JP2009264136A - Diffuser for compressor - Google Patents

Diffuser for compressor Download PDF

Info

Publication number
JP2009264136A
JP2009264136A JP2008111612A JP2008111612A JP2009264136A JP 2009264136 A JP2009264136 A JP 2009264136A JP 2008111612 A JP2008111612 A JP 2008111612A JP 2008111612 A JP2008111612 A JP 2008111612A JP 2009264136 A JP2009264136 A JP 2009264136A
Authority
JP
Japan
Prior art keywords
diffuser
compressor
flow path
vane
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008111612A
Other languages
Japanese (ja)
Inventor
Toru Yoshioka
徹 吉岡
Mitsuhiko Ito
三彦 伊藤
Mitsuru Uehara
満 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008111612A priority Critical patent/JP2009264136A/en
Publication of JP2009264136A publication Critical patent/JP2009264136A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diffuser for a compressor, improving the compression efficiency of the compressor such as a barrel compressor without increasing a pressure loss by a simple structure. <P>SOLUTION: In each diffuser 2 for the compressor, each diffuser vane 4 is provided along a swirl flow S of compressed gas in a diffuser disk 3, and a gas channel 5 is formed between the vanes 4. The downstream side of the diffuser vane 4 extends continuously along the outside shape of each diffuser vane 4. In the plan view of the longitudinal section of the compressor including an axis C, the extended diffuser vane 4 has a curved portion 4b to be terminated immediately before the compressed gas is directed to an outlet channel 8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は羽根車を収納するハウジングが樽(barrel)形状をしたバレル型圧縮機(以下、単に圧縮機とも言う)等の圧縮機のディフューザに関し、より詳しくは、簡単な構造により圧損を増加させることなく、バレル型圧縮機等の圧縮効率を向上可能な圧縮機のディフューザに関するものである。   The present invention relates to a diffuser of a compressor such as a barrel-type compressor (hereinafter also simply referred to as a compressor) in which a housing for housing an impeller has a barrel shape, and more specifically, increases pressure loss with a simple structure. The present invention relates to a diffuser for a compressor that can improve the compression efficiency of a barrel type compressor.

圧縮機により圧縮された気体が羽根車から流出する旋回速度が大きくて、気体の流れを直接渦巻室や出口流路に送り込むのに適していない場合は、気体の流れを減速して、動圧の大部分を静圧に回復するため、ディフューザディスク(以下、単にディスクとも言う)に圧縮された気体の流れに沿ったディフューザベーン(以下、単にベーンとも言う)を形成して、これらのベーン間に気体流路を形成されたディフューザを設けることが通常行われている。   If the swirl speed at which the gas compressed by the compressor flows out of the impeller is large and is not suitable for sending the gas flow directly to the spiral chamber or the outlet channel, the gas flow is decelerated and the dynamic pressure is reduced. In order to restore most of the pressure to static pressure, a diffuser vane (hereinafter also simply referred to as a vane) is formed on the diffuser disk (hereinafter also simply referred to as a disk) along the flow of compressed gas. Usually, a diffuser having a gas flow path is provided.

この様な従来例に係る圧縮機のディフューザについて、バレル型圧縮機を例に以下添付図4,5を参照しながら説明する。図4は従来例に係るバレル型圧縮機のディフューザを説明するための要部縦断面図、図5(a)は図4の矢視X−Xの一部を省略して示す平断面図、図5(b)は図5(a)の矢視Y−Yを示す縦断面図である。   A conventional diffuser of a compressor will be described with reference to FIGS. 4 and 5 by taking a barrel type compressor as an example. FIG. 4 is a longitudinal sectional view of an essential part for explaining a diffuser of a barrel type compressor according to a conventional example, FIG. 5 (a) is a plan sectional view showing a part of arrow XX in FIG. FIG.5 (b) is a longitudinal cross-sectional view which shows arrow YY of Fig.5 (a).

このバレル型圧縮機の軸心C上部から吸込まれた気体は、羽根車11の回転に従ってこの圧縮機の軸心C下方に向かう旋回流Sを形成しつつ、ディフューザ12を介して出口流路部18に排出される。ディフューザ12は、円環状のディフューザディスク13に圧縮された気体の旋回流Sに沿ったディフューザベーン14を設けて、これらのベーン14間に気体流路15が形成されている。そして、羽根車11により圧縮された圧縮気体が、このベーン14間に形成された狭い気体流路15に沿って流れ込んで減速され、動圧の大部分を静圧に回復した後、出口流路部18に排出される様に構成されている。   The gas sucked from the upper part of the axial center C of the barrel type compressor forms a swirl flow S that goes downward of the axial center C of the compressor according to the rotation of the impeller 11, and the outlet flow path part through the diffuser 12. 18 is discharged. The diffuser 12 is provided with a diffuser vane 14 along a swirl flow S of compressed gas in an annular diffuser disk 13, and a gas flow path 15 is formed between the vanes 14. The compressed gas compressed by the impeller 11 flows along the narrow gas flow path 15 formed between the vanes 14 and is decelerated, and after recovering most of the dynamic pressure to static pressure, the outlet flow path The unit 18 is configured to be discharged.

この様なディフューザ12は、圧縮機内の旋回流Sを減速させるのに伴って複雑な流れを生じるため、ベーン14の形成されていない気体流路15の間をショートパスしたり剥離流を生じたりして、圧縮機として圧縮効率の低下を招くことがある。そのため、圧縮機の圧縮効率を低下させないためのディフューザが、従来より各種提案されている。   Such a diffuser 12 generates a complicated flow as the swirl flow S in the compressor is decelerated. Therefore, a short path or a separation flow is generated between the gas flow paths 15 in which the vanes 14 are not formed. As a compressor, the compression efficiency may be reduced. For this reason, various diffusers for preventing the compression efficiency of the compressor from being lowered have been proposed.

そこで次に、従来技術に係るディフューザの圧縮効率改善例について、以下添付図6,7を参照しながら説明する。図6は従来技術1に係るディフューザの一実施例を示す断面図、図7は従来技術2に係る圧縮機のベーンレス部の構造の一実施形態を示す一部の記載を省略した平断面図である。   Next, an example of improving the compression efficiency of the diffuser according to the prior art will be described with reference to FIGS. FIG. 6 is a cross-sectional view showing an embodiment of a diffuser according to Prior Art 1, and FIG. 7 is a plan cross-sectional view omitting a part of the description showing an embodiment of the structure of a vaneless portion of a compressor according to Prior Art 2. is there.

先ず、従来技術1に係る遠心圧縮機の羽根突きディフューザは、図6に示す如く、ブロワ扇車22の軸心方向に対向配置した一対の側板27,32のうちの一方の側板27に、流路26を通過する流体25を昇圧してブロワ車室24に導く羽根29を一体的に設け、他方の側板32を一方の側板27に向け移動自在に構成すると共に、他方の側板32の裏側に空洞部34を形成し、流路26の出口部26aと空洞部34とを連通する連通孔35を他方の側板32に穿設したものである。   First, as shown in FIG. 6, the blade thrust diffuser of the centrifugal compressor according to the related art 1 has a flow path on one side plate 27 of a pair of side plates 27 and 32 arranged to face each other in the axial direction of the blower fan 22. The blades 29 are integrally provided to boost the pressure of the fluid 25 passing through the blower 26 and lead it to the blower casing 24, and the other side plate 32 is configured to be movable toward the one side plate 27. A communication hole 35 is formed in the other side plate 32 to form the portion 34 and communicate the outlet portion 26 a of the flow path 26 and the cavity portion 34.

そして、他方の側板32をこの側板32の表裏の圧力差により、羽根29に押し付けて羽根29と他方の側板32との間の隙間を狭めることができるので、羽根29を迂回する流体25の流れを減少させて、遠心圧縮機21の効率を向上させるものである(特許文献1参照)。   The other side plate 32 can be pressed against the vane 29 by the pressure difference between the front and back sides of the side plate 32 to narrow the gap between the vane 29 and the other side plate 32, so that the flow of the fluid 25 that bypasses the vane 29 The efficiency of the centrifugal compressor 21 is improved (see Patent Document 1).

次に、従来技術2に係る圧縮機のベーンレス部の構造は、図7に示す如く、遠心羽根車41とディフューザ42との間に、接続空間となるベーンレス部47が配される圧縮機において、ベーンレス部47を回転軸方向に離間した位置で囲む側壁の内面に、ディフューザ42における入口空気流の方向に沿うと共に、内方に突出状態の誘導壁48が配され、主流と異なる分岐流や剥離流による二次流れを抑制すると共に、剥離現象の発生を抑制して圧縮機の圧縮効率の向上を図るものである(特許文献2参照)。   Next, the structure of the vaneless portion of the compressor according to the related art 2 is a compressor in which the vaneless portion 47 serving as a connection space is arranged between the centrifugal impeller 41 and the diffuser 42 as shown in FIG. On the inner surface of the side wall that surrounds the vane-less portion 47 at a position spaced apart in the rotation axis direction, a guide wall 48 that protrudes inward along the direction of the inlet air flow in the diffuser 42 is arranged, and a branch flow or separation different from the main flow While suppressing the secondary flow by a flow, the generation | occurrence | production of a peeling phenomenon is suppressed and the compression efficiency of a compressor is improved (refer patent document 2).

更に、従来技術3に係る多段遠心圧縮機は、図示は省略するが、段間吸込ノズルの流路に複数の案内羽根を円周方向に内設し、夫々の案内羽根と夫々の静止羽根との間に所定長さの円環状の仕切り板を設けることによって、気体の流れ方向をディフューザの夫々の側面に沿う方向に矯正した上で混合させ、かつ静止羽根及び案内羽根が合流点で滑らかに夫々の気体を通過させる様にして、気体の混合による損失を低減させるものである(特許文献3参照)。
特開平5−71498号公報 特開平9−177698号公報 特開平6−257590号公報
Furthermore, although not shown in the drawing, the multistage centrifugal compressor according to Prior Art 3 has a plurality of guide vanes in the circumferential direction in the flow path of the interstage suction nozzle, and each guide vane and each stationary vane By providing an annular partition plate of a predetermined length between the two, the gas flow direction is corrected in the direction along each side surface of the diffuser and mixed, and the stationary blade and the guide blade are smooth at the merging point. Each gas is allowed to pass through to reduce loss due to gas mixing (see Patent Document 3).
Japanese Patent Laid-Open No. 5-71498 JP-A-9-177698 JP-A-6-257590

しかしながら、上記従来技術1は、構造が複雑なため製作コストがアップする上、微小なゴミが他方の側板32とケーシング30間の摺動部に詰まったり或いは錆発生によって、前記側板32が移動不可能になる恐れがある。また、上記従来技術2はベーンレス部47の流れ方向距離が小さいため、どの程度の効率改善効果があるのかが疑問である。更に、上記従来技術3は多段の圧縮機にしか適用できない。   However, the above prior art 1 increases the manufacturing cost due to the complicated structure, and the side plate 32 cannot move due to clogging of fine dust in the sliding portion between the other side plate 32 and the casing 30 or the occurrence of rust. May be possible. Further, since the conventional technology 2 has a small distance in the flow direction of the vaneless portion 47, there is a question as to how much efficiency is improved. Furthermore, the prior art 3 can be applied only to a multistage compressor.

従って、本発明の目的は、簡単な構造により圧損を増加させることなく、バレル型圧縮機等の圧縮機の圧縮効率を向上可能な圧縮機のディフューザを提供しようとするものである。   Accordingly, an object of the present invention is to provide a compressor diffuser capable of improving the compression efficiency of a compressor such as a barrel compressor without increasing pressure loss with a simple structure.

前記目的を達成するために、本発明の請求項1に係る圧縮機のディフューザが採用した手段は、ディフューザディスクに圧縮された気体の旋回流に沿ったディフューザベーンを設けて、これらのベーン間に気体流路を形成された圧縮機のディフューザにおいて、前記ディフューザベーンの下流側が、これらディフューザベーンの外形形状に沿って連続的に延設されると共に、この圧縮機の軸心を含む縦断面を平面視したとき、延設された前記ディフューザベーンが、圧縮された気体が出口流路へ向かう直前に曲がり部を有して終端されてなることを特徴とするものである。   In order to achieve the above object, the means adopted by the diffuser of the compressor according to claim 1 of the present invention is provided with a diffuser vane along the swirling flow of the gas compressed in the diffuser disk, and between these vanes. In the compressor diffuser in which the gas flow path is formed, the downstream side of the diffuser vane extends continuously along the outer shape of the diffuser vane, and the longitudinal section including the axial center of the compressor is planar. When viewed, the extended diffuser vane is characterized in that it is terminated with a bent portion just before the compressed gas goes to the outlet channel.

本発明の請求項2に係る圧縮機のディフューザが採用した手段は、請求項1に記載の圧縮機のディフューザにおいて、前記気体流路が、圧縮機の軸心に直交する平断面を平面視したとき、前記ディフューザディスクに対して旋回方向に形成されると共に、前記ディフューザベーン間に形成された気体流路が、下流方向に暫時拡幅されてなることを特徴とするものである。   The means adopted by the diffuser of the compressor according to claim 2 of the present invention is the diffuser of the compressor according to claim 1, wherein the gas flow path is a plan view of a plane cross section orthogonal to the axial center of the compressor. In this case, the gas flow path formed between the diffuser vanes is formed in the swiveling direction with respect to the diffuser disk, and is temporarily widened in the downstream direction.

本発明の請求項3に係る圧縮機のディフューザが採用した手段は、請求項1または2に記載の圧縮機のディフューザにおいて、前記ディフューザベーンの曲がり部上面が、圧縮機の軸心を含む縦断面を平面視したとき、前記気体流路の高さの2倍以上の曲がり半径を有してなることを特徴とするものである。   The means employed by the compressor diffuser according to claim 3 of the present invention is the compressor diffuser according to claim 1 or 2, wherein the upper surface of the bent portion of the diffuser vane includes the axial center of the compressor. When viewed from above, the gas channel has a bending radius that is twice or more the height of the gas flow path.

本発明の請求項4に係る圧縮機のディフューザが採用した手段は、請求項1乃至3のうちの何れか一つの項に記載の圧縮機のディフューザにおいて、前記気体流路が、圧縮機の軸心方向には前記ディフューザディスクの上面とスクロールの下端面に挟まれた空間、及び前記軸心に直交する円周方向には前記ディフューザベーン間の空間によって形成された上流側の円盤流路部と、前記曲がり部における半径方向には圧縮機のハウジングの内壁面とスクロールの下端面に挟まれた空間、及び前記軸心に直交する円周方向には前記ディフューザベーン間の空間により形成された下流側の円筒流路部とを有してなることを特徴とするものである。   The means adopted by the compressor diffuser according to claim 4 of the present invention is the compressor diffuser according to any one of claims 1 to 3, wherein the gas flow path is a shaft of the compressor. A space sandwiched between the upper surface of the diffuser disk and the lower end surface of the scroll in the central direction, and an upstream disk flow path formed by a space between the diffuser vanes in the circumferential direction perpendicular to the axial center; The space formed between the inner wall surface of the compressor housing and the lower end surface of the scroll in the radial direction of the bent portion, and the downstream formed by the space between the diffuser vanes in the circumferential direction perpendicular to the axis. It has a cylindrical flow path part of the side, It is characterized by the above-mentioned.

本発明の請求項1に係る圧縮機のディフューザによれば、ディフューザディスクに圧縮された気体の旋回流に沿ったディフューザベーンを設けて、これらのベーン間に気体流路を形成された圧縮機のディフューザにおいて、前記ディフューザベーンの下流側が、これらディフューザベーンの外形形状に沿って連続的に延設されると共に、この圧縮機の軸心を含む縦断面を平面視したとき、延設された前記ディフューザベーンが、圧縮された気体が出口流路へ向かう直前に曲がり部を有して終端されてなるので、気体流路の曲がり部における流れの乱れによる効率低下を防止し、バレル型圧縮機等の圧縮機の圧縮効率を向上可能である。   According to the diffuser of the compressor according to claim 1 of the present invention, a diffuser vane along a swirling flow of gas compressed in the diffuser disk is provided, and a gas flow path is formed between these vanes. In the diffuser, the diffuser vane has a downstream side continuously extended along the outer shape of the diffuser vane, and the diffuser extended when the longitudinal section including the axial center of the compressor is viewed in plan view. Since the vane is terminated with a bent portion just before the compressed gas heads toward the outlet channel, it prevents the efficiency from being lowered due to the turbulence in the bent portion of the gas channel, such as a barrel compressor. The compression efficiency of the compressor can be improved.

また、本発明の請求項2に係る圧縮機のディフューザによれば、前記気体流路が、圧縮機の軸心に直交する平断面を平面視したとき、前記ディフューザディスクに対して旋回方向に形成されると共に、前記ディフューザベーン間に形成された気体流路が下流方向に暫時拡幅されてなるので、圧縮された気体が気体流路の下流側に行くに従い、流れを乱すことなく減速され静圧の回復を促進し得る。   Moreover, according to the diffuser of the compressor which concerns on Claim 2 of this invention, when the planar cross section orthogonal to the axial center of a compressor is planarly viewed, the said gas flow path forms in a turning direction with respect to the said diffuser disk. Since the gas flow path formed between the diffuser vanes is widened in the downstream direction for a while, the compressed gas is decelerated without disturbing the flow as it goes downstream of the gas flow path, and the static pressure is reduced. Can promote recovery.

更に、本発明の請求項3に係る圧縮機のディフューザによれば、前記ディフューザベーンの曲がり部上面が、圧縮機の軸心を含む縦断面を平面視したとき、前記気体流路の高さの2倍以上の曲がり半径を有してなるので、圧損の増加を低減して圧縮機の圧縮効率を向上可能である。   Furthermore, according to the diffuser of the compressor which concerns on Claim 3 of this invention, when the bending part upper surface of the said diffuser vane planarly views the longitudinal cross section containing the axial center of a compressor, it is the height of the said gas flow path. Since the bending radius is twice or more, it is possible to reduce the increase in pressure loss and improve the compression efficiency of the compressor.

また更に、本発明の請求項4に係る圧縮機のディフューザによれば、前記気体流路が、圧縮機の軸心方向には前記ディフューザディスクの上面とスクロールの下端面に挟まれた空間、及び前記軸心に直交する円周方向には前記ディフューザベーン間の空間によって形成された上流側の円盤流路部と、前記曲がり部における半径方向には圧縮機のハウジングの内壁面とスクロールの下端面に挟まれた空間、及び前記軸心に直交する円周方向には前記ディフューザベーン間の空間により形成された下流側の円筒流路部とを有してなるので、前記気体流路を構成する円盤流路部と円筒流路部とが、ディフューザを除く従来例に係る圧縮機の部材の組み合わせにより形成されるので、製造コストの大幅なアップや複雑な構成となることを回避できる。   Furthermore, according to the diffuser of the compressor according to claim 4 of the present invention, the gas flow path is sandwiched between the upper surface of the diffuser disk and the lower end surface of the scroll in the axial direction of the compressor, and An upstream disk passage formed by a space between the diffuser vanes in a circumferential direction orthogonal to the axis, and an inner wall surface of a compressor housing and a lower end surface of the scroll in a radial direction at the bent portion And a downstream cylindrical flow path formed by the space between the diffuser vanes in the circumferential direction perpendicular to the axis, and thus constitutes the gas flow path Since the disk flow path portion and the cylindrical flow path portion are formed by a combination of members of the compressor according to the conventional example excluding the diffuser, it is possible to avoid a significant increase in manufacturing cost and a complicated configuration.

先ず、本発明の実施の形態に係る圧縮機のディフューザを、添付図1および図2を参照しながら以下説明する。図1は本発明の実施の形態に係るバレル型圧縮機のディフューザを説明するための要部縦断面図、図2(a)は図1の矢視A−Aの一部を省略して示す平断面図、図2(b)は図2(a)の矢視B−Bを示す縦断面図である。   First, a diffuser of a compressor according to an embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a longitudinal sectional view of a main part for explaining a diffuser of a barrel type compressor according to an embodiment of the present invention, and FIG. 2 (a) is shown by omitting a part of an arrow AA in FIG. FIG. 2B is a cross-sectional plan view, and FIG. 2B is a vertical cross-sectional view taken along the line B-B in FIG.

バレル型圧縮機等の圧縮機の設計において、効率よりも減量運転範囲の大きさを重視する場合はディフューザを設けないこともあるが、効率を重視する場合はディフューザを設けて圧縮効率の向上を図るのが通常である。   In the design of a compressor such as a barrel compressor, the diffuser may not be provided if the size of the weight loss operating range is more important than the efficiency, but if the efficiency is important, the diffuser is provided to improve the compression efficiency. It is normal to try.

バレル型圧縮機の軸心C方向上部から吸込まれた気体は、羽根車1の回転に従って矢印で示す様に、この圧縮機の軸心C下方に向かう旋回流Sを形成しつつ加速され、羽根車1の外周方向に放出される。羽根車1の外周方向に放出された気体は、ディフューザ2を介して出口流路部8に排出される。このディフューザ2は、円環状のディフューザディスク3に、放出された気体の旋回流Sに沿ったディフューザベーン4を設けて、これらのベーン4間に気体流路5が形成されている。   The gas sucked from the upper part of the barrel compressor in the axial center C direction is accelerated while forming a swirl flow S directed downward of the compressor shaft C as indicated by an arrow according to the rotation of the impeller 1. It is discharged in the outer peripheral direction of the car 1. The gas released in the outer peripheral direction of the impeller 1 is discharged to the outlet channel portion 8 through the diffuser 2. In this diffuser 2, a diffuser vane 4 along the swirl flow S of the released gas is provided on an annular diffuser disk 3, and a gas flow path 5 is formed between these vanes 4.

そして、本発明の実施の形態に係る圧縮機のディフューザ2は、前記ディフューザベーン4の下流側が、前記気体流路5の形状に沿って連続的に延設されている。また、この圧縮機の軸心Cを含む縦断面を平面視した図1において、延設された前記ディフューザベーン4が、圧縮気体がこのベーン4に流入する直後においては軸心Cに直交する方向の直線部4aを形成すると共に、出口流路8へ向かう直前に、前記直線部4aから略垂直上方へ円弧をなして向かう曲がり部4bを形成して終端されている。   In the diffuser 2 of the compressor according to the embodiment of the present invention, the downstream side of the diffuser vane 4 is continuously extended along the shape of the gas flow path 5. Further, in FIG. 1, which is a plan view of a longitudinal section including the axial center C of the compressor, the extended diffuser vane 4 is perpendicular to the axial center C immediately after the compressed gas flows into the vane 4. The straight portion 4a is formed, and immediately before going to the outlet flow path 8, a bent portion 4b is formed which terminates from the straight portion 4a in a substantially vertical upward direction.

即ち、前記ディフューザベーン4は、軸心Cに直交する方向の直線部4aと、この直線部4aに延設されて略垂直上方へ円弧をなして向かう曲がり部4bとを有して形成されている。そして今、前記曲がり部4bの上面の曲がり半径をRとする。   That is, the diffuser vane 4 is formed to have a straight portion 4a extending in a direction perpendicular to the axis C and a bent portion 4b extending in a straight line and extending substantially vertically upward. Yes. Now, let R be the bend radius of the upper surface of the bend 4b.

一方、前記気体流路5は、圧縮機の軸心Cに直交する平断面を平面視した図2において、前記ディフューザディスク3に対して旋回方向に形成されると共に、前記ディフューザベーン2間に形成された気体流路5の幅wが、下流側に行くに従って暫時拡幅される様に構成される。   On the other hand, the gas flow path 5 is formed in a swiveling direction with respect to the diffuser disk 3 and between the diffuser vanes 2 in FIG. 2, which is a plan view of a plane cross section orthogonal to the axis C of the compressor. The width w of the gas flow path 5 is configured to be widened for a while as it goes downstream.

この様に構成されたディフューザ2において、羽根車1により加速された圧縮気体は、ディフューザベーン4間に形成された狭い気体流路5に沿って流れ込んで減速され、動圧の大部分を静圧に回復した後、出口流路部8に排出される様に構成されている。通常、この様なディフューザ2は、前記ディスク3とベーン4とが切削加工や鋳造等によって一体的に形成されている。   In the diffuser 2 configured in this way, the compressed gas accelerated by the impeller 1 flows along the narrow gas flow path 5 formed between the diffuser vanes 4 and is decelerated, and most of the dynamic pressure is static pressure. After recovering to the above, it is configured to be discharged to the outlet flow path portion 8. Usually, in such a diffuser 2, the disk 3 and the vane 4 are integrally formed by cutting or casting.

従って、この様に構成されたディフューザ2は、羽根車1により加速された気体を、ディフューザベーン4間に形成された狭い気体流路5に沿って、直線部4aを経て流れを乱すことなく前記曲がり部4bに導き、動圧の大部分を静圧に回復させた後出口流路部8に排出するので、圧縮機の圧縮効率を低下させることが無い。   Therefore, the diffuser 2 configured in this manner allows the gas accelerated by the impeller 1 to flow along the narrow gas flow path 5 formed between the diffuser vanes 4 without disturbing the flow through the straight portion 4a. Since most of the dynamic pressure is returned to the static pressure after being led to the bent portion 4b, it is discharged to the outlet flow passage portion 8, so that the compression efficiency of the compressor is not lowered.

更に、前記ディフューザベーン4の曲がり部4bの上面が、この圧縮機の軸心Cを含む縦断面を平面視した図1において、前記気体流路5の高さhの2倍以上の曲がり半径Rを有するのが好ましい。この曲がり部4bの曲がり半径Rが前記気体流路5の高さhと等しければ、曲がり部4bの圧損は18.0kPaであるが、前記曲がり部4bの曲がり半径Rが前記気体流路5の高さhの2.5倍であれば、前記圧損は15.7kPaと大幅に低下するためである。   Furthermore, in FIG. 1 in which the upper surface of the bent portion 4b of the diffuser vane 4 is a plan view of the longitudinal section including the axial center C of the compressor, the bent radius R is more than twice the height h of the gas flow path 5. It is preferable to have. If the bending radius R of the bent portion 4 b is equal to the height h of the gas flow path 5, the pressure loss of the bent portion 4 b is 18.0 kPa, but the bending radius R of the bent portion 4 b is equal to that of the gas flow path 5. This is because the pressure loss is significantly reduced to 15.7 kPa when the height h is 2.5 times.

ここで、前記気体流路5の構成について更に詳細に説明すれば、この気体流路5は、上流側の円盤流路部5aと下流側の円筒流路部5bとから構成されている。即ち、前記円盤流路部5aは、軸心C方向にはディフューザディスク3とスクロール7の下端面7aに挟まれた空間、軸心Cに直交する円周方向にはディフューザベーン4間の空間によって形成されている。また、前記円筒流路部5bは、曲がり部4bにおける半径R方向にはハウジング6の内壁面6aとスクロール7の下端面7aに挟まれた空間、軸心Cに直交する円周方向にはディフューザベーン4間の空間により形成されている。   Here, the gas flow path 5 will be described in more detail. The gas flow path 5 is composed of an upstream disk flow path portion 5a and a downstream cylindrical flow path portion 5b. That is, the disk flow path portion 5a is defined by a space between the diffuser disk 3 and the lower end surface 7a of the scroll 7 in the axial center C direction, and a space between the diffuser vanes 4 in the circumferential direction perpendicular to the axial center C. Is formed. The cylindrical flow path portion 5b is a diffuser in the circumferential direction perpendicular to the axis C, a space sandwiched between the inner wall surface 6a of the housing 6 and the lower end surface 7a of the scroll 7 in the radius R direction of the bent portion 4b. A space between the vanes 4 is formed.

従って、前記気体流路5を構成する円盤流路部5aと円筒流路部5bとが、ディフューザ2を除く従来例に係る圧縮機の部材の組み合わせにより形成されるので、製造コストの大幅なアップや複雑な構成となることを回避できる。   Therefore, since the disk flow path portion 5a and the cylindrical flow path portion 5b constituting the gas flow path 5 are formed by a combination of members of the compressor according to the conventional example excluding the diffuser 2, the manufacturing cost is significantly increased. And a complicated configuration can be avoided.

この様な気体流路5の構成によって、羽根車1により加速された気体の旋回流Sを、前記気体流路5の直線部4aに沿って流れを乱すことなく曲がり部4bに導き、動圧の大部分を効率良く静圧に回復させた後、出口流路部8に排出可能となるのである。この出口流路部8は、ディフューザ2から出て来た圧縮気体を集めて、圧縮機系外のガスクーラ或いは他の配管へ流す役目をする部分である。   With such a configuration of the gas flow path 5, the swirl flow S of the gas accelerated by the impeller 1 is guided to the bent portion 4 b along the straight portion 4 a of the gas flow path 5 without disturbing the flow, and the dynamic pressure After the most part is efficiently recovered to a static pressure, it can be discharged to the outlet channel portion 8. The outlet channel 8 is a part that collects the compressed gas that has come out of the diffuser 2 and flows it to a gas cooler or other piping outside the compressor system.

本発明に係る圧縮機のディフューザ2は、バレル型圧縮機のディフューザに適用するのが、図1,2に示す如くスムーズな気体の流れを形成する上で好ましい。特に、圧縮機をコンパクトにし、安価にしたい要望等がある際に用いられるバレル部の小さなバレル型圧縮機の場合、従来のベーン長さの長いディフューザを適用することができないが、本発明に係るディフューザであれば適用可能である。即ち、コンバクトなバレル型圧縮機のディフューザに本発明を適用することによって、特に著しい圧縮効率の改善を望むことができる。但し、本発明に係る圧縮機のディフューザ2は、必ずしもバレル型圧縮機に限定されるものではなく、他の遠心圧縮機に対しても適用可能である。   The diffuser 2 of the compressor according to the present invention is preferably applied to the diffuser of the barrel compressor so as to form a smooth gas flow as shown in FIGS. In particular, in the case of a barrel type compressor having a small barrel portion used when there is a demand for making the compressor compact and inexpensive, a conventional diffuser having a long vane length cannot be applied. Any diffuser can be applied. That is, by applying the present invention to a diffuser of a compact barrel compressor, a particularly remarkable improvement in compression efficiency can be desired. However, the diffuser 2 of the compressor which concerns on this invention is not necessarily limited to a barrel type compressor, It can apply also to another centrifugal compressor.

<実施例>
同一容量を有するバレル型圧縮機において、図1,2に示した本発明の実施の形態に係るディフューザを採用した場合(実施例)と、図4,5に示した従来例に係るディフューザを採用した場合(比較例)の圧縮効率を比較したシミュレーション結果を図3に示す。前記実施例においては、ディフューザベーン4の曲がり部4bの曲がり半径R=3hとしている。
<Example>
In the barrel compressor having the same capacity, the diffuser according to the embodiment of the present invention shown in FIGS. 1 and 2 is adopted (Example), and the diffuser according to the conventional example shown in FIGS. FIG. 3 shows a simulation result comparing the compression efficiencies in the case of (comparative example). In the embodiment, the bending radius R of the bent portion 4b of the diffuser vane 4 is R = 3h.

前記シミュレーション結果によれば、図3に示す様に、圧縮機の吐出流量Qと羽根車の回転数Nの比Q/Nの増加に従って夫々の圧縮効率は上昇し、Q/N=100%において圧縮効率は最大となる。更に、Q/Nが増加するに従って圧縮効率は急激に低減する。また、Q/Nが90%以下の領域を除外した全Q/Nにおいて、比較例に比べて実施例の方が圧縮効率が高く、Q/N=100%においてその差が最大の1%となった。   According to the simulation result, as shown in FIG. 3, the compression efficiency increases as the ratio Q / N of the discharge flow rate Q of the compressor and the rotational speed N of the impeller increases, and at Q / N = 100%. Compression efficiency is maximized. Furthermore, the compression efficiency decreases rapidly as Q / N increases. Further, in all Q / Ns excluding the region where Q / N is 90% or less, the compression efficiency of the example is higher than that of the comparative example, and the difference is 1% which is the maximum when Q / N = 100%. became.

即ち、本発明に係る圧縮機のディフューザによれば、ディフューザベーンの下流側が気体流路の形状に沿って連続的に延設されると共に、この圧縮機の軸心を含む縦断面を平面視したとき、延設された前記ディフューザベーンが、圧縮気体が出口流路へ向かう直前に曲がり部を形成して終端されてなるので、簡単な構造により圧損を増加させることなく、バレル型圧縮機等の圧縮機の圧縮効率を大略0.5〜1%程度向上可能である。   That is, according to the diffuser of the compressor according to the present invention, the downstream side of the diffuser vane extends continuously along the shape of the gas flow path, and the longitudinal section including the axial center of the compressor is viewed in plan view. When the diffuser vane extended is terminated by forming a bent portion immediately before the compressed gas heads toward the outlet channel, a simple structure such as a barrel compressor can be used without increasing pressure loss. The compression efficiency of the compressor can be improved by about 0.5 to 1%.

また、本発明に係る圧縮機のディフューザによれば、前記ディフューザベーンの曲がり部が、圧縮機の軸心を含む縦断面を平面視したとき、前記気体流路の高さの2倍以上の曲がり半径を有してなるので、圧損の増加を低減して圧縮機の圧縮効率を向上可能である。   Moreover, according to the diffuser of the compressor which concerns on this invention, when the bending part of the said diffuser vane planarly views the longitudinal cross section containing the axial center of a compressor, it bends more than twice the height of the said gas flow path. Since it has a radius, it is possible to reduce the increase in pressure loss and improve the compression efficiency of the compressor.

本発明の実施の形態に係るバレル型圧縮機のディフューザを説明するための要部縦断面図である。It is a principal part longitudinal cross-sectional view for demonstrating the diffuser of the barrel type compressor which concerns on embodiment of this invention. 図(a)は図1の矢視A−Aの一部を省略して示す平断面図、図(b)は図(a)の矢視B−Bを示す縦断面図である。FIG. 1A is a plan sectional view showing a part of the arrow AA in FIG. 1 omitted, and FIG. 2B is a longitudinal sectional view showing the arrow BB in FIG. 本発明の実施例に係り、本発明の実施の形態に係るディフューザを採用した場合(実施例)と、従来例に係るディフューザを採用した場合(比較例)の圧縮効率をQ/Nに対してシミュレーションした結果を示す図である。In connection with examples of the present invention, the compression efficiency with respect to Q / N when the diffuser according to the embodiment of the present invention is employed (example) and when the diffuser according to the conventional example (comparative example) is employed. It is a figure which shows the result of simulation. 従来例に係るバレル型圧縮機のディフューザを説明するための要部縦断面図である。It is a principal part longitudinal cross-sectional view for demonstrating the diffuser of the barrel type compressor which concerns on a prior art example. 図(a)は図4の矢視X−Xの一部を省略して示す平断面図、図(b)は図(a)の矢視Y−Yを示す縦断面図である。4A is a plan sectional view showing a part of the arrow XX in FIG. 4 with a part omitted, and FIG. 5B is a longitudinal sectional view showing the arrow YY in FIG. 従来技術1に係るディフューザの一実施例を示す断面図である。It is sectional drawing which shows one Example of the diffuser which concerns on the prior art 1. FIG. 従来技術2に係る圧縮機のベーンレス部の構造の一実施形態を示す一部の記載を省略した平断面図である。It is the plane sectional view which abbreviate | omitted some description which shows one Embodiment of the structure of the vaneless part of the compressor which concerns on the prior art 2. FIG.

符号の説明Explanation of symbols

C:圧縮機の軸心, S:旋回流, R:曲がり部上面の半径,
h:気体流路の高さ, w:気体流路の幅,
1:羽根車, 2:ディフューザ, 3:ディフューザディスク,
4:ディフューザベーン, 4a:直線部, 4b:曲がり部,
5:気体流路, 5a:円盤流路部, 5b:円筒流路部,
6:ハウジング, 6a:内壁面,
7:スクロール, 7a:下端面,
8:出口流路部
C: Compressor axis, S: Swirl, R: Radius of the upper surface of the bend,
h: height of gas flow path, w: width of gas flow path,
1: Impeller, 2: Diffuser, 3: Diffuser disc,
4: Diffuser vane, 4a: straight portion, 4b: bent portion,
5: Gas channel, 5a: Disk channel, 5b: Cylindrical channel,
6: housing, 6a: inner wall surface,
7: Scroll, 7a: Lower end surface,
8: Outlet channel section

Claims (4)

ディフューザディスクに圧縮された気体の旋回流に沿ったディフューザベーンを設けて、これらのベーン間に気体流路を形成された圧縮機のディフューザにおいて、前記ディフューザベーンの下流側が、これらディフューザベーンの外形形状に沿って連続的に延設されると共に、この圧縮機の軸心を含む縦断面を平面視したとき、延設された前記ディフューザベーンが、圧縮された気体が出口流路へ向かう直前に曲がり部を有して終端されてなることを特徴とする圧縮機のディフューザ。   In a diffuser of a compressor in which a diffuser vane along a swirling flow of compressed gas is provided in a diffuser disk and a gas flow path is formed between these vanes, the outer shape of these diffuser vanes is on the downstream side of the diffuser vane. When the longitudinal section including the axial center of the compressor is viewed in plan, the diffuser vane that extends is bent immediately before the compressed gas goes to the outlet channel. A compressor diffuser characterized in that it has a section and is terminated. 前記気体流路が、圧縮機の軸心に直交する平断面を平面視したとき、前記ディフューザディスクに対して旋回方向に形成されると共に、前記ディフューザベーン間に形成された気体流路が、下流方向に暫時拡幅されてなることを特徴とする請求項1に記載の圧縮機のディフューザ。   The gas flow path is formed in a swiveling direction with respect to the diffuser disk when the plane cross section orthogonal to the axial center of the compressor is viewed in plan, and the gas flow path formed between the diffuser vanes is downstream. The diffuser for a compressor according to claim 1, wherein the diffuser is widened in the direction for a while. 前記ディフューザベーンの曲がり部上面が、圧縮機の軸心を含む縦断面を平面視したとき、前記気体流路の高さの2倍以上の曲がり半径を有してなることを特徴とする請求項1または2に記載の圧縮機のディフューザ。   The upper surface of the bent portion of the diffuser vane has a bending radius that is at least twice as high as the height of the gas flow path when a longitudinal section including the axial center of the compressor is viewed in plan view. The diffuser of the compressor as described in 1 or 2. 前記気体流路が、圧縮機の軸心方向には前記ディフューザディスクの上面とスクロールの下端面に挟まれた空間、及び前記軸心に直交する円周方向には前記ディフューザベーン間の空間によって形成された上流側の円盤流路部と、前記曲がり部における半径方向には圧縮機のハウジングの内壁面とスクロールの下端面に挟まれた空間、及び前記軸心に直交する円周方向には前記ディフューザベーン間の空間により形成された下流側の円筒流路部とを有してなることを特徴とする請求項1乃至3のうちの何れか一つの項に記載の圧縮機のディフューザ。   The gas flow path is formed by a space sandwiched between the upper surface of the diffuser disk and the lower end surface of the scroll in the axial direction of the compressor, and a space between the diffuser vanes in the circumferential direction perpendicular to the axial center. The upstream disk flow path portion, the radial direction in the bent portion, the space sandwiched between the inner wall surface of the compressor housing and the lower end surface of the scroll, and the circumferential direction orthogonal to the axis The diffuser for a compressor according to any one of claims 1 to 3, further comprising a downstream cylindrical flow path formed by a space between the diffuser vanes.
JP2008111612A 2008-04-22 2008-04-22 Diffuser for compressor Pending JP2009264136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111612A JP2009264136A (en) 2008-04-22 2008-04-22 Diffuser for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111612A JP2009264136A (en) 2008-04-22 2008-04-22 Diffuser for compressor

Publications (1)

Publication Number Publication Date
JP2009264136A true JP2009264136A (en) 2009-11-12

Family

ID=41390296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111612A Pending JP2009264136A (en) 2008-04-22 2008-04-22 Diffuser for compressor

Country Status (1)

Country Link
JP (1) JP2009264136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170043065A1 (en) * 2014-04-30 2017-02-16 Murata Manufacturing Co., Ltd. Suction device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170043065A1 (en) * 2014-04-30 2017-02-16 Murata Manufacturing Co., Ltd. Suction device

Similar Documents

Publication Publication Date Title
US5228832A (en) Mixed flow compressor
JP4910872B2 (en) Multistage centrifugal compressor
JP5608062B2 (en) Centrifugal turbomachine
WO2014115417A1 (en) Centrifugal rotation machine
JP2011089460A (en) Turbo type fluid machine
JP2010144698A (en) Centrifugal compressor
JP2010001851A (en) Centrifugal compressor having vaneless diffuser and vaneless diffuser thereof
US8267644B2 (en) Multistage centrifugal compressor
JP4802786B2 (en) Centrifugal turbomachine
JP2010185361A (en) Centrifugal compressor
JPH03264796A (en) Mixed flow compressor
JP3350934B2 (en) Centrifugal fluid machine
JP2010236401A (en) Centrifugal fluid machine
CN112177949A (en) Multistage centrifugal compressor
JP2009264136A (en) Diffuser for compressor
JP5879486B2 (en) Blower
JP5232721B2 (en) Centrifugal compressor
JP2001248597A (en) Turbo compressor and turbo blower
JP6667323B2 (en) Centrifugal rotating machine
JP2006200489A (en) Centrifugal fluid machine and its suction casing
JP4146371B2 (en) Centrifugal compressor
JP6860331B2 (en) Diffuser, discharge channel, and centrifugal turbomachinery
JPH1182389A (en) Turbo-fluid machinery
JP2008163821A (en) Centrifugal compressor
CN110573747B (en) Centrifugal compressor and turbocharger having the same

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20110412

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110412