JP2009263414A - Thermoformable material excellent in biodegradability, method for producing the same, and thermoformed article - Google Patents

Thermoformable material excellent in biodegradability, method for producing the same, and thermoformed article Download PDF

Info

Publication number
JP2009263414A
JP2009263414A JP2008111361A JP2008111361A JP2009263414A JP 2009263414 A JP2009263414 A JP 2009263414A JP 2008111361 A JP2008111361 A JP 2008111361A JP 2008111361 A JP2008111361 A JP 2008111361A JP 2009263414 A JP2009263414 A JP 2009263414A
Authority
JP
Japan
Prior art keywords
component
powder
natural
thermoforming
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008111361A
Other languages
Japanese (ja)
Other versions
JP5184953B2 (en
Inventor
Hyoe Hatakeyama
兵衛 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanai Educational Institution
Original Assignee
Kanai Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanai Educational Institution filed Critical Kanai Educational Institution
Priority to JP2008111361A priority Critical patent/JP5184953B2/en
Publication of JP2009263414A publication Critical patent/JP2009263414A/en
Application granted granted Critical
Publication of JP5184953B2 publication Critical patent/JP5184953B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a thermoformable material excellent in biodegradability and thermoformability, and capable of molding a thermoformed article improved in elastic modulus; a method for producing the thermoformable material; and the thermoformed article. <P>SOLUTION: This thermoformable material consists of: a hydroxy group-containing substance of natural origin as a base material; and a mixture of a biodegradable thermoplastic polymer (component A) having an aliphatic polyester chain as a graft chain and powder (component B) of the natural substance, wherein the ratio of the component B is 5 to 900 pts.wt. based on 100 pts.wt. component A. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、生分解性に優れた熱成形材料及びその製造方法と、生分解性に優れる熱成形体に関するものである。   The present invention relates to a thermoforming material having excellent biodegradability, a method for producing the same, and a thermoformed article having excellent biodegradability.

天然物質由来の含水酸基物質を基材とし、脂肪族ポリエステル鎖をグラフト鎖とする生分解性熱可塑性重合体は知られている(特許文献1、特許文献2)。
このような熱可塑性重合体は、生分解性及び熱成形性に優れたものであるが、本発明者の研究によれば、その熱成形体は弾性率の点で不満足なもので、例えば、農業用フィルム、ゴミ袋、食品ラップ用フィルムとしては未だ満足できるものではなかった。
Biodegradable thermoplastic polymers having a hydroxyl group derived from a natural substance as a base material and an aliphatic polyester chain as a graft chain are known (Patent Documents 1 and 2).
Such a thermoplastic polymer is excellent in biodegradability and thermoformability, but according to the study of the present inventors, the thermoform is unsatisfactory in terms of elastic modulus, for example, It was not yet satisfactory as an agricultural film, garbage bag, or food wrap film.

特開平9−12588号公報Japanese Patent Laid-Open No. 9-12588 特開平11−71401号公報JP-A-11-71401

本発明は、生分解性及び熱成形性に優れると共に、弾性率の改善された熱成形体を与える熱成形材料を提供すると共に、該熱成形材料の製造方法及び熱成形体を提供することをその課題とする。   The present invention provides a thermoforming material that gives a thermoformed article having excellent biodegradability and thermoformability and improved elastic modulus, and also provides a method for producing the thermoformed material and a thermoformed article. Let that be the issue.

本発明者等は前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。即ち、本発明によれば以下に示す発明が提供される。
〔1〕 天然物質由来の含水酸基物質を基材とし、脂肪族ポリエステル鎖をグラフト鎖とする生分解性熱可塑性重合体(成分A)と、天然物質の粉末(成分B)との混合物からなり、該成分Bの割合が、該成分A100重量部当たり5〜900重量部であることを特徴とする熱成形材料。
〔2〕 天然物質の粉末(成分B)が、セルロース粉末、キチン粉末、木粉から選択される天然高分子物質の粉末であることを特徴とする前記〔1〕に記載の熱成形材料。
〔3〕前記成分Bの平均粒子寸法が、12メッシュ寸法以下であることを特徴とする前記〔1〕又は〔2〕に記載の熱成形材料。
〔4〕 天然物質由来の含水酸基物質を、溶解状態において、脂肪族ポリエステル鎖形成成分とグラフト重合反応させて生分解性熱可塑性重合体(成分A)を形成するグラフト重合反応工程と、天然物質の粉末(成分B)を、該成分Aの熱溶融物と混合する混合工程からなり、該成分Bの割合が、該成分A100重量部当たり5〜900重量部であることを特徴とする熱成形材料の製造方法。
〔5〕 前記〔1〕〜〔3〕のいずれかに記載の熱成形材料を熱成形してなしたるフィルム成形体。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, according to the present invention, the following inventions are provided.
[1] A mixture of a biodegradable thermoplastic polymer (component A) having a hydroxyl group derived from a natural material as a base material and an aliphatic polyester chain as a graft chain, and a natural material powder (component B). The thermoforming material, wherein the proportion of component B is 5 to 900 parts by weight per 100 parts by weight of component A.
[2] The thermoforming material according to [1], wherein the natural substance powder (component B) is a natural polymer substance powder selected from cellulose powder, chitin powder, and wood powder.
[3] The thermoforming material according to [1] or [2], wherein the average particle size of the component B is 12 mesh size or less.
[4] A graft polymerization reaction step of forming a biodegradable thermoplastic polymer (component A) by subjecting a hydroxyl group-derived substance derived from a natural substance to a graft polymerization reaction with an aliphatic polyester chain-forming component in a dissolved state; The powder (component B) is mixed with a hot melt of component A, and the proportion of component B is 5 to 900 parts by weight per 100 parts by weight of component A Material manufacturing method.
[5] A film molded body formed by thermoforming the thermoforming material according to any one of [1] to [3].

本発明の熱成形材料によれば、熱成形により、フィルム、シート、ブロック等の成形品を容易に得ることができる。そして、この場合の成形品は、生分解性に著しく優れたものである。さらに、本発明の熱成形材料より得られる熱成形体は、高弾性率を有するという特徴を有する。
本発明のフィルム成形体は、生分解性に優れると共に、弾力性に富み、農業用フィルム、ゴミ袋、食品ラップ用フィルム等として好適のものである。また、本発明のフィルム成形体は、生分解性に優れていることから、その使用後は埋め立て処理することも可能なものである。
According to the thermoforming material of the present invention, a molded product such as a film, a sheet, or a block can be easily obtained by thermoforming. And the molded product in this case is remarkably excellent in biodegradability. Furthermore, the thermoformed body obtained from the thermoforming material of the present invention has a feature of having a high elastic modulus.
The film molded body of the present invention is excellent in biodegradability and rich in elasticity, and is suitable as an agricultural film, a garbage bag, a food wrap film and the like. Moreover, since the film molded object of this invention is excellent in biodegradability, it can also be landfilled after the use.

以下、本発明の熱成形材料及びその製造方法について詳細に説明する。
本発明の熱成形材料は、生分解性熱可塑性重合体(成分A)と、天然物質の粉末(成分B)との混合物からなるものであり、その生分解性熱可塑性重合体(成分A)は、天然物質由来の含水酸基物質(以下、単に天然物質ともいう。)を基材とし、該基材に脂肪族ポリエステル鎖がグラフト重合したグラフト重合体である。
Hereinafter, the thermoforming material of the present invention and the production method thereof will be described in detail.
The thermoforming material of the present invention comprises a mixture of a biodegradable thermoplastic polymer (component A) and a natural substance powder (component B), and the biodegradable thermoplastic polymer (component A). Is a graft polymer in which a hydroxyl group-derived substance derived from a natural substance (hereinafter also simply referred to as a natural substance) is used as a base material and an aliphatic polyester chain is graft-polymerized on the base material.

本発明においては、生分解性熱可塑性重合体(グラフト重合体:成分A)を得るための基材として、天然物質由来の含水酸基物質(天然物質)を用いる。このような基材としては、リグニン系物質(クラフトリグニン、アルコリシスリグニン、加水分解リグニン、リグノスルホン酸塩等)、糖系物質(単糖類、二糖類、オリゴ糖、多糖(セルロース系物質、デンプン系物質、キチン系物質、キトサン系物質等の多糖物質))等が挙げられる。   In the present invention, a hydroxyl group-containing substance (natural substance) derived from a natural substance is used as a base material for obtaining a biodegradable thermoplastic polymer (graft polymer: component A). Such base materials include lignin-based substances (craft lignin, alcoholysis lignin, hydrolyzed lignin, lignosulfonate, etc.), sugar-based substances (monosaccharides, disaccharides, oligosaccharides, polysaccharides (cellulosic substances, starch) And polysaccharide substances such as chitin-based substances, chitosan-based substances and chitosan-based substances).

本発明においては、天然物質基材に対するグラフト重合体鎖材料として、脂肪族ポリエステル形成材料が用いられる。このようなものとしては、環状ラクトン、オキシカルボン酸、脂肪族ジカルボン酸と脂肪族ジオールとの混合物等が挙げられる。   In the present invention, an aliphatic polyester-forming material is used as a graft polymer chain material for a natural substance substrate. Examples thereof include cyclic lactones, oxycarboxylic acids, and mixtures of aliphatic dicarboxylic acids and aliphatic diols.

環状ラクトンとしては、メチルε−カプロラクトン、ε−カプロラクトン、β−プロピオラクトン、β−ブチロラクトン、δ−バレロラクトン等が挙げられる。   Examples of the cyclic lactone include methyl ε-caprolactone, ε-caprolactone, β-propiolactone, β-butyrolactone, and δ-valerolactone.

オキシカルボン酸としては、乳酸やα- オキシ酪酸、グリセリン酸、リンゴ酸、酒石酸、マンデル酸、トロパ酸、グルコ糖酸等及びその誘導体 等が挙げられる。   Examples of the oxycarboxylic acid include lactic acid, α-oxybutyric acid, glyceric acid, malic acid, tartaric acid, mandelic acid, tropic acid, glucosacric acid, and derivatives thereof.

脂肪族系のジカルボン酸とジオールとの混合物を構成するジカルボン酸成分、ジオール成分としては、次のものが挙げられる。
ジカルボン酸成分としては、アジピン酸、トリメチルアジピン酸、セバシン酸、マロン酸、ジメチルマロン酸、コハク酸、グルタール酸、2,2−ジメチルグルタール酸、アゼライン酸、フマール酸、マレイン酸、イタコン酸、1,3−シクロペンタンジカルボン酸、1,2−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、などを用いることができる。
ジオール成分としてはエチレングリコール、1,4−ブタンジオール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどが挙げられる。
Examples of the dicarboxylic acid component and the diol component that constitute the mixture of the aliphatic dicarboxylic acid and the diol include the following.
Dicarboxylic acid components include adipic acid, trimethyladipic acid, sebacic acid, malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, 2,2-dimethylglutaric acid, azelaic acid, fumaric acid, maleic acid, itaconic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and the like can be used.
Examples of the diol component include ethylene glycol, 1,4-butanediol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.

本発明で用いられる生分解性熱可塑性重合体(成分A)は、天然物質由来の含水酸基物質(天然物質基材)に対し、グラフト重合体鎖材料(脂肪族ポリエステル鎖材料)をグラフト重合反応させることにより得ることができる。この場合、天然物質基材は、溶解状態に保持してグラフト重合体鎖材料と反応させる。天然物質基材を溶解状態に保持するには、天然物質基材をグラフト重合体鎖材料に可溶化させる方法や、天然物質基材を溶解する有機溶媒、例えば、N−メチルピロリドン、アセトン、ジオキサン等に溶解させる方法等がある。
なお、天然物質基材を多価アルコールの存在下で、環状ラクトンなどのグラフト重合体鎖材料と反応させることもできる。
The biodegradable thermoplastic polymer (component A) used in the present invention is a graft polymerization reaction of a graft polymer chain material (aliphatic polyester chain material) to a hydroxyl group-derived substance (natural substance base material) derived from a natural substance. Can be obtained. In this case, the natural substance substrate is kept in a dissolved state and reacted with the graft polymer chain material. In order to keep the natural substance base in a dissolved state, a method of solubilizing the natural substance base in the graft polymer chain material, or an organic solvent that dissolves the natural substance base, for example, N-methylpyrrolidone, acetone, dioxane And so on.
The natural substance base can be reacted with a graft polymer chain material such as a cyclic lactone in the presence of a polyhydric alcohol.

前記グラフト重合反応は、室温〜180℃、好ましくは30〜170℃の重合温度で実施される。反応時間は1〜24時間、好ましくは2〜20時間である。天然物質基材を有機溶媒に溶解させる場合、有機溶媒の使用量は、天然物質基材100重量部当り、100〜1000重量部、好ましくは200〜500重量部である。   The graft polymerization reaction is performed at a polymerization temperature of room temperature to 180 ° C, preferably 30 to 170 ° C. The reaction time is 1 to 24 hours, preferably 2 to 20 hours. When the natural substance base material is dissolved in the organic solvent, the amount of the organic solvent used is 100 to 1000 parts by weight, preferably 200 to 500 parts by weight, per 100 parts by weight of the natural substance base material.

前記グラフト重合反応により、下記一般式(I)で表されるグラフト重合体が得られる。
By the graft polymerization reaction, a graft polymer represented by the following general formula (I) is obtained.

前記一般式(I)において、Zは糖類やリグニンなどの天然物質由来の含水酸基物質残基(天然物質残基)を示し、Rはアルキレン基を示し、nは天然物質中に含まれる水酸基の総数を示し、pは含水酸基物質中のエステル化される水酸基数であって、1以上で、nより小さい数を示し、qは1以上、好ましくは3以上の数を示す。qの上限値は100程度である。なお、n−pはエステル化されず残存する含水酸基物質残基中の水酸基数であって、0〜(n−1)の範囲の数を示す。   In the general formula (I), Z represents a hydroxyl group-containing substance residue (natural substance residue) derived from natural substances such as saccharides and lignin, R represents an alkylene group, and n represents a hydroxyl group contained in the natural substance. P represents the number of hydroxyl groups to be esterified in the hydroxyl group-containing material, which is 1 or more and less than n, and q is 1 or more, preferably 3 or more. The upper limit of q is about 100. In addition, np is the number of hydroxyl groups in the hydroxyl group-containing residue remaining without being esterified, and represents a number in the range of 0 to (n-1).

天然物質基材中に含まれる水酸基の置換率p/nは1/100〜100/100、好ましくは5/100〜100/100である。また、pとqの積は、天然物質中の水酸基に付加したポリエステル鎖形成成分(ラクトン、オキシカルボン酸又はジカルボン酸)の数を示す。   The substitution rate p / n of the hydroxyl group contained in the natural substance substrate is 1/100 to 100/100, preferably 5/100 to 100/100. The product of p and q indicates the number of polyester chain forming components (lactone, oxycarboxylic acid or dicarboxylic acid) added to the hydroxyl group in the natural substance.

なお、前記Zが糖類に由来するものである場合、糖類としては、例えば、グルコース、フルクトース、マンノース、アラビノース、キシロース、ガラクトース等の単糖類、シュークロース、セロビオース、マルトース等の二糖類、セロトリオース等のオリゴ糖、セルロース粉末、デンプン、グリコーゲン、カロニン、ラミナラン、デキストラン、イヌリン、レバン、マンナン、キシラン、ペクチン酸、アルギン酸、キチン粉末、グアラン、ヘパリン、コンドロイチン硫酸、ヒアルロン酸、メスキットガム、ガッチガム、アラビアゴム、植物粘質物、細菌多糖類等の多糖類が挙げられる。また、これらの混合物である糖蜜を利用しても良い。糖蜜は、サトウキビ、テンサイ等から得られるものであり、精製糖蜜、氷糖蜜であっても、また、製糖後に得られる廃糖蜜であってもよいが、経済性の面からは廃糖蜜が有利である。   When Z is derived from a saccharide, examples of the saccharide include monosaccharides such as glucose, fructose, mannose, arabinose, xylose and galactose, disaccharides such as sucrose, cellobiose and maltose, and cellotriose. Oligosaccharide, cellulose powder, starch, glycogen, caroten, laminaran, dextran, inulin, levan, mannan, xylan, pectic acid, alginic acid, chitin powder, guaran, heparin, chondroitin sulfate, hyaluronic acid, meskit gum, gatch gum, gum arabic, Examples include polysaccharides such as plant mucilage and bacterial polysaccharides. Moreover, you may utilize the molasses which are these mixtures. Molasses is obtained from sugarcane, sugar beet, etc., and may be refined molasses, ice molasses, or waste molasses obtained after sugar production, but it is advantageous from the economical point of view. is there.

本発明において、生分解性熱可塑性重合体(成分A)を製造する場合、その天然物質中に含まれる水酸基1モル当たり、グラフト鎖形成成分(ラクトン、オキシカルボン酸又はジカルボン酸)を1〜100モル、好ましくは4〜70モルの割合にするのがよい。また、本発明において用いるポリエステル形成用触媒としては、慣用のもの例えば、(例えば錫、鉛、マンガン、アルミ等の金属アルコラート、金属カルボキシレート、アルキル金属、キレート金属等の触媒、より具体的には、例えばジラウリン酸ジ−n−ブチル錫、ジ(2−エチルヘキサン酸)錫、チタニウムテトライソプロポキシド、アルミニウムトリイソプロポキシド)等が用いられる。   In the present invention, when a biodegradable thermoplastic polymer (component A) is produced, 1 to 100 graft chain forming components (lactone, oxycarboxylic acid or dicarboxylic acid) are added per mole of hydroxyl group contained in the natural substance. The molar ratio is preferably 4 to 70 mol. Examples of the polyester forming catalyst used in the present invention include conventional catalysts such as (eg, metal alcoholates such as tin, lead, manganese, and aluminum, catalysts such as metal carboxylates, alkyl metals, and chelate metals, and more specifically, For example, di-n-butyltin dilaurate, di (2-ethylhexanoate) tin, titanium tetraisopropoxide, aluminum triisopropoxide) and the like are used.

なお、前記したグラフト重合体に関しては、特許文献1及び2に詳述されている。   The aforementioned graft polymer is described in detail in Patent Documents 1 and 2.

本発明の熱成形材料において、成分Bとしては、各種天然物質の粉末が用いられる。好ましい成分Bの例としては、例えば、セルロース粉末、キチン粉末、木粉などの天然高分子物質の粉末や、例えば、シリカ、ゼオライト、炭酸カルシウム、水酸化アルミニウム等の天然無機物の粉末が挙げられる。これらの固体粉は2種以上混合して使用することもできる。
但し、使用後に埋め立て処理した場合、土壌中で全体が生分解するので、環境に対する負担が小さいという観点から、セルロース粉末、キチン粉末、木粉などの天然高分子物質が好ましい。
In the thermoforming material of the present invention, as the component B, powders of various natural substances are used. Examples of preferable component B include, for example, powders of natural polymer substances such as cellulose powder, chitin powder, and wood powder, and powders of natural inorganic substances such as silica, zeolite, calcium carbonate, and aluminum hydroxide. Two or more kinds of these solid powders can be mixed and used.
However, when the landfill treatment is performed after use, the whole is biodegraded in the soil, so that natural polymer substances such as cellulose powder, chitin powder, and wood powder are preferable from the viewpoint of reducing the burden on the environment.

本発明においては、成分Aと成分Bとは混合される。この場合、成分Aの加熱溶融液に、成分Bを混入する方法を好ましく用いることができる。この場合、成分Bの混合割合は、成分A100重量部当り、5〜900重量部、好ましくは10〜800重量部、より好ましくは15〜80重量部である。成分Aと成分Bとを混合する場合、成分Bの割合が少なすぎると、得られる熱成形体の弾性率が満足するものとならない。一方、成分Bの割合が多すぎると、均一な混合物が得られなくなり、更に得られる熱成形材料の熱性形成が悪くなるので好ましくない。   In the present invention, component A and component B are mixed. In this case, a method of mixing the component B into the heated melt of the component A can be preferably used. In this case, the mixing ratio of component B is 5 to 900 parts by weight, preferably 10 to 800 parts by weight, and more preferably 15 to 80 parts by weight per 100 parts by weight of component A. When mixing component A and component B, if the proportion of component B is too small, the elastic modulus of the resulting thermoformed article will not be satisfactory. On the other hand, if the proportion of component B is too large, a uniform mixture cannot be obtained, and the thermoforming of the resulting thermoforming material becomes poor, which is not preferable.

成分Aに成分Bを混合させる場合、好ましくは50〜250℃、より好ましくは60〜180℃に成分Aを加熱して溶融させる。50℃未満の加熱では、成分Aが溶融しない虞がある。一方、250℃超に加熱すると、熱分解が起こる可能性がある。   When mixing component B with component A, component A is preferably heated to 50 to 250 ° C., more preferably 60 to 180 ° C., and melted. When heating at less than 50 ° C., component A may not melt. On the other hand, when heated above 250 ° C., thermal decomposition may occur.

成分Bの粒子寸法は、得られる成形体の弾性率を向上させるという観点から、好ましくは12メッシュ寸法(L=1.397mm)以下、より好ましくは60メッシュ寸法(L=0.246mm)以下、更に好ましくは250メッシュ寸法(L=0.061mm)以下のものが好ましい。その下限の粒子寸法は特に制限されないが、入手容易性の点から、通常、400メッシュ寸法(L=0.033mm)程度である。なお、前記メッシュ寸法は、タイラメッシュ寸法である。   The particle size of component B is preferably 12 mesh size (L = 1.399 mm) or less, more preferably 60 mesh size (L = 0.246 mm) or less, from the viewpoint of improving the elastic modulus of the obtained molded body. More preferably, the size is 250 mesh size (L = 0.061 mm) or less. The lower limit particle size is not particularly limited, but is generally about 400 mesh size (L = 0.033 mm) from the viewpoint of availability. The mesh size is a Tyler mesh size.

成分Bとして木粉を用いる場合、種類を問わず使用することができる。例えば、松、杉、桧などの針葉樹、ラワン、カポール、栗、ポプラなどの広葉樹から得られるものを使用することができる。   When using wood flour as component B, it can be used regardless of the type. For example, those obtained from conifers such as pine, cedar, and oak, and broad-leaved trees such as lauan, capol, chestnut, and poplar can be used.

成分Bとしてセルロース粉末を用いる場合、容易に入手できる高純度セルロース粉末を用いることもできれば、木材等の夾雑物を含むセルロース粉末を用いることもできる。具体的には、コットンリント、コットンリンターや精製パルプ等が挙げられる。また、ホヤセルロース粉末、バクテリアセルロース粉末或いは再生セルロース粉末でもよい。   When cellulose powder is used as Component B, easily available high-purity cellulose powder can be used, or cellulose powder containing impurities such as wood can be used. Specific examples include cotton lint, cotton linter, and refined pulp. Further, squirt cellulose powder, bacterial cellulose powder or regenerated cellulose powder may be used.

成分Bとしてキチン粉末を用いる場合、カニやエビの甲殻から得られるものが容易に入手できるので好ましいが、これらに限られず、昆虫、イカ、貝類、キノコ等から得られるものであってもよい。   When chitin powder is used as component B, those obtained from crab or shrimp shells are readily available, but are not limited thereto, and may be obtained from insects, squids, shellfish, mushrooms and the like.

本発明の熱成形材料は、天然物由来の含水酸基物質をグラフト重合体基材とし、脂肪族ポリエステル鎖をグラフト重合体鎖とするグラフト重合体(成分A)と、天然物質の粉末(成分B)とからなり、その成分Aは生分解性に優れたものであることから、全体として優れた生分解性を有することを特徴とする。そして、本発明の熱成形材料は、熱成形性のグラフト重合体(成分A)をマトリックス相(連続相)中に粉末状の成分Bを分散させたものであるため、熱成形性を有し、熱成形性においても優れたものになっている。更に、本発明の熱成形材料は、グラフト重合体中に天然物質粉末を分散させた構造となっているため、高弾性率を有し、機械的強度において優れたものとなっている。例えば、成分Aのみからなる熱成形体と、成分Aと成分Bとからなる熱成形体とを比較した場合、成分Aと成分Bとからなる本発明の熱成形体は、その引張弾性率(JIS K7113)は2倍程度になり、その圧縮強度(JISK7113 )は2.3倍以上となり、非常に優れたものとなっている。   The thermoforming material of the present invention comprises a graft polymer (component A) having a hydroxyl group derived from a natural product as a graft polymer substrate and an aliphatic polyester chain as a graft polymer chain, and a natural substance powder (component B). The component A is excellent in biodegradability, and therefore has excellent biodegradability as a whole. The thermoforming material of the present invention has thermoformability because the thermoformable graft polymer (component A) is obtained by dispersing the powdery component B in the matrix phase (continuous phase). Also, the thermoformability is excellent. Furthermore, the thermoforming material of the present invention has a structure in which a natural substance powder is dispersed in a graft polymer, and thus has a high elastic modulus and excellent mechanical strength. For example, when comparing a thermoformed article comprising only component A and a thermoformed article comprising component A and component B, the thermoformed article of the present invention comprising component A and component B has its tensile elastic modulus ( JIS K7113) is about twice, and its compressive strength (JISK7113) is 2.3 times or more, which is very excellent.

本発明の熱成形材料は熱成形性に優れたものであるが、この場合の熱成形法には、熱プレス、押出成形、射出成形、発泡成形等が包含される。また、本発明の熱成形材料から得られる熱成形体には、フィルム、シート、板体、ペレット、各種の容器各種のブロック体等が包含される。   The thermoforming material of the present invention is excellent in thermoformability. In this case, the thermoforming method includes hot pressing, extrusion molding, injection molding, foam molding and the like. In addition, the thermoformed product obtained from the thermoformed material of the present invention includes a film, a sheet, a plate, a pellet, various blocks of various containers, and the like.

本発明の熱成形材料の熱成形温度は、50〜250℃、好ましくは60〜180℃である。
The thermoforming temperature of the thermoforming material of the present invention is 50 to 250 ° C, preferably 60 to 180 ° C.

本発明の熱成形材料は、熱成形可能な生分解性材料であることから農業用フィルム、食品ラップ用フィルムとして用いることができ、其の使用後には埋立処理をすることができる。特に光透過性に優れるものは廃棄が容易な農業用フィルム、ゴミ袋、食品ラップ用フィルムとして好適に用いることができる。   Since the thermoforming material of the present invention is a thermodegradable biodegradable material, it can be used as an agricultural film or a food wrapping film, and can be landfilled after use. Particularly, those having excellent light transmittance can be suitably used as agricultural films, garbage bags, and food wrapping films that can be easily discarded.

次に、本発明を実施例により詳述する。なお、以外において示す部及び%はいずれも重量基準である。   Next, the present invention will be described in detail by examples. In addition, all the parts and% shown in others are on the basis of weight.

実施例1〜3
木材糖化工程の残渣として得られた加水分解リグニン(HL1)をベンゼンとの共沸により脱水した。次に、該脱水した加水分解リグニン(HL1)1重量部と、該加水分解リグニン(HL1)中の水酸基量の100倍モル(79.9重量部)のカプロラクトンモノマーとを、触媒量のジラウリン酸ジブチル錫の存在下に、170℃で5時間グラフト重合を行い、HLポリカプロラクトン誘導体(HL1−PCL:成分A)を得た。
Examples 1-3
Hydrolyzed lignin (HL1) obtained as a residue of the wood saccharification process was dehydrated by azeotropy with benzene. Next, 1 part by weight of the dehydrated hydrolyzed lignin (HL1) and 100 times mol (79.9 parts by weight) of caprolactone monomer in the hydrolyzed lignin (HL1) are mixed with a catalytic amount of dilauric acid. Graft polymerization was performed at 170 ° C. for 5 hours in the presence of dibutyltin to obtain an HL polycaprolactone derivative (HL1-PCL: Component A).

次に、60℃に加熱溶融させたHL1−PCL80重量部に、天然物質の粉末(成分B)としてセルロース粉末a(250メッシュ寸法(繊維長L=0.061mm)以下)20重量部を用いて熱成形材料を調製した(実施例1)。天然物質の粉末(成分B)としてキチン粉末a(60メッシュ寸法(L=0.246mm)以下)20重量部を用いて熱成形材料を調製し(実施例2)、天然物質の粉末(成分B)として木粉a(60メッシュ寸法(L=0.246mm)以下)20重量部を用いて熱成形材料を調製した(実施例3)。実施例1〜3で得られた熱成形材料をホットプレス(加熱温度:120℃)でシート(厚み:1.0mm、長さ:100mm、幅:100mm)に成形した。
なお、前記メッシュ寸法は、タイラメッシュ寸法である(以下、実施例において同様)。
Next, using 80 parts by weight of HL1-PCL heated and melted at 60 ° C., 20 parts by weight of cellulose powder a (250 mesh size (fiber length L = 0.061 mm or less)) as a natural substance powder (component B) is used. A thermoforming material was prepared (Example 1). A thermoforming material was prepared using 20 parts by weight of chitin powder a (60 mesh size (L = 0.246 mm or less)) as natural substance powder (component B) (Example 2), and natural substance powder (component B). ) Was used to prepare a thermoforming material using 20 parts by weight of wood flour a (60 mesh size (L = 0.246 mm) or less) (Example 3). The thermoforming material obtained in Examples 1 to 3 was molded into a sheet (thickness: 1.0 mm, length: 100 mm, width: 100 mm) with a hot press (heating temperature: 120 ° C.).
The mesh size is a Tyler mesh size (hereinafter the same in the examples).

比較例1
実施例1と同様にして得られたHLポリカプロラクトン誘導体(HL1−PCL)を、ホットプレス(加熱温度:120℃)でシート(厚み:1.0mm、長さ:100mm、幅:100mm)に成形した。
Comparative Example 1
The HL polycaprolactone derivative (HL1-PCL) obtained in the same manner as in Example 1 was molded into a sheet (thickness: 1.0 mm, length: 100 mm, width: 100 mm) by hot pressing (heating temperature: 120 ° C.). did.

実施例1〜3、比較例1で得られたシートについて、JIS K7113(プラスチックの引張試験方法)に準拠して引張試験を行い、引張強度(σ)、引張弾性率(E)を測定した。また、窒素気流中で、熱重量分析(昇温速度10℃/min)を行い熱分解温度(低温側Td1及び高温側Td2)を求めた。表1に結果を示す。   About the sheet | seat obtained in Examples 1-3 and the comparative example 1, the tension test was done based on JISK7113 (plastic tensile test method), and the tensile strength ((sigma)) and the tensile elasticity modulus (E) were measured. Further, thermogravimetric analysis (temperature increase rate: 10 ° C./min) was performed in a nitrogen stream to determine the pyrolysis temperatures (low temperature side Td1 and high temperature side Td2). Table 1 shows the results.

実施例4
実施例1とは異なる木材糖化工程の残渣として得られた加水分解リグニン(HL2)をベンゼンとの共沸により脱水した。次に、該脱水した加水分解リグニン(HL2)1重量部と、該加水分解リグニン(HL2)中の水酸基量の100倍モル(79.9重量部)のカプロラクトンモノマーとを、触媒量のジラウリン酸ジブチル錫の存在下に、170℃で5時間重合を行い、HLポリカプロラクトン誘導体(HL2−PCL:成分A)を得た。
Example 4
Hydrolyzed lignin (HL2) obtained as a residue of a wood saccharification step different from that in Example 1 was dehydrated by azeotropy with benzene. Next, 1 part by weight of the dehydrated hydrolyzed lignin (HL2) and 100 times mole (79.9 parts by weight) of caprolactone monomer in the hydrolyzed lignin (HL2) are combined with a catalytic amount of dilauric acid. Polymerization was carried out at 170 ° C. for 5 hours in the presence of dibutyltin to obtain an HL polycaprolactone derivative (HL2-PCL: Component A).

次に、60℃に加熱溶融させたHL2−PCL80重量部に、天然物質の粉末(成分B)としてセルロース粉末a(250メッシュ寸法(繊維長L=0.061mm)以下)20重量部を混合して熱成形材料を調製した。得られた熱可塑性重合体をホットプレス(加熱温度:120℃)でシート(厚み:1.0mm、長さ:100mm、幅:100mm)に成形した。   Next, 20 parts by weight of cellulose powder a (250 mesh size (fiber length L = 0.061 mm or less)) as a natural substance powder (component B) is mixed with 80 parts by weight of HL2-PCL heated and melted at 60 ° C. A thermoforming material was prepared. The obtained thermoplastic polymer was molded into a sheet (thickness: 1.0 mm, length: 100 mm, width: 100 mm) with a hot press (heating temperature: 120 ° C.).

比較例2
実施例4と同様にして得られたHLポリカプロラクトン誘導体(HL2−PCL)を、ホットプレス(加熱温度:120℃)でシート(厚み:1.0mm、長さ:100mm、幅:100mm)に成形した。
Comparative Example 2
The HL polycaprolactone derivative (HL2-PCL) obtained in the same manner as in Example 4 was molded into a sheet (thickness: 1.0 mm, length: 100 mm, width: 100 mm) by hot pressing (heating temperature: 120 ° C.). did.

実施例4、比較例2で得られたシートについて、JISK7113(プラスチックの引張試験方法)に準拠して引張試験を行い、引張強度(σ)、引張弾性率(E)を測定した。また、窒素気流中で、熱重量分析(昇温速度10℃/min)を行い熱分解温度(低温側Td1及び高温側Td2)を求めた。表2に結果を示す。   About the sheet | seat obtained in Example 4 and the comparative example 2, the tensile test was done based on JISK7113 (plastic tensile test method), and the tensile strength ((sigma)) and the tensile elasticity modulus (E) were measured. Further, thermogravimetric analysis (temperature increase rate: 10 ° C./min) was performed in a nitrogen stream to determine the pyrolysis temperatures (low temperature side Td1 and high temperature side Td2). Table 2 shows the results.

実施例5
廃糖蜜(ML)をベンゼンとの共沸により脱水した。次に、該脱水した廃糖蜜(ML)1重量部と、該廃糖蜜(ML)中の水酸基量の100倍モル(131重量部)のカプロラクトンモノマーとを、触媒量のジラウリン酸ジブチル錫の存在下に、170℃で5時間重合を行い、MLポリカプロラクトン誘導体(ML−PCL:成分A)を得た。
Example 5
Waste molasses (ML) was dehydrated by azeotropy with benzene. Next, 1 part by weight of the dehydrated molasses (ML) and 100 times mol (131 parts by weight) of caprolactone monomer in the amount of hydroxyl groups in the molasses (ML) are present in a catalytic amount of dibutyltin dilaurate. Below, it superposed | polymerized at 170 degreeC for 5 hours, and obtained ML polycaprolactone derivative (ML-PCL: component A).

次に、60℃に加熱溶融させたML−PCL80重量部に、混合材(成分B)として木粉(60メッシュ寸法(L=0.246mm)以下)20重量部を混合して熱成形材料を調製した。得られた熱成形材料をホットプレス(加熱温度:120℃)でシート(厚み:1.0mm、長さ:100mm、幅:100mm)に成形した。   Next, 80 parts by weight of ML-PCL heated and melted at 60 ° C. is mixed with 20 parts by weight of wood flour (60 mesh size (L = 0.246 mm or less)) as a mixture (component B) to obtain a thermoforming material. Prepared. The obtained thermoforming material was formed into a sheet (thickness: 1.0 mm, length: 100 mm, width: 100 mm) with a hot press (heating temperature: 120 ° C.).

比較例3
実施例5と同様にして得られたMLポリカプロラクトン誘導体(ML−PCL)を、ホットプレス(加熱温度:120℃)でシート(厚み:1.0mm、長さ:100mm、幅:100mm)に成形した。
Comparative Example 3
ML polycaprolactone derivative (ML-PCL) obtained in the same manner as in Example 5 was molded into a sheet (thickness: 1.0 mm, length: 100 mm, width: 100 mm) by hot pressing (heating temperature: 120 ° C.). did.

実施例5、比較例3で得られたシートについて、JIS K7113(プラスチックの引張試験方法)に準拠して引張試験を行い、引張強度(μm)、引張弾性率(E)を測定した。また、窒素気流中で、熱重量分析(昇温速度10℃/min)を行い熱分解温度(低温側Td1及び高温側Td2)を求めた。表3に結果を示す。   The sheets obtained in Example 5 and Comparative Example 3 were subjected to a tensile test according to JIS K7113 (plastic tensile test method), and the tensile strength (μm) and the tensile modulus (E) were measured. Further, thermogravimetric analysis (temperature increase rate: 10 ° C./min) was performed in a nitrogen stream to determine the pyrolysis temperatures (low temperature side Td1 and high temperature side Td2). Table 3 shows the results.

実施例6〜16
スクロース(S)をベンゼンとの共沸により脱水した。次に、該脱水したスクロース(S)1重量部と、該スクロース(S)中の水酸基量の100倍モル(267重量部)のカプロラクトンモノマーを触媒量のジラウリン酸ジブチル錫の存在下に、170℃で5時間重合を行い、S−ポリカプロラクトン誘導体(S−PCL:成分A)を得た。
Examples 6-16
Sucrose (S) was dehydrated by azeotropy with benzene. Next, 1 part by weight of the dehydrated sucrose (S) and 100 times mole (267 parts by weight) of caprolactone monomer in the amount of hydroxyl groups in the sucrose (S) were added in the presence of a catalytic amount of dibutyltin dilaurate. Polymerization was carried out at 5 ° C. for 5 hours to obtain an S-polycaprolactone derivative (S-PCL: Component A).

次に、60℃に加熱溶融させたS−PCLに、表4に示す天然物質の粉末(成分B)を、表4に示す配合で混合して熱成形材料を調製した。得られた熱成形材料をホットプレス(加熱温度:120℃)でシート(厚み:1.0 mm、長さ:100mm、幅:100mm)に成形した。なお、表4に示す天然物質の粉末(セルロースa、キチンa、木粉a)は、実施例1〜3と同じものである。また、水酸化アルミニウムは270メッシュ寸法(L=0.053mm)以下である。   Next, the S-PCL heated and melted at 60 ° C. was mixed with the natural substance powder (component B) shown in Table 4 in the formulation shown in Table 4 to prepare a thermoforming material. The obtained thermoforming material was molded into a sheet (thickness: 1.0 mm, length: 100 mm, width: 100 mm) with a hot press (heating temperature: 120 ° C.). In addition, the natural substance powders (cellulose a, chitin a, wood powder a) shown in Table 4 are the same as in Examples 1 to 3. Aluminum hydroxide has a size of 270 mesh (L = 0.053 mm) or less.

比較例4
実施例6〜14と同様にして得られたS−PCLを、ホットプレス(加熱温度:120℃)でシート(厚み:1.0mm、長さ:100 mm、幅:100mm)に成形した。
Comparative Example 4
S-PCL obtained in the same manner as in Examples 6 to 14 was formed into a sheet (thickness: 1.0 mm, length: 100 mm, width: 100 mm) with a hot press (heating temperature: 120 ° C.).

実施例6〜16、比較例4で得られたシートについて、JIS K7113(プラスチックの引張試験方法)に準拠して引張試験を行い、引張強度(σ)、引張弾性率(E)を測定した。また、窒素気流中で、熱重量分析(昇温速度10℃/min)を行い熱分解温度(低温側Td1及び高温側Td2)を求めた。表4に結果を示す。   The sheets obtained in Examples 6 to 16 and Comparative Example 4 were subjected to a tensile test according to JIS K7113 (plastic tensile test method), and the tensile strength (σ) and the tensile modulus (E) were measured. Further, thermogravimetric analysis (temperature increase rate: 10 ° C./min) was performed in a nitrogen stream to determine the pyrolysis temperatures (low temperature side Td1 and high temperature side Td2). Table 4 shows the results.

Claims (5)

天然物質由来の含水酸基物質を基材とし、脂肪族ポリエステル鎖をグラフト鎖とする生分解性熱可塑性重合体(成分A)と、天然物質の粉末(成分B)との混合物からなり、該成分Bの割合が、成分A100重量部当たり5〜900重量部であることを特徴とする熱成形材料。   A mixture of a biodegradable thermoplastic polymer (component A) having a hydroxyl group derived from a natural material as a base material and an aliphatic polyester chain as a graft chain, and a powder of the natural material (component B). A thermoforming material, wherein the proportion of B is 5 to 900 parts by weight per 100 parts by weight of component A. 天然物質の粉末(成分B)が、セルロース粉末、キチン粉末、木粉から選択される天然高分子物質の粉末であることを特徴とする請求項1に記載の熱成形材料。   2. The thermoforming material according to claim 1, wherein the natural substance powder (component B) is a natural polymer substance powder selected from cellulose powder, chitin powder, and wood powder. 前記成分Bの平均粒子寸法が、12メッシュ寸法以下であることを特徴とする請求項1又は2に記載の熱成形材料。   The thermoforming material according to claim 1 or 2, wherein the average particle size of the component B is 12 mesh size or less. 天然物質由来の含水酸基物質を、溶解状態において、脂肪族ポリエステル鎖形成成分とグラフト重合反応させて生分解性熱可塑性重合体(成分A)を形成するグラフト重合反応工程と、天然物質の粉末(成分B)を、該成分Aの熱溶融物と混合する混合工程からなり、該成分Bの割合が、該成分A100重量部当たり5〜900重量部であることを特徴とする熱成形材料の製造方法。   In a dissolved state, a hydroxyl group-derived substance derived from a natural substance is subjected to a graft polymerization reaction with an aliphatic polyester chain forming component to form a biodegradable thermoplastic polymer (component A), and a natural substance powder ( Production of thermoforming material characterized in that it comprises a mixing step in which component B) is mixed with the hot melt of component A, and the proportion of component B is 5 to 900 parts by weight per 100 parts by weight of component A Method. 請求項1〜3のいずれかに記載の熱成形材料を熱成形してなしたるフィルム成形体。   The film molded object made by thermoforming the thermoforming material in any one of Claims 1-3.
JP2008111361A 2008-04-22 2008-04-22 Hot press molding material with excellent biodegradability, method for producing the same, and hot press molding Expired - Fee Related JP5184953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111361A JP5184953B2 (en) 2008-04-22 2008-04-22 Hot press molding material with excellent biodegradability, method for producing the same, and hot press molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111361A JP5184953B2 (en) 2008-04-22 2008-04-22 Hot press molding material with excellent biodegradability, method for producing the same, and hot press molding

Publications (2)

Publication Number Publication Date
JP2009263414A true JP2009263414A (en) 2009-11-12
JP5184953B2 JP5184953B2 (en) 2013-04-17

Family

ID=41389692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111361A Expired - Fee Related JP5184953B2 (en) 2008-04-22 2008-04-22 Hot press molding material with excellent biodegradability, method for producing the same, and hot press molding

Country Status (1)

Country Link
JP (1) JP5184953B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529265A (en) * 2012-09-07 2015-10-05 ナム,ジェ‐ドNam, Jae‐Do Thermoplastic lignin condensation polymer and process for producing the same
JP2020055928A (en) * 2018-09-28 2020-04-09 株式会社トレスバイオ研究所 Cured material and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109339A (en) * 1993-08-20 1995-04-25 Nippon Paint Co Ltd Biodegradable resin composition and antifouling coating compound composition
JPH0912588A (en) * 1995-06-22 1997-01-14 Hyoe Hatakeyama Sugar ester polyol, its production and biodegradable polyurethane utilizing the same
JPH1171401A (en) * 1997-08-28 1999-03-16 Agency Of Ind Science & Technol Biodegradable polymeric material and its production
JP2000129143A (en) * 1998-10-26 2000-05-09 Mitsubishi Gas Chem Co Inc Biodegradable molded product, its material and its production
JP2003342416A (en) * 2002-05-30 2003-12-03 Toray Ind Inc Thermoplastic cellulose acetate composition
JP2004131726A (en) * 2002-09-18 2004-04-30 Asahi Kasei Life & Living Corp Biodegradable matte film
JP2004359840A (en) * 2003-04-10 2004-12-24 Toray Ind Inc Resin composition, its molded product and disperse aid
JP2007138339A (en) * 2005-11-18 2007-06-07 Oji Paper Co Ltd Paper having excellent dimensional stability
JP2007211129A (en) * 2006-02-09 2007-08-23 Agri Future Joetsu Co Ltd Aliphatic polyester resin composition and its molding

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109339A (en) * 1993-08-20 1995-04-25 Nippon Paint Co Ltd Biodegradable resin composition and antifouling coating compound composition
JPH0912588A (en) * 1995-06-22 1997-01-14 Hyoe Hatakeyama Sugar ester polyol, its production and biodegradable polyurethane utilizing the same
JPH1171401A (en) * 1997-08-28 1999-03-16 Agency Of Ind Science & Technol Biodegradable polymeric material and its production
JP2000129143A (en) * 1998-10-26 2000-05-09 Mitsubishi Gas Chem Co Inc Biodegradable molded product, its material and its production
JP2003342416A (en) * 2002-05-30 2003-12-03 Toray Ind Inc Thermoplastic cellulose acetate composition
JP2004131726A (en) * 2002-09-18 2004-04-30 Asahi Kasei Life & Living Corp Biodegradable matte film
JP2004359840A (en) * 2003-04-10 2004-12-24 Toray Ind Inc Resin composition, its molded product and disperse aid
JP2007138339A (en) * 2005-11-18 2007-06-07 Oji Paper Co Ltd Paper having excellent dimensional stability
JP2007211129A (en) * 2006-02-09 2007-08-23 Agri Future Joetsu Co Ltd Aliphatic polyester resin composition and its molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529265A (en) * 2012-09-07 2015-10-05 ナム,ジェ‐ドNam, Jae‐Do Thermoplastic lignin condensation polymer and process for producing the same
JP2020055928A (en) * 2018-09-28 2020-04-09 株式会社トレスバイオ研究所 Cured material and manufacturing method thereof

Also Published As

Publication number Publication date
JP5184953B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
US20200354567A1 (en) Nanocellulose nucleating agents for crystallization of polylactides and other polymers
EP1719797B1 (en) Starch-vegetable oil graft copolymers and their biofiber composites, and a process for their manufacture
García et al. Characterization and degradation characteristics of poly (ε-caprolactone)-based composites reinforced with almond skin residues
Tajeddin Cellulose‐based polymers for packaging applications
CA2601183A1 (en) Biodegradable aliphatic-aromatic copolyester
JPH11510549A (en) Bulk reactive extrusion polymerization process for producing aliphatic ester polymer compositions
Pandit et al. Functionality and properties of bio-based materials
CN111601648B (en) Process for the production of 1, 4-butanediol from renewable resources and polyester obtained therefrom
CN113773559A (en) Biodegradable composite modified film bag particle material and preparation method thereof
JP4117900B2 (en) Biodegradable natural materials derived from plants
Jadhav et al. Potential of polylactide based nanocomposites-nanopolysaccharide filler for reinforcement purpose: A comprehensive review
Saba et al. An overview on polylactic acid, its cellulosic composites and applications
KR20240037995A (en) Biocomposites based on biodegradable polymers
Zena et al. Essential characteristics improvement of metallic nanoparticles loaded carbohydrate polymeric films-A review
Genovese et al. Rapid solvent-free microcrystalline cellulose melt functionalization with l-lactide for the fabrication of green poly (lactic acid) biocomposites
JP5184953B2 (en) Hot press molding material with excellent biodegradability, method for producing the same, and hot press molding
EP1762583A1 (en) Thermoplastic cellulosic composition, process for producing the same, and molded article thereof
JPH0539412A (en) Degradable resin composition
JP4325287B2 (en) Resin composition, molded product thereof and dispersion aid
JPH11124485A (en) Composite resin composition
JPH11255870A (en) Preparation of biodegradable hybrid grafted composition of cellulose derivative
CN109535398B (en) A kind of star-like lact-acid oligomer and its preparation method and application
Jiang et al. Robust, flexible, and high-barrier films from bacterial cellulose modified by long-chain alkenyl succinic anhydrides
JPH1171401A (en) Biodegradable polymeric material and its production
Teseme Review on the manufacturing of biodegradable plastic packaging film from root and tuber starches

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

R150 Certificate of patent or registration of utility model

Ref document number: 5184953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees