JP2009263583A - Soil modifying composition and soil modifying method using the same - Google Patents

Soil modifying composition and soil modifying method using the same Download PDF

Info

Publication number
JP2009263583A
JP2009263583A JP2008117770A JP2008117770A JP2009263583A JP 2009263583 A JP2009263583 A JP 2009263583A JP 2008117770 A JP2008117770 A JP 2008117770A JP 2008117770 A JP2008117770 A JP 2008117770A JP 2009263583 A JP2009263583 A JP 2009263583A
Authority
JP
Japan
Prior art keywords
soil
composition
particle size
average particle
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008117770A
Other languages
Japanese (ja)
Other versions
JP5563749B2 (en
Inventor
Junichi Sakamoto
純一 酒本
Masahito Yamaguchi
雅人 山口
Yasuhiro Kusuhara
康裕 楠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SC CEMENT CO Ltd
TIC KK
Yoshino Gypsum Co Ltd
Original Assignee
SC CEMENT CO Ltd
TIC KK
Yoshino Gypsum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SC CEMENT CO Ltd, TIC KK, Yoshino Gypsum Co Ltd filed Critical SC CEMENT CO Ltd
Priority to JP2008117770A priority Critical patent/JP5563749B2/en
Publication of JP2009263583A publication Critical patent/JP2009263583A/en
Application granted granted Critical
Publication of JP5563749B2 publication Critical patent/JP5563749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil modifying composition consisting of one component for allowing efficient soil modifying facilities/work, giving a homogeneously mixed component to prevent deterioration in functions of respective materials due to mixing, and keeping stable quality through transportation and after storage. <P>SOLUTION: The soil modifying composition is composed of one component material consisting of (A) 100 pts.mass of burnt gypsum with a mean particle size of 10-100 μm and (B) 0.1-5 pts.mass of a polymer coagulant of fine particles with a mean particle size of 30-180 μm, and the constituents (A) and (B) are added and mixed so that a ratio of the mean particle size of the constituent (B) to that of the constituent (A) ranges from 0.5 to 5. The soil modifying method using the soil modifying composition is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、土壌改質用組成物及びそれを用いた土壌改質方法に関する。   The present invention relates to a soil modification composition and a soil modification method using the same.

建設残土や浚渫汚泥などの土壌改質には主にセメント系固化材が用いられているが、高アルカリによる二次汚染を発生させるおそれがある。このため、環境への配慮より、植物の発生に支障のない中性での土壌改質が望まれており、その一つの手段として石膏系土壌改質材の利用が期待されている。   Cement-based solidification materials are mainly used for soil improvement such as construction surplus soil and dredged sludge, but there is a risk of secondary contamination due to high alkali. For this reason, from the consideration of the environment, neutral soil reforming that does not hinder the generation of plants is desired, and the use of gypsum-based soil modifying materials is expected as one means.

しかし、実際の土壌改質工事において、特に、建設汚泥や浚渫汚泥などのように対象土壌の含水率が高い場合には、改質に焼石膏のみを使用したのでは添加量が増えてしまい経済的でないという問題があった。この問題に対処するために、焼石膏とポリ(メタ)アクリル酸のような高分子凝集剤を併用することが提案されており(例えば、特許文献1参照)、実施もされている。この場合、対象土壌に高分子凝集剤を先に混ぜて土粒子の凝集を図り、その後、焼石膏をまぶして含水率を下げるという、2段階で処理する方法が一般的である。   However, in actual soil improvement work, especially when the moisture content of the target soil is high, such as construction sludge and dredged sludge, using only calcined gypsum for reforming increases the amount of addition and makes it economical. There was a problem that it was not right. In order to cope with this problem, it has been proposed to use calcined gypsum and a polymer flocculant such as poly (meth) acrylic acid in combination (for example, see Patent Document 1). In this case, a general method is a two-stage treatment in which the polymer flocculant is first mixed with the target soil to aggregate the soil particles, and then the moisture content is reduced by coating with calcined gypsum.

特開平10−279940号公報JP-A-10-279940

しかしながら、2段階で処理する方法では、焼石膏用と高分子凝集剤用に2系統の添加設備を設置する必要があり、また、土壌改質作業も煩雑になるという問題があった。経済的な処理を第一とする建設残土や浚渫汚泥などの土壌改質については、これらのことは極めて重大な問題である。この問題に対して、焼石膏用と高分子凝集剤の2種類の資材を一材化(プレミックス)することも考えられるが、この場合には、下記のような問題があった。すなわち、焼石膏と高分子凝集剤とを均一に混合することは困難であり、また、一材化したとしても、輸送や圧送中に材料が分離するなどして、品質が不安定になるという問題もあった。また、高分子凝集剤はそれ自体が水分の影響を受け易いため、一材化した場合に安定した品質を保つのが難しいという問題もあった。さらに、これまでの土壌改質用組成物は、特に土壌の固化時間がほぼ一定であり、作業時間の調整が難しく、この点でも改良の余地があった。   However, in the method of treating in two steps, it is necessary to install two systems of addition equipment for calcined gypsum and for the polymer flocculant, and there is a problem that the soil modification work becomes complicated. For soil improvement such as construction residue and dredged sludge, where economic treatment is the top priority, these are extremely serious problems. To deal with this problem, it is conceivable that two types of materials for calcined gypsum and a polymer flocculant are integrated (premixed), but in this case, there are the following problems. In other words, it is difficult to uniformly mix calcined gypsum and polymer flocculant, and even if they are combined into one material, the material will be separated during transportation and pumping, resulting in unstable quality. There was also a problem. In addition, since the polymer flocculant itself is easily affected by moisture, there is a problem that it is difficult to maintain a stable quality when it is made into one material. Furthermore, the conventional soil modification compositions have a substantially constant soil solidification time, making it difficult to adjust the working time, and there is room for improvement in this respect as well.

したがって、本発明の目的は、土壌改質用組成物を一材化することで、土壌改質設備や作業を効率的に行うことができ、しかも、成分が均一に混合され、混合したことによる各資材の機能の劣化がなく、輸送や保存後においても安定した品質が保たれる土壌改質用組成物を提供することにある。また、本発明の目的は、上記の優れた土壌改質用組成物を使用することで、作業効率のよい経済的な土壌改質方法を提供することである。さらに、本発明の目的は、土壌の固化時間を適宜に調整できる、作業効率及び処理効率に優れたより経済的な土壌改質方法を提供することである。   Therefore, the object of the present invention is to enable soil reforming equipment and work to be efficiently performed by integrating the composition for soil reforming into one material, and the components are uniformly mixed and mixed. An object of the present invention is to provide a soil modifying composition that does not deteriorate the function of each material and that maintains stable quality even after transportation and storage. Another object of the present invention is to provide an economical soil reforming method with good work efficiency by using the above-described excellent soil reforming composition. Furthermore, the objective of this invention is providing the more economical soil reforming method excellent in work efficiency and processing efficiency which can adjust the solidification time of soil suitably.

上記目的は、以下の本発明によって達成される。すなわち、本発明は、(A)平均粒径10〜100μmの焼石膏100質量部に対して、(B)平均粒径30〜180μmの微粒子の高分子凝集剤が0.1〜5質量部の範囲で含有され、且つ(B)の平均粒径/(A)の平均粒径の比が0.5〜5の範囲となるように添加混合されてなる材料で一材化されていることを特徴とする土壌改質用組成物、及び、該土壌改質用組成物を用いることを特徴とする土壌改質方法である。   The above object is achieved by the present invention described below. That is, according to the present invention, (A) 100 parts by mass of calcined gypsum having an average particle diameter of 10 to 100 μm, and (B) 0.1 to 5 parts by mass of fine polymer flocculant having an average particle diameter of 30 to 180 μm. It is contained in a range, and it is made into one material with a material that is added and mixed so that the ratio of the average particle size of (B) / (A) average particle size is in the range of 0.5-5. A soil modification composition, and a soil modification method using the soil modification composition.

本発明の好ましい形態としては、さらに、材料中に、(A)の焼石膏100質量部に対して、(C)凝結時間調整剤が0.01〜20質量部の範囲で添加混合されて、固化時間の調整がなされている土壌改質用組成物が挙げられる。   As a preferred form of the present invention, (C) a setting time adjusting agent is added and mixed in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of (A) calcined gypsum, A composition for soil improvement in which the setting time is adjusted can be mentioned.

より具体的には、上記(C)凝結時間調整剤が、金属塩、カルボン酸及びカルボン酸塩から選ばれる少なくとも1つの成分である土壌改質用組成物、(C)凝結時間調整剤の少なくとも1つの成分が、硫酸カリウム、硫酸アルミニウム及び酸化マグネシウムから選ばれる金属塩である土壌改質用組成物、(C)凝結時間調整剤の少なくとも1つの成分が、クエン酸、グルコン酸ソーダ、L−酒石酸から選ばれるカルボン酸或いはこれらのカルボン酸塩である土壌改質用組成物が挙げられる。   More specifically, the (C) setting time adjusting agent is at least one component selected from metal salts, carboxylic acids and carboxylates, and (C) at least one setting time adjusting agent. One component is a metal salt selected from potassium sulfate, aluminum sulfate and magnesium oxide. (C) At least one component of a setting time regulator is citric acid, sodium gluconate, L- Examples thereof include a soil modifying composition which is a carboxylic acid selected from tartaric acid or a carboxylate thereof.

本発明によれば、土壌改質用組成物を一材化した場合に、成分が均一に混合され、混合したことによる各資材の機能の劣化もなく、輸送や保存後においても安定した品質が保たれる土壌改質用組成物が提供される。また、本発明によれば、上記の優れた土壌改質用組成物を使用することで、土壌改質設備や作業を効率的に行うことができる効率のよい経済的な土壌改質方法の提供が可能となる。本発明の好ましい形態によれば、作業時間の調整が容易で、使い勝手に優れ、より効率的な処理を行うことが可能な土壌改質用組成物が提供される。   According to the present invention, when the composition for soil improvement is made into one material, the components are uniformly mixed, there is no deterioration in the function of each material due to the mixing, and stable quality even after transportation and storage. A retained soil modification composition is provided. In addition, according to the present invention, by using the above-described excellent soil reforming composition, an efficient and economical soil reforming method capable of efficiently performing soil reforming equipment and work is provided. Is possible. According to the preferable form of this invention, the composition for soil improvement which can adjust a working time easily, is easy to use, and can perform a more efficient process is provided.

以下、好ましい実施の形態を挙げて、本発明をさらに詳細に説明する。本発明者らは、上記した従来技術の課題を解決すべく、従来、焼石膏と高分子凝集剤とを一材化した場合に、均一のものができなかったり、品質が安定しなかった理由について詳細な検討を行った。その結果、従来、土壌改質に用いられている高分子凝集剤はザラメ状で粒度が粗く(200〜700μm)、このために、焼石膏と均一に混合することが困難であり、また、混合して土壌改質用組成物としたとしても、輸送などによる振動を与えると、粗い粒子(高分子凝集剤)が偏析して、輸送や圧送中に各資材が分離するなど、品質が不安定になるという問題があることがわかった。また、先に述べたように、高分子凝集剤はそれ自体が水分の影響を受け易く、このことも、安定した品質を保つのを難しくしている大きな原因であることもわかった。   Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. In order to solve the above-described problems of the prior art, the present inventors have heretofore been unable to obtain a uniform product or to stabilize the quality when the calcined gypsum and the polymer flocculant are combined. A detailed study was conducted. As a result, the polymer flocculants conventionally used for soil modification are rough and coarse in particle size (200-700 μm), which makes it difficult to uniformly mix with calcined gypsum. Even if it is used as a soil modification composition, if it is subjected to vibrations during transportation, the coarse particles (polymer flocculant) segregate and the materials are separated during transportation and pumping, resulting in unstable quality. It turns out that there is a problem of becoming. Further, as described above, the polymer flocculant itself is easily affected by moisture, and this has also been found to be a major cause of difficulty in maintaining stable quality.

本発明者らは、上記した知見に基づき、さらに詳細な検討を行った結果、焼石膏と高分子凝集剤とを特定の粒度のものとし、かつ、特定の配合とすることで、土壌改質用組成物を偏析などの問題のない均一な状態に一材化することが可能となることを見出して本発明に至った。特に、従来は粒度が粗くザラメ状であった高分子凝集剤の粒度を細かくし、特定の粒度範囲とすることで、焼石膏と高分子凝集剤とを均一な状態に一材化できることを見出した。   As a result of further detailed examination based on the above-described findings, the inventors of the present invention have a specific particle size of calcined gypsum and a polymer flocculant and a specific blend, thereby improving soil. The present invention has been found out that the composition can be made into one material in a uniform state without problems such as segregation. In particular, it has been found that by setting the particle size of a polymer flocculant, which has been coarse and rough in the past, to a specific particle size range, calcined gypsum and the polymer flocculant can be made uniform. It was.

本発明の土壌改質用組成物は、焼石膏と高分子凝集剤の2種類の資材が均一な状態に一材化されたものであるため、これを使用することで、従来2工程必要であった土壌改質作業が1工程に省略でき、作業効率を格段に向上させることができる。   Since the two types of materials, calcined gypsum and polymer flocculant, are unified into a uniform state, the soil modifying composition of the present invention requires two conventional steps. The soil modification work that has been performed can be omitted in one step, and work efficiency can be significantly improved.

また、本発明の土壌改質用組成物は、吸湿性能のある焼石膏中に微粒子状の高分子凝集剤が均一に混合された状態となっている。本発明者らの検討によれば、上記のような状態となっていることから、焼石膏と高分子凝集剤の2種類の資材が各々の機能を互いに阻害することなく、むしろ、吸湿によって変質し易い高分子凝集剤の品質を安定させるので、結果として、本発明の土壌改質用組成物の品質が安定に保たれるものになったと考えている。さらに検討した結果、上記のようにして一材化した本発明の土壌改質用組成物に、凝結時間調整剤を加えることで、これまでほぼ一定であった改良土の固化時間を、適宜に調整することが可能となることを見出した。   Moreover, the composition for soil improvement of the present invention is in a state in which fine polymer flocculant is uniformly mixed in calcined gypsum having moisture absorption performance. According to the study by the present inventors, since it is in the above-described state, the two types of materials, calcined gypsum and polymer flocculant, do not interfere with each other's function, but rather change due to moisture absorption. Since the quality of the polymer flocculant which is easy to do is stabilized, it is considered that the quality of the composition for soil modification of the present invention is maintained stably as a result. As a result of further investigation, by adding a setting time adjusting agent to the soil reforming composition of the present invention that has been integrated into one material as described above, the solidification time of the improved soil, which has been almost constant until now, is appropriately set. It has been found that it is possible to adjust.

以下、本発明の土壌改質用組成物を構成する各資材について説明する。
(焼石膏)
本発明の土壌改質用組成物を構成する焼石膏は、土壌改質用組成物に固化性能を付与する重要な成分である。焼石膏としては、β型半水石膏、α型半水石膏、III型無水石膏、又はそれらの混合物などが挙げられる。原料石膏としては、天然物、副生石膏或いは廃石膏のいずれでもよいが、経済性を考慮すると廃石膏を用いることがより好ましい。本発明の土壌改質用組成物を構成する焼石膏の粒度は、使用する原料石膏や粉砕度により多少バラツクが、平均粒径が、10〜100μm、より好ましくは20〜80μm、さらに好ましくは、30〜60μm程度のものを使用する。なお、平均粒径が10μm未満のものは特に製造上及び使用上の作業性が悪くなるため、また、100μmを超える大きな平均粒径のものは特殊な用途の場合に限られ、本用途では実際的でないためにほとんど使用されない。
Hereinafter, each material which comprises the composition for soil improvement of this invention is demonstrated.
(Calcined gypsum)
The calcined gypsum constituting the composition for soil modification of the present invention is an important component that imparts solidification performance to the composition for soil modification. Examples of calcined gypsum include β-type hemihydrate gypsum, α-type hemihydrate gypsum, type III anhydrous gypsum, or a mixture thereof. The raw gypsum may be any of natural products, by-product gypsum, or waste gypsum, but it is more preferable to use waste gypsum in consideration of economy. The particle size of the calcined gypsum constituting the composition for soil modification of the present invention varies somewhat depending on the raw material gypsum used and the degree of pulverization, but the average particle size is 10 to 100 μm, more preferably 20 to 80 μm, still more preferably, A thing about 30-60 micrometers is used. In addition, since the workability in manufacturing and use is particularly bad when the average particle size is less than 10 μm, the large average particle size exceeding 100 μm is limited to special applications. It is rarely used because it is not targeted.

(高分子凝集剤)
本発明の土壌改質用組成物を構成する高分子凝集剤は、処理対象とする建設残土や建設汚泥や浚渫汚泥などの土壌の水分を吸収して土壌の含水率を低下させる成分である。本発明の土壌改質用組成物に配合する高分子凝集剤としては、その粒度を、従来の製品より微細にして、平均粒径を30〜180μm、より好ましくは50〜150μm、さらに好ましくは、70〜120μm程度のものを使用する。平均粒径が30μm未満のものは未だ入手が困難であり、また平均粒径が180μmを超えるものは一材化に適さない。さらに、本発明者らの検討によれば、焼石膏の粒径よりも高分子凝集剤の粒径を同等或いは若干大きいものとすることが好ましいことがわかった。より具体的には、高分子凝集剤の平均粒径/焼石膏の平均粒径=0.5〜5.0、より好ましくは0.8〜3.0、最も好ましくは1.0〜2.0程度とすることが好ましい。
(Polymer flocculant)
The polymer flocculant constituting the soil modification composition of the present invention is a component that lowers the moisture content of the soil by absorbing the moisture of the soil, such as construction residual soil, construction sludge and dredged sludge to be treated. As the polymer flocculant to be blended in the soil modifying composition of the present invention, the particle size is made finer than that of conventional products, and the average particle size is 30 to 180 μm, more preferably 50 to 150 μm, still more preferably, A thing of about 70-120 micrometers is used. Those having an average particle size of less than 30 μm are still difficult to obtain, and those having an average particle size of more than 180 μm are not suitable for one material. Furthermore, according to the study by the present inventors, it was found that the particle size of the polymer flocculant is preferably equal to or slightly larger than the particle size of calcined gypsum. More specifically, the average particle size of the polymer flocculant / average particle size of calcined gypsum = 0.5 to 5.0, more preferably 0.8 to 3.0, and most preferably 1.0 to 2. It is preferably about 0.

高分子凝集剤としては、従来より土壌改良剤として用いられているいずれのものも使用することができる。具体的には、アニオン系、ノニオン系、カチオン系のいずれの高分子凝集剤も使用できるが、中でもアニオン系或いはノニオン系の高分子凝集剤を使用することが好ましい。特に、産業廃水の凝集沈澱に用いられているようなものであればいずれも使用できる。より具体的には、ポリアクリルアミドやアクリルアミド・アクリル酸ナトリウム共重合物からなるものが好適である。先に述べたように、本発明の特徴は、これらの高分子凝集剤の平均粒径を30〜180μmの微粒子状として、焼石膏に混合させた点にある。   Any polymer flocculant conventionally used as a soil conditioner can be used. Specifically, any of anionic, nonionic, and cationic polymer flocculants can be used, and among them, anionic or nonionic polymer flocculants are preferably used. In particular, any of those used for coagulation and precipitation of industrial wastewater can be used. More specifically, those made of polyacrylamide or acrylamide / sodium acrylate copolymer are preferred. As described above, the feature of the present invention is that these polymer flocculants are mixed with calcined gypsum in the form of fine particles having an average particle diameter of 30 to 180 μm.

本発明の土壌改質用組成物は、上記した焼石膏100質量部に対して、上記した微粒子状の高分子凝集剤が0.1〜5質量部、より好ましくは、1〜3質量部の範囲で添加混合されてなる材料を一材化したことを特徴とする。なお、焼石膏100質量部に対して微粒子の高分子凝集剤を0.1質量部より少なく混合したものは高分子凝集剤の凝集効果が充分でなく、一方、5質量部より多く混合したものは材料コストが高くなって経済的でない。   The composition for soil modification of the present invention is 0.1 to 5 parts by mass, more preferably 1 to 3 parts by mass of the fine particle polymer flocculant described above with respect to 100 parts by mass of the above-mentioned calcined gypsum. A material obtained by adding and mixing in a range is made into one material. In addition, a mixture of less than 0.1 parts by mass of a fine polymer flocculant with 100 parts by mass of calcined gypsum is not sufficient in the aggregation effect of the polymer flocculant, while a mixture of more than 5 parts by mass. Is not economical due to high material costs.

(凝結時間調整剤)
さらに、本発明の土壌改質用組成物には、適量の凝結時間調整剤を加えることができる。このように構成することで、これまでほぼ一定であった改良土の固化時間を、適宜に調整することが可能となる。このように構成することで、固化時間が異なるように、種々に設計された土壌改質用組成物が得られる。したがって、上記構成の土壌改質用組成物を用いれば、対象土壌の固化時間を、従来のものに比べて促進させることや、逆に遅延させることができるようになる。このことは、作業工程に合わせた固化時間の本発明の土壌改質用組成物を選択できるので、土壌改質用組成物の固化時間によって作業工程が決定されていた従来のものに比べ、作業効率の点で非常に有用であることを意味する。
(Setting time adjusting agent)
Furthermore, an appropriate amount of a setting time adjusting agent can be added to the soil modifying composition of the present invention. By comprising in this way, it becomes possible to adjust suitably the solidification time of the improved soil which was almost constant until now. By comprising in this way, the composition for soil improvement variously designed so that solidification time may differ is obtained. Therefore, if the composition for soil modification having the above-described configuration is used, the solidification time of the target soil can be promoted as compared with the conventional one, and conversely, it can be delayed. This is because the composition for soil modification of the present invention having a solidification time according to the work process can be selected, so that the work process is determined in comparison with the conventional work process determined by the solidification time of the composition for soil modification. It is very useful in terms of efficiency.

本発明で使用できる凝結時間調整剤としては、金属塩、カルボン酸及びカルボン酸塩から選ばれる少なくとも1つの成分が挙げられる。金属塩としては、例えば、硫酸カリウム、硫酸アルミニウム及び酸化マグネシウムが挙げられる。カルボン酸及びカルボン酸塩としては、例えば、クエン酸、グルコン酸ソーダ、L−酒石酸から選ばれるカルボン酸或いはこれらのカルボン酸塩が挙げられる。これらの添加量としては、焼石膏100質量部に対して、凝結時間調整剤を0.01〜20質量部、より好ましくは、0.05〜5質量部の範囲で添加混合させればよい。また、固体で添加すればよく、その粒径は、高分子凝集剤と同程度とすればよい。   Examples of the setting time adjusting agent that can be used in the present invention include at least one component selected from metal salts, carboxylic acids, and carboxylates. Examples of the metal salt include potassium sulfate, aluminum sulfate, and magnesium oxide. Examples of the carboxylic acid and the carboxylate include a carboxylic acid selected from citric acid, sodium gluconate, and L-tartaric acid, or a carboxylate thereof. As these addition amounts, the setting time adjusting agent may be added and mixed in the range of 0.01 to 20 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of calcined gypsum. Moreover, what is necessary is just to add with solid and the particle size should just be the same grade as a polymer flocculent.

本発明の土壌改質用組成物は、上記したような成分を均一に混合して一材化してなるが、一材化させる方法としては、例えば、下記のような方法が挙げられる。まず、原料石膏を焼成し、所定の粒度に粉砕した後、焼石膏の貯蔵タンクに格納する。また、高分子凝集剤および凝結時間調整剤を各々オートフィーダーに格納する。上記のようにして準備した3種類の資材をパドルミキサーに所定量ずつ投入する。例えば、パドルミキサーに1バッチ約1.2tとして、5分間混合して一材化させ、その後、製品タンクに格納する。   The composition for soil improvement of the present invention is formed by uniformly mixing the above-described components into one material, and examples of the method for forming the material include the following methods. First, the raw gypsum is fired, pulverized to a predetermined particle size, and then stored in a calcined gypsum storage tank. Further, the polymer flocculant and the setting time adjusting agent are each stored in an auto feeder. The three kinds of materials prepared as described above are put into a paddle mixer by a predetermined amount. For example, a batch of about 1.2 t in a paddle mixer is mixed for 5 minutes to form a single material, and then stored in a product tank.

次に、実施例及び比較例を挙げて、本発明を具体的に説明する。なお、以下の記載で「部」及び「%」とあるのは、特に断りのない限り質量基準である。   Next, an Example and a comparative example are given and this invention is demonstrated concretely. In the following description, “parts” and “%” are based on mass unless otherwise specified.

[実施例及び比較例]
下記の焼石膏と高分子凝集剤とを混練した後、先に説明した方法で一材化して実施例及び比較例の土壌改質用組成物を作製した。焼石膏には、廃石膏を粉砕して焼成した後、所定の粒度に粉砕調整したものを使用した。また、高分子凝集剤には、その主成分が、アクリルアミド・アクリル酸ソーダ共重合物(アニオン量:30〜35mol%、アニオン度:3.6〜3.8meq/gr、分子量:約900万)であり、かつ、所定の粒度に調整されたものを使用した。
[Examples and Comparative Examples]
The following calcined gypsum and the polymer flocculant were kneaded and then combined into one material by the method described above to prepare soil reforming compositions of Examples and Comparative Examples. As the calcined gypsum, waste gypsum was pulverized and fired, and then crushed and adjusted to a predetermined particle size. The main component of the polymer flocculant is an acrylamide / sodium acrylate copolymer (anion amount: 30 to 35 mol%, anion degree: 3.6 to 3.8 meq / gr, molecular weight: about 9 million). And those adjusted to a predetermined particle size were used.

焼石膏には、平均粒径を10μm、30μm、50μm、100μmに調整した4種類のものを用いた。また、高分子凝集剤には、平均粒径を、30μm、90μm、180μm及び200μmに調整した4種類のものを用いた。そして、これらを組み合わせて表1の組成の各土壌改質用組成物を作製した。なお、前述したとおり、焼石膏において平均粒径が100μmを超えるものは実際的ではないこと、また、高分子凝集剤において平均粒径が30μm未満のものはほとんど入手できない状況にあることなどの理由から、検討対象から割愛した。   Four types of calcined gypsum having an average particle size adjusted to 10 μm, 30 μm, 50 μm, and 100 μm were used. Further, four types of polymer flocculants having an average particle size adjusted to 30 μm, 90 μm, 180 μm, and 200 μm were used. And combining these, each composition for soil improvement of the composition of Table 1 was produced. As described above, it is not practical that calcined gypsum has an average particle size of more than 100 μm, and polymer flocculants having an average particle size of less than 30 μm are hardly available. Therefore, it was omitted from the subject of consideration.

<評価>
含水比77%の泥土に対して、表1に示した実施例及び比較例の各土壌改質用組成物を用いて、下記のようにして土壌の改質(固化)作業を行った。すなわち、改質する対象の泥土1m3に対して、各土壌改質用組成物を300kg添加後混練して改質作業を行った。また、改質後の土壌を目視で観察し、下記の基準で改質の状況を評価した。そして、得られた結果を表1中に示した。
(評価基準)
◎:完全に均一な状態で固化されていた。
○:ほぼ均一な状態で固化されていた。
△:僅かに焼石膏のみが水和した石膏片も観察された。
×:焼石膏のみが水和した石膏片も観察された。
<Evaluation>
A soil modification (solidification) operation was performed on the mud soil with a water content of 77% using the respective soil modification compositions of Examples and Comparative Examples shown in Table 1. That is, with respect to 1 m 3 of the mud to be reformed, 300 kg of each soil reforming composition was added and kneaded and then the reforming operation was performed. Moreover, the soil after modification | reformation was observed visually and the condition of the modification | reformation was evaluated on the following reference | standard. The obtained results are shown in Table 1.
(Evaluation criteria)
A: Solidified in a completely uniform state.
○: Solidified in an almost uniform state.
Δ: Gypsum pieces in which only calcined gypsum was hydrated were also observed.
X: Gypsum pieces in which only calcined gypsum was hydrated were also observed.

Figure 2009263583
Figure 2009263583

[比較例3]
先の評価に使用したと同様の含水比77%の泥土1m3に対して、下記の2段階の操作を行って土壌の改質(固化)作業を行い、先の一材化した土壌改質用組成物を用いて改質作業を行った場合と同様にして評価した。先ず、上記泥土に、実施例で用いた微粒子状の高分子凝集剤(平均粒径:90μm)を6kg添加混練して凝集体を作った。その後に、焼石膏(平均粒径:50μm)を294kg添加混練して改質(固化)作業を行った。なお、高分子凝集剤には、実施例と同様のものを使用した。
[Comparative Example 3]
The soil modification (solidification) is performed by performing the following two steps on 1 m 3 of mud with a moisture content of 77% similar to that used in the previous evaluation. Evaluation was performed in the same manner as in the case where the reforming operation was performed using the composition. First, 6 kg of the fine particle polymer flocculant (average particle size: 90 μm) used in the examples was added to the mud and kneaded to prepare an aggregate. Thereafter, 294 kg of calcined gypsum (average particle size: 50 μm) was added and kneaded to perform a modification (solidification) operation. The same polymer flocculant as that used in the examples was used.

この結果、泥土の改質はできたが、混練物の外観は高分子凝集剤による凝集体の周囲が焼石膏によって固化された状態で、一部に焼石膏のみが水和した石膏片も観察された。これに対し、先の一材化した実施例の土壌改質用組成物を用いて改質作業を行った場合には、泥土が均一に固化しており、明らかに異なった性状になった。焼石膏と高分子凝集剤を混合し、均一に一材化された実施例の土壌改質用組成物の場合は、泥土と接触した際に、先ず高分子凝集剤が瞬間的に泥土中の水分と反応し、少し遅れて焼石膏が残存した水分と反応することで、均一な状態で固化したものと推測された。   As a result, although the mud was improved, the appearance of the kneaded material was in a state in which the periphery of the aggregate by the polymer flocculant was solidified by calcined gypsum, and a gypsum piece in which only calcined gypsum was hydrated was also observed. It was done. On the other hand, when the reforming operation was carried out using the soil reforming composition of the previous example, the mud was uniformly solidified and clearly had different properties. In the case of the soil reforming composition of the example in which calcined gypsum and the polymer flocculant are mixed and uniformly made into a single material, when contacting the mud, the polymer flocculant is first instantaneously contained in the mud. It was speculated that it was solidified in a uniform state by reacting with moisture and reacting with the remaining moisture after a little delay.

[比較例4]
平均粒径50μmの焼石膏294kgに対して、市販の平均粒径200μm以上の顆粒状の高分子凝集剤を6kg混合して、実施例で行ったと同様にして一材化し、土壌改質用組成物を作製した。
[Comparative Example 4]
6 kg of a granular polymer flocculant having an average particle size of 200 μm or more is mixed with 294 kg of calcined gypsum having an average particle size of 50 μm, and the mixture is made into one material in the same manner as in the examples, and the composition for soil modification A product was made.

この結果、目視観察により、焼石膏と比較して粗い粒子の高分子凝集剤は土壌改質用組成物中に均一に分散できないことが確認された。特に、得られた組成物を容器に入れて輸送する場合と同様の振動を与えた場合や、空気輸送を行った場合に、各材料が分離し易いことが確認された。また、このような材料分離状態の土壌改質用組成物を使用して泥土の改質作業を行った場合は、固化状態が変動し、安定した改質作業ができなかった。なお、焼石膏に近い微粒子の高分子凝集剤を配合してなる先に説明した実施例の土壌改質用組成物の場合は、輸送中にも材料分離が起こらないことを確認した。   As a result, it was confirmed by visual observation that the polymer flocculant having coarse particles as compared with calcined gypsum cannot be uniformly dispersed in the composition for soil modification. In particular, it was confirmed that the materials were easily separated when the same vibration was applied as in the case of transporting the obtained composition in a container or when pneumatic transportation was performed. In addition, when the mud soil reforming operation was performed using such a material-separated composition for soil reforming, the solidified state fluctuated and a stable reforming operation could not be performed. In addition, in the case of the soil improvement composition of the Example demonstrated previously formed by mix | blending the fine particle polymer flocculent close | similar to calcined gypsum, it confirmed that material separation did not occur during transport.

[参考試験例]
先の実施例で使用した平均粒径90μmの微粒子状の高分子凝集剤50gと、先の実施例で使用した平均粒径50μmの焼石膏49gに上記の高分子凝集剤1gを充分混合した土壌改質用組成物とを、各々時計皿の上に薄く広げ、高湿度状態に設定した恒温恒湿器(温度30℃、相対湿度90%)に24時間放置して比較した。微粒子の高分子凝集剤単独では空気中の水分を吸収して膨潤したが、焼石膏中に分散混合した試料は焼石膏が吸湿するため安定しており、高分子凝集剤の膨潤は起こらなかった。
[Reference test example]
Soil obtained by sufficiently mixing 1 g of the above polymer flocculant with 50 g of fine particle polymer flocculant having an average particle diameter of 90 μm used in the previous example and 49 g of calcined gypsum having an average particle diameter of 50 μm used in the previous example. Each of the reforming compositions was thinly spread on a watch glass and left in a constant temperature and humidity chamber (temperature 30 ° C., relative humidity 90%) set to a high humidity state for 24 hours for comparison. The fine polymer flocculant alone absorbed the moisture in the air and swelled, but the sample dispersed and mixed in the calcined gypsum was stable because the calcined gypsum absorbed moisture, and the polymer flocculant did not swell. .

[実施例6及び7]
廃石膏ボード粉砕品をケトルで焼成した焼石膏(平均粒径:50μm)294kgに、先の実施例で使用した微粒子状の高分子凝集剤(平均粒径:90μm)を6kg添加し、さらに、表2に示した凝結時間調整剤をそれぞれ所定量ずつ加え、ミキサーにて充分混合して各土壌改質用組成物を調製した。具体的には、実施例6では、凝結反応を促進させるものとしての硫酸カリウムを添加し、実施例7では、凝結反応を遅延させるものとしてクエン酸をそれぞれ表2に示した量ずつ加えた。次に、先に評価に使用したと同様の含水比77%の泥土を用い、該泥土1m3に、得られた各土壌改質用組成物をそれぞれ300kg添加し、混練後土壌固化性能を比較した。得られた結果を表2に併せて示した。この結果、土壌改質用組成物に配合する凝結時間調整剤を適宜に選択することで、土壌改質を行う現場の状況により、泥土の固化時間(作業時間)を調整できることが確認された。対象土壌の組成や含水比などの状態にもよるが、従来約1時間程度であった固化時間を30分程度に短くすることも、3時間以上にすることも可能になり、土壌改質作業の効率が大いに改善できることがわかった。
[Examples 6 and 7]
6 kg of fine particle polymer flocculant (average particle size: 90 μm) used in the previous example was added to 294 kg of calcined gypsum (average particle size: 50 μm) calcined from the waste gypsum board pulverized product, A predetermined amount of each of the setting time adjusting agents shown in Table 2 was added and mixed thoroughly with a mixer to prepare each soil modifying composition. Specifically, in Example 6, potassium sulfate was added as an accelerator for accelerating the coagulation reaction, and in Example 7, citric acid was added in an amount shown in Table 2 to retard the coagulation reaction. Next, using the same mud with a water content of 77% as used in the evaluation, 300 kg of each obtained composition for soil modification was added to 1 m 3 of the mud, and the soil solidification performance after kneading was compared. did. The obtained results are also shown in Table 2. As a result, it was confirmed that the solidification time (working time) of the mud can be adjusted depending on the situation at the site where the soil is reformed by appropriately selecting a setting time adjusting agent to be blended in the soil reforming composition. Depending on the composition and moisture content of the target soil, the solidification time, which was about 1 hour in the past, can be shortened to about 30 minutes, or 3 hours or more. It has been found that the efficiency of can be greatly improved.

Figure 2009263583
Figure 2009263583

Claims (6)

(A)平均粒径10〜100μmの焼石膏100質量部に対して、(B)平均粒径30〜180μmの微粒子の高分子凝集剤が0.1〜5質量部の範囲で含有され、且つ(B)の平均粒径/(A)の平均粒径の比が0.5〜5の範囲となるように添加混合されてなる材料で一材化されていることを特徴とする土壌改質用組成物。   (A) To 100 parts by mass of calcined gypsum having an average particle size of 10 to 100 μm, (B) a fine particle polymer aggregating agent having an average particle size of 30 to 180 μm is contained in a range of 0.1 to 5 parts by mass, and Soil reforming characterized in that it is a single material made of a material that is added and mixed so that the ratio of (B) average particle size / (A) average particle size is in the range of 0.5 to 5 Composition. さらに、材料中に、(A)の焼石膏100質量部に対して、(C)凝結時間調整剤が0.01〜20質量部の範囲で添加混合されて、固化時間の調整がなされている請求項1に記載の土壌改質用組成物。   Further, in the material, (C) the setting time adjusting agent is added and mixed in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the calcined gypsum of (A), and the solidification time is adjusted. The composition for soil improvement according to claim 1. (C)凝結時間調整剤が、金属塩、カルボン酸及びカルボン酸塩から選ばれる少なくとも1つの成分である請求項2に記載の土壌改質用組成物。   (C) The composition for soil reforming according to claim 2, wherein the setting time adjusting agent is at least one component selected from metal salts, carboxylic acids and carboxylates. (C)凝結時間調整剤の少なくとも1つの成分が、硫酸カリウム、硫酸アルミニウム及び酸化マグネシウムから選ばれる金属塩である請求項3に記載の土壌改質用組成物。   (C) The composition for soil improvement of Claim 3 whose at least 1 component of a setting time regulator is a metal salt chosen from potassium sulfate, aluminum sulfate, and magnesium oxide. (C)凝結時間調整剤の少なくとも1つの成分が、クエン酸、グルコン酸ソーダ、L−酒石酸から選ばれるカルボン酸或いはこれらのカルボン酸塩である請求項3に記載の土壌改質用組成物。   (C) The composition for soil reforming according to claim 3, wherein at least one component of the setting time adjusting agent is a carboxylic acid selected from citric acid, sodium gluconate, and L-tartaric acid, or a carboxylate thereof. 請求項1〜5に記載の土壌改質用組成物を用いることを特徴とする土壌改質方法。   A soil reforming method using the composition for soil reforming according to claim 1.
JP2008117770A 2008-04-28 2008-04-28 Composition for soil modification and method for soil modification using the same Active JP5563749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117770A JP5563749B2 (en) 2008-04-28 2008-04-28 Composition for soil modification and method for soil modification using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117770A JP5563749B2 (en) 2008-04-28 2008-04-28 Composition for soil modification and method for soil modification using the same

Publications (2)

Publication Number Publication Date
JP2009263583A true JP2009263583A (en) 2009-11-12
JP5563749B2 JP5563749B2 (en) 2014-07-30

Family

ID=41389841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117770A Active JP5563749B2 (en) 2008-04-28 2008-04-28 Composition for soil modification and method for soil modification using the same

Country Status (1)

Country Link
JP (1) JP5563749B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240519A (en) * 2009-04-01 2010-10-28 Daiyanitorikkusu Kk Method of treating water to be treated containing inorganic sludge
JP2011235253A (en) * 2010-05-12 2011-11-24 Ecoscience:Kk Inorganic neutral flocculant derived from reclaimed gypsum, and system for cleaning polluted water using the same
JP2015037790A (en) * 2013-05-31 2015-02-26 吉野石膏株式会社 Composition for debris treatment and debris treatment method
JP2017166141A (en) * 2016-03-14 2017-09-21 株式会社フジタ Vegetation base and construction method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217870A (en) * 2003-01-17 2004-08-05 Mirai Kensetsu Kogyo Kk Soil-stabilized soil and method for producing the same
JP2004244625A (en) * 2003-01-24 2004-09-02 Nippon Shokubai Co Ltd Agent for treating wet soil and method for granulating wet soil
JP2004292528A (en) * 2003-03-26 2004-10-21 Ube Ind Ltd Dusting inhibition type solidification material for soil improvement
JP2004315662A (en) * 2003-04-16 2004-11-11 Chiyoda Eco Recycle Kk Soil conditioner and soil conditioning method
JP2006182822A (en) * 2004-12-27 2006-07-13 Denki Kagaku Kogyo Kk Highly penetrative grouting material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217870A (en) * 2003-01-17 2004-08-05 Mirai Kensetsu Kogyo Kk Soil-stabilized soil and method for producing the same
JP2004244625A (en) * 2003-01-24 2004-09-02 Nippon Shokubai Co Ltd Agent for treating wet soil and method for granulating wet soil
JP2004292528A (en) * 2003-03-26 2004-10-21 Ube Ind Ltd Dusting inhibition type solidification material for soil improvement
JP2004315662A (en) * 2003-04-16 2004-11-11 Chiyoda Eco Recycle Kk Soil conditioner and soil conditioning method
JP2006182822A (en) * 2004-12-27 2006-07-13 Denki Kagaku Kogyo Kk Highly penetrative grouting material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240519A (en) * 2009-04-01 2010-10-28 Daiyanitorikkusu Kk Method of treating water to be treated containing inorganic sludge
JP2011235253A (en) * 2010-05-12 2011-11-24 Ecoscience:Kk Inorganic neutral flocculant derived from reclaimed gypsum, and system for cleaning polluted water using the same
JP2015037790A (en) * 2013-05-31 2015-02-26 吉野石膏株式会社 Composition for debris treatment and debris treatment method
JP2015042405A (en) * 2013-05-31 2015-03-05 吉野石膏株式会社 Rubble processing method
EP3006121A4 (en) * 2013-05-31 2017-03-01 Yoshino Gypsum Co., Ltd. Debris processing composition and debris processing method
KR101820586B1 (en) * 2013-05-31 2018-01-19 요시노 셋고 가부시키가이샤 Debris processing composition and debris processing method
JP2017166141A (en) * 2016-03-14 2017-09-21 株式会社フジタ Vegetation base and construction method thereof

Also Published As

Publication number Publication date
JP5563749B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
CN104692756B (en) Method for producing plaster of paris and plasterboard
CN107352839A (en) A kind of gunite concrete liquid alkali-free chlorine-free accelerator and preparation method thereof
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
WO2000032534A1 (en) Process for producing dispersant for powdery hydraulic composition
JP5857996B2 (en) Method for manufacturing roadbed materials
JP5563749B2 (en) Composition for soil modification and method for soil modification using the same
JP4307187B2 (en) Hydraulic composition and concrete composition containing the composition
JP2005146275A (en) Agent for improving, solidifying, and stabilizing soil and its quality
JP5500828B2 (en) Soil hardening material
JP2012046704A (en) Solidification material
CN107709267A (en) Fast hard material, its manufacture method and the fast hydraulic cement composition using the fast hard material
JP2005231947A (en) Method of treating steel slag to make aggregate
JP5098505B2 (en) Steel slag treatment method
JP4694434B2 (en) By-product processing method
JP5718562B2 (en) Soil stabilization treatment material and soil stabilization treatment method using the same
CN102276176A (en) High-performance Portland cement for dam
CN103539384B (en) Special slow condensing type super early strength pumping aid for quick-hardening sulphate aluminum cement
JP2020132485A (en) Slug, production method of slug, and civil engineering material
JP5841502B2 (en) Method for producing steel slag hydrated product
JP6587114B1 (en) Heavy metal pollution control material and heavy metal pollution control method using the pollution control material
JPH06240B2 (en) Method of reforming accumulated sludge
JP6539625B2 (en) Soil modifier
JP2015231935A (en) Method for manufacturing civil engineering material for land applications
JP2005015698A (en) Neutral hardening material for watery soil, and suppressing method for heavy metal elution from soil and treating method for dehydration of soil using it
WO2019093099A1 (en) Expansive cement admixture, expansive cement admixture slurry, and expansive cement concrete prepared using same and method for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140613

R150 Certificate of patent or registration of utility model

Ref document number: 5563749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250