JP2009263269A - Artificial oxygen carrier used for treating hemorrhage - Google Patents

Artificial oxygen carrier used for treating hemorrhage Download PDF

Info

Publication number
JP2009263269A
JP2009263269A JP2008113545A JP2008113545A JP2009263269A JP 2009263269 A JP2009263269 A JP 2009263269A JP 2008113545 A JP2008113545 A JP 2008113545A JP 2008113545 A JP2008113545 A JP 2008113545A JP 2009263269 A JP2009263269 A JP 2009263269A
Authority
JP
Japan
Prior art keywords
oxygen
mmhg
hemoglobin
partial pressure
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008113545A
Other languages
Japanese (ja)
Inventor
Hiroshi Goto
博 後藤
Takanobu Ishizuka
隆伸 石塚
Tsutomu Ueda
努 上田
Kazuhiko Suzuki
一比好 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2008113545A priority Critical patent/JP2009263269A/en
Publication of JP2009263269A publication Critical patent/JP2009263269A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hemoglobin-based artificial oxygen carrier which is needed on treatments of hemorrhage shocks or in processes for treating hemorrhage shocks and enables efficient oxygen supply to sites having oxygen partial pressures of ≤40 mmHg and efficient oxygen supply to sites having oxygen partial pressures between 100 mmHg and 40 mmHg in response to the state of the oxygen partial pressure of a tissue. <P>SOLUTION: The artificial oxygen carrier is characterized by together administering the artificial oxygen carrier having low oxygen affinity and the artificial oxygen carrier having high oxygen affinity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は出血治療に用いる人工酸素運搬体に関する。より詳しくは出血ショック治療時又は出血ショック治療過程において、組織の酸素分圧の状態に応じて、酸素を供給する事が可能な人工酸素運搬体に関する。   The present invention relates to an artificial oxygen carrier used for bleeding treatment. More specifically, the present invention relates to an artificial oxygen carrier capable of supplying oxygen according to the state of oxygen partial pressure of a tissue during or after bleeding shock treatment.

出血治療用の人工酸素運搬体として、ヘモグロビンベースのものが、様々に検討されてきた。ヘモグロビンベースのものとしては、ヘモグロビン溶液型とヘモグロビン含有リポソーム型のものがある。アロステリック因子(0013に詳述)を用いて、ヘモグロビンの酸素親和性を制御する事が可能である。通常の肺の酸素分圧100mmHgと組織末端の酸素分圧40mmHgの間の酸素運搬量を多くする為に、酸素親和性を制御する方法が検討されてきた(特公平4-66456)。出血ショック時は血流不全の為、組織末端は酸素不足であり、通常の組織末端の酸素分圧40mmHgより低くなっている。酸素分圧100mmHgと酸素分圧40mmHgの間の酸素供給だけでなく、酸素分圧40mmHg以下の部位への酸素供給も配慮する検討は従来、十分には行なわれていなかった。
特公平4-66456 人工臓器 18(1), 369-372 (1989)
Various artificial oxygen carriers for treatment of bleeding have been studied based on hemoglobin. As the hemoglobin-based one, there are a hemoglobin solution type and a hemoglobin-containing liposome type. Allosteric factors (detailed in 0013) can be used to control the oxygen affinity of hemoglobin. In order to increase the amount of oxygen transport between the normal oxygen partial pressure of 100 mmHg in the lung and the oxygen partial pressure of 40 mmHg at the end of the tissue, a method for controlling oxygen affinity has been studied (Japanese Patent Publication No. 4-66456). At the time of hemorrhagic shock, the end of the tissue is deficient in oxygen because of blood flow failure, and the oxygen partial pressure at the end of the tissue is lower than 40 mmHg. In the past, studies that considered not only oxygen supply between an oxygen partial pressure of 100 mmHg and an oxygen partial pressure of 40 mmHg but also oxygen supply to a site with an oxygen partial pressure of 40 mmHg or less were not sufficiently performed.
4-66456 Artificial organ 18 (1), 369-372 (1989)

ヘモグロビンベースの人工酸素運搬体において、ヒト血液を原料とする場合、赤血球からヘモグロビンを取り出す工程で、ヒト赤血球に元々存在するアロステリック因子の2,3-DPG(酸素放出能を高める燐酸化合物)が失われる。その結果として、酸素解離曲線(詳細は0013に記載)は左にシフトし、酸素運搬効率(詳細は0013に記載)は低くなってしまう問題があった。この問題を解決するため、ヘモグロビン溶液型の人工酸素運搬体では、ヘモグロビンにアロステリック因子を化学結合させたり、ヘモグロビン含有リポソーム型の人工酸素運搬体では、予めヘモグロビン溶液にアロステリック因子を溶解させ、これをリポソーム化し、酸素運搬効率を高める検討がされて来た。これらはいずれも通常の肺の酸素分圧100mmHgと通常の組織末端の酸素分圧40mmHgの間の酸素運搬量を多くする為に、酸素放出能を制御する方法であった。しかし、出血ショックにおいては、血液が失われ、血流不全となる為、組織末端は酸素不足に陥っているので、通常の酸素分圧40mmHgより低い状態にある。この点を考慮して、酸素分圧が40mmHgより低い部分への酸素供給に着目した検討も、最近では行なわれつつある。つまり、天然の赤血球と比較して、通常の肺の酸素分圧100mmHgと組織末端の酸素分圧40mmHgの間では酸素を離し難く、酸素分圧40mmHg以下の部位では酸素を離し易くする為、天然赤血球と比較して、酸素解離曲線を左にシフトさせた(高酸素親和性と呼ぶ)人工酸素運搬体を出血治療に用いる検討である。なお、本発明においては、通常の天然赤血球と比較して、酸素解離曲線が左にシフトしている場合を高酸素親和性と呼び、通常の天然赤血球と比較して、酸素解離曲線が右にシフトしている場合を低酸素親和性と呼ぶ。従来検討されて来た酸素分圧100mmHgと酸素分圧40mmHgの間の酸素運搬量を高める方法と比較すると、酸素放出能の面で逆の方向を目指すものである。現時点で、世界的に見てヘモグロビンベースの人工酸素運搬体が、幾つか臨床段階まで進んでいるが、高酸素親和性のものもあり、低酸素親和性のものもある。つまり、酸素放出能の面では、逆の方向を目指すものが、両者とも、臨床治験段階まで進んでいる事は、一見矛盾する様に見える。しかし、出血ショック治療初期においては、酸素分圧40mmHg以下の部位への酸素供給が重要であり、人工酸素運搬体が投与され、低酸素組織への酸素供給および血管内循環量が確保された後は、今度は、通常の酸素分圧100mmHg〜40mmHg間での酸素供給が必要となる点に我々は着目した。つまり、出血治療の為には酸素分圧40mmHg以下の部位への酸素供給も、酸素分圧100mmHg~40mmHg間での酸素供給も、状況に応じて必要である。しかし、この点に着目した検討は従来行なわれていなかつた。
本発明は、出血治療時に低酸素親和性の人工酸素運搬体および高酸素親和性の人工酸素運搬体を併用し、酸素分圧100mmHg〜40mmHgの間での酸素供給も、酸素分圧40mmHg以下への酸素供給も、状況に応じて可能となる人工酸素運搬体およびその投与方法を提供するものである。
In a hemoglobin-based artificial oxygen carrier, when human blood is used as a raw material, 2,3-DPG (a phosphate compound that increases oxygen release capacity), an allosteric factor originally present in human erythrocytes, is lost in the process of removing hemoglobin from erythrocytes. Is called. As a result, there is a problem that the oxygen dissociation curve (details are described in 0013) shifts to the left, and the oxygen carrying efficiency (details is described in 0013) is lowered. In order to solve this problem, hemoglobin solution type artificial oxygen carrier chemically binds allosteric factor to hemoglobin, or hemoglobin-containing liposome type artificial oxygen carrier previously dissolves allosteric factor in hemoglobin solution. Studies have been made to make liposomes and increase oxygen carrying efficiency. All of these were methods for controlling the oxygen release capacity in order to increase the amount of oxygen transport between the normal oxygen partial pressure of 100 mmHg and the normal oxygen partial pressure of 40 mmHg at the end of the tissue. However, in the hemorrhagic shock, blood is lost and blood flow is insufficiency, so that the end of the tissue is deficient in oxygen, and thus is in a state lower than the normal oxygen partial pressure of 40 mmHg. Considering this point, studies focusing on supplying oxygen to a portion where the oxygen partial pressure is lower than 40 mmHg are also being conducted recently. In other words, compared to natural red blood cells, it is difficult to release oxygen between the normal oxygen partial pressure of 100 mmHg of the lung and the oxygen partial pressure of 40 mmHg at the end of the tissue, and it is easier to release oxygen at the oxygen partial pressure of 40 mmHg or less. In this study, an artificial oxygen carrier that shifts the oxygen dissociation curve to the left (referred to as high oxygen affinity) compared to erythrocytes is used to treat bleeding. In the present invention, when the oxygen dissociation curve is shifted to the left as compared with normal natural erythrocytes, it is called high oxygen affinity, and when compared with normal natural erythrocytes, the oxygen dissociation curve is on the right. The shifted case is called low oxygen affinity. Compared with the conventional method of increasing the oxygen carrying amount between the oxygen partial pressure of 100 mmHg and the oxygen partial pressure of 40 mmHg, it aims at the opposite direction in terms of oxygen release capacity. At present, some hemoglobin-based artificial oxygen carriers worldwide have progressed to the clinical stage, but some have high oxygen affinity and some have low oxygen affinity. In other words, in terms of oxygen release capacity, it seems that contradictions seem to contradict that those aiming in the opposite direction have advanced to the clinical trial stage. However, in the early stage of hemorrhagic shock treatment, it is important to supply oxygen to sites with an oxygen partial pressure of 40 mmHg or less. After an artificial oxygen carrier is administered, oxygen supply to hypoxic tissues and the amount of intravascular circulation are ensured. This time, we focused on the point that oxygen supply is required between the normal oxygen partial pressures of 100mmHg and 40mmHg. That is, for the treatment of bleeding, oxygen supply to a site having an oxygen partial pressure of 40 mmHg or lower and oxygen supply between oxygen partial pressures of 100 mmHg to 40 mmHg are necessary depending on the situation. However, there has been no investigation focusing on this point.
The present invention uses a low oxygen affinity artificial oxygen carrier and a high oxygen affinity artificial oxygen carrier at the time of bleeding treatment, and oxygen supply between oxygen partial pressures of 100 mmHg to 40 mmHg is also reduced to an oxygen partial pressure of 40 mmHg or less. Therefore, it is also possible to provide an artificial oxygen carrier and its administration method that can supply oxygen depending on the situation.

出血治療時には、通常の組織末端の酸素分圧40mmHg以下の部位への酸素供給及び、酸素分圧100mmHg~40mmHg間での酸素供給が、状況に応じて必要となる事に着目し、従来、この観点よりの検討は行なわれていなかったので、下記のごとく、上記課題を解決した。   At the time of hemorrhage treatment, we focused on the fact that oxygen supply to the normal tissue end oxygen partial pressure of 40 mmHg or less and oxygen supply between oxygen partial pressure of 100 mmHg to 40 mmHg depending on the situation, Since the examination from the viewpoint was not performed, the above-mentioned problems were solved as follows.

出血治療に用いる人工酸素酸素運搬体であって、低酸素親和性の前記人工酸素運搬体
と高酸素親和性の前記人工酸素運搬体を併用して用いる事を特徴とする前記人工酸素運搬体。
An artificial oxygen oxygen carrier for use in bleeding treatment, wherein the artificial oxygen carrier having a low oxygen affinity and the artificial oxygen carrier having a high oxygen affinity are used in combination.

(2) 出血治療に用いる人工酸素運搬体であって、初回に低酸素親和性の前記人工酸素運搬体を投与し、その後、高酸素親和性の前記人工酸素運搬体を投与する事を特徴とする請求項1に記載の前記人工酸素運搬体。 (2) An artificial oxygen carrier used for bleeding treatment, characterized by administering the artificial oxygen carrier having a low oxygen affinity for the first time, and then administering the artificial oxygen carrier having a high oxygen affinity. The artificial oxygen carrier according to claim 1, wherein:

(3) 前記人工酸素運搬体がヘモグロビン含有リポソームの懸濁液である事を特徴とする請求項1又は2に記載の人工酸素運搬体。 (3) The artificial oxygen carrier according to claim 1 or 2, wherein the artificial oxygen carrier is a suspension of hemoglobin-containing liposomes.

以上、詳述した様に、本発明は出血治療時に低酸素親和性の前記人工酸素運搬体と高酸素親和性の前記人工酸素運搬体を併用して用いる事により、出血治療時に必要となる酸素分圧40mmHg以下への酸素供給と、酸素分圧100mmHg〜40mmHgの間での酸素供給が状況に応じて可能な人工酸素運搬体を提供出来る。   As described above in detail, the present invention uses the artificial oxygen carrier having a low oxygen affinity and the artificial oxygen carrier having a high oxygen affinity at the time of bleeding treatment, thereby providing oxygen necessary for the treatment of bleeding. It is possible to provide an artificial oxygen carrier capable of supplying oxygen at a partial pressure of 40 mmHg or less and oxygen supply at an oxygen partial pressure of 100 mmHg to 40 mmHg depending on the situation.

本発明の人工酸素運搬体としては、ヘモグロビン溶液型のものを用いても良いし、ヘモグロビン含有リポソーム型のものを用いても良いが、以下、人工酸素運搬体としてヘモグロビン含有リポソーム型のものを用いた場合について、より具体的に説明する。   As the artificial oxygen carrier of the present invention, a hemoglobin solution type or a hemoglobin-containing liposome type may be used. Hereinafter, a hemoglobin-containing liposome type is used as the artificial oxygen carrier. The case will be described more specifically.

<リポソーム膜形成脂質>
本発明におけるリポソーム膜形成脂質は天然又は合成の脂質が使用可能である。特にリン脂質が好適に使用され、これらを常法に従って水素添加したものがあげられる。更にリポソーム膜形成脂質には所望によりステロール等の膜強化剤や荷電物質として高級飽和脂肪酸を添加しても良い。リン脂質として水素添加大豆リン脂質、膜強化剤としてコレステロール、荷電物質としてステアリン酸等が好適に使用される。
<Liposome membrane-forming lipid>
The liposome membrane-forming lipid in the present invention can be a natural or synthetic lipid. In particular, phospholipids are preferably used, and those obtained by hydrogenation according to a conventional method can be mentioned. Further, higher lipophilic fatty acids may be added to the liposome membrane-forming lipid as desired, such as a membrane reinforcing agent such as sterol or a charged substance. Preferably, hydrogenated soybean phospholipid is used as the phospholipid, cholesterol is used as the film strengthening agent, and stearic acid is used as the charged substance.

<リポソーム内水相に含有されるヘモグロビン>
本発明のリポソーム内水相に含有されるヘモグロビンは、公知の方法により、ヒト期限切れ濃厚赤血球製剤より白血球、血小板、血漿及び赤血球膜を除去した後、濃縮したヒト由来濃厚ヘモグロビンが用いられる。
<Hemoglobin contained in liposome aqueous phase>
As the hemoglobin contained in the aqueous phase of liposomes of the present invention, concentrated human-derived hemoglobin is used after removing leukocytes, platelets, plasma and erythrocyte membrane from a human expired concentrated erythrocyte preparation by a known method.

<リポソーム表面修飾剤>
リポソーム表面への蛋白吸着剤又はリポソーム凝集抑制として(特公平7-20857)、そして、リポソームの血管内投与後の一過性の血圧低下の可能性を軽減化する為(特願2007-267469)、一端に疎水性を有し、且つ、他端に親水性高分子を有する化合物がリポソームの表面修飾に用いられる。
<Liposome surface modifier>
As a protein adsorbent on the liposome surface or inhibition of liposome aggregation (Japanese Patent Publication No. 7-20857) and to reduce the possibility of transient blood pressure reduction after intravascular administration of the liposome (Japanese Patent Application No. 2007-267469) A compound having hydrophobicity at one end and a hydrophilic polymer at the other end is used for the surface modification of the liposome.

<アロステリック因子と酸素解離曲線>
本発明に記載されるアロステリック因子とは、酸素解離曲線(ヘモグロビンの酸素飽和度と酸素分圧との関係を示す曲線。ヒト天然血液の酸素解離曲線は図1参照)に影響を与える因子である。アロステリック因子は酸素解離曲線を右にシフトさせ、その結果として酸素運搬効率を高くする。一般には、天然赤血球の酸素運搬効率とは通常の肺の酸素分圧である100mmHgと酸素供給先の部位である組織末端の酸素分圧40mmHgとの間のヘモグロビンの酸素飽和度の差を示す。図1が示す様に、ヒト天然赤血球では肺(酸素分圧100mmHg)で酸素飽和度は約100%であり、静脈(酸素分圧40mmHg)では酸素飽和度は約75%なので、肺と組織末端との間で、酸素飽和量の25%を組織に供給する。人工酸素運搬体としてのヘモグロビン含有リポソーム懸濁液において、ヒト血液を原料とする場合、赤血球からヘモグロビンを取り出す工程において、ヒト赤血球に元々存在するアロステリック因子の2,3-DPG(酸素放出能を高める燐酸化合物)が失われる。その結果として、酸素解離曲線は左にシフトし、天然赤血球で得られた100mmHgと40mmHgの間での酸素運搬効率が低下してしまう問題があった。本発明者らは、予めヘモグロビン溶液にアロステリック因子を溶解させ、これをリポソーム化する事により、この問題を解決する方法を鋭意検討してきた(特公平4-66456)。
しかし、出血ショック時には、血液が失われた事により、末梢循環不全となり、組織末端では酸素不足に陥っており、組織末端の酸素分圧は通常の組織末端の酸素分圧40mmHgよりも更に低くなっている。酸素分圧40mmHgよりも更に低い酸素分圧の部位に酸素を供給する為には、酸素分圧40mmHgと酸素分圧0mmHgとの間での酸素運搬効率が重要であり、酸素解離曲線を適切な範囲で左にシフトさせれば、天然赤血球と比較して、酸素分圧100mmHg〜40mmHgの間では、酸素を離し難く、酸素分圧40mmHg以下の部位で酸素を離し易くなる。なお、本発明では、酸素解離曲線が天然赤血球と比較して、右にシフトしている場合を低酸素親和性、左にシフトしている場合を高酸素親和性と呼ぶ。よって、低酸素組織に運搬可能な酸素運搬量を増加させる為には、酸素解離曲線を右にシフトさせる作用のあるアロステリック因子は添加量を少なくするか、或いは添加しない方が有利である。
本発明においては、出血ショック時の治療初期に上記設定の高酸素親和性のヘモグロビン含有リポソーム懸濁液(アロステリック因子の添加量が少ないか、或いは添加しない)を投与し、酸素分圧40mmHg以下の低酸素部位への効率の良い酸素供給及び血管内循環量の確保が行なわれたその後では、今度は肺の酸素分圧100mmHgと組織末端の酸素分圧40mmHgの間での酸素供給が必要となる。そこで、高酸素親和性の人工酸素運搬体投与の後で、低酸素親和性のアロステリック因子添加ヘモグロビン含有リポソーム懸濁液を投与すれば、天然赤血球と比較して、酸素解離曲線はより右にシフトしているので、100mmHgと40mmHgとの間で設定した酸素運搬効率は高くなり、酸素分圧100mmHg~40mmHg間で酸素を供給し易くなる。
<Allosteric factor and oxygen dissociation curve>
The allosteric factor described in the present invention is a factor that affects the oxygen dissociation curve (a curve showing the relationship between the oxygen saturation of hemoglobin and the partial pressure of oxygen. See FIG. 1 for the oxygen dissociation curve of human natural blood). . Allosteric factors shift the oxygen dissociation curve to the right, resulting in higher oxygen carrying efficiency. In general, the oxygen carrying efficiency of natural erythrocytes indicates the difference in oxygen saturation of hemoglobin between the normal oxygen partial pressure of 100 mmHg and the oxygen partial pressure of 40 mmHg at the end of the tissue, which is the site of oxygen supply. As shown in Fig. 1, in human natural red blood cells, oxygen saturation is about 100% in the lung (oxygen partial pressure 100mmHg), and in the vein (oxygen partial pressure 40mmHg), oxygen saturation is about 75%. In between, 25% of the oxygen saturation is supplied to the tissue. In a hemoglobin-containing liposome suspension as an artificial oxygen carrier, when human blood is used as a raw material, in the process of taking out hemoglobin from red blood cells, 2,3-DPG (which enhances the oxygen release capacity) of the allosteric factor originally present in human red blood cells Phosphoric acid compound) is lost. As a result, the oxygen dissociation curve shifted to the left, and there was a problem that the oxygen carrying efficiency between 100 mmHg and 40 mmHg obtained with natural red blood cells was lowered. The present inventors have intensively studied a method for solving this problem by dissolving an allosteric factor in a hemoglobin solution in advance and converting it into a liposome (Japanese Patent Publication No. 4-66456).
However, at the time of hemorrhagic shock, peripheral circulation failure occurs due to the loss of blood, and oxygen is insufficient at the end of the tissue. The oxygen partial pressure at the end of the tissue is even lower than the normal oxygen partial pressure at the end of the tissue of 40 mmHg. ing. In order to supply oxygen to a part with an oxygen partial pressure lower than the oxygen partial pressure of 40 mmHg, the oxygen transport efficiency between the oxygen partial pressure of 40 mmHg and the oxygen partial pressure of 0 mmHg is important, If the range is shifted to the left, it is difficult to release oxygen at an oxygen partial pressure of 100 mmHg to 40 mmHg compared to natural red blood cells, and oxygen is easily released at a site where the oxygen partial pressure is 40 mmHg or less. In the present invention, when the oxygen dissociation curve is shifted to the right as compared with natural erythrocytes, it is referred to as low oxygen affinity, and when it is shifted to the left, high oxygen affinity. Therefore, in order to increase the amount of oxygen transport that can be transported to the hypoxic tissue, it is advantageous to reduce or not add the allosteric factor that acts to shift the oxygen dissociation curve to the right.
In the present invention, the high oxygen affinity hemoglobin-containing liposome suspension (with little or no allosteric factor added) is administered at the initial stage of treatment at the time of bleeding shock, and the oxygen partial pressure is 40 mmHg or less. After efficient oxygen supply to the hypoxic site and ensuring of the amount of intravascular circulation were performed, oxygen supply between the partial oxygen pressure of the lung of 100 mmHg and the partial oxygen pressure of the tissue end of 40 mmHg is required. . Therefore, after administration of a high oxygen affinity artificial oxygen carrier, administration of a low oxygen affinity allosteric factor-added hemoglobin-containing liposome suspension shifts the oxygen dissociation curve to the right compared to natural erythrocytes. Therefore, the oxygen carrying efficiency set between 100 mmHg and 40 mmHg becomes high, and it becomes easy to supply oxygen between oxygen partial pressures of 100 mmHg and 40 mmHg.

<ヘモグロビン含有リポソーム懸濁液の酸素運搬量設定>
本発明における、ヘモグロビンを内水相とするリポソーム懸濁液1mLが酸素分圧100mmHgと酸素分圧40mmHgの間で運搬可能な酸素運搬量(低酸素親和性設定)又は酸素分圧40mmHgと0mmHgの間で運搬可能な酸素運搬量(高酸素親和性設定)は、本発明において、(1)前記リポソーム懸濁液中のヘモグロビン濃度(ヘモグロビンが酸素運搬の主役である)(2)前記リポソーム懸濁液中のヘモグロビンメト化率(ヘモグロビンが酸化されて、メトヘモグロビンとなると酸素運搬能を失う)(3)前記リポソーム懸濁液の酸素運搬効率から理論的に算出する(後述)。本発明の酸素運搬効率は低酸素親和性の為には、酸素分圧100mmHgと40mmHgの間で設定される(酸素解離曲線において酸素分圧100mmHgと40mmHg酸素飽和度の差)。また、本発明の酸素運搬効率は高酸素親和性設定の為には、酸素分圧40mmHgと0mmHgの間で設定される(酸素解離曲線において酸素分圧40mmHgと0mmHgの酸素飽和度の差)。
前記リポソーム懸濁液中のヘモグロビン濃度:Aw/v%、前記リポソーム懸濁液中のヘモグロビンメト化率:B%、前記リポソーム懸濁液の酸素運搬効率(低酸素親和性設定又は高酸素親和性設定):C%とすると、前記リポソーム懸濁液1mLが、酸素分圧100mmHgと40mmHgの間で、又は、酸素分圧40mmHgと0mmHgの間で運搬可能な酸素量DmL(37℃、1気圧)は以下の様に理論的に計算される。
リポソーム懸濁液1mL中のヘモグロビンに結合可能な酸素分子数(moL)は、ヘモグロビンに結合可能な酸素分子が4つである事から、
{A(1−B / 100)×4 / 64500}/ 100 .....(1)となる。
更に、酸素運搬効率がC%である事から、リポソーム懸濁液1mLが放出する酸素分子数(moL)は、
(1)×(C / 100).....(2)となる。
また、気体の状態方程式PV=nRT R(atm・1・/・K・moL)=0.082より、
D(mL)=(2)×0.082×(37+273)×1000.....(3)となる。
以上により、前記ヘモグロビン含有リポソーム懸濁液において、(1)前記リポソーム懸濁液中のヘモグロビン濃度(2)前記リポソーム懸濁液中の酸素運搬効率(3)前記リポソーム懸濁液中のヘモグロビンメト化率を適切に制御し、設定する事により、適切な酸素運搬量の設定が可能となる。
<Oxygen carrying amount setting of hemoglobin-containing liposome suspension>
In the present invention, 1 mL of a liposome suspension having hemoglobin as an inner aqueous phase can carry oxygen between an oxygen partial pressure of 100 mmHg and an oxygen partial pressure of 40 mmHg (low oxygen affinity setting), or an oxygen partial pressure of 40 mmHg and 0 mmHg. In the present invention, the oxygen transport amount (high oxygen affinity setting) that can be transported between (1) hemoglobin concentration in the liposome suspension (hemoglobin is the main role of oxygen transport) (2) the liposome suspension Hemoglobin metration rate in liquid (hemoglobin is oxidized and loses oxygen carrying ability when it becomes methemoglobin) (3) Theoretically calculated from the oxygen carrying efficiency of the liposome suspension (described later). The oxygen carrying efficiency of the present invention is set between oxygen partial pressures of 100 mmHg and 40 mmHg for low oxygen affinity (difference between oxygen partial pressures of 100 mmHg and 40 mmHg oxygen saturation in the oxygen dissociation curve). Further, the oxygen carrying efficiency of the present invention is set between oxygen partial pressures of 40 mmHg and 0 mmHg for setting high oxygen affinity (difference in oxygen saturation between oxygen partial pressures of 40 mmHg and 0 mmHg in the oxygen dissociation curve).
Hemoglobin concentration in the liposome suspension: Aw / v%, hemoglobin metration rate in the liposome suspension: B%, oxygen transport efficiency of the liposome suspension (low oxygen affinity setting or high oxygen affinity) Setting): If C%, the amount of oxygen DmL (37 ° C, 1 atm) that can be transported between 1 mL of the liposome suspension and oxygen partial pressures of 100 mmHg and 40 mmHg, or between oxygen partial pressures of 40 mmHg and 0 mmHg. Is calculated theoretically as follows:
The number of oxygen molecules that can bind to hemoglobin (moL) in 1 mL of liposome suspension is four oxygen molecules that can bind to hemoglobin.
{A (1-B / 100) × 4/64500} / 100. . . . . (1).
Furthermore, since the oxygen carrying efficiency is C%, the number of oxygen molecules (moL) released by 1 mL of liposome suspension is
(1) x (C / 100). . . . . (2)
From the equation of state of gas PV = nRT R (atm · 1 · · · K · moL) = 0.082,
D (mL) = (2) × 0.082 × (37 + 273) × 1000. . . . . (3)
As described above, in the hemoglobin-containing liposome suspension, (1) hemoglobin concentration in the liposome suspension (2) oxygen transport efficiency in the liposome suspension (3) hemoglobin methonation in the liposome suspension By appropriately controlling and setting the rate, an appropriate oxygen carrying amount can be set.

<リポソーム懸濁液中のヘモグロビン濃度>
本発明における人工酸素運搬体としてのヘモグロビン含有リポソーム懸濁液の酸素運搬の主役はヘモグロビンである。前記リポソーム懸濁液中のヘモグロビン濃度が高過ぎると、ヘモグロビンをリポソーム化する為のリポソーム形成脂質の濃度が必然的に高くなり、生体に投与される総脂質濃度が高くなって、安全性の面で懸念がある。また、前記リポソーム懸濁液中のヘモグロビン濃度が低過ぎると、酸素運搬の主役であるヘモグロビンの絶対量が不足して、酸素運搬量設定に不利となる。従って、前記リポソーム懸濁液中の適切なヘモグロビン濃度は5.6〜6.7w/v%であり、より好ましくは5.7〜6.6w/v%である。
<Hemoglobin concentration in liposome suspension>
The main role of oxygen transport of the hemoglobin-containing liposome suspension as an artificial oxygen transporter in the present invention is hemoglobin. If the hemoglobin concentration in the liposome suspension is too high, the concentration of liposome-forming lipids for lysing hemoglobin into liposomes will inevitably increase, and the total lipid concentration administered to the living body will increase, leading to safety aspects. There are concerns. On the other hand, if the hemoglobin concentration in the liposome suspension is too low, the absolute amount of hemoglobin, which is the main oxygen transporter, is insufficient, which is disadvantageous in setting the oxygen transport amount. Therefore, the appropriate hemoglobin concentration in the liposome suspension is 5.6 to 6.7 w / v%, more preferably 5.7 to 6.6 w / v%.

<リポソーム懸濁液中のヘモグロビンメト化率>
ヘモグロビンは酸化されて、メトヘモグロビンとなると酸素運搬能を失うので、人工酸素運搬体としてのヘモグロビン含有リポソームにおいては、ヘモグロビンの酸化防止(ヘモグロビンメト化防止)は、重要課題の一つである。ヘモグロビンのpHが過度に低下すると、ヘモグロビンの酸化が促進するので、製造工程を低温に保つと同時に、製造工程ではヘモグロビンのpH制御を行い、公知の方法(特開2006-104069)により、還元剤使用による脱酸素化及び脱酸素化状態のまま、製造バッグに無菌充填した後、脱酸素化状態を維持できる様に外包装を行う。前記リポソーム懸濁液製造直後及び有効保存期間中のヘモグロビンメト化率は10%以下である。ヘモグロビンメト化率がこれより高くなると、前記リポソーム懸濁液の酸素運搬量が低下し、酸素運搬体として不利となる。
<Hemoglobin methaization rate in liposome suspension>
When hemoglobin is oxidized to methemoglobin, it loses its ability to carry oxygen. Therefore, in hemoglobin-containing liposomes as an artificial oxygen carrier, antioxidation of hemoglobin (prevention of hemoglobin methation) is one of important issues. When the pH of hemoglobin is excessively lowered, the oxidation of hemoglobin is promoted, so that the manufacturing process is kept at a low temperature, and at the same time, the pH of hemoglobin is controlled in the manufacturing process, and a reducing agent is obtained by a known method (Japanese Patent Laid-Open No. 2006-104069). After aseptically filling the production bag in the deoxygenated and deoxygenated state after use, outer packaging is performed so that the deoxygenated state can be maintained. Immediately after the preparation of the liposome suspension and during the effective storage period, the hemoglobin metation rate is 10% or less. If the hemoglobin metrification rate is higher than this, the amount of oxygen transported in the liposome suspension is lowered, which is disadvantageous as an oxygen transporter.

次に本発明の実施例により、具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、前記リポソーム懸濁液の製造工程は無菌環境下での操作とした。   EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, the manufacturing process of the said liposome suspension was made into operation in aseptic environment.

<高酸素親和性のヘモグロビン含有リポソーム懸濁液の製造>
アロステリック因子を添加せず、酸素解離曲線を天然赤血球と比較して、より左にシフトさせる。
水素添加大豆ホスファチジルコリン182g、コレステロール89g、ステアリン酸46gからなる均一混合脂質に水317gを加えて、85℃で30分間加熱して水和膨潤均一混合脂質を調整した。期限切れ濃厚赤血球際剤からヘモグロビンを精製、濃縮し、ヘモグロビン濃度42.0w/v%の濃厚ヘモグロビンを調整した。前記水和膨潤均一混合脂質634gに前記濃厚ヘモグロビン溶液2264gを添加し、均一に攪拌し前乳化を行なった。前記前乳化後に更に強力な攪拌により、本乳化を行なった。前記本乳化後の混合液を生理食塩水により希釈して、0.45μm膜を用いて、循環濾過により粒子径の制御を行なった。次に10mg/mL濃度の亜硫酸ナトリウム生理食塩水溶液を使用し、亜硫酸ナトリウムによる脱酸素化を行なった後、分画分子量30万の限外濾過膜を用いて、0.5mg/mL濃度の亜硫酸ナトリウム生理食塩水溶液による加水濃縮で、リポソーム化されなかったヘモグロビンを除去し、ヒト由来濃厚ヘモグロビン含有リポソーム懸濁液を作成した。前記リポソーム懸濁液に、PEG結合リン脂質として、DSPE-PEG5000(日本油脂製)を生理食塩水に溶解させたPEG結合リン脂質生理食塩水溶液を添加した。前記リポソーム及びPEG結合リン脂質を含有した前記リポソーム懸濁液中のリポソーム膜形成脂質濃度が4.05w/v%であり、PEG結合リン脂質濃度が0.31w/v%である様に調整した後、37℃、24時間処理し、PEG結合リン脂質をリポソーム表面に固定化した前記リポソーム懸濁液を得た(サンプルAとする)。
前記リポソーム懸濁液中のヘモグロビン濃度は6.3w/v%であり、ステアリン酸濃度は0.58w/v%であった。製造直後の前記リポソーム懸濁液中のヘモグロビンメト化率は4.0%であった。前記リポソーム懸濁液の酸素解離曲線(37℃)から求めた酸素運搬効率(高酸素親和性設定。酸素分圧40mmHgと酸素分圧0mmHgの間の酸素飽和度の差)は97%であった。前記リポソーム懸濁液中のヘモグロビン濃度:6.3w/v%、ヘモグロビンメト化率:4.0%、前記リポソーム懸濁液の酸素運搬効率(高酸素親和性設定):97%を前述0015に記載の(3)式に当てはめると、前記リポソーム懸濁液1mLが酸素分圧40mmHg〜0mmHgの間で運び得る酸素運搬量(37℃、1気圧)は0.092mLと算出された。一方、酸素解離曲線が天然赤血球より左にシフトしているので、100mmHgと40mmHgの間の酸素運搬効率は僅か3%となり、100mmHgと40mmHgの間で運搬可能な酸素量は、前述0015に記載の(3)式に当てはめると0.0028mLとなる。
<Production of high oxygen affinity hemoglobin-containing liposome suspension>
No allosteric factor is added and the oxygen dissociation curve is shifted to the left compared to natural erythrocytes.
317 g of water was added to a uniformly mixed lipid composed of 182 g of hydrogenated soybean phosphatidylcholine, 89 g of cholesterol and 46 g of stearic acid, and heated at 85 ° C. for 30 minutes to prepare a hydrated and swollen uniformly mixed lipid. Hemoglobin was purified and concentrated from the expired concentrated red blood cell preparation to prepare concentrated hemoglobin having a hemoglobin concentration of 42.0 w / v%. 2634 g of the concentrated hemoglobin solution was added to 634 g of the hydrated and swollen uniformly mixed lipid, and the mixture was stirred uniformly and pre-emulsified. After the pre-emulsification, the emulsification was carried out by a stronger stirring. The mixture after the main emulsification was diluted with physiological saline, and the particle size was controlled by circulation filtration using a 0.45 μm membrane. Next, 10 mg / mL sodium sulfite physiological saline solution was used, and after deoxygenation with sodium sulfite, a 0.5 mg / mL sodium sulfite physiological solution was used using an ultrafiltration membrane with a molecular weight cut off of 300,000. The hemoglobin that had not been converted to liposomes was removed by hydroconcentration with a saline solution to prepare a human-derived concentrated hemoglobin-containing liposome suspension. A PEG-linked phospholipid physiological saline solution in which DSPE-PEG5000 (manufactured by NOF Corporation) was dissolved in physiological saline was added to the liposome suspension as a PEG-conjugated phospholipid. After adjusting the liposome membrane-forming lipid concentration in the liposome suspension containing the liposome and PEG-bound phospholipid to 4.05 w / v% and adjusting the PEG-bound phospholipid concentration to 0.31 w / v%, The liposome suspension was treated at 37 ° C. for 24 hours to obtain a PEG-conjugated phospholipid immobilized on the liposome surface (referred to as sample A).
The hemoglobin concentration in the liposome suspension was 6.3 w / v%, and the stearic acid concentration was 0.58 w / v%. The hemoglobin metation rate in the liposome suspension immediately after production was 4.0%. The oxygen carrying efficiency (high oxygen affinity setting. Difference in oxygen saturation between oxygen partial pressure 40 mmHg and oxygen partial pressure 0 mmHg) determined from the oxygen dissociation curve (37 ° C) of the liposome suspension was 97% . Hemoglobin concentration in the liposome suspension: 6.3 w / v%, hemoglobin metration rate: 4.0%, oxygen transportation efficiency (high oxygen affinity setting) of the liposome suspension: 97% 3) When applied to the equation, the oxygen carrying amount (37 ° C., 1 atm) that 1 mL of the liposome suspension can be carried between oxygen partial pressures of 40 mmHg to 0 mmHg was calculated to be 0.092 mL. On the other hand, since the oxygen dissociation curve is shifted to the left from the natural erythrocytes, the oxygen carrying efficiency between 100 mmHg and 40 mmHg is only 3%, and the amount of oxygen that can be carried between 100 mmHg and 40 mmHg is as described in 0015 above. When applied to the equation (3), it becomes 0.0028 mL.

<低酸素親和性のヘモグロビン含有リポソーム懸濁液の製造>
アロステリック因子を添加して、酸素解離曲線を天然赤血球と比較して、より右にシフトさせる。
水素添加大豆ホスファチジルコリン182g、コレステロール89g、ステアリン酸65gからなる均一混合脂質に水336gを加えて、85℃で30分加熱して水和膨潤均一混合脂質を調整した。期限切れ濃厚赤血球製剤からヘモグロビンを精製、濃縮し、アロステリック因子として、フィチン酸12ナトリウムをヘモグロビンに対して等モル添加したヘモグロビン濃度42.6w/v%の濃厚ヘモグロビンを調整した。前記水和膨潤均一混合脂質672gに前記フィチン酸12ナトリウム添加濃厚ヘモグロビン溶液2,400gを添加し、水和膨潤均一混合脂質中のステアリン酸を中和する量の水酸化ナトリウムを添加しつつ、均一に攪拌し、前乳化を行なった。前記前乳化後に更に強力な攪拌により、本乳化を行なった。前記本乳化後の混合液を生理食塩水により希釈して、0.45μm膜を用いて、循環濾過により粒子径の制御を行なった。次に10mg/ml濃度の亜硫酸ナトリウム生理食塩水を使用し、亜硫酸ナトリウムによる脱酸素化を行なった後、分画分子量30万の限外濾過膜を用いて、0.5mg/ml濃度の亜硫酸ナトリウム生理食塩水による加水濾過濃縮で、リポソーム化されなかったヘモグロビン及びフィチン酸12ナトリウムを除去し、ヒト由来濃厚ヘモグロビン及びアロステリック因子含有リポソーム懸濁液を作成した。前記リポソーム懸濁液に、PEG結合リン脂質として、DSPE-PEG5000(日本油脂製)を生理食塩水に溶解させたPEG結合リン脂質水溶液を添加した。前記リポソーム及びPEG結合リン脂質を含有した前記リポソーム懸濁液中のリポソーム膜構成脂質濃度が4.04w/v%であり、PEG結合リン脂質濃度が0.33w/v%である様に調整した後、37℃、24時間処理し、PEG結合リン脂質をリポソーム表面に固定化した前記リポソーム懸濁液を得た(サンプルBとする)。
前記リポソーム懸濁液中のヘモグロビン濃度は6.2w/v%であり、アロステリック因子であるフィチン酸12ナトリウム濃度は0.077w/v%であり、ステアリン酸濃度は0.82w/v%であった。製造直後の前記リポソーム懸濁液中のヘモグロビンメト化率は4.5%であつた。前記リポソーム懸濁液の酸素解離曲線(37℃)から求めた酸素運搬効率(高酸素親和性設定:酸素分圧40mmHgと酸素分圧0mmHgの間の酸素飽和度の差)は41%であった。前記リポソーム懸濁液中のヘモグロビン濃度6.2%、ヘモグロビンメト化率4.5%、前記リポソーム懸濁液の酸素運搬効率(高酸素親和性設定)41%を前述0013に記載の(3)式に当てはめると、前記リポソーム懸濁液1mLが酸素分圧40mmHg〜0mmHgの間で運び得る酸素運搬量(37℃、1気圧)は0.038mLと算出された。一方、酸素分圧100mmHgと40mmHgの間の運搬可能な酸素量(37℃、1気圧)は、酸素解離曲線が右にシフトしており、この場合の酸素運搬効率(低酸素親和性設定)が37%となるので、同じく前述0013に記載の(3)式に当てはめると0.0345mLとなる。
<Production of low oxygen affinity hemoglobin-containing liposome suspension>
Allosteric factor is added to shift the oxygen dissociation curve more to the right compared to natural red blood cells.
336 g of water was added to a uniformly mixed lipid consisting of 182 g of hydrogenated soybean phosphatidylcholine, 89 g of cholesterol, and 65 g of stearic acid, and heated at 85 ° C. for 30 minutes to prepare a hydrated and swollen uniformly mixed lipid. Hemoglobin was purified and concentrated from the expired concentrated erythrocyte preparation, and concentrated hemoglobin having a hemoglobin concentration of 42.6 w / v% was prepared by adding equimolar amounts of 12 sodium phytate to hemoglobin as an allosteric factor. Add 2,400 g of the 12 mg phytate-concentrated concentrated hemoglobin solution to 672 g of the hydrated and swollen uniformly mixed lipid, and add sodium hydroxide in an amount to neutralize the stearic acid in the hydrated and swollen uniformly mixed lipid, while uniformly adding Stir and pre-emulsify. After the pre-emulsification, the emulsification was carried out by a stronger stirring. The mixture after the main emulsification was diluted with physiological saline, and the particle size was controlled by circulation filtration using a 0.45 μm membrane. Next, 10 mg / ml sodium sulfite physiological saline was used, and after deoxygenation with sodium sulfite, a 0.5 mg / ml sodium sulfite physiological solution was used using an ultrafiltration membrane with a molecular weight cut off of 300,000. The hemoglobin and 12 sodium phytate which were not made into liposomes were removed by hydrofiltration concentration with saline solution, and a human-derived concentrated hemoglobin and allosteric factor-containing liposome suspension was prepared. To the liposome suspension, an aqueous PEG-conjugated phospholipid solution in which DSPE-PEG5000 (manufactured by NOF Corporation) was dissolved in physiological saline was added as a PEG-conjugated phospholipid. After adjusting the liposome membrane-constituting lipid concentration in the liposome suspension containing the liposome and PEG-bound phospholipid to 4.04 w / v% and adjusting the PEG-bound phospholipid concentration to 0.33 w / v%, The liposome suspension was treated at 37 ° C. for 24 hours to obtain a PEG-conjugated phospholipid immobilized on the liposome surface (referred to as sample B).
The hemoglobin concentration in the liposome suspension was 6.2 w / v%, the concentration of 12 sodium phytate as an allosteric factor was 0.077 w / v%, and the stearic acid concentration was 0.82 w / v%. The hemoglobin metation rate in the liposome suspension immediately after production was 4.5%. The oxygen carrying efficiency (high oxygen affinity setting: difference in oxygen saturation between oxygen partial pressure 40 mmHg and oxygen partial pressure 0 mmHg) determined from the oxygen dissociation curve (37 ° C) of the liposome suspension was 41% . When the hemoglobin concentration in the liposome suspension is 6.2%, the hemoglobin metation rate is 4.5%, and the oxygen carrying efficiency (high oxygen affinity setting) of 41% in the liposome suspension is applied to the equation (3) described in the above 0013. The amount of oxygen transport (37 ° C., 1 atm) that can be carried by 1 mL of the liposome suspension between an oxygen partial pressure of 40 mmHg to 0 mmHg was calculated to be 0.038 mL. On the other hand, the amount of oxygen that can be transported between oxygen partial pressures of 100 mmHg and 40 mmHg (37 ° C, 1 atm) has the oxygen dissociation curve shifted to the right. In this case, the oxygen transport efficiency (low oxygen affinity setting) Since it is 37%, it is 0.0345 mL when applied to the expression (3) described in 0013 above.

<投与方法の検討>
0017に記載の高酸素親和性のヘモグロビン含有リポソーム懸濁液をサンプルAとし、0018に記載の低酸素親和性のヘモグロビン含有リポソーム懸濁液をサンプルBとする。各々のサンプル1mLが酸素分圧40mmHg〜0mmHgの間で運搬可能な酸素量(37℃、1気圧)、及び、酸素分圧が100mmHg〜0mmHgの間で運搬可能な酸素量(37℃、1気圧)を表1に纏める。投与方法を以下の様にシミュレーションした。
(投与方法1)治療初期にサンプルAのみを投与
出血ショツク時に、治療初期にサンプルAのみを投与した場合は、表1より、酸素分圧40mmHg以下の部位に酸素が効率よく供給され(サンプル1mL当たり0.092mL)、酸素分圧40mmHg以下への酸素供給及び血管内循環量が確保された後は、酸素分圧100mmHg〜40mmHgの間での酸素供給が必要となるが、表1により、サンプルAによる酸素運搬量は僅かであり、残っている天然赤血球が確保された血流により酸素を運搬する事になる。
(投与方法2)治療初期にサンプルBのみを投与
出血ショック時に、治療初期にサンプルBのみを投与した場合は、表1より、酸素分圧40mmHg以下の部位に、サンプル1mL当たり0.038mLの酸素量が供給されるが、その量は投与方法1に比較すると1/2以下である。サンプルB投与後の、酸素分圧100mmHg〜40mmHgの間での酸素供給量は表1により、サンプル1mL当たり0.0345mLであり、残っている天然赤血球と共同して酸素を運搬する事となる。
(投与方法3)治療初期にサンプルAを投与し、次にサンプルBを投与
出血ショツク時に、治療初期にサンプルAを投与すれば、表1により、酸素分圧40mmHg以下の部位に、サンプル1mL当たり0.092mLが供給される。サンプルA投与により酸素分圧40mmHg以下の部位に酸素が供給され、血管内循環量が確保された後に、サンプルBを投与すれば、酸素分圧100mmHg~40mmHg間での酸素供給量はサンプル1mL当たり0.0345mLであり、残っている天然赤血球と共同して酸素を運搬する。
上記シミュレーションによる、各々の投与方法において、本発明におけるヘモグロビン含有リポソーム懸濁液1mLが運搬可能な、酸素分圧40mmHg以下の部位への酸素運搬量、及び酸素分圧100mmHg〜40mmHgの間での酸素運搬量を表2に纏める。
投与方法3により、出血ショック治療初期に高酸素親和性の人工酸素運搬体を投与し、酸素分圧40mmHg以下の部位に酸素が効率よく提供され、血管内循環量が確保された後は、低酸素親和性の人工酸素運搬体を投与し、酸素分圧100mmHg~40mmHg間での酸素供給が効率よく行なわれる事が分かる。それぞれのサンプルの投与量、投与時期は、出血の状況、患者の状態により選択される。
<Examination of administration method>
The high oxygen affinity hemoglobin-containing liposome suspension described in 0017 is referred to as sample A, and the low oxygen affinity hemoglobin-containing liposome suspension described in 0018 is referred to as sample B. The amount of oxygen that each sample 1mL can carry between oxygen partial pressures of 40 mmHg to 0 mmHg (37 ° C, 1 atm) and the amount of oxygen that can be transferred between oxygen partial pressures of 100 mmHg to 0 mmHg (37 ° C, 1 atm) ) Are summarized in Table 1. The administration method was simulated as follows.
(Administration method 1) Only sample A is administered at the beginning of treatment When only sample A is administered at the time of bleeding shock, oxygen is efficiently supplied to a site having an oxygen partial pressure of 40 mmHg or less from Table 1 (sample 1 mL After the oxygen supply to an oxygen partial pressure of 40 mmHg or less and the circulatory volume in the blood vessel are secured, oxygen supply at an oxygen partial pressure of 100 mmHg to 40 mmHg is required. The amount of oxygen transported by is small, and oxygen is transported by the blood flow in which the remaining natural red blood cells are secured.
(Administration method 2) Administration of sample B only at the initial stage of treatment When only sample B is administered at the time of hemorrhagic shock, according to Table 1, 0.038 mL of oxygen per mL of sample at a site with an oxygen partial pressure of 40 mmHg or less The amount is less than 1/2 compared to the administration method 1. According to Table 1, the oxygen supply amount between the partial pressure of oxygen of 100 mmHg and 40 mmHg after administration of sample B is 0.0345 mL per 1 mL of sample, and oxygen is transported together with the remaining natural red blood cells.
(Administration method 3) If sample A is administered at the initial stage of treatment and then sample B is administered at the time of hemorrhage shock, if sample A is administered at the initial stage of treatment, according to Table 1, per 1 mL of sample at a site where oxygen partial pressure is 40 mmHg 0.092 mL is supplied. If sample B is administered after oxygen is supplied to the site where the partial pressure of oxygen is 40 mmHg or less by administration of sample A and the vascular circulation volume is secured, the oxygen supply amount between 100 mmHg and 40 mmHg of oxygen partial pressure is 1 mL of sample. 0.0345mL, which carries oxygen in conjunction with the remaining natural red blood cells.
In each administration method according to the above simulation, the amount of oxygen transported to a site having an oxygen partial pressure of 40 mmHg or less, and the oxygen partial pressure between 100 mmHg and 40 mmHg, which can transport 1 mL of the hemoglobin-containing liposome suspension in the present invention. The transport amount is summarized in Table 2.
After administration of high oxygen affinity artificial oxygen carrier at the initial stage of hemorrhagic shock treatment by administration method 3, oxygen is efficiently provided to sites with an oxygen partial pressure of 40 mmHg or less, and the amount of intravascular circulation is secured. It can be seen that an oxygen-affinity artificial oxygen carrier is administered and oxygen supply is efficiently performed at an oxygen partial pressure of 100 mmHg to 40 mmHg. The dose and timing of administration of each sample are selected depending on the bleeding situation and the patient's condition.

Figure 2009263269
Figure 2009263269

Figure 2009263269
Figure 2009263269

ヒト天然血液の酸素解離曲線を示す。The oxygen dissociation curve of human natural blood is shown.

Claims (3)

出血治療に用いる人工酸素酸素運搬体であって、低酸素親和性の前記人工酸素運搬体と高酸素親和性の前記人工酸素運搬体を併用して用いる事を特徴とする前記人工酸素運搬体。   An artificial oxygen oxygen carrier for use in bleeding treatment, wherein the artificial oxygen carrier having a low oxygen affinity and the artificial oxygen carrier having a high oxygen affinity are used in combination. 出血治療に用いる人工酸素運搬体であって、初回に低酸素親和性の前記人工酸素運搬体を投与し、その後、高酸素親和性の前記人工酸素運搬体を投与する事を特徴とする請求項1に記載の前記人工酸素運搬体。   An artificial oxygen carrier used for bleeding treatment, wherein the artificial oxygen carrier having a low oxygen affinity is administered for the first time, and then the artificial oxygen carrier having a high oxygen affinity is administered. 2. The artificial oxygen carrier according to 1. 前記人工酸素運搬体がヘモグロビン含有リポソームの懸濁液である事を特徴とする請求項1又は2に記載の人工酸素運搬体。   3. The artificial oxygen carrier according to claim 1 or 2, wherein the artificial oxygen carrier is a suspension of hemoglobin-containing liposomes.
JP2008113545A 2008-04-24 2008-04-24 Artificial oxygen carrier used for treating hemorrhage Pending JP2009263269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008113545A JP2009263269A (en) 2008-04-24 2008-04-24 Artificial oxygen carrier used for treating hemorrhage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008113545A JP2009263269A (en) 2008-04-24 2008-04-24 Artificial oxygen carrier used for treating hemorrhage

Publications (1)

Publication Number Publication Date
JP2009263269A true JP2009263269A (en) 2009-11-12

Family

ID=41389593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113545A Pending JP2009263269A (en) 2008-04-24 2008-04-24 Artificial oxygen carrier used for treating hemorrhage

Country Status (1)

Country Link
JP (1) JP2009263269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120927A1 (en) 2011-03-09 2012-09-13 テルモ株式会社 System for delivering oxygen carrier, oxygenation device for oxygen carrier, and housing for oxygen carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120927A1 (en) 2011-03-09 2012-09-13 テルモ株式会社 System for delivering oxygen carrier, oxygenation device for oxygen carrier, and housing for oxygen carrier
JP5837044B2 (en) * 2011-03-09 2015-12-24 テルモ株式会社 Oxygen carrier administration system, oxygen carrier oxygenator, and oxygen carrier container

Similar Documents

Publication Publication Date Title
EP2560625B1 (en) Biodegradable nanoparticles as novel hemoglobin-based oxygen carriers and methods of using the same
DK1863495T3 (en) CALCIUM AND SODIUM SALT OF MYO-INOSITOL 1.6: 2,3: 4,5 TRIPYROPHOSPHATE FOR CANCER TREATMENT
JP2009131669A (en) Bicarbonate-based solution in single container
JPWO2012120927A1 (en) Oxygen carrier administration system, oxygen carrier oxygenator, and oxygen carrier container
US20120035137A1 (en) Use of inositol-tripyrophosphate in treating tumors and diseases
US20170027966A1 (en) Tumor eradication by inositol-tripyrophosphate
Chang Nanobiotechnology for hemoglobin-based blood substitutes
Ogata et al. Development of neo red cells (NRC) with the enyzmatic reduction system of methemoglobin
Mohanto et al. Current perspectives of artificial oxygen carriers as red blood cell substitutes: a review of old to cutting-edge technologies using in vitro and in vivo assessments
JP2009263269A (en) Artificial oxygen carrier used for treating hemorrhage
JP2008120760A (en) Hemoglobin- and allosteric factor-containing liposome suspension and its preparation method
JP3466516B2 (en) Stable oxygen storage solution
JP6889504B2 (en) How to use as dialysis machine, acceptor drug, donor drug, rinse solution and rinse solution
Siegel et al. Coronary artery bypass surgery in a patient receiving hemodialysis
JP2009234929A (en) Hemoglobin-containing liposome suspension effective in oxygen delivery to hypoxic cell and tissue and production method thereof
AU2006335318A1 (en) Use of inositol-tripyrophosphate in treating tumors and diseases
US20120003161A1 (en) Use of inositol-tripyrophosphate in treating tumors and diseases
US20080248012A1 (en) Erythrocyte Function Modifying Substance
JP2001348341A (en) Artificial oxygen carrier effective for cell and tissue in hypoxic state
CA2961746A1 (en) Stable micelle and/or liposome compositions and uses thereof
JP4763265B2 (en) Artificial oxygen carrier containing an anti-methanizing agent
Ogata et al. Characteristics of neo red cells, their function and safety: in vivo studies
WO2018008729A1 (en) Therapeutic agent for ischemic diseases
RU1801499C (en) Method of hypoxic state treatment
US6005078A (en) Canine-derived hemoglobin blood substitute, the process for preparing same and uses thereof