JP2009264688A - Air conditioner for railway vehicle - Google Patents

Air conditioner for railway vehicle Download PDF

Info

Publication number
JP2009264688A
JP2009264688A JP2008116570A JP2008116570A JP2009264688A JP 2009264688 A JP2009264688 A JP 2009264688A JP 2008116570 A JP2008116570 A JP 2008116570A JP 2008116570 A JP2008116570 A JP 2008116570A JP 2009264688 A JP2009264688 A JP 2009264688A
Authority
JP
Japan
Prior art keywords
compressor
temperature
bypass circuit
control valve
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008116570A
Other languages
Japanese (ja)
Inventor
Masanao Kotani
正直 小谷
Sadao Sekiya
禎夫 関谷
Yoshichika Fukushima
義親 福島
Daisuke Akemaru
大祐 明丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008116570A priority Critical patent/JP2009264688A/en
Publication of JP2009264688A publication Critical patent/JP2009264688A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner for a railway vehicle capable of preventing the occurrence of abnormal high pressure in a refrigerant circuit and increasing an air conditioning range even in a simple refrigerating cycle having a simple expansion machine. <P>SOLUTION: This air conditioner includes a first bypass circuit 5 connecting a discharge side of a compressor 1 to a refrigerant outlet of an outdoor heat exchanger 2, a third capillary tube 10 provided at a middle part of a pipe connecting the refrigerant outlet of the outdoor heat exchanger 2 to a refrigerant outlet of the first bypass circuit 5, a second bypass circuit 6 bypassing the third capillary tube 10, and a first capillary tube 3 having the same number of capillary tubes as the number of paths of an indoor heat exchanger 4 provided at a middle part of a pipe connecting the refrigerant outlet of the first bypass circuit 5 to the indoor heat exchanger 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄道車両空調装置の冷凍サイクルにバイパス回路を設ける事によって、冷媒回路における異常な高圧の発生を防止し、空調装置の運転範囲の拡大を図る技術に関するものである。   The present invention relates to a technique for preventing an abnormal high pressure from being generated in a refrigerant circuit and expanding an operating range of the air conditioner by providing a bypass circuit in the refrigeration cycle of the railway vehicle air conditioner.

冷凍サイクルにバイパス回路を設ける技術としては、特開2006−170529号公報(特許文献1)に示されるような技術がある。特許文献1に記載の技術は、凝縮温度検出手段が検出する凝縮温度が所定以上の温度検知すると、圧縮機の吐出側と吸入側との間をバイパス弁により開放し、圧縮機吐出側の冷媒を吸入側に戻すことによって、冷媒回路における圧縮機の吐出圧力を低減し、異常な高圧の発生を防止する技術である。   As a technique for providing a bypass circuit in the refrigeration cycle, there is a technique as disclosed in Japanese Patent Laid-Open No. 2006-170529 (Patent Document 1). In the technique described in Patent Document 1, when the condensation temperature detected by the condensation temperature detecting means is detected at a predetermined temperature or higher, a bypass valve opens between the discharge side and the suction side of the compressor, and the refrigerant on the compressor discharge side is opened. This is a technique for reducing the discharge pressure of the compressor in the refrigerant circuit by returning the pressure to the suction side and preventing the occurrence of abnormal high pressure.

特開2006−170529号公報JP 2006-170529 A

鉄道車両用空調装置は、空調空間である車内に多数の乗客が乗車するため人体の発熱による熱負荷が高く、車両が発停するたびに扉が開閉するので換気負荷による熱負荷も高い。このため、鉄道車両用空調装置はルームエアコン等の一般の空調装置と比較して過負荷運転を行う頻度が高い。   The railway vehicle air conditioner has a high thermal load due to the heat generated by the human body because a large number of passengers get inside the air-conditioned space, and the door is opened and closed every time the vehicle starts and stops, so the thermal load due to the ventilation load is also high. For this reason, the railway vehicle air conditioner has a higher frequency of overload operation than a general air conditioner such as a room air conditioner.

一方、鉄道車両用空調装置の冷凍サイクルを構成する機器は、信頼性を確保するために、圧縮機は一定速の圧縮機を用い、減圧装置は長い細径の管で作られるキャピラリーチューブを使用する事が多い。キャピラリーチューブの減圧作用は、細長い内径の管内に冷媒を流通させて、冷媒の流速を増速させ冷媒と管壁で発生する摩擦によって生じる。このため、膨張弁のように開度を変更する事ができないため流量制御幅が大きくない。   On the other hand, the equipment constituting the refrigeration cycle of railway vehicle air conditioners uses a constant-speed compressor for the compressor and a capillary tube made of a long thin tube for the decompressor to ensure reliability. There are many things to do. The pressure reducing action of the capillary tube is caused by friction generated between the refrigerant and the tube wall by causing the refrigerant to circulate in the elongated inner diameter pipe to increase the flow rate of the refrigerant. For this reason, since an opening cannot be changed like an expansion valve, a flow control width is not large.

空調負荷が高い過負荷状態になると、一定速圧縮機で構成される冷凍サイクルの場合、蒸発温度の上昇とともに循環量が増大し、凝縮器の放熱量が不足するため、圧縮機の吐出圧力と吐出温度が上昇し空調装置の運転範囲を超える場合が生ずる。特許文献1に開示された技術は、このような一定速圧縮機を使用した冷凍サイクルに対してなされるものであり、凝縮温度検出手段が検出する凝縮温度が所定以上の温度を検知すると、圧縮機の吐出側と吸入側との間のバイパス弁を開放する事によって、圧縮機と吐出側の冷媒を吸入側に戻して圧縮機吐出圧力を低減する技術である。   When the air conditioning load is overloaded, in the case of a refrigeration cycle consisting of a constant speed compressor, the circulation rate increases as the evaporation temperature rises, and the amount of heat released from the condenser becomes insufficient. In some cases, the discharge temperature rises and exceeds the operating range of the air conditioner. The technique disclosed in Patent Document 1 is applied to a refrigeration cycle using such a constant speed compressor. When the condensation temperature detected by the condensation temperature detecting means detects a temperature above a predetermined level, compression is performed. This is a technique for reducing the compressor discharge pressure by opening the bypass valve between the discharge side and the suction side of the compressor and returning the refrigerant on the compressor and the discharge side to the suction side.

一方、特許文献1に記載の技術を減圧装置としてキャピラリーチューブを使用した冷凍サイクルに適用すると、キャピラリーチューブに流入する流量が低下するため、キャピラリーチューブ内で発生する減圧量が低下し、蒸発圧力が上昇する。このため、バイパス回路による効果を有効に発揮させる事が出来ないといった課題を有している。   On the other hand, when the technique described in Patent Document 1 is applied to a refrigeration cycle using a capillary tube as a decompression device, the flow rate flowing into the capillary tube is reduced, so that the amount of decompression generated in the capillary tube is reduced and the evaporation pressure is reduced. To rise. For this reason, it has the subject that the effect by a bypass circuit cannot be exhibited effectively.

上述の課題を解決するために、本発明の鉄道車両用空調装置は、圧縮機,室外熱交換器,減圧装置として作用する第一のキャピラリーチューブ,室内熱交換器とが配管で接続して、前記圧縮機と前記室内熱交換器の冷媒出口とが配管で接続し、前記第一のキャピラリーチューブは前記室内熱交換器のパス数と同数のキャピラリーチューブを有して前記室内熱交換器のパスに直列接続された冷凍サイクルを有する鉄道車両用空気調和装置において、前記圧縮機の吐出側と前記室外熱交換器の冷媒出口との間を接続する第一のバイパス回路と、前記室外熱交換器の冷媒出口と第一のバイパス回路冷媒出口とを接続する配管の中間部に第二のバイパス回路と、前記圧縮機の吐出圧力を検出する検出手段と、前記第一のバイパス回路と第二のバイパス回路を制御する制御手段と、を有するものである。   In order to solve the above-described problems, the air conditioner for a railway vehicle according to the present invention includes a compressor, an outdoor heat exchanger, a first capillary tube acting as a pressure reducing device, and an indoor heat exchanger connected by piping. The compressor and the refrigerant outlet of the indoor heat exchanger are connected by piping, and the first capillary tube has the same number of capillary tubes as the number of passes of the indoor heat exchanger, and the path of the indoor heat exchanger A rail vehicle air conditioner having a refrigeration cycle connected in series to a first bypass circuit that connects a discharge side of the compressor and a refrigerant outlet of the outdoor heat exchanger, and the outdoor heat exchanger A second bypass circuit at an intermediate portion of a pipe connecting the refrigerant outlet and the first bypass circuit refrigerant outlet, a detecting means for detecting a discharge pressure of the compressor, the first bypass circuit, and a second bypass And control means for controlling the road, and has a.

以上に述べたように、本発明によれば、圧縮機から吐出された冷媒の流れは室外熱交換器とバイパス回路へ流入する2系統の流れに分離させる事ができ、室外熱交換器へ流入する冷媒量を減少させる事ができる。この結果、室外熱交換器へ流入する冷媒の単位質量当たりの放熱量が増加するため圧縮機の吐出圧力を低減させる事ができる。   As described above, according to the present invention, the flow of the refrigerant discharged from the compressor can be separated into two flows that flow into the outdoor heat exchanger and the bypass circuit, and flow into the outdoor heat exchanger. The amount of refrigerant to be reduced can be reduced. As a result, since the heat radiation amount per unit mass of the refrigerant flowing into the outdoor heat exchanger increases, the discharge pressure of the compressor can be reduced.

図1は本発明の一実施例を示し、図2は図1の動作を示したエンタルピー−圧力線図を示し、破線が通常の冷房運転、実線が本発明の一実施例の運転を示している。図3は本発明のフローチャートを示している。以下、図1〜図3に従って本発明の実施の形態について述べる。尚、この実施例によって、本発明が限定されるものではない。   FIG. 1 shows an embodiment of the present invention, FIG. 2 shows an enthalpy-pressure diagram showing the operation of FIG. 1, the broken line shows normal cooling operation, and the solid line shows operation of the embodiment of the present invention. Yes. FIG. 3 shows a flowchart of the present invention. Embodiments of the present invention will be described below with reference to FIGS. In addition, this invention is not limited by this Example.

本発明の一実施例における鉄道車両用空調装置は、圧縮機1,室外熱交換器2,第一のキャピラリーチューブ3,室内熱交換器4,第一のバイパス回路5,第二のバイパス回路6,凝縮温度を検出する検知器11,蒸発温度を検出する検知器12,圧縮機吸込温度を検出する検知器13a,全ての検知値を収集する検知値収集装置14,検知値に対して所定の演算を行い制御器へ制御信号を発信する演算装置15から構成されている。   The railway vehicle air conditioner in one embodiment of the present invention includes a compressor 1, an outdoor heat exchanger 2, a first capillary tube 3, an indoor heat exchanger 4, a first bypass circuit 5, and a second bypass circuit 6. , A detector 11 for detecting the condensation temperature, a detector 12 for detecting the evaporation temperature, a detector 13a for detecting the compressor suction temperature, a detection value collecting device 14 for collecting all detection values, and a predetermined value for the detection values. It is comprised from the arithmetic unit 15 which calculates and transmits a control signal to a controller.

圧縮機1,室外熱交換器2,第一のキャピラリーチューブ3,室内熱交換器4は冷媒が循環できるように配管を接続して冷凍サイクルを構成している。第一のキャピラリーチューブ3は室内熱交換器4のパスと同数の本数で構成されており、それぞれが室内熱交換器の各パスと直列に接続されている。第一のバイパス回路5は、圧縮機1の吐出部と室外熱交換器2の吐出部の配管をバイパスするバイパス回路であり、制御弁7と第二のキャピラリーチューブ8を直列に接続して構築されている。第二のバイパス回路6は、室外熱交換器2の冷媒出口と、第一のバイパス回路5の冷媒出口を接続する接続配管の中間に設けられており、制御弁9と第三のキャピラリーチューブ10から構築されている。制御弁9と第三のキャピラリーチューブ10は接続配管に対して並列に接続して構築されている。   The compressor 1, the outdoor heat exchanger 2, the first capillary tube 3, and the indoor heat exchanger 4 are connected to a pipe so that the refrigerant can circulate to constitute a refrigeration cycle. The first capillary tubes 3 are configured in the same number as the paths of the indoor heat exchanger 4, and each is connected in series with each path of the indoor heat exchanger. The first bypass circuit 5 is a bypass circuit that bypasses the piping of the discharge part of the compressor 1 and the discharge part of the outdoor heat exchanger 2, and is constructed by connecting the control valve 7 and the second capillary tube 8 in series. Has been. The second bypass circuit 6 is provided in the middle of a connection pipe connecting the refrigerant outlet of the outdoor heat exchanger 2 and the refrigerant outlet of the first bypass circuit 5, and includes a control valve 9 and a third capillary tube 10. Is built from. The control valve 9 and the third capillary tube 10 are constructed by being connected in parallel to the connection pipe.

このように構築されている冷凍サイクルにおいて通常の冷房運転では、圧縮機1に吸入(点b)された冷媒は、圧縮機1で圧縮・過熱されて吐出し(点b)、室外熱交換器2で室外空気と熱交換することによって冷却される(c点)。このとき、第一のバイパス回路5の制御弁7は閉止し、第二のバイパス回路6の制御弁9は開放されている。したがって、冷媒は第一のキャピラリーチューブ3を通過することによって減圧され(点d)、室内熱交換器4で室内空気と熱交換することによって加熱され、圧縮機1の吸入口(点a)へ戻る冷凍サイクルを構築する。したがって、冷凍サイクルは図2の破線に示すような点a→点b→点c→点d→点aのサイクルを構築し、各熱交換器を通過する冷媒の流量は圧縮機から吐出された全冷媒流量(Gt)である。   In a normal cooling operation in the refrigeration cycle constructed in this way, the refrigerant sucked into the compressor 1 (point b) is compressed and overheated by the compressor 1 and discharged (point b), and the outdoor heat exchanger. 2 is cooled by exchanging heat with outdoor air (point c). At this time, the control valve 7 of the first bypass circuit 5 is closed, and the control valve 9 of the second bypass circuit 6 is opened. Therefore, the refrigerant is depressurized by passing through the first capillary tube 3 (point d), heated by exchanging heat with the room air in the indoor heat exchanger 4, and supplied to the suction port (point a) of the compressor 1. Build a refrigeration cycle back. Therefore, the refrigeration cycle is constructed as a cycle of point a → b → point c → point d → point a as shown by the broken line in FIG. 2, and the flow rate of the refrigerant passing through each heat exchanger is discharged from the compressor. Total refrigerant flow rate (Gt).

一方、室外温度が比較的高く冷房負荷が高い過負荷運転の場合には、図3に示す制御フローに基づいて冷媒回路の制御を行う。過負荷運転の場合、圧縮機1の吐出温度及び吐出圧力が上昇し、凝縮温度(Tcd)が上昇する。凝縮温度(Tcd)は凝縮温度を検知する検知器11によって検知され、検知値収集装置14を経て演算装置15に取り込まれる。   On the other hand, in the case of an overload operation where the outdoor temperature is relatively high and the cooling load is high, the refrigerant circuit is controlled based on the control flow shown in FIG. In the case of overload operation, the discharge temperature and discharge pressure of the compressor 1 increase, and the condensation temperature (Tcd) increases. The condensation temperature (Tcd) is detected by the detector 11 that detects the condensation temperature, and is taken into the arithmetic device 15 through the detection value collecting device 14.

演算装置15では凝縮温度(Tcd)から飽和蒸気圧力を算出し圧縮機吐出圧力(Pd)を算出する。算出された吐出圧力(Pd)が吐出圧力の上限値(Pdmax)よりも高い場合、第一のバイパス回路5の制御弁7を開放し、第二のバイパス回路6の制御弁9を閉止する。検知値収集装置14は、蒸発温度(Te)と圧縮機吸入温度(Tcp)を蒸発温度検知器12と圧縮機吸入温度検知器13aからも収集しており、制御弁7の開放,制御弁9の閉止後、蒸発温度(Te)と圧縮機吸入温度(Tcp)から圧縮機吸入過熱度(SH)を演算装置15によって算出する。   The arithmetic unit 15 calculates the saturated steam pressure from the condensation temperature (Tcd) and calculates the compressor discharge pressure (Pd). When the calculated discharge pressure (Pd) is higher than the upper limit value (Pdmax) of the discharge pressure, the control valve 7 of the first bypass circuit 5 is opened and the control valve 9 of the second bypass circuit 6 is closed. The detection value collecting device 14 also collects the evaporation temperature (Te) and the compressor suction temperature (Tcp) from the evaporation temperature detector 12 and the compressor suction temperature detector 13a, and opens the control valve 7 and the control valve 9. After the closing of the compressor, the compressor intake superheat degree (SH) is calculated by the arithmetic unit 15 from the evaporation temperature (Te) and the compressor intake temperature (Tcp).

算出された、圧縮機吸入加熱度SHが加熱度の上限値(SHmax)より高い場合においては、運転制限値以上の負荷となっているため異常運転として圧縮機の運転を停止する。加熱度の上限値(SHmax)より低い場合、再度凝縮温度(Tcd)を検知、吐出圧力(Pd)を算出し、吐出圧力の上限値(Pdmax)と比較する。吐出圧力(Pd)が吐出圧力の上限値(Pdmax)より低い場合、制御弁7を閉止し、制御弁9を開放して通常の冷凍サイクルとしてサイクルを形成する。   When the calculated compressor suction heating degree SH is higher than the upper limit value (SHmax) of the heating degree, the operation of the compressor is stopped as an abnormal operation because the load exceeds the operation limit value. When the heating degree is lower than the upper limit value (SHmax), the condensation temperature (Tcd) is detected again, the discharge pressure (Pd) is calculated, and compared with the upper limit value (Pdmax) of the discharge pressure. When the discharge pressure (Pd) is lower than the upper limit (Pdmax) of the discharge pressure, the control valve 7 is closed and the control valve 9 is opened to form a cycle as a normal refrigeration cycle.

以上のような制御動作によって、圧縮機1を吐出した冷媒を室外熱交換器2へ流入する冷媒と、バイパス回路5へ流入する冷媒とに分離させる事ができ、室外熱交換器を通過する冷媒の循環量をGt→Gcd(Gcd=Gt−Cb)へ低下させる事ができる。   By the control operation as described above, the refrigerant discharged from the compressor 1 can be separated into the refrigerant flowing into the outdoor heat exchanger 2 and the refrigerant flowing into the bypass circuit 5, and the refrigerant passing through the outdoor heat exchanger Can be reduced from Gt → Gcd (Gcd = Gt−Cb).

また、第一のバイパス回路5には第二のキャピラリーチューブ8が設けられているので、第二のキャピラリーチューブ8の抵抗値に応じたバイパス流量(Gb)を得る事ができる。   Further, since the second capillary tube 8 is provided in the first bypass circuit 5, a bypass flow rate (Gb) corresponding to the resistance value of the second capillary tube 8 can be obtained.

さらに、第二のバイパス回路6には第三のキャピラリーチューブ10を設けている。   Further, the second bypass circuit 6 is provided with a third capillary tube 10.

したがって、第二のバイパス回路6を通過する冷媒の圧力を第三のキャピラリーチューブ10の長さを調節することができる。この結果、第一のバイパス回路5及び第二のバイパス回路6を通過する圧力を適切な値へ保つ事が可能となり、バイパス回路5,6を通過した冷媒を合流させた際に逆流等の問題が発生しない。一方、第一及び第二のバイパス回路5,6を通過した冷媒は第一のキャピラリーチューブ3の上流で合流するため、第一のキャピラリーチューブ3に流入する冷媒流量はGtになる。   Therefore, the length of the third capillary tube 10 can be adjusted to the pressure of the refrigerant passing through the second bypass circuit 6. As a result, the pressure passing through the first bypass circuit 5 and the second bypass circuit 6 can be maintained at an appropriate value, and problems such as backflow occur when the refrigerant that has passed through the bypass circuits 5 and 6 is merged. Does not occur. On the other hand, since the refrigerant that has passed through the first and second bypass circuits 5 and 6 merges upstream of the first capillary tube 3, the flow rate of the refrigerant flowing into the first capillary tube 3 becomes Gt.

したがって、バイパスによって第一のキャピラリーチューブ3を通過する冷媒の循環量が低下する事はない。この結果、第一キャピラリーチューブ3では循環量低下による減圧量不足が発生せず、第一キャピラリーチューブ3で所定の減圧量を得る事ができる。   Therefore, the circulation amount of the refrigerant passing through the first capillary tube 3 is not reduced by the bypass. As a result, the first capillary tube 3 does not have a shortage of pressure reduction due to a decrease in the circulation rate, and a predetermined pressure reduction amount can be obtained with the first capillary tube 3.

以上のような冷凍サイクル(点a→点b→点c→点f→点d→点a,点a→点b→点e→点f→点d→点a)を構築する事ができるため、室外熱交換器2へ流入する冷媒流量をGt→Gcdへ変化させる事ができ、室外熱交換器へ流入する冷媒の単位質量当たりの放熱量を向上させる事が出来る。この結果、圧縮機吐出圧力(Pd)を低下させる事ができ、過負荷運転における高圧を減少させる事ができる。   Since the refrigeration cycle (point a → point b → point c → point f → point d → point a, point a → point b → point e → point f → point d → point a) can be constructed as described above. The flow rate of the refrigerant flowing into the outdoor heat exchanger 2 can be changed from Gt to Gcd, and the amount of heat released per unit mass of the refrigerant flowing into the outdoor heat exchanger can be improved. As a result, the compressor discharge pressure (Pd) can be reduced, and the high pressure in the overload operation can be reduced.

図4及び図5は第二の実施例と、その制御フローを示している。この第二の実施例において過負荷運転の場合、凝縮温度(Tcd)は凝縮温度を検知する検知器11によって検知され、検知値収集装置14を経て演算装置15に取り込まれる。   4 and 5 show the second embodiment and its control flow. In this second embodiment, in the case of an overload operation, the condensation temperature (Tcd) is detected by the detector 11 that detects the condensation temperature, and is taken into the arithmetic device 15 through the detection value collecting device 14.

演算装置15では凝縮温度(Tcd)から飽和蒸気圧力を算出し圧縮機吐出圧力(Pd)を算出する。算出された吐出圧力(Pd)が吐出圧力の上限値(Pdmax)よりも高い場合、第一のバイパス回路5の制御弁7を開放し、第二のバイパス回路6の制御弁9を閉止する。検知値収集装置14は、圧縮機吐出温度(Td)も圧縮機吐出温度検知器13bより収集しており、制御弁7の開放,制御弁9の閉止後、圧縮機吐出温度(Td)が吐出温度の上限値(Tdmax)より高い場合においては、運転制限値以上の負荷となっているため異常運転として圧縮機の運転を停止する。吐出温度の上限値(Tdmax)より低い場合、再度凝縮温度(Tcd)を検知、吐出圧力(Pd)を算出し、吐出圧力の上限値(Pdmax)と比較する。吐出圧力(Pd)が吐出圧力の上限値(Pdmax)より低い場合、制御弁7を閉止し、制御弁10を開放して通常の冷凍サイクルとしてサイクルを形成する。   The arithmetic unit 15 calculates the saturated steam pressure from the condensation temperature (Tcd) and calculates the compressor discharge pressure (Pd). When the calculated discharge pressure (Pd) is higher than the upper limit value (Pdmax) of the discharge pressure, the control valve 7 of the first bypass circuit 5 is opened and the control valve 9 of the second bypass circuit 6 is closed. The detection value collecting device 14 also collects the compressor discharge temperature (Td) from the compressor discharge temperature detector 13b, and after the control valve 7 is opened and the control valve 9 is closed, the compressor discharge temperature (Td) is discharged. When the temperature is higher than the upper limit value (Tdmax), the compressor operation is stopped as an abnormal operation because the load exceeds the operation limit value. When it is lower than the upper limit value (Tdmax) of the discharge temperature, the condensation temperature (Tcd) is detected again, the discharge pressure (Pd) is calculated, and compared with the upper limit value (Pdmax) of the discharge pressure. When the discharge pressure (Pd) is lower than the upper limit (Pdmax) of the discharge pressure, the control valve 7 is closed and the control valve 10 is opened to form a cycle as a normal refrigeration cycle.

図5及び図6は第三の実施例と、その制御フローを示している。第三の実施例において過負荷運転の場合、蒸発温度(Te)は蒸発温度を検知する検知器12によって検知され、圧縮機吸込温度(Tcp)は圧縮機吸込温度を検知する検知器13aによって検知され、圧縮機吐出温度(Td)は圧縮機吐出温度を検知する検知器13bによって検知される。検知器12,13a,13bによって検知された検知値は検知値収集装置14を経て演算装置15に取り込まれる。演算装置15では蒸発温度(Te)から飽和蒸気圧力を算出し圧縮機吸込圧力(Ps)を算出する。算出した圧縮機吸込圧力(Ps)と検知収集された圧縮機吸込温度(Ts)と圧縮機吐出温度(Td)より圧縮機吐出圧力(Pd)を算出する。算出された吐出圧力(Pd)が吐出圧力の上限値(Pdmax)よりも高い場合、第一のバイパス回路5の制御弁7を開放し、第二のバイパス回路6の制御弁9を閉止する。   5 and 6 show a third embodiment and its control flow. In the case of overload operation in the third embodiment, the evaporation temperature (Te) is detected by the detector 12 that detects the evaporation temperature, and the compressor suction temperature (Tcp) is detected by the detector 13a that detects the compressor suction temperature. The compressor discharge temperature (Td) is detected by a detector 13b that detects the compressor discharge temperature. The detection values detected by the detectors 12, 13 a, and 13 b are taken into the arithmetic device 15 through the detection value collection device 14. The arithmetic unit 15 calculates the saturated vapor pressure from the evaporation temperature (Te) and calculates the compressor suction pressure (Ps). The compressor discharge pressure (Pd) is calculated from the calculated compressor suction pressure (Ps), the detected and collected compressor suction temperature (Ts), and the compressor discharge temperature (Td). When the calculated discharge pressure (Pd) is higher than the upper limit value (Pdmax) of the discharge pressure, the control valve 7 of the first bypass circuit 5 is opened and the control valve 9 of the second bypass circuit 6 is closed.

制御弁7の開放,制御弁9の閉止後、圧縮機吐出温度(Td)が吐出温度の上限値(Tdmax)より高い場合においては、運転制限値以上の負荷となっているため異常運転として圧縮機の運転を停止する。吐出温度の上限値(Tdmax)より低い場合、再度蒸発温度(Te),圧縮機吸込温度(Tcp),圧縮機吐出温度(Td)を検知し、吐出圧力(Pd)を算出し、吐出圧力の上限値(Pdmax)と比較する。吐出圧力(Pd)が吐出圧力の上限値(Pdmax)より低い場合、制御弁7を閉止し、制御弁9を開放して通常の冷凍サイクルとしてサイクルを形成する。   After the control valve 7 is opened and the control valve 9 is closed, when the compressor discharge temperature (Td) is higher than the upper limit value (Tdmax) of the discharge temperature, it is compressed as an abnormal operation because the load is higher than the operation limit value. Stop the machine. If the discharge temperature is lower than the upper limit (Tdmax), the evaporation temperature (Te), the compressor suction temperature (Tcp), and the compressor discharge temperature (Td) are detected again, and the discharge pressure (Pd) is calculated. Compare with the upper limit (Pdmax). When the discharge pressure (Pd) is lower than the upper limit (Pdmax) of the discharge pressure, the control valve 7 is closed and the control valve 9 is opened to form a cycle as a normal refrigeration cycle.

図8及び図9は本発明第四の実施例と制御フローを示している。本発明第四の実施例において過負荷運転の場合、凝縮温度(Tcd)は凝縮温度を検知する検知器11によって検知され、検知値収集装置14を経て演算装置15に取り込まれる。演算装置15では凝縮温度(Tcd)から飽和蒸気圧力を算出し圧縮機吐出圧力(Pd)を算出する。算出された吐出圧力(Pd)が吐出圧力の第一の上限値(Pdmax1)よりも高い場合、第一のバイパス回路5の制御弁7を開放し、第二のバイパス回路6の制御弁9を閉止,制御弁17aを開放,制御弁17bを閉止する。   8 and 9 show a control flow according to the fourth embodiment of the present invention. In the fourth embodiment of the present invention, in the case of an overload operation, the condensation temperature (Tcd) is detected by the detector 11 that detects the condensation temperature, and is taken into the arithmetic device 15 through the detection value collecting device 14. The arithmetic unit 15 calculates the saturated steam pressure from the condensation temperature (Tcd) and calculates the compressor discharge pressure (Pd). When the calculated discharge pressure (Pd) is higher than the first upper limit value (Pdmax1) of the discharge pressure, the control valve 7 of the first bypass circuit 5 is opened and the control valve 9 of the second bypass circuit 6 is opened. The control valve 17a is closed, the control valve 17b is closed.

制御弁7,9,17a,17bの制御後、再度凝縮温度(Tcd)を検知、演算装置15によって圧縮機圧力(Pd)を算出する。演算装置15によって算出された圧縮機吐出圧力(Pd)が第二の吐出圧力(Pdmax2)よりも高い場合、制御弁17aを閉止し、17bを開放する。検知値収集装置14は、第二の実施例と同様に、圧縮機吐出温度(Td)も圧縮機吐出温度検知器13bから収集しており、制御弁7の開放,制御弁9の閉止後、圧縮機吐出温度(Td)が吐出温度の上限値(Tdmax)より高い場合においては、運転制限値以上の負荷となっているため異常運転として圧縮機の運転を停止する。吐出温度の上限値(Tdmax)より低い場合、再度凝縮温度(Tcd)を検知、吐出圧力(Pd)を算出し、吐出圧力の第二の上限値(Pdmax2)と比較する。吐出圧力(Pd)が吐出圧力の第二の上限値(Pdmax2)より低い場合、制御弁17aを開放し、制御弁17bを閉止する。制御弁17a,17bの制御後、再度凝縮温度(Td)を検知、吐出圧力(Pd)を算出し、吐出圧力の第一の上限値(Pdmax1)と比較し、吐出圧力(Pd)が吐出圧力の第一の上限値(Pdmax1)より低い場合、制御弁7閉止,制御弁9を開放し、制御弁17a,17bを閉止して通常の冷凍サイクルを形成する。   After controlling the control valves 7, 9, 17 a, 17 b, the condensation temperature (Tcd) is detected again, and the compressor pressure (Pd) is calculated by the arithmetic unit 15. When the compressor discharge pressure (Pd) calculated by the arithmetic unit 15 is higher than the second discharge pressure (Pdmax2), the control valve 17a is closed and 17b is opened. As in the second embodiment, the detection value collecting device 14 also collects the compressor discharge temperature (Td) from the compressor discharge temperature detector 13b. After the control valve 7 is opened and the control valve 9 is closed, When the compressor discharge temperature (Td) is higher than the upper limit value (Tdmax) of the discharge temperature, the operation of the compressor is stopped as an abnormal operation because the load exceeds the operation limit value. When it is lower than the upper limit value (Tdmax) of the discharge temperature, the condensation temperature (Tcd) is detected again, the discharge pressure (Pd) is calculated, and compared with the second upper limit value (Pdmax2) of the discharge pressure. When the discharge pressure (Pd) is lower than the second upper limit value (Pdmax2) of the discharge pressure, the control valve 17a is opened and the control valve 17b is closed. After the control of the control valves 17a and 17b, the condensation temperature (Td) is detected again, the discharge pressure (Pd) is calculated, and compared with the first upper limit value (Pdmax1) of the discharge pressure, the discharge pressure (Pd) is the discharge pressure. Is lower than the first upper limit value (Pdmax1), the control valve 7 is closed, the control valve 9 is opened, and the control valves 17a and 17b are closed to form a normal refrigeration cycle.

以上のような制御による冷凍サイクルの動作は次の通りである。尚、制御弁7を開放,制御弁9を閉止,制御弁17aを開放,制御弁17bを閉止した場合の冷凍サイクルは、本発明第二の実施例と同様の動作のためここでの説明は省略する。制御弁7を開放、制御弁9を閉止,制御弁17aを閉止,制御弁17bを開放した場合、圧縮機1を吐出した冷媒は室外熱交換器2へ流入する冷媒とバイパス回路5へ流入する冷媒に分離される。第一の実施例と同様、第一のバイパス回路5には第二のキャピラリーチューブ8の抵抗値に応じたバイパス流量(Gb)が流入する。この結果、室外熱交換器を通過する冷媒の循環量をGt→Gcd(Gcd=Gt−Cb)へ低下させる事ができる。第二のバイパス回路6には、第二の室外熱交換器16が設けられており、第二の室外熱交換器には、第四の制御弁17bと第四のキャピラリーチューブ10bが接続されている。室外熱交換器2を吐出した冷媒は、制御弁9を閉止,制御弁17aを閉止,制御弁17bが開放されているため、第四のキャピラリーチューブ10bへ流入する。この結果、冷媒圧力及び温度が低下する。第四のキャピラリーチューブ10b吐出後の冷媒は第二の室外熱交換器16へ流入し、室外熱交換器2から吐出した冷媒と熱交換を行う。この結果、室外熱交換器の見かけの放熱量が向上し圧縮機吐出圧力(Pd)をさらに低下させる事ができる。この結果、圧縮機吐出圧力(Pd)を低下させる事ができ、過負荷運転における高圧を減少させる事ができる。   The operation of the refrigeration cycle by the control as described above is as follows. The refrigeration cycle when the control valve 7 is opened, the control valve 9 is closed, the control valve 17a is opened, and the control valve 17b is closed is the same as that of the second embodiment of the present invention. Omitted. When the control valve 7 is opened, the control valve 9 is closed, the control valve 17 a is closed, and the control valve 17 b is opened, the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 2 and the bypass circuit 5. Separated into refrigerant. Similar to the first embodiment, a bypass flow rate (Gb) corresponding to the resistance value of the second capillary tube 8 flows into the first bypass circuit 5. As a result, the circulation amount of the refrigerant passing through the outdoor heat exchanger can be reduced from Gt → Gcd (Gcd = Gt−Cb). The second bypass circuit 6 is provided with a second outdoor heat exchanger 16, and a fourth control valve 17b and a fourth capillary tube 10b are connected to the second outdoor heat exchanger. Yes. The refrigerant discharged from the outdoor heat exchanger 2 flows into the fourth capillary tube 10b because the control valve 9 is closed, the control valve 17a is closed, and the control valve 17b is opened. As a result, the refrigerant pressure and temperature are reduced. The refrigerant discharged from the fourth capillary tube 10 b flows into the second outdoor heat exchanger 16 and exchanges heat with the refrigerant discharged from the outdoor heat exchanger 2. As a result, the apparent heat radiation amount of the outdoor heat exchanger can be improved and the compressor discharge pressure (Pd) can be further reduced. As a result, the compressor discharge pressure (Pd) can be reduced, and the high pressure in the overload operation can be reduced.

以上、本発明の実施の形態として圧縮機吐出圧力検知手段とバイパス回路の動作について記述してきたが、圧縮機吐出圧力検知手段は、本発明の実施例のみに限定されるものではなく、室内空気温度及び室外空気温度より検知する圧縮機吐出圧力検知手段,圧力スイッチによるもの等、種々の方式によって実現しても良い。   As described above, the operation of the compressor discharge pressure detection means and the bypass circuit has been described as an embodiment of the present invention. However, the compressor discharge pressure detection means is not limited to the embodiment of the present invention. You may implement | achieve by various systems, such as what uses the compressor discharge pressure detection means detected from temperature and outdoor air temperature, and a pressure switch.

以上の構成によれば、冷凍サイクルを構築することによって、第一のバイパス回路を通過する冷媒と室外熱交換器を通過する冷媒を、第一のキャピラリーチューブの上流で合流させる事ができる。この結果、第一のキャピラリーチューブへ流入する冷媒量が過大に変化しない。したがって、第一のキャピラリーチューブで所定の減圧量を得る事ができる。また、第一のバイパス回路に第二のキャピラリーチューブを設けているので、過負荷運転時に第一のバイパス回路を開放した際に、第一のバイパス回路へ流入する冷媒の流量を適切な冷媒量に制御する事が出来る。また、室外熱交換器冷媒出口と第一のバイパス回路冷媒出口とを接続する接続配管の中間部に第二バイパス回路を設け、第二のバイパス回路に第三のキャピラリーチューブを設けているので、第二のバイパス回路を通過した冷媒の圧力を適切な圧力へ調節する事が可能となる。この結果、第一のバイパス回路を通過した冷媒と第二のバイパス回路を通過した冷媒の圧力を適切な値へ制御する事ができ、冷媒が合流した際にも逆流等の問題が発生する事がない。   According to the above configuration, by constructing the refrigeration cycle, the refrigerant passing through the first bypass circuit and the refrigerant passing through the outdoor heat exchanger can be merged upstream of the first capillary tube. As a result, the amount of refrigerant flowing into the first capillary tube does not change excessively. Therefore, a predetermined amount of reduced pressure can be obtained with the first capillary tube. In addition, since the second capillary tube is provided in the first bypass circuit, when the first bypass circuit is opened during overload operation, the flow rate of the refrigerant flowing into the first bypass circuit is set to an appropriate amount of refrigerant. Can be controlled. In addition, since the second bypass circuit is provided in the intermediate portion of the connecting pipe connecting the outdoor heat exchanger refrigerant outlet and the first bypass circuit refrigerant outlet, and the third capillary tube is provided in the second bypass circuit, It becomes possible to adjust the pressure of the refrigerant that has passed through the second bypass circuit to an appropriate pressure. As a result, the pressure of the refrigerant that has passed through the first bypass circuit and the refrigerant that has passed through the second bypass circuit can be controlled to an appropriate value, and problems such as backflow can occur even when the refrigerant merges. There is no.

また、バイパス回路の開閉を行うための圧縮機吐出圧力を検知する検知手段を、凝縮温度を検知する検知手段と圧縮機吐出温度を検知する検知手段によって構築した。したがって、検知した凝縮温度から飽和蒸気圧力を算出し、圧縮機吐出圧力を得る事ができる。この結果、検知した圧縮機吐出圧力が所定の圧力を超えた場合、第一のバイパス回路を開放し、第二のバイパス回路を閉止する事ができる。これにより、室外熱交換器へ流入する冷媒を減少させる事ができ、吐出圧力を低減させる事ができる。また、検知した圧縮機吐出温度が所定値を超えた場合、異常運転として冷凍サイクルを停止させる事ができる。   Moreover, the detection means for detecting the compressor discharge pressure for opening and closing the bypass circuit is constructed by the detection means for detecting the condensation temperature and the detection means for detecting the compressor discharge temperature. Therefore, the saturated steam pressure is calculated from the detected condensation temperature, and the compressor discharge pressure can be obtained. As a result, when the detected compressor discharge pressure exceeds a predetermined pressure, the first bypass circuit can be opened and the second bypass circuit can be closed. Thereby, the refrigerant | coolant which flows in into an outdoor heat exchanger can be decreased, and discharge pressure can be reduced. When the detected compressor discharge temperature exceeds a predetermined value, the refrigeration cycle can be stopped as an abnormal operation.

また、圧縮機吐出圧力を検知する第二の手段として、蒸発温度を検知する手段と、圧縮機吸込温度を検知する検知手段と、圧縮機吐出温度を検知する検知手段によって構築した。したがって、検知した蒸発温度から飽和蒸気圧力を算出し、圧縮機吸込圧力を得る事ができる。さらに、得た圧縮機吸込圧力と圧縮機吸込温度,圧縮機吐出温度より圧縮機吐出圧力を得る事ができる。この結果、検知した圧縮機吐出圧力が所定の圧力を超えた場合、第一のバイパス回路を開放し、第二のバイパス回路を閉止する事ができる。これにより、室外熱交換器へ流入する冷媒を減少させる事ができ、吐出圧力を低減させる事ができる。また、検知した圧縮機吐出温度が所定値を超えた場合、異常運転として冷凍サイクルを停止させる事ができる。   Further, the second means for detecting the compressor discharge pressure is constructed by means for detecting the evaporation temperature, detection means for detecting the compressor suction temperature, and detection means for detecting the compressor discharge temperature. Therefore, the saturated vapor pressure is calculated from the detected evaporation temperature, and the compressor suction pressure can be obtained. Further, the compressor discharge pressure can be obtained from the obtained compressor suction pressure, compressor suction temperature, and compressor discharge temperature. As a result, when the detected compressor discharge pressure exceeds a predetermined pressure, the first bypass circuit can be opened and the second bypass circuit can be closed. Thereby, the refrigerant | coolant which flows in into an outdoor heat exchanger can be decreased, and discharge pressure can be reduced. When the detected compressor discharge temperature exceeds a predetermined value, the refrigeration cycle can be stopped as an abnormal operation.

また、圧縮機吐出圧力を検知する第三の手段として、蒸発温度を検知する手段と、圧縮機吸込温度を検知する検知手段と、凝縮温度を検知する検知手段によって構築した。したがって、検知した凝縮温度から飽和蒸気圧力を算出し、圧縮機吐出圧力を得る事ができる。さらに、検知した蒸発温度と圧縮機吸込温度から圧縮機吸入加熱度を得る事ができる。この結果、検知した圧縮機吐出圧力が所定の圧力を超えた場合、第一のバイパス回路を開放し、第二のバイパス回路を閉止する事ができる。これにより、室外熱交換器へ流入する冷媒を減少させる事ができ、吐出圧力を低減させる事ができる。また、検知した圧縮機吸入過熱度が所定値を超えた場合、異常運転として冷凍サイクルを停止させる事ができる。   Further, as a third means for detecting the compressor discharge pressure, a means for detecting the evaporation temperature, a detection means for detecting the compressor suction temperature, and a detection means for detecting the condensation temperature are constructed. Therefore, the saturated steam pressure is calculated from the detected condensation temperature, and the compressor discharge pressure can be obtained. Furthermore, the compressor suction heating degree can be obtained from the detected evaporation temperature and compressor suction temperature. As a result, when the detected compressor discharge pressure exceeds a predetermined pressure, the first bypass circuit can be opened and the second bypass circuit can be closed. Thereby, the refrigerant | coolant which flows in into an outdoor heat exchanger can be decreased, and discharge pressure can be reduced. When the detected compressor superheat degree exceeds a predetermined value, the refrigeration cycle can be stopped as an abnormal operation.

本発明の第一の実施例を説明する図。The figure explaining the 1st Example of this invention. エンタルピー−圧力線図。Enthalpy-pressure diagram. 第一の実施例の制御フロー図。The control flow figure of a 1st Example. 本発明の第二の実施例を説明する図。The figure explaining the 2nd Example of this invention. 第二の実施例の制御フロー図。The control flowchart of a 2nd Example. 本発明の第三の実施例を説明する図。The figure explaining the 3rd Example of this invention. 第三の実施例の制御フロー図。The control flow figure of a 3rd Example. 本発明の第四の実施例を説明する図。The figure explaining the 4th Example of this invention. 第四の実施例の制御フロー図。The control flow figure of a 4th example.

符号の説明Explanation of symbols

1 圧縮機
2 室外熱交換器
3 第一のキャピラリーチューブ
4 室内熱交換器
5 第一のバイパス回路
6 第二のバイパス回路
7 第一の制御弁
8 第二のキャピラリーチューブ
9 第二の制御弁
10,10a 第三のキャピラリーチューブ
10b 第四のキャピラリーチューブ
11 凝縮温度検知器
12 蒸発温度検知器
13a 圧縮機吸入温度検知器
13b 圧縮機吐出温度検知器
14 検知値収集装置
15 演算装置
16 第二の室外熱交換器
17a 第三の制御弁
17b 第四の制御弁
DESCRIPTION OF SYMBOLS 1 Compressor 2 Outdoor heat exchanger 3 1st capillary tube 4 Indoor heat exchanger 5 1st bypass circuit 6 2nd bypass circuit 7 1st control valve 8 2nd capillary tube 9 2nd control valve 10 , 10a Third capillary tube 10b Fourth capillary tube 11 Condensation temperature detector 12 Evaporation temperature detector 13a Compressor suction temperature detector 13b Compressor discharge temperature detector 14 Detected value collection device 15 Arithmetic device 16 Second outdoor Heat exchanger 17a Third control valve 17b Fourth control valve

Claims (6)

圧縮機,室外熱交換器,減圧装置として作用する第一のキャピラリーチューブ,室内熱交換器とが配管で接続して、前記圧縮機と前記室内熱交換器の冷媒出口とが配管で接続し、前記第一のキャピラリーチューブは前記室内熱交換器のパス数と同数のキャピラリーチューブを有して前記室内熱交換器のパスに直列接続された冷凍サイクルを有する鉄道車両用空気調和装置において、前記圧縮機の吐出側と前記室外熱交換器の冷媒出口との間を接続する第一のバイパス回路と、前記室外熱交換器の冷媒出口と第一のバイパス回路冷媒出口とを接続する配管の中間部に第二のバイパス回路と、前記圧縮機の吐出圧力を検出する検出手段と、前記第一のバイパス回路と第二のバイパス回路を制御する制御手段と、を有する鉄道車両用空調装置。   A compressor, an outdoor heat exchanger, a first capillary tube acting as a pressure reducing device, an indoor heat exchanger are connected by piping, and the compressor and a refrigerant outlet of the indoor heat exchanger are connected by piping; In the air conditioner for a railway vehicle, the first capillary tube has the same number of capillary tubes as the number of passes of the indoor heat exchanger, and has a refrigeration cycle connected in series to the path of the indoor heat exchanger. A first bypass circuit connecting between the discharge side of the machine and the refrigerant outlet of the outdoor heat exchanger, and an intermediate portion of a pipe connecting the refrigerant outlet of the outdoor heat exchanger and the first bypass circuit refrigerant outlet And a control means for controlling the first bypass circuit and the second bypass circuit, and a second bypass circuit, a detection means for detecting the discharge pressure of the compressor. 請求項1記載の鉄道車両用空調装置において、前記第一のバイパス回路は、前記第一のバイパス回路を開閉する第一の制御弁と、減圧装置として作用する第二のキャピラリーチューブとを有し、前記第一の制御弁と第二のキャピラリーチューブとが直列に接続する鉄道車両用空調装置。   2. The rail vehicle air conditioner according to claim 1, wherein the first bypass circuit includes a first control valve that opens and closes the first bypass circuit, and a second capillary tube that functions as a pressure reducing device. A railway vehicle air conditioner in which the first control valve and the second capillary tube are connected in series. 請求項2記載の鉄道車両用空調装置において、前記第二のバイパス回路は、前記第二のバイパス回路を開閉する第二の制御弁と、減圧装置として作用する第三のキャピラリーチューブとを有し、前記第二の制御弁と第三のキャピラリーチューブとが並列に接続する鉄道車両用空調装置。   3. The railway vehicle air conditioner according to claim 2, wherein the second bypass circuit includes a second control valve that opens and closes the second bypass circuit, and a third capillary tube that functions as a pressure reducing device. A railway vehicle air conditioner in which the second control valve and the third capillary tube are connected in parallel. 請求項3記載の鉄道車両用空調装置において、前記圧縮機吐出圧力検知手段は、凝縮温度を検知する検知手段と圧縮機吐出温度を検知する検知手段とを有し、検知した凝縮温度から得た圧縮機吐出圧力と前記圧縮機吐出温度とに基づいて、前記第一の制御弁及び第二の制御弁を制御する鉄道車両用空調装置。   The air conditioner for a railway vehicle according to claim 3, wherein the compressor discharge pressure detecting means includes a detecting means for detecting a condensation temperature and a detecting means for detecting the compressor discharge temperature, and is obtained from the detected condensation temperature. An air conditioner for a railway vehicle that controls the first control valve and the second control valve based on a compressor discharge pressure and the compressor discharge temperature. 請求項3記載の鉄道車両用空調装置において、前記圧縮機吐出圧力検知手段は、蒸発温度を検知する検知手段と圧縮機吸込温度を検知する検知手段と圧縮機吐出温度を検知する検知手段とを有し、検知した蒸発温度と圧縮機吸込温度及び吐出温度から得た圧縮機吐出圧力に基づいて、前記第一の制御弁及び第二の制御弁を制御する鉄道車両用空調装置。   4. The railway vehicle air conditioner according to claim 3, wherein the compressor discharge pressure detecting means includes a detecting means for detecting an evaporation temperature, a detecting means for detecting a compressor suction temperature, and a detecting means for detecting a compressor discharge temperature. A railway vehicle air conditioner that controls the first control valve and the second control valve based on a compressor discharge pressure obtained from the detected evaporation temperature, compressor suction temperature, and discharge temperature. 請求項3記載の鉄道車両用空調装置において、前記圧縮機吐出圧力検知手段は、蒸発温度を検知する検知手段と圧縮機吸込温度を検知する検知手段と凝縮温度を検知する検知手段とを有し、検知した凝縮温度から得た圧縮機吐出圧力と蒸発温度及び圧縮機吸込温度に基づいて、前記第一の制御弁及び第二の制御弁を制御する鉄道車両用空調装置。   4. The railway vehicle air conditioner according to claim 3, wherein the compressor discharge pressure detection means includes detection means for detecting an evaporation temperature, detection means for detecting a compressor suction temperature, and detection means for detecting a condensation temperature. A railway vehicle air conditioner that controls the first control valve and the second control valve based on a compressor discharge pressure, an evaporation temperature, and a compressor suction temperature obtained from the detected condensation temperature.
JP2008116570A 2008-04-28 2008-04-28 Air conditioner for railway vehicle Pending JP2009264688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116570A JP2009264688A (en) 2008-04-28 2008-04-28 Air conditioner for railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116570A JP2009264688A (en) 2008-04-28 2008-04-28 Air conditioner for railway vehicle

Publications (1)

Publication Number Publication Date
JP2009264688A true JP2009264688A (en) 2009-11-12

Family

ID=41390750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116570A Pending JP2009264688A (en) 2008-04-28 2008-04-28 Air conditioner for railway vehicle

Country Status (1)

Country Link
JP (1) JP2009264688A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017514101A (en) * 2014-04-25 2017-06-01 スナム カンパニー リミテッド Cryogenic refrigeration system
CN111550939A (en) * 2020-05-13 2020-08-18 吉林大学 Variable working condition refrigeration cycle system and control method thereof
JP7516285B2 (en) 2021-02-10 2024-07-16 株式会社日立製作所 Air conditioning equipment for railway vehicles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017514101A (en) * 2014-04-25 2017-06-01 スナム カンパニー リミテッド Cryogenic refrigeration system
CN111550939A (en) * 2020-05-13 2020-08-18 吉林大学 Variable working condition refrigeration cycle system and control method thereof
JP7516285B2 (en) 2021-02-10 2024-07-16 株式会社日立製作所 Air conditioning equipment for railway vehicles

Similar Documents

Publication Publication Date Title
JP6091399B2 (en) Air conditioner
JP3925545B2 (en) Refrigeration equipment
JP5446064B2 (en) Heat exchange system
US8307668B2 (en) Air conditioner
EP1659348A1 (en) Freezing apparatus
JP2007170769A (en) Air conditioner
KR20100096858A (en) Air conditioner
JP6880204B2 (en) Air conditioner
JP2016003848A (en) Air conditioning system and control method for the same
JP2008224210A (en) Air conditioner and operation control method of air conditioner
WO2006112322A1 (en) Air conditioner
JP6577264B2 (en) Air conditioner
KR102082881B1 (en) Multi-air conditioner for heating and cooling operations at the same time
JP2007232265A (en) Refrigeration unit
JP5716102B2 (en) Air conditioner
KR101414860B1 (en) Air conditioner and method of controlling the same
JPH05172429A (en) Air conditioner
KR101677031B1 (en) Air conditioner and Control method of the same
KR20060070885A (en) Air conditioner
JP2009264688A (en) Air conditioner for railway vehicle
JP2012063033A (en) Air conditioner
KR20100036786A (en) Air conditioner and control method of the same
JP2011149611A (en) Air-conditioning apparatus
JP2010281544A (en) Air conditioner
JP4288979B2 (en) Air conditioner, and operation control method of air conditioner