rを球面成分の光軸上における曲率半径、kを円錐定数、A,A,A,A10・・・を非球面係数として、非球面の形状を下記の式(4)で表すと共に、
z=h2/R[1+{1−(1+K)h2/R2 1/2
+A4 h4 +A6 h6 +A8 h8 +A10h10+・・・ …(4)
偏倚量を下記の式(5)で表した場合、
Δz=z−h2/R[1+{1−h2/R2 1/2 ]・・・ …(5)
以下の条件式(6a)または(6b)を満足する請求項1〜5のいずれか一項に記載の結像光学系。
C≦0のとき
ΔzC (h)≦(ΔzA(h)+Δz(h))/2〈但し、h=2.5a〉 …(6a)
C≧0のとき
ΔzC (h)≧(ΔzA(h)+Δz(h))/2〈但し、h=2.5a〉 …(6b)
ここで、
A は前記負レンズLAの空気接触面の形状であって、式(4)に従う形状、
B は前記正レンズLBの空気接触面の形状であって、式(4)に従う形状、
Cは前記接合面の形状であって、式(4)に従う形状、
ΔzAは前記負レンズLAの空気接触面における偏倚量であって、式(5)に従う量、
ΔzBは前記正レンズLBの空気接触面における偏倚量であって、式(5)に従う量、
ΔzC は前記接合面における偏倚量であって、式(5)に従う量、
Cは接合面の近軸曲率半径、
aは以下の(7)式に従う量、
a=(y10)2・log10γ/fw …(7)
また、式(7)において、
10 は最大像高、
fwは前記結像光学系の広角端における全系の焦点距離
γは前記結像光学系におけるズーム比(望遠端での全系焦点距離/広角端での全系焦点距離)、
また、各面の面頂を原点とするため、常にz(0)=0である。
The optical axis z, a direction perpendicular to the optical axis is a coordinate axis is h, the radius of curvature on the optical axis of the spherical R component, k a conic constant, A 4, A 6, A 8, A 10 ··· As the aspheric coefficient, the shape of the aspheric surface is expressed by the following formula (4),
z = h 2 / R [1+ {1- (1 + K) h 2 / R 2} 1/2]
+ A 4 h 4 + A 6 h 6 + A 8 h 8 + A 10 h 10 +... (4)
When the deviation amount is expressed by the following equation (5),
Δz = z−h 2 / R [1+ {1−h 2 / R 2 } 1/2 ] (5)
The imaging optical system according to claim 1, wherein the following conditional expression (6a) or (6b) is satisfied.
When R C ≦ 0
Δz C (h) ≦ (Δz A (h) + Δz B (h)) / 2 <where h = 2.5a> (6a)
When R C ≧ 0
Δz C (h) ≧ (Δz A (h) + Δz B (h)) / 2 <where h = 2.5a> (6b)
here,
z A is the shape of the air contact surface of the negative lens LA, and the shape according to equation (4),
z B is the shape of the air contact surface of the positive lens LB, and the shape according to equation (4),
z C is the shape of the joint surface, the shape according to formula (4),
Δz A is a deviation amount on the air contact surface of the negative lens LA, and is an amount according to the equation (5),
Δz B is a deviation amount on the air contact surface of the positive lens LB, and is an amount according to the equation (5),
Δz C is a deviation amount in the joint surface, and is an amount according to the equation (5),
R C is the paraxial radius of curvature of the joint surface,
a is an amount according to the following equation (7),
a = (y 10 ) 2 · log 10 γ / fw (7)
In the formula (7),
y 10 is the maximum image height,
fw is the focal length γ of the entire system at the wide-angle end of the imaging optical system is the zoom ratio (total focal length at the telephoto end / total focal length at the wide-angle end) of the imaging optical system,
Since the top of each surface is the origin, z (0) = 0 is always set.
更に、負の屈折力を有すると共に変倍時可動の第2レンズ群G2を備え、
以下の条件を満足することを特徴とする請求項1〜6のいずれか一項に記載の結像光学系。
−1.2<β2w<−0.3 …(16)
ここで、β2wは前記第2レンズ群G2の広角端における結像倍率であって、広角端における前記結像光学系全系の結像倍率の絶対値が0.01以下となるいずれかの物点に合焦したときの結像倍率である。
Furthermore, it has a second lens group G2 having negative refractive power and movable at the time of zooming,
The imaging optical system according to claim 1, wherein the following condition is satisfied.
−1.2 <β 2w <−0.3 (16)
Here, β2w is the imaging magnification at the wide-angle end of the second lens group G2, and the absolute value of the imaging magnification of the entire imaging optical system at the wide-angle end is 0.01 or less. This is the imaging magnification when focused on a point.
前記第2レンズ群G2に続き、正の屈折力を有する第3レンズ群G3と正の屈折力を有する第4レンズ群G4を有し、
以下の条件式(17)を満足することを特徴とする請求項7に記載の結像光学系。
−1.8<β34w<−0.3 …(17)
ここで、β34w は前記第3レンズ群G3と前記第4レンズ群G4の広角端における合成系の結像倍率であって、広角端における前記結像光学系全系の結像倍率の絶対値が0.01以下となるいずれかの物点に合焦したときの結像倍率である。
Following the second lens group G2, a third lens group G3 having a positive refractive power and a fourth lens group G4 having a positive refractive power,
The imaging optical system according to claim 7, wherein the following conditional expression (17) is satisfied.
−1.8 <β 34w <−0.3 (17)
Here, β 34w is the imaging magnification of the composite system at the wide angle end of the third lens group G3 and the fourth lens group G4, and is the absolute value of the imaging magnification of the entire imaging optical system at the wide angle end Is the imaging magnification when focusing on any object point with a value of 0.01 or less.
前記第2レンズ群G2と前記第3レンズ群G3との間に正の屈折力を有する別のレンズ群G31を有し、
以下の条件式(17−1)を満足することを特徴とする請求項8に記載の結像光学系。
−1.8<β34w’<−0.3 …(17−1)
ここで、β34w ’は前記別のレンズ群G31、前記第3レンズ群G3及び前記第4レンズ群G4の広角端における合成系の結像倍率であって、広角端における前記結像光学系全系の結像倍率の絶対値が0.01以下となるいずれかの物点に合焦したときの結像倍率である。
Having another lens group G31 having a positive refractive power between the second lens group G2 and the third lens group G3,
The imaging optical system according to claim 8, wherein the following conditional expression (17-1) is satisfied.
−1.8 <β 34w ′ <−0.3 (17-1)
Here, β 34w ′ is the imaging magnification of the composite system at the wide-angle end of the other lens group G31, the third lens group G3, and the fourth lens group G4, and is the entire imaging optical system at the wide-angle end. This is the imaging magnification when focusing on any object point where the absolute value of the imaging magnification of the system is 0.01 or less.
最も像側に第5レンズ群G5を有し、
該第5レンズ群G5は、変倍時に像面からの距離が略一定のレンズ成分のみからなり、
変倍時、前記第5レンズ群G5と該第5レンズ群G5に隣接するレンズ群との相対的間隔が変化し、
以下の条件式(18)を満足することを特徴とする請求項1〜9のいずれか一項に記載の結像光学系。
0.95<β5W<2.5 …(18)
ここで、β5W は前記第5レンズ群G5の結像倍率であって、広角端における前記結像光学系全系の結像倍率の絶対値が0.01以下となるいずれかの物点に合焦したときの結像倍率である。
It has the fifth lens group G5 on the most image side,
The fifth lens group G5 consists only of lens components whose distance from the image plane is substantially constant at the time of zooming,
At the time of zooming, the relative distance between the fifth lens group G5 and the lens group adjacent to the fifth lens group G5 changes.
The imaging optical system according to claim 1, wherein the following conditional expression (18) is satisfied.
0.95 <β 5W <2.5 (18)
Here, β 5W is the imaging magnification of the fifth lens group G5, and is an object point at which the absolute value of the imaging magnification of the entire imaging optical system at the wide angle end is 0.01 or less. This is the imaging magnification when focused.
請求項1〜10のいずれか一項に記載の結像光学系と、電子撮像素子と、前記結像光学系を通じて結像した像を前記電子撮像素子で撮像することによって得られた画像データを加工して前記像の形状を変化させた画像データとして出力する画像処理手段とを有し、
前記結像光学系がズームレンズであり、
該ズームレンズが、無限遠物点合焦時に以下の条件式(26)を満足することを特徴とする電子撮像装置。
0.7<y07/(fw・tanω07w)<0.96 …(26)
ここで、
07は前記電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離(最大像高)をy10としたときy07=0.7y10として表され、
ω07wは広角端における前記撮像面上の中心からy07の位置に結ぶ像点に対応する物点方向の光軸に対する角度である。
The imaging optical system according to any one of claims 1 to 10, an electronic imaging device, and image data obtained by imaging an image formed through the imaging optical system with the electronic imaging device. Image processing means for processing and outputting as image data in which the shape of the image is changed,
The imaging optical system is a zoom lens;
An electronic imaging apparatus characterized in that the zoom lens satisfies the following conditional expression (26) when focusing on an object point at infinity.
0.7 <y 07 / (fw · tan ω 07w ) <0.96 (26)
here,
y 07 is expressed as y 07 = 0.7y 10 when the effective image pickup plane of the electronic imaging device the distance to the farthest point from the center in (imageable plane) (maximum image height) was y 10,
ω 07w is an angle with respect to the optical axis in the object point direction corresponding to the image point connecting from the center on the imaging surface to the position y 07 at the wide-angle end.
JP2008118245A 2008-04-30 2008-04-30 Imaging optical system and electronic imaging apparatus having the same Expired - Fee Related JP5432472B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008118245A JP5432472B2 (en) 2008-04-30 2008-04-30 Imaging optical system and electronic imaging apparatus having the same
PCT/JP2009/055754 WO2009133736A1 (en) 2008-04-30 2009-03-24 Image forming optical system and electronic image pickup device provided with the same
CN2009801155312A CN102016685B (en) 2008-04-30 2009-03-24 Image forming optical system and electronic image pickup device provided with the same
US12/925,841 US8018659B2 (en) 2008-04-30 2010-10-28 Image forming optical system and electronic image pickup apparatus equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118245A JP5432472B2 (en) 2008-04-30 2008-04-30 Imaging optical system and electronic imaging apparatus having the same

Publications (2)

Publication Number Publication Date
JP2009265557A true JP2009265557A (en) 2009-11-12
JP5432472B2 JP5432472B2 (en) 2014-03-05

Family

ID=41391451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118245A Expired - Fee Related JP5432472B2 (en) 2008-04-30 2008-04-30 Imaging optical system and electronic imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP5432472B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091836A (en) * 2008-10-09 2010-04-22 Nikon Corp Zoom lens and optical equipment mounted with the same, and manufacturing method
JP2010091835A (en) * 2008-10-09 2010-04-22 Nikon Corp Zoom lens and optical equipment mounted with the same, and manufacturing method
JP2010097127A (en) * 2008-10-20 2010-04-30 Nikon Corp Zoom lens, optical equipment incorporating mounted with the same, and method of manufacturing the same
JP2013092557A (en) * 2011-10-24 2013-05-16 Canon Inc Zoom lens and imaging device having the same
WO2014065264A1 (en) * 2012-10-23 2014-05-01 株式会社ニコン Variable magnification optical system, optical device, and method for producing variable magnification optical system
JP2014085488A (en) * 2012-10-23 2014-05-12 Nikon Corp Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP2014085487A (en) * 2012-10-23 2014-05-12 Nikon Corp Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP2016177321A (en) * 2016-06-27 2016-10-06 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP2017102487A (en) * 2017-03-07 2017-06-08 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
WO2017160091A1 (en) * 2016-03-17 2017-09-21 주식회사 에이스솔루텍 Optical lens system and imaging apparatus
JP2019144563A (en) * 2017-03-07 2019-08-29 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP2020034955A (en) * 2018-08-10 2020-03-05 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266129A (en) * 2004-03-17 2005-09-29 Olympus Corp Zoom lens and electronic imaging apparatus having the same
JP2006330341A (en) * 2005-05-26 2006-12-07 Sony Corp Zoom lens and imaging device
JP2007065590A (en) * 2005-09-02 2007-03-15 Canon Inc Optical system and imaging device having the same
JP2007108710A (en) * 2005-09-13 2007-04-26 Olympus Imaging Corp Imaging optical system and electronic imaging device having it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266129A (en) * 2004-03-17 2005-09-29 Olympus Corp Zoom lens and electronic imaging apparatus having the same
JP2006330341A (en) * 2005-05-26 2006-12-07 Sony Corp Zoom lens and imaging device
JP2007065590A (en) * 2005-09-02 2007-03-15 Canon Inc Optical system and imaging device having the same
JP2007108710A (en) * 2005-09-13 2007-04-26 Olympus Imaging Corp Imaging optical system and electronic imaging device having it

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091836A (en) * 2008-10-09 2010-04-22 Nikon Corp Zoom lens and optical equipment mounted with the same, and manufacturing method
JP2010091835A (en) * 2008-10-09 2010-04-22 Nikon Corp Zoom lens and optical equipment mounted with the same, and manufacturing method
JP2010097127A (en) * 2008-10-20 2010-04-30 Nikon Corp Zoom lens, optical equipment incorporating mounted with the same, and method of manufacturing the same
JP2013092557A (en) * 2011-10-24 2013-05-16 Canon Inc Zoom lens and imaging device having the same
JP2014085487A (en) * 2012-10-23 2014-05-12 Nikon Corp Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP2014085488A (en) * 2012-10-23 2014-05-12 Nikon Corp Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
WO2014065264A1 (en) * 2012-10-23 2014-05-01 株式会社ニコン Variable magnification optical system, optical device, and method for producing variable magnification optical system
US9989744B2 (en) 2012-10-23 2018-06-05 Nikon Corporation Variable magnification optical system, optical device, and method for producing variable magnification optical system
US10831007B2 (en) 2012-10-23 2020-11-10 Nikon Corporation Variable magnification optical system, optical device, and method for producing variable magnification optical system
US11892610B2 (en) 2012-10-23 2024-02-06 Nikon Corporation Variable magnification optical system, optical device, and method for producing variable magnification optical system
WO2017160091A1 (en) * 2016-03-17 2017-09-21 주식회사 에이스솔루텍 Optical lens system and imaging apparatus
JP2016177321A (en) * 2016-06-27 2016-10-06 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP2017102487A (en) * 2017-03-07 2017-06-08 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP2019144563A (en) * 2017-03-07 2019-08-29 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP2020034955A (en) * 2018-08-10 2020-03-05 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system

Also Published As

Publication number Publication date
JP5432472B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5432472B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5275718B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5052581B2 (en) Zoom optical system and electronic imaging apparatus using the same
WO2009133736A1 (en) Image forming optical system and electronic image pickup device provided with the same
JP5209367B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5084312B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5289922B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5350937B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2009169082A (en) Image-forming optical system and electronic imaging device therewith
JP5209366B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5426896B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2008191286A (en) Imaging optical system and electronic imaging apparatus having the same
JP5319191B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5424553B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2009047988A (en) Imaging optical system and electronic imaging apparatus having the same
JP2010008505A (en) Imaging optical system and electronic imaging device including the same
JP2009047986A (en) Imaging optical system and electronic imaging apparatus having the same
JP2009069794A (en) Image-forming optical system and electronic imaging apparatus including the same
JP5084311B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2010026293A (en) Image forming optical system and electronic imaging apparatus having the same
JP2008191306A (en) Imaging optical system and electronic imaging apparatus having the same
JP5497981B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5084284B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5450256B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5474501B2 (en) Imaging optical system and electronic imaging apparatus having the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R151 Written notification of patent or utility model registration

Ref document number: 5432472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees