JP2009265384A - Optical member, light source device and inspecting device - Google Patents

Optical member, light source device and inspecting device Download PDF

Info

Publication number
JP2009265384A
JP2009265384A JP2008115376A JP2008115376A JP2009265384A JP 2009265384 A JP2009265384 A JP 2009265384A JP 2008115376 A JP2008115376 A JP 2008115376A JP 2008115376 A JP2008115376 A JP 2008115376A JP 2009265384 A JP2009265384 A JP 2009265384A
Authority
JP
Japan
Prior art keywords
light
optical member
light source
reflecting
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008115376A
Other languages
Japanese (ja)
Inventor
Takeshi Inoue
毅 井上
Masayuki Yamada
昌幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008115376A priority Critical patent/JP2009265384A/en
Publication of JP2009265384A publication Critical patent/JP2009265384A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical member, preventing a reflecting mirror of a light source device from being tarnished without requiring specific facility. <P>SOLUTION: The optical member includes: a support part (a transparent glass 16a); a reflecting part 16b supported by the support part and reflecting light 14b having a desired wavelength (e.g. ultraviolet ray light to visible light ray); and a heat ray absorbing part 16c, supported by the support part, absorbing at least light (e.g. infrared ray light) having a wavelength other than the desired wavelength to generate heat, and heating the reflecting part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば半導体ウエハ、液晶ディスプレイ基板の検査装置、露光装置などの照明光源に使用される、光学部材、この光学部材を有する光源装置及び光学部材又は光源装置を有する検査装置に関する。   The present invention relates to an optical member, a light source device having the optical member, and an inspection device having the optical member or the light source device, which are used in an illumination light source such as a semiconductor wafer, a liquid crystal display substrate inspection device, and an exposure device.

照明光源として短波長の照明光を放射するDeepUVランプや水銀ランプなどを装備した光源装置が知られている。これら短波長の光を発する照明光源では、光源の放射光に含まれる紫外線により光源付近に浮遊している種々の汚染物質が活性化し、汚染物質同士が化学反応を起こして生成された物質が光源装置の反射鏡などに付着して反射強度を低下させる(反射鏡の表面を曇らせてその結果反射強度を低下させる)問題がある。   As an illumination light source, a light source device equipped with a Deep UV lamp or a mercury lamp that emits short-wavelength illumination light is known. In these illumination light sources that emit light of short wavelengths, various pollutants suspended in the vicinity of the light source are activated by ultraviolet rays contained in the light emitted from the light source, and substances generated by chemical reactions between the pollutants are the light source. There is a problem of reducing the reflection intensity by attaching to the reflection mirror of the apparatus (fogging the surface of the reflection mirror and consequently reducing the reflection intensity).

このような反射鏡の表面を曇らせる物質として、例えば硫酸アンモニウム(NH42SO4がある。この硫酸アンモニウム(NH42SO4は温度120℃以上で昇華することが知られている。 As a substance that cloudes the surface of such a reflector, for example, ammonium sulfate (NH 4 ) 2 SO 4 is available. This ammonium sulfate (NH 4 ) 2 SO 4 is known to sublime at a temperature of 120 ° C. or higher.

そこで、曇り防止手段として反射鏡を加熱させるヒーターを装備した光源装置が提案されている(特許文献1参照)。
特許第3266156号公報
Therefore, a light source device equipped with a heater for heating the reflecting mirror as a fogging preventing means has been proposed (see Patent Document 1).
Japanese Patent No. 3266156

上述した曇り防止手段は、反射鏡に装備するヒーターと、このヒーターに通電する電気量を制御して過熱しないようにするコントローラとが必要があり、設備にコストが嵩む問題がある。   The above-described anti-fogging means requires a heater provided in the reflecting mirror and a controller that controls the amount of electricity supplied to the heater so as not to overheat.

本発明は、特別な設備を必要とすることなく光源装置の反射鏡が曇るのを防止することが可能な、光学部材、光源装置及びこの光学部材又は光源装置を有する検査装置を提供することを目的とする。   The present invention provides an optical member, a light source device, and an inspection device having the optical member or the light source device capable of preventing the reflection mirror of the light source device from being fogged without requiring special equipment. Objective.

上記目的を達成する本発明の請求項1に記載の光学部材は、支持部と、前記支持部に支持され、所望の波長の光を反射させる反射部と、前記支持部と前記反射部との間に支持され、前記反射部を透過した熱線を吸収し、前記反射部を加熱する熱線吸収部と、を具備してなることを特徴とする。   The optical member according to claim 1 of the present invention that achieves the above object includes a support portion, a reflection portion that is supported by the support portion and reflects light having a desired wavelength, and the support portion and the reflection portion. And a heat ray absorbing part that absorbs heat rays transmitted through the reflection part and heats the reflection part.

本発明の請求項2に記載の光学部材は、前記反射部が前記所望の波長以外の光を透過させることを特徴とする。   The optical member according to claim 2 of the present invention is characterized in that the reflecting portion transmits light having a wavelength other than the desired wavelength.

本発明の請求項3に記載の光学部材は、前記熱線吸収部は、前記支持部表面に設けられた熱線吸収膜であり、当該熱線吸収膜上に前記反射部が設けられていることを特徴とする。   The optical member according to claim 3 of the present invention is characterized in that the heat ray absorbing portion is a heat ray absorbing film provided on the surface of the support portion, and the reflecting portion is provided on the heat ray absorbing film. And

本発明の請求項4に記載の光源装置は、光源と、請求項1ないし3の何れか一項に記載の光学部材からなり、前記光源の光を反射させる楕円鏡と、を具備してなることを特徴とする。   A light source device according to a fourth aspect of the present invention includes a light source and an elliptical mirror that includes the optical member according to any one of the first to third aspects and reflects light from the light source. It is characterized by that.

本発明の請求項5に記載の検査装置は、被検査物の表面を検査する検査装置であって、請求項1ないし3の何れか一項に記載の光学部材又は請求項4に記載の光源装置を装備してなることを特徴とする。   An inspection apparatus according to claim 5 of the present invention is an inspection apparatus for inspecting the surface of an object to be inspected, and is an optical member according to any one of claims 1 to 3 or a light source according to claim 4. It is equipped with a device.

本発明によれば、特別な設備を必要とすることなく光源装置の反射鏡が曇るのを防止することが可能である。   According to the present invention, it is possible to prevent the reflection mirror of the light source device from being fogged without requiring special equipment.

以下本発明の光学部材、同光学部材を装備した光源装置及び同光学部材又は同光源装置を装備した検査装置の一実施形態について図1〜図4を参照して説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS An embodiment of an optical member, a light source device equipped with the optical member, and an inspection device equipped with the optical member or the light source device will be described below with reference to FIGS.

図1は本発明の光学部材を装備した光源装置の概略図である。   FIG. 1 is a schematic view of a light source device equipped with the optical member of the present invention.

図1に示すように、光源装置10は、ランプハウス12内に、光源としての例えばDeepUV(深紫外ランプ)ランプ14と、このDeepUVランプ14から放射された光を反射させる光学部材としての楕円鏡16と、この楕円鏡16からの光を反射させてランプハウス12の外に導くミラー18とを配置して構成される。   As shown in FIG. 1, a light source device 10 includes, in a lamp house 12, for example, a deep UV (deep ultraviolet lamp) lamp 14 as a light source and an elliptical mirror as an optical member that reflects light emitted from the deep UV lamp 14. 16 and a mirror 18 that reflects the light from the elliptical mirror 16 and guides it out of the lamp house 12.

DeepUVランプ(深紫外ランプ)14は、クセノンランプをベースに水銀などの金属蒸気を封入したものである。光源としては、このDeepUVランプ14の他に水銀ランプなどを使用することも出来る。   The Deep UV lamp (deep ultraviolet lamp) 14 is a xenon lamp based on a metal vapor such as mercury. As a light source, a mercury lamp or the like can be used in addition to the Deep UV lamp 14.

楕円鏡16は、図2に詳細に示すように、支持部としての透明ガラス16aと、この透明ガラス16aの内面に配置した反射部16bと、内面(反射部16bが設けられた透明ガラス16aの面と反射部16bとの間)に配置した熱線吸収部(熱線吸収膜)16cとを備える。   As shown in detail in FIG. 2, the elliptical mirror 16 includes a transparent glass 16a as a support portion, a reflecting portion 16b disposed on the inner surface of the transparent glass 16a, and an inner surface (the transparent glass 16a provided with the reflecting portion 16b). A heat ray absorbing portion (heat ray absorbing film) 16c disposed between the surface and the reflecting portion 16b).

透明ガラス16aは、反射部16bと熱線吸収部(熱線吸収膜)16cとを支持する機能を有する他に、透明ガラス16aの内面に沿って形成した反射部16bで反射した光がミラー18上に焦点を結ぶ集光機能を有し、全体として略釣鐘状(図1参照)に形成される。   The transparent glass 16a has a function of supporting the reflecting portion 16b and the heat ray absorbing portion (heat ray absorbing film) 16c, and light reflected by the reflecting portion 16b formed along the inner surface of the transparent glass 16a is reflected on the mirror 18. It has a light collecting function for focusing, and is formed in a substantially bell shape (see FIG. 1) as a whole.

反射部16bは、DeepUVランプ14から放射される光14aのうち所望の波長の光14b、例えば波長248nm〜546nm範囲内にある光を高い効率で反射し、それ以外の波長の光14c、例えば波長248nmよりも短い波長側の光や波長546nmよりも長い波長側の光や波長248nm〜546nmの範囲にある反射しない光を透過させるもので、屈折率が異なる誘電体を複数積層した誘電体多層膜から形成されたダイクロイックミラーの一種である。   The reflection unit 16b reflects light 14b having a desired wavelength out of the light 14a emitted from the Deep UV lamp 14, for example, light having a wavelength in the range of 248 nm to 546 nm with high efficiency, and light 14c having other wavelengths, for example, wavelength Dielectric multilayer film in which light having a wavelength shorter than 248 nm, light having a wavelength longer than 546 nm, or non-reflecting light having a wavelength in the range of 248 nm to 546 nm is transmitted, and a plurality of dielectrics having different refractive indexes are laminated. Is a kind of dichroic mirror formed from

熱線吸収部(熱線吸収膜)16cは、透明ガラス16aの内面(反射部16bが設けられた透明ガラス16aの面と反射部16bとの間)に沿って形成されており、反射部16bを透過した熱線(赤外線)を吸収して発熱し、反射部16bをDeepUVランプ16aからの熱(透明ガラス16aの内面側を120℃付近まで加熱する熱)とともに硫酸アンモニウム(NH42SO4の昇華温度である120℃以上の温度まで加熱する。 The heat ray absorbing portion (heat ray absorbing film) 16c is formed along the inner surface of the transparent glass 16a (between the surface of the transparent glass 16a on which the reflecting portion 16b is provided and the reflecting portion 16b), and is transmitted through the reflecting portion 16b. It absorbs the generated heat rays (infrared rays) and generates heat, and the sublimation temperature of ammonium sulfate (NH 4 ) 2 SO 4 together with the heat from the deep UV lamp 16a (heat that heats the inner surface of the transparent glass 16a to near 120 ° C.) To 120 ° C. or higher.

熱線吸収部(熱線吸収膜)16cを構成する物質としては、熱線(赤外線)を吸収して発熱するものであればどのような物質でもよく、例えば、MgF2 とITOとZrO2 により構成される積層膜やZnOとAgにより構成される積層膜などを使用可能である。   The material constituting the heat ray absorbing portion (heat ray absorbing film) 16c may be any material as long as it absorbs heat rays (infrared rays) and generates heat. For example, a laminated film composed of MgF2, ITO and ZrO2 Or a laminated film composed of ZnO and Ag can be used.

熱線吸収部(熱線吸収膜)16cは、例えば、化学蒸着法(プラズマCVD、熱CVD、レーザCVDなど)、物理蒸着法(真空蒸着、スパッタリングなど)により数十nm〜数百nmの厚さに形成される。   The heat ray absorbing portion (heat ray absorbing film) 16c has a thickness of several tens to several hundreds of nm by, for example, chemical vapor deposition (plasma CVD, thermal CVD, laser CVD, etc.) or physical vapor deposition (vacuum vapor deposition, sputtering, etc.). It is formed.

上述した光学装置10によれば、DeepUVランプ14からの光のうち、所望の波長の光14bである、紫外線領域から可視領域(例えば波長248nm〜546nm)の光は、反射部16bを反射してミラー18に集光され、該ミラー18を反射してランプハウス12から外部に射出される。   According to the optical device 10 described above, light from the ultraviolet region to the visible region (for example, a wavelength of 248 nm to 546 nm), which is the light 14b having a desired wavelength, out of the light from the Deep UV lamp 14, is reflected by the reflecting portion 16b. The light is condensed on the mirror 18, reflected from the mirror 18, and emitted from the lamp house 12 to the outside.

また、それ以外の波長領域の光14cである、例えば赤外線領域の光は、反射部16bを透過し、熱線吸収部(熱線吸収膜)16cに照射される。熱線吸収部(熱線吸収膜)16cは、この光を吸収することで発熱反応を起こし、隣接する反射部16bを加熱する。   Further, for example, light in the infrared region, which is light 14c in the other wavelength region, passes through the reflecting portion 16b and is irradiated to the heat ray absorbing portion (heat ray absorbing film) 16c. The heat ray absorbing portion (heat ray absorbing film) 16c absorbs this light to cause an exothermic reaction, and heats the adjacent reflecting portion 16b.

反射部16bは、DeepUVランプ16aからの熱(透明ガラス16aの内面側を120℃付近まで加熱する熱)と熱線吸収部(熱線吸収膜)16cからの熱とにより、硫酸アンモニウム(NH42SO4の昇華温度である120℃以上の温度まで加熱される。DeepUVランプ16aが点灯している間、反射部16bは120℃以上の温度に維持されていて、この結果、DeepUVランプ16a付近に浮遊している種々の汚染物質が活性化し、汚染物質同士が化学反応を起こして生成された物質が付着しても、直ぐに昇華されてしまい、反射部16bの表面(反射面)が曇るおそれはない。 The reflecting portion 16b is made of ammonium sulfate (NH 4 ) 2 SO by heat from the Deep UV lamp 16a (heat that heats the inner surface of the transparent glass 16a to near 120 ° C.) and heat from the heat ray absorbing portion (heat ray absorbing film) 16c. It is heated to a temperature of 120 ° C. or higher, which is the sublimation temperature of 4 . While the Deep UV lamp 16a is lit, the reflecting portion 16b is maintained at a temperature of 120 ° C. or higher. As a result, various pollutants floating in the vicinity of the Deep UV lamp 16a are activated and the pollutants are chemically separated. Even if the substance generated by the reaction adheres, it is sublimated immediately and there is no possibility that the surface (reflecting surface) of the reflecting portion 16b becomes cloudy.

また、反射部16bを加熱するためにヒーターなどの加熱手段やヒーターへの通電量を制御するコントローラを装備することがないことから、装置が大掛かりにならず、設備にコストがかからず、また電気エネルギーなどの特別なエネルギーを使用せずに済む。   In addition, since the heating means such as a heater and a controller for controlling the amount of power to the heater are not equipped to heat the reflecting portion 16b, the apparatus does not become large and the equipment is not costly. There is no need to use special energy such as electrical energy.

また、DeepUVランプ14からの光14aのうち、これまで使用されなかった反射部16bを透過する光14cを利用することから光エネルギーの有効利用を図ることが出来る。   Moreover, since the light 14c which permeate | transmits the reflection part 16b which was not used until now among the light 14a from the DeepUV lamp | ramp 14 is utilized, the effective utilization of light energy can be aimed at.

図3は上述した光源装置10を有する検査装置20の実施形態を示す。   FIG. 3 shows an embodiment of the inspection apparatus 20 having the light source device 10 described above.

検査装置20は、例えば、半導体ウエハ21の表面の性状(欠けの有無、パーティクルの付着の有無、半導体ウエハに処理を行う際に障害となる物質(フォトレジストの残渣など)の有無)を検査するもので、半導体ウエハ21が載置される検査台22と、この検査台22上の半導体ウエハ21の表面を照明する光源装置10と、半導体ウエハ21の表面から反射した光を受光するCCDセンサなどの受光装置23とを備える。   For example, the inspection apparatus 20 inspects the surface properties of the semiconductor wafer 21 (the presence or absence of chips, the presence or absence of particles, the presence or absence of substances (such as photoresist residues) that interfere with processing of the semiconductor wafer). An inspection table 22 on which the semiconductor wafer 21 is placed, a light source device 10 that illuminates the surface of the semiconductor wafer 21 on the inspection table 22, a CCD sensor that receives light reflected from the surface of the semiconductor wafer 21, and the like. The light receiving device 23 is provided.

光源装置10を駆動して検査台22上の半導体ウエハ21の表面を照明する一方、受光装置23により半導体ウエハ21からの反射光を受光し、この受光した反射光を電気信号に光電変換して受光装置23から不図示の画像処理装置に送り、画像処理を施して、半導体ウエハ21の表面の検査を実行する。この検査時において、光源装置10付近の汚染物質がDeepUVランプ14からの光により化学反応を起こし、汚染物質が楕円鏡16の反射部16bに付着し、反射部16bを曇らせて反射効率を低下させるおそれがあるが、反射部16bは上述の如く120℃以上の温度に維持されていることから、仮に反射部16bの面(反射面)を曇らせる硫酸アンモニウム(NH42SO4が付着しても直ぐに昇華されてしまい、反射率が低下するおそれはなく、半導体ウエハ21の表面を所定の照度で照明し続けることが可能である。 The light source device 10 is driven to illuminate the surface of the semiconductor wafer 21 on the inspection table 22, while the light receiving device 23 receives reflected light from the semiconductor wafer 21, and photoelectrically converts the received reflected light into an electrical signal. The image is sent from the light receiving device 23 to an image processing device (not shown), subjected to image processing, and the surface of the semiconductor wafer 21 is inspected. At the time of this inspection, the pollutant near the light source device 10 causes a chemical reaction due to the light from the Deep UV lamp 14, and the pollutant adheres to the reflecting portion 16b of the elliptical mirror 16 to fog the reflecting portion 16b and lower the reflection efficiency. Although there is a possibility, since the reflecting portion 16b is maintained at a temperature of 120 ° C. or higher as described above, even if ammonium sulfate (NH 4 ) 2 SO 4 that makes the surface (reflecting surface) of the reflecting portion 16b cloudy is attached. There is no risk that the sublimation rate is immediately sublimated and the reflectance is lowered, and the surface of the semiconductor wafer 21 can be continuously illuminated with a predetermined illuminance.

本発明は上記実施形態に限定されるものではない。   The present invention is not limited to the above embodiment.

本発明の光学部材を光源装置10の楕円鏡16に適用した場合を示したが、光源装置10以外の光路に配置されるダイクロイックミラーに適用することが可能である。   Although the case where the optical member of the present invention is applied to the elliptical mirror 16 of the light source device 10 is shown, it can be applied to a dichroic mirror arranged in an optical path other than the light source device 10.

また、支持部として透明ガラス16aを使用した場合を示したが、透明なガラスでなくてもよく、またアルミニウム合金などの金属製の支持部を使用することが可能である。   Moreover, although the case where the transparent glass 16a was used as a support part was shown, it is not necessary to be transparent glass, and it is possible to use metal support parts, such as an aluminum alloy.

本発明の光学部材を装備した光源装置の概略図である。It is the schematic of the light source device equipped with the optical member of this invention. 図1中の光学部材としての楕円鏡の部分拡大断面図である。It is the elements on larger scale of the elliptical mirror as an optical member in FIG. 図2の光学装置10を装備した検査装置の概略図である。It is the schematic of the inspection apparatus equipped with the optical apparatus 10 of FIG.

符号の説明Explanation of symbols

10 光源装置
12 ランプハウス
14 DeepUVランプ(光源)
14a、b 光
16 楕円鏡
16a 透明ガラス(支持部)
16b 反射部
16c 熱線吸収部
10 Light source device 12 Lamp house 14 Deep UV lamp (light source)
14a, b Light 16 Elliptical mirror 16a Transparent glass (supporting part)
16b Reflector 16c Heat ray absorber

Claims (5)

支持部と、
前記支持部に支持され、所望の波長の光を反射させる反射部と、
前記支持部と前記反射部との間に支持され、前記反射部を透過した熱線を吸収し、前記反射部を加熱する熱線吸収部と、
を具備してなることを特徴とする光学部材。
A support part;
A reflective part that is supported by the support part and reflects light of a desired wavelength;
A heat ray absorbing part that is supported between the support part and the reflecting part, absorbs heat rays transmitted through the reflecting part, and heats the reflecting part;
An optical member comprising:
請求項1に記載の光学部材において、
前記反射部は前記所望の波長以外の光を透過させることを特徴とする光学部材。
The optical member according to claim 1,
The optical member, wherein the reflection part transmits light having a wavelength other than the desired wavelength.
請求項1又は2に記載の光学部材において、
前記熱線吸収部は、前記支持部表面に設けられた熱線吸収膜であり、当該熱線吸収膜上に前記反射部が設けられていることを特徴とする光学部材。
The optical member according to claim 1 or 2,
The said heat ray absorption part is a heat ray absorption film provided in the said support part surface, The said reflection part is provided on the said heat ray absorption film, The optical member characterized by the above-mentioned.
光源と、
請求項1ないし3の何れか一項に記載の光学部材からなり、前記光源の光を反射させる楕円鏡と、
を具備してなることを特徴とする光源装置。
A light source;
An elliptical mirror comprising the optical member according to any one of claims 1 to 3, and reflecting light from the light source;
A light source device comprising:
被検査物の表面を検査する検査装置であって、
請求項1ないし3の何れか一項に記載の光学部材又は請求項4に記載の光源装置を装備してなることを特徴とする検査装置。
An inspection device for inspecting the surface of an inspection object,
An inspection device comprising the optical member according to any one of claims 1 to 3 or the light source device according to claim 4.
JP2008115376A 2008-04-25 2008-04-25 Optical member, light source device and inspecting device Pending JP2009265384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008115376A JP2009265384A (en) 2008-04-25 2008-04-25 Optical member, light source device and inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008115376A JP2009265384A (en) 2008-04-25 2008-04-25 Optical member, light source device and inspecting device

Publications (1)

Publication Number Publication Date
JP2009265384A true JP2009265384A (en) 2009-11-12

Family

ID=41391313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008115376A Pending JP2009265384A (en) 2008-04-25 2008-04-25 Optical member, light source device and inspecting device

Country Status (1)

Country Link
JP (1) JP2009265384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107778A (en) * 2015-12-10 2017-06-15 パナソニックIpマネジメント株式会社 Lighting device and bath room

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107778A (en) * 2015-12-10 2017-06-15 パナソニックIpマネジメント株式会社 Lighting device and bath room

Similar Documents

Publication Publication Date Title
TWI621153B (en) System and method for imaging a sample with a laser sustained plasma illumination output
CN108136058A (en) Fluid sterilizing unit
JP5591305B2 (en) Ultraviolet light emitting module and ultraviolet irradiation device
JP2008256860A (en) Optical member, light source device and inspection device
EP1650786A4 (en) Focusing optical system, light source unit, illumination optical apparatus, and exposure apparatus
RU97118326A (en) SEMICONDUCTOR PLATE THERMAL PROCESSING DEVICE
JP2008224478A (en) Light quantity monitor and light source apparatus using the same
GB2531319A (en) UV lamp unit
US6362488B1 (en) Light source and method for carrying out leak detection inspections
JP2014530759A (en) Photocatalytic purification of medium
JP2019501494A (en) Laser-sustained plasma light source with tilted absorption features
JP2009265384A (en) Optical member, light source device and inspecting device
CA2465074A1 (en) Infrared radiator and irradiation apparatus
JP2009266645A (en) Optical member, light source device, and inspection device
JP2009265383A (en) Optical member, light source device and inspecting device
JP2009265385A (en) Optical member, light source device and inspecting device
JP2009265386A (en) Optical member, light source device and inspecting device
JP5384750B2 (en) Optical arrangement for use in a projection exposure tool for microlithography with reflective optical elements
JP2019144069A (en) Inspection device and inspection method
JP2001505122A (en) Ultraviolet irradiation and inspection system and fluorescent dye leak detection method
JP2007101729A (en) Ir cut coat film, optical element having ir cut coat film, and endoscope device having the optical element
JP6176740B2 (en) Optical assembly with degradation control means
KR102545985B1 (en) System and method for pumping a laser sustained plasma with interlaced pulsed illumination sources
US6762419B1 (en) Ultraviolet light illumination and viewing system and method for fluorescent dye leak detection
JP2005083862A (en) Optical thin-film and mirror using it